06-函数展开成泰勒级数的方法--间接展开法PPT
泰勒展开.ppt
>>f=sym('exp(-x)'); >>f1=taylor(f,4) >>f2=taylor(f,5) >>f3=taylor(f) >>x=0.1; >>ff=[f f1 f2 f3]; >>yy=eval(ff) >>e=yy([2 3 4])-yy(1) >>ezplot(f1,[-6,5]) >>text(-5,40,'f1') >>hold on
[例4] 求函数
y 2x3 9x2 12x 3
的极值。 >>y1='2*x^3-9*x^2+12*x-3'; >>ezplot(y1,[0,4]) >>[xmin,ymin]=fminbnd(y1,1.5,2.5) >>y2='-2*x^3+9*x^2-12*x+3'; >>[xmax,y]=fminbnd(y2,0.5,1.5)
>>ezplot(y,[-2*pi,4*pi]) >>text(3,0,'cos(x)') >>axis([-2*pi,4*pi,-2,2]) >>hold off f1 =
1-1/2*x^2 f2 =
cos(10)-sin(10)*(x-10)-1/2*cos(10)* (x-10)^2+1/6*sin(10)*(x-10)^3
对默认变量在x0点 展开n项
taylor(f,t,n, x0 )
对指定变量 t 在 x0 点展开n 项
解析函数的泰勒级数ppt课件
上页 下页 返回
例如,
e z z n
n0 n !
利用间接 sizn 在 展 z0开 的法 泰求 勒 . 展
sin z1(eizeiz) 2i
21in 0(inz!)nn 0(n i!z)n
(1)n
z2n1
n0
(2n1)!
精品课件
上页 下页 返回
再例如
f(z) cn(za)n n1
上页 下页 返回
练习
例3 把函 f(z)数 1 展开 z的 成 幂 . 级数 3z2
例4 求arctz在 azn0的幂级数 . 展开
精品课件
上页 下页 返回
3、幂级数和函数在收敛圆周上的状况
定理4.16 如果幂级数 cn(z a)n 的收敛半径R>0,且 n0 f(z) cn(za)n,(z K :z |a|R ) n 0 则f(z)在收敛圆周C:|z-a|=R上至少有一奇点,即不可能
(e z)(n )z 0 1 ,(n 0 ,1 ,2 , )
故有 ez1zz2 zn zn
2 !
n !
n 0n !
因为ez 在复平面内处处,解析
所以级数的收敛R半径.
精品课件
上页 下页 返回
f(z)n 0n 1!f(n)(z0)(zz0)n
仿照上例 , 可s得 izn 与 co z在 sz0的泰勒 . 展
2)幂级数的解析性质
设幂级数 cn(z a)n 的收敛半径为R , 那末
n0
(1) 它的和函数 f (z) , 即 f(z) cn(za)n
n0
是收敛圆 zaR内的解析函数 .
(2) f (z) 在收敛圆 zaR内的导数可将其幂
级数逐项求导得到, 即 f(z) ncn(za)n1.
第4章级数2
时收敛, 时发散,
令: 1 r R1
即:在
| z z0 | r,时收敛; | z z0 | r,时发散。
下一页 ╬
注: r和R的求法
z z0
R 1 / lim cn1 c n
n
lim cn c n
n1
1 z z0
R1
1/
lim
m
c ( m 1) c m
z z0
r
1 R1
lim c(m1) c m
f (z) an (z z0 )n n0
两边求n阶导数,得:
f (n) (z) n!an (n 1) n3 2an1(z z0 )
(n 2) (n 1) n4 3an2 (z z0 )2
f (n) (z0 ) n!an
所以:
an
f
(n) (z0 ) n!
cn
上一页
返回 ╬
(其中 cn , z0 为复常数)
(2)定义2 : 若正幂次项 cn (z z0 )n ,
n0
及负幂次项 cn (z z0 )n n1
都收敛,则称洛朗级数收敛,否则称洛朗级数发散。 返回 ╬
二、洛朗级数的收敛域
cn (z z0 )n cn (z z0 )n cn (z z0 )n
|z|1,|z|2
1
1 1
2(1 z ) z 1 1
2
z
1 ( z )n 1 (1)n
2 n0 2
z n0 z
n0
1 2n1
z
n
n0
z (n1)
①
③
返回 ╬
解:③
f (z)
1
(z 1)( z 2)
2 | z |
高等数学下教学new-第六节-taylor级数与函数的幂级数展开课件.ppt
二、函数展开为幂级数
1、直接展开法
先求出 f (z) 的各阶导数 f (n)(z)和 f (n)(a),n 1, 2,
代入
f (z)=
f (n)(a)(z a)n ,再确定收敛半径即可。
n0 n!
例5 设(1 z)a ealn(1z)(, 称为(1 z)a的主值支),求它的 Marclaurin展开式。
电气学院学习部资料库
故f (z)的Marclaurin展式为
f (z) (1 z)a 1 a(a 1) (a n 1) zn, ( z 1)
n1
n!
特别地,当a 1和a 2时,有
1
(z)n ,( z 1)
1 z n0
1
(1)n1 nzn1, ( z 1)
(1 z)2 n1
f (z)在闭圆 z - a r 内解析。
电气学院学习部资料库
现记圆周Kr { : a r},由Cauchy积分公式,
f (z) = 1 f ( ) d
2 i Kr z
由 z a 1,有
a
1
1
z ( a) (z a)
1 a
1
1 z
a
a
1 a
n0
z
a a
2
n!
电气学院学习部资料库
1 x 1
说明:(7)在 - 1 x 1 恒成立,但当a 取不同值时,
端点 - 1、1处的收敛情况是不同的。
1
(1+x )2
(1)n (n 1)xn , (1
n0
x
1)
1
(1 x) 2
1
(1)n (2n 1)!! xn, (1 x 1)
n1
(2n)!!
函数的泰勒级数48880
当x 1时,上式右端的级数是收敛的, 而 f x arctan x
在 x 1 处又是连续的.因此
arctan x x x3 x5 1n x2n1 , x 1,1
35
2n 1
例6. 将函数 是任意不为零的常数 .
展开成 x 的幂级数, 其中
解: 当是正整数 n时, f 0 1 ,当 k 1, 2,, n 时,
故 f 0 1, f 0 , f 0 1,
f n 0 1 n 1
于是得幂级数
1 x 1 x2 1 n 1 xn
2!
n!
它的收敛半径
R lim
an
n 1! 1 n 1
lim
a n n1
n
n! 1 n
lim n 1 1
n n
故为在s 开x。区间1,内1,上述幂级数收敛,记它的和函数
,
x (1, 1)
思考与练习
1. 函数 数” 有何不同 ?
处 “有泰勒级数” 与 “能展成泰 勒级
提示: 后者必需证明 lim Rn (x) 0, 前者无此要求.
n
2. 如何求
的幂级数 ?
提示:
y 1 1 cos 2x 22
1 2
1 2
(1)n
n0
1 (2n)!
1 (1)n 4n x2n ,
定义且连续, 所以展开式对 x =1 也是成立的, 于是收敛 区间为
利用此题可得
例5. 将函数 f x arctan x 展开成 x 的幂级数
解:
因为
f
x arctan x
1
1 ,x2
将上式从 0 到 x x 1,1 逐项积分,而且
f 0 arctan 0 0 可得
第五节 泰勒公式与泰勒级数讲稿 、第六节函数的间接展开(泰勒级数)2013-3-26(修改)
例(1)(3) (90.5) 求级数21(3)nn x n ∞=-∑的收敛域. 解 令3t x =-,级数21nn t n∞=∑,由212lim lim 1(1)n n n n a n a n +→∞→∞==+知1t R =,因此当131x -<-<即24x <<时原级数收敛.当2x =时,原级数为21(1)nn n ∞=-∑收敛, 当4x =时,原级数为211n n∞=∑收敛.所以原级数收敛域为[2,4].(2)(92.3) 级数21(2)4nnn x n ∞=-⋅∑的收敛域为)4,0(.答 令2(2)t x =- 对于14nnn t n ∞=⋅∑, 由1141lim lim (1)44n n n n n na n a n ++→∞→∞⋅==+⋅, 于是收敛半径4t R =,则20(2)404x x ≤-<⇒<<内收敛.当0x =和4x =时,原级数都为11n n∞=∑发散,所以收敛域为(0,4).例4求幂级数1(21)nn x n ∞=+∑的收敛半径与收敛域.(中心不在原点的级数求收敛域时先作变量替换)解 令21t x =+,幂级数变形为1nn t n∞=∑,111lim lim lim 1111n t t n n n n a nn R R a n n→∞→∞→∞++====⇒=+12x R ⇒=1111022t x x <⇒+<⇒-<<,当1x =-时原级数为11(1)n n n ∞=-∑收敛,当0x =时,11n n∞=∑发散,故 原级数收敛半径12R =,收敛域为[1,0)-.注意:一般幂级数求收敛半径时作变量代换.§7.5 泰勒公式与泰勒级数教学目的:掌握泰勒公式与TaylorTh ,了解函数的Taylor级数与Taylor 展式的关系.重点:泰勒公式与泰勒定理成立的条件,理解泰勒公式的推导方法.难点: 理解泰勒公式的推导方法.教学方法:启发式讲授与指导练习相结合 教学过程:引例:近似表达函数的多项式的特性无论是函数的性态还是近似计算,多项式函数总是比较简单.为此可以考虑在一个局部范围内用多项式来近似表示一个复杂函数引例:当x 很小时,1xe x ≈+,设()x f x e =,1()1P x x =+,则11(0)(0)1,(0)(0)1f P f P ''====.用22()12x P x x =++表示 212x x e x ≈++在0x =处值更为接近.猜想将1()P x 换成()n P x 则在0x x =处两函数有直到n 阶相同的导数,其在0x x =处接近的程度更高,即212!n xx x e x n ≈++++ .为用多项式表示更复杂的函数:设有函数()f x 在0x x =的某一邻域内有直到1n +阶的导数,令()f x ≈0100()()()n n n P x a a x x a x x =+-++- , 再令 1()()n f x D I +∈,0(,)x I a b ∈=, 若 ()()00()()k k n f x P x =,0,1,,k n = .((0)(0)00()()n f x P x =表示0k =的函数值相等)则 ()01()!k k a f x k =(0,1,,k n = ),于是()f x ≈0100()()()n n n P x a a x x a x x =+-++- .证明:因0100()()()n n n P x a a x x a x x =+-++- ,10()()(1)n P x a x x O '=+-,20()2!()(1)n P x a x x O ''=+-…… ,()0()!()(1)k n k P x k a x x O =+- …… ,()()!n n n P x n a =,那么 ()()00()()!k k n k f x P x k a ==,所以 ()01()!k k a f x k =, 0,1,,k n = .一、泰勒(Taylor )公式在讲第三章微分的应用时我们导出了近似公式000()()()()f x f x f x x x '≈+-( 当0x x -很小时)从几何上看,这是在点0x 附近用切线的一段近似地代替曲线弧.在函数改变量的表达式0000()()()()()f x f x f x x x o x x '=+-+-中 略去了一个关于(0x x -)的高阶无穷小量(0x x →时).但公式000()()()()f x f x f x x x '≈+-在实际计算中的精度不高,其误差为1000()()()()()R x f x f x f x x x '=---,可以推出()2100()()(),,2!f R x x x x x ξξ''=-∈.如果需要精度更高些,可将(0x x -)的高阶无穷小分离成两部分()220200()()()o x x a x x o x x -=-+-(0x x →时).保留与20()x x -同阶的无穷小量,略去20()x x -的高阶无穷小量,此时有200020()()()()()f x f x f x x x a x x '≈+-+-,以此类推,为达到一定精确度的要求,可考虑用n 次多项式()P x 近似表示()f x ,当0x x -很小时,将多项式()P x 写成以(0x x -)的方幂展开的形式2010200()()()()n n P x a a x x a x x a x x =+-+-++- ,其中012,,,a a a 是待定系数.我们知道()P x 具有任意阶的连续导数,将()P x 的多项式两边求一阶到n 阶导数,并令0x x =可得000102(),(),()2!,,P x a P x a P x a '''===()0()!n n P x n a = 于是()P x 可以写成200000()()()()()()2!P x P x P x P x x x x x '''=+-+-+()00()()!n n P x x x n +-若函数()f x 在0x x =的某一邻域内一阶到n 阶的导数都存在,可以做出一个n 次多项式200000()()()()()()2!n P x P x P x P x x x x x '''=+-+-+()00()()!n n P x x x n +- ()n P x 不一定等于()f x ,但它可以近似表示()f x ,它的近似程度可以由误差()()()n n R x f x P x =-来确定. 设10()()(1)!n n kR x x x n +=-+,如果能确定k 的值,则()n R x 就确定了.【定理7.10】(泰勒公式)设()f x 在含有0x 的区间(,)I a b =内有直到1n +阶的连续导数,则(,)x a b ∀∈,()f x 可以按(0x x -)的方幂展开为()()()n n f x P x R x =+000()()()f x f x x x '=+-+()001()()()!n n n f x x x R x n +-+. 此式称为按0x x -的幂展开n 阶泰勒公式.其中(1)10()()()(1)!n n n f R x x x n ξ++=-+ 称为拉格朗日型余项,ξ介于0x 与x 之间. 证明:不妨设0x x >.令()()()n n R t f t P t =-,10)()(+-=n n x t t G ,由条件知:(连续1n +次使用柯西中值定理可以证明)()()0(),()[,]k k n n R t G t C x x ∈,()()0(),()(,)k k nn R t G t D x x ∈,显然 ()()00()()0k k n n R x G x ==, 0,1,,k n = .那么011001()()()()()()()()n n n nn n n nR x R x R x R x x G x G x G ξξ+'-=='-- 1010()()()()n n nn R R x G G x ξξ''-=''-22()()n n R G ξξ''==''(1)(1)1(1)1()()()(1)!n n n n n n n R f G n ξξξ+++++==+, 其中 0121n x x ξξξξ+<=<<<< ,所以(1)10()()()(1)!n n n f R x x x n ξ++=-+, ξ介于0x 与x 之间. 另证:因为()f x 在含有0x 的区间(,)I a b =内有直到1n +阶的连续导数,所以对于0(,)x a b ∈,可将()f x 写成200000()()()()()()2!f x f x f x f x x x x x '''=+-+-+ ()10001()()()!(1)!n n n kf x x x x x n n ++-+-+为求出k 的值,引进辅助函数2()()()()()()()2!f t t f x f t f t x t x t ϕ'''=------()11()()()!(1)!n n n k f t x t x t n n +----+显然 0()()0x x ϕϕ==,()t ϕ在区间0[,]x x 上连续(设0x x >),在区间0(,)x x 内可导,由罗尔中值定理可知,至少存在一点0(,)x x ξ∈,使得()0ϕξ'=,因为 ()()()()[()()()]t f t f t x t f t x t f t ϕ''''''=------2()[()()()]2!f t x t f t x t '''''---- (4)32()()[()()]3!2!f t f t x t x t '''-----(1)()(1)()()[()()]()!(1)!!n n nn n f t f t k x t x t x t n n n +-----+--化简整理得 (1)()()[()]!nn x t t k f t n ϕ+-'=- 所以(1)()[()]0!nn x k f n ξξ+--=,而 ()0n x ξ-≠ 由 (1)(1)()0()n n k f k f ξξ++-=⇒=,于是10)1()()!1()()(++-+=n n n x x n f x R ξ,ξ介于0x 与x 之间.在公式中当00x =时,公式可化为麦克劳林公式2(0)()(0)(0)2!f f x f f x x '''=+++()(0)()!n n n f x R x n ++其中 (1)1()()(1)!n n n f R x x n ξ++=+或令,01x ξθθ=<<,则 (1)1()()(1)!n n n f x R x x n θ++=+例1 求()xf x e =的n 阶麦克劳林公式.解 因()()k x f x e =,()0(0)1k f e ==, 其中 0,1,,1k n n =+ ,那么()(0)(0)x e f x f f x '==++(1)()11()(0)!(1)!n n n n f x f x x n n θ+++++ 211112!!(1)!xn n e x x x x n n θ+=++++++ ,(01θ<<).例2 求()sin f x x =的麦克劳林公式.解 因()()sin()2n n f x x π=+, ()(0)sin()2n n f π=.有 (0)0,(0)1,(0)0,(0)1,f f f f ''''''====- (2)(0)0k f =,(21)(0)(1)k k f +=- ,0,1,2k = , 那么sin ()x f x =(1)()11()(0)(0)(0)!(1)!n n nn f x f f x f x xn n θ++'=+++++ 3521121(1)()3!5!(21)!k k k x x x x R x k -+-=-+-+-+- ,(或2()k R x 都可以)其中:221sin[(2)]2()(2)!k k x k R x x k πθ-+=,01θ<<. (或 212sin[(21)]2()(21)!k k x k R x x k πθ+++=+,01θ<<)特别地:1k =时,sin x x ≈, 32||||3!x R ≤;2k =时,3sin 3!x x x ≈-, 54||||5!x R ≤;3k =时,35sin 3!5!x x x x ≈-+, 76||||7!x R ≤. 例3 按(4)x -的乘幂展开多项式432()523f x x x x x =-+-.解 (4)60,f =-324(4)(41523)|21,x f x x x ='=-+-= 24(4)(12302)|74,x f x x =''=-+=4(4)(2430)|66,x f x =''=-=(5)(4)24,()0,()0n f f x R x '''===,所以432()(4)11(4)37(4)21(4)60f x x x x x =-+-+-+--.二、泰勒级数1.通过前面的学习我们知道,级数在其收敛域内一定有和函数. 由泰勒公式的学习知道,我们可以用多项式近似表示函数.现在我们想知道函数是否一定可以展开为幂级数,需不需要附加条件?2.问题:已知函数有 01,(1)1n n x x x ∞==<-∑收敛域11ln(1)(1)(11)n n n x x x n∞-=+=--<≤∑.问:(1) 对于一般的函数()f x 是否也有00()()n n n f x a x x ∞==-∑?(2) 如果能展开,项的系数n a 如何确定?(3) 展开式是否唯一?(4) 在什么条件下函数才能展开成幂级数?3.【定理】(Taylor Th ) 设()f x 在0(,)U x δ内具有任意阶导数,且lim ()0n n R x →∞=,则在0(,)U x δ内有()000()()()!n n n f x f x x x n ∞==-∑.其中()n R x 为()f x 的拉格朗日型余项(1)10()()()(1)!n n n f R x x x n ξ++=-+.证明 由于 ()000()()()()()()!n nn n n n n f x f x x x R x P x R x n ==-+=+∑. 所以等式两边取极限()000()()()lim ()!n n n n n f x f x x x P x n ∞→∞==-=∑⇔lim ()lim[()()]0n n n n R x f x P x →∞→∞=-=,),(0δx U x ∈.4.函数()f x 在点0x x =有泰勒展式⇔()f x 在0(,)U x δ有任意阶导数且lim ()0n n R x →∞=.注意:1)函数在点处可以展开为Taylor 级数时,其展式是唯一的. 因为泰勒系数()0()(0,1,2,)!n f x n n = 是唯一的. 2)()000()()!n n n f x x x n ∞=-∑为 ()f x 在0x x =点的 Taylor 级数,等式0()()nnn f x a x x ∞==-∑在lim ()0n n R x →∞=时成立.5.泰勒级数与麦克劳林级数设()f x 在0x x =点具有任意阶导数,则称(1) ()000()()!n n n f x x x n ∞=-∑为()f x 在点0x 的泰勒级数,记作 ()000()()~()!n n n f x f x x x n ∞=-∑. (2) ()0(0)!n nn f x n ∞=∑称为()f x 的麦克劳林级数, 记作 ()0(0)()~!n nn f f x x n ∞=∑. 0(0)x =注意问题: ()f x 在0x x =点具有任意阶导数,那么 级数()000()()!n n n f x x x n ∞=-∑在收敛区间内是否收敛于()f x ?例: 函数21,0,()0,0.x e x f x x -⎧⎪≠=⎨⎪=⎩在0x =点处任意可导,且()(0)0,0,1,n f n == ,于是()~f x ()0(0)!n nn f x n ∞==∑000n n x ∞=⋅=∑,x -∞<<+∞ 显然()f x ≠()0(0)0!n nn f x n ∞==∑, 0x ≠.结论:当级数()000()()!n n n f x x x n ∞=-∑收敛于()f x 时,即lim ()0n n R x →∞=时有泰勒展式.应用举例:例4 求函数在点0x =处的泰勒级数: (1)()xf x e =, (2)()sin f x x =提示:0,!nxn x e x n ∞==-∞<<+∞∑210sin (1),(21)!n nn x x x n +∞==--∞<<+∞+∑小结:1.函数()f x 在点0x x =的泰勒公式为()000()()()()!k nk n k f x f x x x R x k ==-+∑其中余项为(1)10()()()(1)!n n n f R x x x n ξ++=-+,ξ介于0x 与x 之间.公式成立的条件是:()f x 在点0x x =的邻域内有直到1n +阶的导数.2. 函数()f x 在点0x x =的泰勒展式为()000()()()!n nn f x f x x x n ∞==-∑ ,其系数()0()!n n f x a n =为泰勒系数.当00x =时,()f x 的上述展式为麦克劳林展式.注意:函数在一点的泰勒展式唯一.泰勒定理成立的条件是:()f x 在点0x x =邻域内的各阶导数存在且lim ()0n n R x →∞=.3.在近似计算中先要写出函数的级数表示式,再取n 的特殊值即可得到所要近似值.课后记:存在问题:不能区分泰勒公式与泰勒级数.§7.6 某些初等函数的幂级数展开式教学目的:熟练掌握Taylor 公式、TaylorTh 展式;能灵活运用导出公式间接求出函数的泰勒展式.重难点:能灵活运用导出公式间接求出所给函数的泰勒展式以及麦克劳林展式.教学方法:启发式讲授与指导练习相结合 教学过程:一、某些初等函数的幂级数展开式由泰勒定理的学习可知一个函数()f x 对区间[,]a b 内一个特定值0x ,是否可以展开为幂级数,取决于它在0x x =处的各阶导数是否存在,以及当n →∞时,余项()n R x 是否趋于0.1.直接展开法(利用泰勒级数与麦克劳林级数展开函数)将函数()f x 展成麦克劳林级数步骤:(1) 求()()n f x ,进而求出()(0)n f ;如果()f x 在00x =的某一阶导数不存在,则()f x 不能在00x =展成幂级数.(2)写出()f x 的麦克劳林级数()0(0)()~!n nn f f x x n ∞=∑,并求出级数的收敛半径R 、收敛域;(3) 讨论lim ()0n n R x →∞=或()(),n f x M ≤ ||x R <,(4) 在收敛区间I 上有 ()0(0)()!n nn f f x x n ∞==∑, x I ∈.例1 将()xf x e =展开成x 的幂级数.解:(1) 00x =,(2) 由于()()n x f x e =,所以()(0)1n f =, 1,2,n = ;(0)(0,1,2,)!n n f a n n ==()00(0)!!n nn n n f x x n n ∞∞===∑∑, 由于收敛半径1(1)!limlim lim(1)!n n n n n a n R n a n →∞→∞→∞++===+=+∞; (3) ∴201!2!!n n xn x x x e x n n ∞===+++++∑ , x -∞<<+∞.近似计算: 1xe x ≈+;212xx e x ≈++;23126xx x e x ≈+++.例2 将()sin f x x =展开成x 的幂级数. 解 (1) ()()sin()2n fx x n π=+⋅, 0,1,2,n = ;()(0)n f 依次循环取0,1,0,1,0,1,0,1,(0,1,2,)n --=即(21)(0)(1)n n f +=-,(2)(0)0n f = (0,1,2,)n = ;(2)()2100(0)(1)!(21)!n n n nn n f x x n n +∞∞===-+∑∑ 【或2111(1)(21)!n n n x n -∞-==--∑】3521(1)3!5!(21)!n nx x x x n +=-++-++ ,而211(21)!lim lim (23)!n n n n u n x R u n +→∞→∞+==+ 21lim0(23)(22)n x n n →∞==++;所以收敛域为 x -∞<<+∞.(3) 所以2121110sin (1)(1)(21)!(21)!n n n nn n x x x n n -∞∞-==⎡⎤=--⎢⎥-⎣⎦∑∑+=+ 35211sin (1)3!5!(21)!n n x x x x x n --=-++-+- ,x -∞<<+∞.例3 将函数 ()(1)f x x α=+展开成麦克劳林级数,其中α是任意不为零的常数. 分析:因为 1()(1)f x x αα-'=+,2()(1)(1)f x x ααα-''=-+()()(1)(1)(1)n n f x n x αααα-=--++所以 (0)1,(0),(0)(1),f f f ααα'''===-()(0)(1)(1)n f n ααα=--+ 得麦克劳林级数公式:1(1)(1)(1)!n n n x x n αααα∞=--++=∑,收敛域为 1x <(结果为二项式级数)当1x =±时,级数是否收敛于()1x α+取决于α的取值.可以证明:当1α≤-时,收敛域为()1,1-;当10α-<< 时,收敛域为(1,1]-;当0α>时,收敛域为[]1,1-. 取111,,,22ααα=-==- 等不同的值可以得到相应的公式.001()(1)1nn n n n x x x ∞∞===-=-+∑∑,(11x -<<). 2311111224246x x x x +=+-+⋅⋅⋅41[1,1]2468x x -+∈-⋅⋅⋅ 23111313512242461x x x x⋅⋅⋅=-+-⋅⋅⋅+41357(1,1]2468x x ⋅⋅⋅+-∈-⋅⋅⋅ 011n n x x ∞==-∑,(11x -<<).可以由无穷递缩等比数列求和公式得到.特别地,当α是正整数n 时,可以看出含有nx 项以后的各项的系数都为零.从而得到二项式公式21(1)(1)12!n n n n n x nx x nx x --+=+++++ . 2.间接法根据函数的泰勒展式的唯一性,利用常见展开式如sin x ,xe ,11x-,(1)n x +的公式,通过变量代换、四则运算、恒等变形、逐项求导、逐项积分等方法,求函数的幂级数(泰勒)展开式.例4 (1) 将()cos f x x =展开成x 的幂级数. 解:已知2121110sin (1)(1)(21)!(21)!n n n nn n x x x n n -+∞∞-===-=--+∑∑,x ∈R . 那么210cos (sin )(1)(21)!n nn x x x n +∞='⎡⎤'==-⎢⎥+⎣⎦∑20(1)(2)!n n n x n ∞==-∑,x <+∞ (2) 将21()1f x x =+展开成x 的幂级数.(注意收敛区间的间接求法)解:已知11n n x x ∞==-∑, 11x -<<. 那么 22220011()(1)11()nn n n n x x x x ∞∞====-=-+--∑∑, 11x -<<.例5 (1)将()ln(1)f x x =+展开成x 的幂级数.解:已知001[ln(1)]()(1)1nn n n n x x x x ∞∞=='+==-=-+∑∑, ||1x <.那么ln(1)[ln(1)]xx t dt '+=+⎰1000(1)(1)1n xnnnn n x t dt n +∞∞===-=-+∑∑⎰,||1x <. 又因为 1x =时,级数 01(1)1nn n ∞=-+∑收敛, ln(1)x +在1x =连续.1x =-时,级数 011n n ∞=-+∑发散, 于是1ln(1)(1)1n nn x x n +∞=+=-+∑ 231(1)231n n x x x x n +=-++-++ , 其中 收敛域为 11x -<≤.(2)将()arctan f x x =展开成x 的幂级数.解 221()()1n n f x x x ∞='==-+∑ 20(1),(1,1)n n n x x ∞==-∈-∑,(0)0f =21arctan 1xx dt t=+⎰212000(1)(1),(1,1)21n xn nnn n x t dt x n +∞∞===-=-∈-+∑∑⎰当2100(1)1,(1)2121n n n n n x x n n +∞∞==-=±-=±++∑∑均收敛, 故 21arctan (1),[1,1]21n nn x x x n +∞==-∈-+∑.注意:对于不需要通过积分与求导就可以的得到的级数,其收敛域可以直接由原收敛域间接求出,但对于要积分或求导才能得到的级数,端点要单独考察一下敛散性. 提问:用间接法将下列函数展开为为x 的幂级数,并确定收敛域: (1)()e 2x f x -=解 因为e ()!xnn 01xx n ∞==-∞<<+∞∑,所以有e 222001()(1)!!n x n n n n x x n n ∞∞-===-=-∑∑, 并由2x -∞<-<+∞得)(x f 的收敛域为(,)-∞+∞.同理可得e 3001()(1)!33!x n n nnn n x x n n ∞∞-===-=-⋅∑∑,(,)x ∈-∞+∞. (2)2()cos f x x =解 因为)()!2()1(cos 02+∞<<-∞-=∑∞=x n x x n nn,所以有21cos (1cos 2)2x x =+220111(2)(2)(1)1(1)22(2)!2(2)!n n n n n n x x n n ∞∞===+-=+-∑∑, 并由+∞<<∞-x 2得)(x f 的收敛域为),(+∞-∞. 同理可得21sin (1cos 2)2x x =-2011(2)(1)22(2)!nn n x n ∞==--∑211(2)(1)()2(2)!nn n x x n ∞-==--∞<<+∞∑,(3)e 3()x f x x -=解 因为)(!1e 0+∞<<-∞=∑∞=x x n n n x,所以有e 333001()(1)()!!n x n n n n x x x x x n n +∞∞-===-=--∞<<+∞∑∑. (4)1()3f x x=-解 由 ()2n 111t t t 1t 11t-=+++++-<<- ,有1113313x x =⋅--211[1()()]3333n x x x -=⋅+++++ 103n n n x ∞+==∑ 又由13<x得其收敛区间为)3,3(-.收敛域为 [3,3)-解211()()23(3)(1)431x x x f x x x x x x x ===----+-+并由 2111(11)1n t t t t t-=+++++-<<-,知 1001111()3333313nn n n n x x x x ∞∞+===-⋅=-=---∑∑(其中33)x -<<和0001()()(1)(11)1n nn n n n n x x x x x ∞∞∞====-=-=--<<+∑∑∑,所以2100()[(1)]2343nn n n n n x x x f x x x x ∞∞+====-----∑∑1111[(1)],1143n n n n x x ∞-==-+--<<∑.(6)将1()x d e dx x-展成x 的幂级数. 解:因为 )(!1e 0+∞<<-∞=∑∞=x x n n n x,0111!()n x n x d e d n dx x dx x ∞=⎡⎤-⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦∑ 121111()!!n n n n d n x x x dx n n ∞∞--==⎡⎤-==-∞<<+∞⎢⎥⎣⎦∑∑. 例6(1) (07.3.10)将函数21()34f x x x =-+展开为1x -的幂级数,并指出收敛区间.解: 21111()[]34541f x x x x x ==--+-+111[]53(1)2(1)x x =--+-+-11111[]115321132x x =-⋅-⋅---+ 001(1)1(1)(1)153102n n n n nn n x x ∞∞==--=--∑∑0123(1)[](1)3032nn n n n x ∞=-=+-∑ 由12x -<得收敛区间为()1,3-.(2) 将()sin f x x =展开成()4x π-的幂级数.解:由于 ()sin ()44f x x ππ⎡⎤=+-⎢⎥⎣⎦ sin cos()cos sin()4444x x ππππ=-+- 又已知21sin (1)(21)!n n n x x n +∞==-+∑, x -∞<<+∞, 20cos (1)(2)!n n n x x n ∞==-∑, x -∞<<+∞. 那么 1sin cos()sin()442x x x ππ⎡⎤=-+-⎢⎥⎣⎦ 2210()()144(1)(2)!(21)!2n n n n x x n n ππ+∞=⎡⎤--⎢⎥=-+⎢⎥+⎢⎥⎣⎦∑, 收敛域 x -∞<<+∞.(3)将21()f x x =展开为2x -的幂级数,并确定收敛区间.解 1111222212x x x ==⋅--++ 10(2)(1),222nn n n x x ∞+=-=--<∑ 1121111(2)()()(1),042n n n n n x f x x x x -∞++=-'==-=-<<∑类似可求211()()(1)1f x x x '==-- 11,11n n nx x ∞-==-<<∑ 小结:1.函数()f x 在点0x x =的泰勒展式为n n n x x n x f x f )(!)()(000)(-=∑∞= ,其系数()0()!n n f x a n = 为泰勒系数.当00x =时,()f x 的上述展式为麦克劳林展式.注意:函数在一点的泰勒展式唯一.2.利用公式中的已知收敛域,间接地求所求级数的收敛域比较方便.3.常用于间接展开的公式有1)01,11n n x x x ∞==<-∑ 2)21sin (1),(21)!n nn x x x n +∞==-<+∞+∑ 3)20cos (1),(2)!n n n x x x n ∞==-<+∞∑ 4)0,!nx n x e x n ∞==<+∞∑注意:有限个级数的代数和的收敛域应为各个收敛域的公共部分.课后记:存在问题:1.间接展开时不能灵活运用已知公式和级数的性质去正确写出套用公式所需的表示式.2.忽略了级数和的收敛域应为各个收敛域的公共部分.。
函数展开为泰勒级数
函数展开为泰勒级数设函数00()()nn n f x a x x ∞==−∑,0x x R −<,已知右端求左端,这是幂级数求和,已知左端求右端,这是求函数的幂级数展开式,除按定义之外,它们的方法是相同的。
一、 泰勒级数与迈克劳林级数:设函数()f x 在点的某一临域内具有任意阶导数,则级数: 0x ()00020000()30000()()!()()()()()1!2!()()()()3!!n n n n n f x x x n f x f x f x x x x x f x f x x x x x n ∞=−′′′=+−+−′′′+−+⋅⋅⋅+−+⋅⋅⋅∑0 称为函数()f x 在点的泰勒(Taylor )级数。
0x 特别的,如果,上式变成迈克劳林(Maclaurin)级数: 00x =2()3()0(0)(0)(0)()()1!2!(0)(0)()()3(!0)()!!n n n n n f f f f x x f f x x n n x ∞=′′′=++′′′++⋅⋅⋅++⋅⋅⋅∑ 此时,这个级数的敛散性不明确。
二、 函数展开称幂级数的条件:定理1:设函数()f x 在点0x 的某一临域内具有各阶导数,则函数0()U x ()f x 在该邻域内能展开称泰勒级数的充分必要条件是函数()f x 的泰勒公式的余项()n x R 当n 时的极限为0.即: →∞()0lim n n R x →∞=三、 直接法把函数展开成幂级数的步骤:第一.步: 求出 ()f x 的各阶导数()f x ′,()f x ′′,……()()n f x …… 如果在X=0处导数不存在,就停止进行。
第二.步: 求出函数及其各阶导数在X=0处的值,即: (0)f ′,,…………(0)f ′′()(0)n f 第三.步: 写出幂级数: 2()3(0)(0)(0)()()1!2!(0)(0)()()3!!n n f f f x x f f x x n ′′′++′′′++⋅⋅⋅++⋅⋅⋅ 并求出 收敛半径R 。
函数的幂级数展开式ppt课件泰勒级数课件
o
x0
P104,条件1,2
y f (x)
x
Pn的确定
Pn( x) a0 a1( x x0 ) a2( x x0 )2 an( x x0 )n
分析: f (x0) Pn(x0) a0
f (x0) Pn(x0) 1 a1 f (x0) Pn(x0) 2!a2
an
1 n!
代换 恒等变形
求导,积分
数项级数求和
无穷级数
特殊:数项级数
特殊:交正错项
一般:
一般:函数项级数
特殊:幂级数 一般:
判定敛散性
求R,收敛域 求和函数,
2. 数项级数求和
(1)e x 1 x 1 x2 2!
1 xn
n!
n0
1 n!
xn
此公式对应了无数个求和公式!
x0 )n
称为点 x0 处泰勒级数
f (x) 的泰勒级数 :
f (x)
f (x)
f (x0 )
f (x0 )(x x0 )
f
( x0 2!
)
(
x
x0
)2
f
(n) (x0 ) (x n!
x0 )n
n0
f
(n)( x0 )( x n!
x0 )n
不一定!
2 定理1 设函数 f (x) 在点 x0 的某一邻域
内具有
各阶导数, 则 f (x) 在该邻域内能展成泰勒级数的 充要条件是 f (x) 的__________余项满足:___________
理解1:
f (x) 的 n 阶泰勒公式
f (x) f (x0 ) f (x0 )(x x0 )
f
( x0 2!
解析函数的Taylor展式PPT课件
2! 4!
(2n)!
( z )
6) ln(1 z) z z2 z3 (1)n zn1 ,
23
n1
(1)n zn1
n0
n1
( z 1)
7)(1 z) 1 z ( 1) z2 ( 1)( 2) z3
2!
3!
( 1)( n 1) zn , ( z 1)
第2页/共33页
当 时,
za
za
1;
1
un
1 u n0
a
u 1
故
1
1 za
n0
(z
a a
)n
,
在上关于
一致收敛,
a
以
上有界函数
f
( )
a
乘上式两边得,
f
( )
z
n0
(
f ( )
a)n1
(z
a)n ,
在上关于 仍一致收敛,
故由定理4.7,
上式两边沿
积分,
并乘以
1
2
i
得
第3页/共33页
1
f (z) 2i
f ( ) d z
1
n0 2 i
(
f ( )
a)n1
d
(
z
a)n
cn (z a)n
n0
n0
f (n) (a) (z a)n; n!
由z的任意性,定理前半部分得证。
下证唯一性,设另有展式
f (z) cn' (z a)n, z K : z a R,
n0
由定理4.13知
cn'
1 n!
f
(n) (a)
cn;
故展式唯一.
泰勒Taylor级数展开
zk f ( z ) e ak ( z z 0 ) k 0 k 0 k!
z k
z2 z3 zk 1 z ... ... 2! 3! k!
例2:将cosz、sinz在z=0处展开 利用ez的展开式,可得
eiz e iz 1 (iz ) k (iz ) k cos(z ) 2 2 k 0 k! k ! k 0
∵离z0=1最近的支点为z=0 ∴收敛半径取R=1,收敛圆为|z-1|< 1
而
(ln z )
1 z
1 1 (1 z ) k z 1 (1 z ) k 0
(1) k ( z 1) k
k 0
(| z 1 | 1)
1 ln z dz (1) k ( z 1) k dz z k 0
奇次幂全部消去
(1) k z 2 k cos(z ) (2k )! k 0
(| z | )
e iz e iz 1 (iz ) k (iz ) k 同理 sin(z ) 2i 2i k 0 k! k ! k 0 1 i 2 k 1 z 2 k 1 i k 0 (2k 1)!
k 0
1 f ( ) d k 1 2i CR1 ( z0 ) (| z z0 | R)
k 0
f ( k ) ( z0 ) ( z z0 ) k k!
k a ( z z ) k 0 的每一项都是z的解析函数,且在
其收敛圆内任一同心闭圆上一致收敛。
z0=0点展开成泰勒级数。
1 ∵ f ( z) 2 有一个奇点z=-1 (1 z )
泰勒级数课件
e , 例如 f ( x ) 0,
1 x2
x0 x0
(n)
在x=0点任意可导, 且 f
(0) 0 ( n 0,1,2,)
f ( x )的麦氏级数为 0 x n
n 0
该级数在(,)内和函数s( x ) 0. 可见
除 x 0 外, f ( x ) 的麦氏级数处处不收敛 f ( x ). 于
例5 将函数
1 (1) n x n ( 1 x 1 ) 解: f ( x) 1 x n 0 从 0 到 x 积分, 得 x (1) n n 1 ln(1 x) (1) n x n d x x , 1 x 1 1 x 1 n 0 n 0 n 1 0
如果函数 f ( x )
a n ( x x0 ) n , 即
n 0
f ( x ) a0 a1 ( x x0 ) a n ( x x0 )
n
易得a0 f ( x0 ),
逐项求导任意次,得
f ( x ) a1 2a 2 ( x x0 ) na n ( x x0 ) n1
令 S n 1 ( x)
k 0
n
f
(k )
( x0 ) ( x x0 ) k k!
f ( x) S n 1 ( x) Rn ( x)
n
lim Rn ( x) lim f ( x) S n 1 ( x) 0 ,
n
x ( x0 )
二、函数展开成幂级数
x
例8 将
展成
的幂级数.
解: sin x sin ( x ) 4 4
泰勒公式ppt课件
在计算复杂函数的近似值时,泰勒公式可以将函数展开为多项式,从而快速得到 函数的近似值。这对于解决一些实际问题,如数值分析、近似计算等具有重要的 意义。同时,泰勒公式的误差项也可以给出近似计算的精度估计。
04
泰勒公式的扩展与推广
泰勒级数的收敛性
定义
泰勒级数是将一个函数表示为无 穷级数的和,而这个无穷级数在 某个点附近的收敛性决定了泰勒
泰勒公式的应用场景
近似计算
信号处理
在科学计算和工程领域中,常常需要 计算复杂的数学函数,而泰勒公式可 以提供近似的函数值。
在信号处理中,泰勒公式用于分析信 号的频谱和波形,例如傅里叶变换和 小波变换等。
数值分析
在数值分析中,泰勒公式用于求解微 分方程、积分方程等数学问题,提供 数值解的近似值。
02
与函数值之间的距离有关。
应用
了解收敛速度有助于选择合适的 泰勒级数进行近似计算,以提高
计算精度。
泰勒级数的误差估计
定义
误差估计是指在应用泰勒级数进行近似计算时, 估计计算结果与真实值之间的误差大小。
方法
通过比较泰勒级数展开式与原函数的差值,可以 得到误差估计的上界和下界。
应用
误差估计有助于了解近似计算的精度,从而选择 合适的泰勒级数进行近似计算。
公式。
泰勒公式的数学推导
利用等价无穷小替换,将复杂的 函数转化为简单的多项式函数, 再利用多项式函数的性质进行推
导。
利用函数的幂级数展开式,将复 杂的函数展开成幂级数形式,再
利用幂级数的性质进行推导。
利用函数的泰勒级数展开式,将 复杂的函数展开成泰勒级数形式 ,再利用泰勒级数的性质进行推
导。
泰勒公式的几何解释
函数展开成幂级数-泰勒级数
函数展开成幂级数泰勒级数的概念函数展开成幂级数的方法泰勒级数的概念回顾:若函数()f x 在点0x 的某个邻域0()U x 内有1n +阶导数,则函数在该邻域内有泰勒公式()00000()()()()()()()!n n n fx f x f x f x x x x x R x n '=+-++-+, 其中(1)10()()()(1)!n n n f R x x x n ξ++=-+ (ξ介于x 与0x 之间)称为拉格朗日型余项. ()()n f x P x ≈.泰勒多项式()n P x若函数()f x 在点0x 的某个邻域0()U x 内有任意阶导数, 则得到幂级数()000()()!n nn fx x x n ∞=-∑()20000000()()()()()()()2!!n nf x fx f x f x x x x x x x n '''=+-+-++-+称此幂级数为函数()f x 在点0x 处的泰勒级数.幂级数是否收敛?若幂级数收敛,其和函数是否为给定的函数)(x f ?定理 设函数()f x 在点0x 的某一邻域0()U x 内具有各阶导数,则()f x 在该邻域内能展开成泰勒级数的充分必要条件是 在该邻域内lim ()0n n R x →∞=,0()x U x ∈.证 ()f x 的n 阶泰勒公式为()()()n n f x P x R x =+, 其中()00000()()()()()()!n n n fx P x f x f x x x x x n '=+-++-, ()()()n n R x f x P x =-.()n P x 就是级数()000()()!n nn f x x x n ∞=-∑的前1n +项部分和,根据级数收敛的定义,即有()000()()()!n nn fx x x f x n ∞=-=∑,0()x U x ∈, ⇔ lim ()()n n P x f x →∞=,0()x U x ∈,⇔ lim[()()]0n n f x P x →∞-=,0()x U x ∈,⇔ lim ()0n n R x →∞=,0()x U x ∈.对于泰勒级数的几点说明:1.若函数()f x 在点0x 的某个邻域0()U x 内有任意阶导数,则可构造幂级数()000()()!n nn fx x x n ∞=-∑, 即使这个幂级数收敛,其和函数也不一定是函数()f x . 当且仅当lim ()0n n R x →∞=时幂级数收敛于函数()f x2.若函数()f x 在0()U x 内能展开成0x x -的幂级数, 则该级数必定是()f x 的泰勒级数.这是因为: 2010200()()()()nn f x a a x x a x x a x x =+-+-++-+,若对任意0()x U x ∈有21120300()2()3()()n n f x a a x x a x x na x x -'=+-+-+-+,22300()232()(1)()n n f x a a x x n n a x x -''=+⋅-+--+,()21020(2)!()!(1)!()()2!n n n n n f x n a n a x x a x x +++=++-+-+,将0x x =代入各式, 即有()01()!n n a f x n =,(0,1,2,)n =, 所以级数00()()n n n f x a x x ∞==-∑是()f x 的泰勒级数.函数的幂级数展开式是唯一的.在泰勒级数的表达式()000()()!n n n f x x x n ∞=-∑中, 取00x =,得 ()2(0)(0)(0)(0)2!!n n f f f f x x x n '''+++++()0(0)!n n n f x n ∞==∑, 称为函数()f x 的麦克劳林级数.则有()0(0)()!n n n f f x x n ∞==∑(||x r <), 称为函数()f x 的麦克劳林展开式. 若()f x 能在(,)r r -内展开成x 的幂级数,。
泰勒展开.ppt
解:(1)梯长
l (x a)2 b 2 (1 a )2 a l
x
b
a 8,b 27
x
>>L='sqrt((x+8)^+2+27^2*(1+8/x)^2)';
>>ezplot(L,10,60)
>>[xmin,Lmin]=fminbnd(l,15,20)
xmin = 18.0000
[例2] 分别求函数
y 1 u 1 x
在 x 0 和 u 0 处的泰勒展开式的前
3 项。
>>syms x u; >>taylor((1/(1+x))^u,x,3,0) ans =
1-u*x+(u+1/2*u*(u-1))*x^2 >>taylor((1/(1+x))^u,u,3,0) ans =
f1 = 1-x+1/2*x^2-1/6*x^3
f2 = 1-x+1/2*x^2-1/6*x^3+1/24*x^4
f3 = 1-x+1/2*x^2-1/6*x^3 +1/24*x^4-1/120*x^5
yy = 0.9048 0.9048 0.9048 0.9048
e= 1.0e-005 * -0.4085 0.0082 -0.0001
(3)计算 sin 0.5 的近似值,并比较误差。
3、求函数
y 2x 的极值。 1 x2
二、应用型实验
1、一幢楼房的后墙紧靠一个温室,温室宽 a 2m, 高 b 3m, 现用一梯子越过温室,一头
放在地平面,一头靠在楼房墙上,问梯子的
2019《高等数学下教学资料》第六节 taylor级数与函数的幂级数展开.ppt共29页
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
•
30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
2019《高等数学下教学资料》第六节
taylor级数与函数的幂级数展开.ppt •
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数展开成幂级数的间接展开法
一、基本初等函数的间接展开法根据唯一性,利用常见展开式,通过变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积分等
方法,求展开式。
∙基本公式:).,( ,)!12()1(sin ).
,( , !).1,1( 1101
200
+∞-∞∈+-=+∞-∞∈=-∈=-∑∑∑∞=+∞=∞
=x n x x x n x e x x x n n n n n x n n ,
二、典型例题例1. )( 的幂级数展开成将x a x f x
=由于令注意到解 . ln , ln a x u e
a a x x ==).,( ,!
1!2112+∞-∞∈+++++=u u n u u e n u ),(!ln !2ln ln 122+∞-∞∈+++++=x x n a x a a x a n n
x 代入上式得
将 ln a x u =
++-+-+-=+)!
12()1(!51!31sin 1253n x x x x x n n ,
),( 时解:当+∞-∞∈x 例2、. cos )( 的幂级数展开成将x x x f =对上式逐项求导得
+-+-+-=)!
2()1(!41!211cos 242n x x x x n n
.11)( )1(:x x f +='解例3、.
的幂级数展开成将下列函数x ∑⎰⎰
∞
=-=+=+000)1(1)1ln( n x n n x dt t t dt x 则).
1,1( ,1
)1(10-∈+-=+∞=∑x x n n n n ).1,1( ,)1()(1111 0
-∈-=--=+∑∞=x x x x n n n 又.arctan )()2( ; )1ln()( (1)x x f x x f =+=板书
, 1 , 1 1)1( 10发散在收敛在由于级数-==+-+∞=∑x x x n n n n
故
处连续在且函数 , 1 )1ln()(=+=x x x f ,)1(3121)1ln(132 +-+-+-=+-n x x x x x n
n ].
1,1(-∈x 板书
⎰+=x
t
dt x 021arctan ,1
2)1(51311253 ++-+-+-=+n x x x x n n ]
1,1[-∈x 由逐项求积得
同 , )1( )2(板书
三、其它函数展开成幂级数例4、. 1 41)( 处展开成泰勒级数在将=--=x x x x f 31
1131)1(3141:--⋅=--=-x x x 解])3
1()31(311[312 +-++-+-+=n x x x .31<-x ,3
)1(3)1(3)1(311322 +-++-+-+=+n n
x x x 板书
四、小结:常用已知和函数的幂级数;11)1(0x x n n -=∑∞=;11)1()2(202x x n n n +=-∑∞=;
!
)3(0x n n
e n x =∑∞=).1ln(1)1()5(01x n x n n n +=+-∑∞=+;sin )!12()1()4(012x n x n n n =+-∑∞=+。