复杂网络基础理论 第二章

合集下载

复杂网络简介PPT课件

复杂网络简介PPT课件

2021n/e3t/w7ork becomes increasingly disordered until CfoHr Ep=N1LaI ll edges are rewired randomly.
9
• Fig. 2 An example of scale-free network.
2021/3/7
• 在复杂网络的研究过程中,人们将网络中的节点用1, 2,…,N表出(注意:网络中的节点个数N可以是动态变 化的,也就是说网络可以而且应该是一个不断演化的过 程),网络建模主要考虑的是点与点之间的连边机制,下 面详细说明一下这四种网络的生成过程。
2021/3/7
CHENLI
7
• (i)规则网络(Lattice):节点个数N为不变的参数,将
这N个编号的节点通过以下的连边机制:每个节点连接到
• 它(的ii)K随临机近网的络节(点ERi)1,i:2节,...,点iK个2 ,数这N为里不K是变一的个参偶数整,数将。这
N个编号的节点通过以下的连边机制:节点 的概率为 p 。
i
和节点
j
连接
• (iii)小世界网络(WS):节点个数N为不变的参数,将 这N个编号的节点通过以下两个过程的连边机制:(1) 初始化:构造一个Lattice网络;(2)随机化:将网络中 的每一条边以概率 p 进行重连(即遍历选取每一条边,固 定边的一个节点,以概率选择另一个节点进行连接)。显 然WS网络是规则网络当 p 0 ,是随机网络当 p 1 。
复杂网络研究的是介于确定和随机之间的现实中的系统。 一个典型的网络由节点和连接两个节点的边组成。很长时 间以来,网络被考虑成点和边的随意集合,在数学上用随 机图表示。近几年,由于计算机数据处理和运算能力的飞 速发展,这种状况发生了根本性的改变。人们开始研究大 规模复杂网络的拓扑结构,研究发现,尽管很多网络具有 明显的复杂性和随机性,但也会出现可以用数学和统计语 言来描述的清晰的模式和规律,其中最重要的是小世界效 应(small-world effect),(Watts & Strogatz, 1998)和无标 度特性(scale-free property),(Barabási & Albert, 1999)。

复杂网络基础理论

复杂网络基础理论

无标度网络
定义:无标度网络是指节点的度分布遵循幂律分布的网络即少数节点拥有大量连接大部分节点 只有少数连接。
特性:无标度网络具有高度的异质性其结构可以抵抗随机攻击但容易受到定向攻击。
构建方法:无标度网络的构建通常采用优先连接机制即新节点更倾向于与已经具有大量连接的 节点相连。
应用场景:无标度网络在现实世界中广泛存在如社交网络、互联网、蛋白质相互作用网络等。
07
复杂网络的未来研究方向和挑战
跨领域交叉研究
复杂网络与计算机 科学的交叉:研究 网络算法、网络安 全和网络流量控制 等。
复杂网络与生物学 的交叉:研究生物 系统的网络结构和 功能如蛋白质相互 作用网络和基因调 控网络等。
复杂网络与物理学 的交叉:研究网络 的拓扑结构和动力 学行为如复杂系统 、自组织系统和非 线性系统等。
复杂网络的演化过程中节点和边 的动态变化会导致网络的拓扑结 构和性质发生改变。
添加标题
添加标题
添加标题
添加标题
复杂网络具有非线性和自组织的 特性能够涌现出复杂的结构和行 为。
复杂网络在现实世界中广泛存在 如社交网络、生物网络、交通网 络等。
复杂网络的特征
节点数量巨大且具有自组织、 自相似、小世界等特性
03
复杂网络的基本理论
网络拓扑结构
节点:复杂网络中的基本单元
连通性:网络中节点之间是否存 在路径
添加标题
添加标题
添加标题
添加标题
边:连接节点的线段表示节点之 间的关系
聚类系数:衡量网络中节点聚类 的程度
网络演化模型
节点增长模型:节点按照一定概 率在网络中加入形成无标度网络
节点属性演化模型:节点属性随 时间发生变化影响网络的演化

复杂网络理论基础题

复杂网络理论基础题

复杂网络理论基础题复杂网络理论作为计算机科学和网络科学领域的重要分支,旨在研究复杂系统中的网络拓扑结构及其动态演化规律。

本文将介绍复杂网络理论的基础知识,包括网络拓扑结构、节点度分布、小世界网络和无标度网络等内容。

一、网络拓扑结构网络拓扑结构是指网络中各节点之间连接关系的模式。

最简单的网络拓扑结构是随机网络,其中每个节点以等概率与其他节点相连。

然而,在许多实际网络中,节点的连接并不是完全随机的,而是具有某种特定的模式或结构。

二、节点度分布节点度是指节点连接的边的数量,节点度分布描述了网络中不同节点度值的节点数量。

在随机网络中,节点度分布通常呈现泊松分布,即节点度相差不大。

而在复杂网络中,节点度分布往往呈现幂律分布,即存在少数高度连接的节点(大度节点),大部分节点的度较低。

这也是复杂网络与随机网络的一个显著区别。

三、小世界网络小世界网络是指同时具有较高聚集性和较短平均路径长度的网络。

在小世界网络中,节点之间的平均距离较短,通过少数的中心节点即可实现较快的信息传递。

同时,小世界网络中也存在着高度的聚集性,即节点之间存在较多的局部连接。

四、无标度网络无标度网络是指网络中节点度分布呈现幂律分布的网络。

在无标度网络中,只有少数节点具有极高的度,而大部分节点的度较低。

这些高度连接的节点被称为“超级节点”或“中心节点”,它们在网络中起到关键的作用。

五、复杂网络的动态演化复杂网络的动态演化是指网络随时间发展过程中结构和拓扑特性的变化。

常见的复杂网络动态演化模型包括BA 模型和WS 模型。

BA 模型通过优先连接原则,使具有较高度的节点更容易吸引连接,从而形成无标度网络。

WS 模型则通过随机重连机制,在保持网络聚集性的同时,增加了节点之间的短距离连接。

六、复杂网络的应用复杂网络理论在许多领域都有广泛的应用。

例如,在社交网络中,研究人们之间的联系方式和信息传播规律;在生物学领域中,研究蛋白质相互作用网络和基因调控网络;在物流和供应链中,研究供应商和客户之间的联系。

复杂网络基础理论 第二章

复杂网络基础理论 第二章
2.距离与邻接矩阵的关系 定义
对于无权简单图来说,当l=1时, 。容易证明无 权简单图邻接矩阵A的l次幂Al的元素 表示节点vi和vj 之间通过l条边连接的路径数。当l=2时,容易推出 式中,U表示单位指示函数,即当x>0,U(x)=1; 否则U(x)=0。当i=j时,δ ij=1;否则δ ij=0。
24
2.3.1 联合度分布和度-度相关性
式中,ki,kj分别表示边eij的两个节点vi,vj的度,M表 示网络的总边数。 容易证明度-度相关系数r的范围为:0≤|r|≤1。 当r<0时,网络是负相关的;当r>0时,网络是正相关 的;当r=0时,网络是不相关的。
25
2.3.2 集聚系数分布和聚-度相关性
1.集聚系数分布 集聚系数分布函数P(C)表示从网络中任选一节 点,其集聚系数值为C的概率
式中,δ (x)为单位冲激函数。 2.聚-度相关性 局部集聚系数C(k)定义为度为k的节点的邻居之 间存在的平均边数<Mnn(k)>与这些邻居之间存在 的最大可能的边数的比值,即
26
2.3.2 集聚系数分布和聚-度相关性
全局集聚系数C则定义为
式中,<k2>为度的二阶矩。 显然,局部集聚系数C(k)与k的关系刻画了网络 的聚-度相关性。许多真实网络如好莱坞电影演员合 作网络、语义网络中节点的聚-度相关性存在近似的 倒数关系C(k)∝k−1 。把这种倒数关系的聚-度相关 性称为层次性,把具有层次性的网络称为层次网络。
27
1.联合度分布 度分布满足 平均度与度分布具有关系式 联合度分布定义为从无向网络中随机选择一条边 ,该边的两个节点的度值分别为k1和k2的概率,即 式中,M(k1,k2)为度值为k1的节点和度值为k2的节 点相连的总边数,M为网络总边数。 从联合度分布可以得出度分布

复杂网络-第二讲

复杂网络-第二讲
t m0 t
网络度分布服从指数分布
P(k )e
k m
(2)特殊情形B: M=t+m0 在这种特殊情形,每个节点的局域世界其 实就是整个网络,因此,局域世界模型就 完全等价于BA无标度网络模型。
模块性与等级网络
模块(module)与模体(motif) 模块是指一组物理上或功能上连接在一起 的、共同完成一个相对独立功能的节点。 模体可能是复杂网络的基本模块。网络的高 聚类性表明网络可能包含由高度连接的节 点构成的子图。如三角形,正方形和五角 形,其中一些子图所占的比例明显高于同 一网络的完全随机化形式中这些子图所占 的比例。这些子图就称为模体。
j
• 可见,适应度模型与BA无标度模型的区别在于,在适应度 模型中的优先连接概率与节点的度和适应度之积成正比, 而不是仅与节点的度成正比,这样,在适应度模型中,如 果一个年轻的节点具有的较高的适应度,那么该节点就有 可能在随后的网络演化过程中获取更多的边。
局域世界演化网络模型
• 在许多实际网络中,每个节点都有各自的局域世界, 研究者们建立了局域世界演化网络模型,其构造算 法如下: • ①增长:网络初始时有m0个节点和e0条边,每次 新加入一个节点和附带的m条边。 • ②局域世界优先连接:随机地从网络已有的节点中 选取M个节点( M m ),作为新加入节点的局域 世界,新加入的节点根据优先连接概率
Local (ki ) ' (i LW )

j
ki
Local
kj

M m0 t

j
ki
Local
kj
来选择与局域世界中的m个节点相连,其中LW是 由新选择的M个节点组成。
m M m0 t ,因此上述局域世界演化网 在t时刻, 络模型有两个特殊情形:M=m和M=t+m0。 (1)特殊情形A : M=m 这时,新加入的节点与其局域世界中所有的节点 相连接,这等价于BA无标度网络模型中只保留增 长机制而没有优先连接。此时,第i个节点的度的 ki m 变化率为

复杂网络基础理论 1剖析

复杂网络基础理论 1剖析

定在欧氏平面上,就称为欧几里德旅行商问题,但是
它也是NP难的。因此,通常用来解决TSP问题的解法都
是近似算法。第一个欧几里德旅行商问题的多项式近
似算法是由Arora于1998年使用随机平面分割和动态规
划方法给出的。
11
1.2.2 随机网络理论阶段
1959年,两个匈牙利著名的数学家Erdös和Rényi建
在由N个节点构成的图中,可以存在N(N-1)/2条边,
从中随机连接M条边所构成的网络就叫随机网络。如果
选择M=pN(N-1)/2,则这两种构造随机网络模型的
方法就可以联系起来。
12
1.2.2 随机网络理论阶段
随机图和经典图之间最大的区别在于引入了随机的
方法,使得图的空间变得更大,其数学性质也发生了 巨大的变化。Erdös和Rényi系统研究了当N→∞时随机图 性质与概率p的关系,他们发现:随机网络的许多重要 的性质都是随着网络规模的扩大而突然出现的,也就 是说对于给定概率p,随着网络规模的扩大,要么几乎 所有的随机图具有某种性质,要么几乎每一个图都不 具有该性质。
4
1.1 引言
随着生命科学的发展、网络时代的到来以及人们交 流和经济活动的全球化,人们早就开始观察和思考生 命网络、技术网络、交通网络、社会网络等呈现的一 些普遍现象或问题。所有这些问题看上去互不相关, 实际上这些都是复杂网络所反映的普遍规律和复杂网 络领域学者们所要研究的课题。
近10年来,复杂网络的研究正渗透到众多不同的学 科。推进复杂性科学的交叉研究,深入探索和科学理 解复杂网络的定性特征与定量规律,使它获得广泛的 应用,对全球科学和社会的发展具有十分重大的长远 意义。
3.四色猜想
1852年,毕业于伦敦大学的格思里来到一家科研单 位做地图着色工作时,发现了一个有趣的现象:每幅 地图都可以用四种颜色着色,使得有共同边界的国家

复杂网络的基础知识

复杂网络的基础知识

第二章複雜網路の基礎知識2.1 網路の概念所謂“網路”(networks),實際上就是節點(node)和連邊(edge)の集合。

如果節點對(i,j)與(j,i)對應為同一條邊,那麼該網路為無向網路(undirected networks),否則為有向網路(directed networks)。

如果給每條邊都賦予相應の權值,那麼該網路就為加權網路(weighted networks),否則為無權網路(unweighted networks),如圖2-1所示。

圖2-1 網路類型示例(a) 無權無向網路(b) 加權網路(c) 無權有向網路如果節點按照確定の規則連邊,所得到の網路就稱為“規則網路”(regular networks),如圖2-2所示。

如果節點按照完全隨機の方式連邊,所得到の網路就稱為“隨機網路”(random networks)。

如果節點按照某種(自)組織原則の方式連邊,將演化成各種不同の網路,稱為“複雜網路”(complex networks)。

圖2-2 規則網路示例(a) 一維有限規則網路(b) 二維無限規則網路2.2 複雜網路の基本特徵量描述複雜網路の基本特徵量主要有:平均路徑長度(average path length )、簇係數(clustering efficient )、度分佈(degree distribution )、介數(betweenness )等,下麵介紹它們の定義。

2.2.1 平均路徑長度(average path length )定義網路中任何兩個節點i 和j 之間の距離l ij 為從其中一個節點出發到達另一個節點所要經過の連邊の最少數目。

定義網路の直徑(diameter )為網路中任意兩個節點之間距離の最大值。

即}{max ,ij ji l D = (2-1) 定義網路の平均路徑長度L 為網路中所有節點對之間距離の平均值。

即∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2)其中N 為網路節點數,不考慮節點自身の距離。

复杂网络理论及其应用研究概述

复杂网络理论及其应用研究概述

复杂网络理论及其应用研究概述一、本文概述随着信息技术的飞速发展,复杂网络理论及其应用研究已成为当今科学研究的热点之一。

复杂网络无处不在,从社交网络到生物网络,从互联网到交通网络,它们构成了我们现代社会的基础架构。

复杂网络理论不仅关注网络的结构和性质,还致力于探索网络的行为和演化规律,以及如何利用网络进行优化和控制。

本文旨在全面概述复杂网络理论的基本概念、主要研究方法及其在各领域的应用实践,以期为读者提供一个清晰、系统的复杂网络研究视角。

在本文中,我们首先介绍复杂网络理论的基本概念,包括网络的定义、分类和性质。

然后,我们将重点介绍复杂网络的主要研究方法,包括网络建模、网络分析、网络演化等。

在此基础上,我们将探讨复杂网络理论在各领域的应用实践,包括社交网络分析、生物网络研究、互联网拓扑结构分析、交通网络优化等。

我们将对复杂网络理论的发展趋势和未来挑战进行展望,以期为读者提供一个全面了解复杂网络理论及其应用研究的框架。

二、复杂网络理论基础知识复杂网络理论作为图论和统计物理学的交叉学科,旨在揭示现实世界中复杂系统的结构和动力学行为。

其理论基础主要源自图论、统计物理、非线性科学以及计算机科学等多个学科。

图论为复杂网络提供了基本的数学语言和描述工具。

在网络中,节点代表系统中的个体,边则代表个体之间的关系或交互。

基于图论,可以定义诸如度、路径、聚类系数、平均路径长度等关键的网络参数,从而量化网络的拓扑结构和性质。

统计物理学的概念和方法为复杂网络提供了深入分析大规模网络结构的工具。

例如,通过引入概率分布来描述网络中的节点度、路径长度等属性,可以揭示网络的全局统计特性。

网络中的相变、自组织临界性等现象也为复杂网络理论带来了新的视角和思考。

非线性科学则为复杂网络的动力学行为提供了理论支撑。

在网络中,节点之间的相互作用和演化往往是非线性的,这导致网络的动力学行为表现出复杂的时空特征。

通过研究网络的稳定性、同步性、演化机制等,可以深入理解复杂系统的动力学行为。

复杂网络理论和应用研究-PPT课件

复杂网络理论和应用研究-PPT课件

k C N
网络(图)的基本概念
7
2
5
2
5 1 3 7
5
3
1 5
网络(图)的基本概念
节点1到7之间的最短路13,平均路径长度5.47,
平均度为3.4,集群系数为0.48。
3、规则图和随机图
规则图的特征 如果系统中节点及其与边的关系是固定的, 每个节点都有相同的度数,就可以用规 则图来表示这个系统。 随机图的特征 如果系统中节点及其与边的关系不确定, 就只能用随机图来表示这个系统。
因特网是一个复杂网络。(本图绘制于2019年 2月6日,描绘了从某一测试站点到其他约10万 个站点的最短连结路径。图中以相同的颜色来 表示相类似的站点。Nature 2000)
1 引论
复杂网络具有如下5个特征:

网络的大规模性和行为的统计性:网络节点数可以有成百上千万, 甚至更多,超大规模网络的行为具有统计特性。 节点动力学行为的复杂性: 各个节点本身可以是各非线性系统 (可以有离散的和连续微分方程描述), 具有分岔和混沌等非 线性动力学行为。 网络连接的稀疏性:一个有N个节点的具有全局耦合结构的网络 的连接数目为O(N ^2),而实际大型网络的连接数目通常为 O(N)。 连接结构的复杂性: 网络连接结构既非完全规则也非完全随机, 但却具有其内在的自组织规律。 网络的时空演化的复杂性: 复杂网络具有空间和时间的演化复 杂性, 展示出丰富的复杂行为,特别是网络节点之间的不同类型 的同步化运动。
b
d
e
网络(图)的基本概念

节点的度分布是指网络(图)中 ) 度为 k 的节点的概率 p ( k随节点 度 的变化规律。 k
网络(图)的基本概念

复杂网络的理论及应用

复杂网络的理论及应用

复杂网络的理论及应用随着科技的不断发展,人们的生活和社会组织方式也在不断变化。

在这个过程中,网络的作用越来越显著。

复杂网络作为网络科学的一支重要学科,研究的是网络的结构和性质。

通过探究网络中节点的联系及其交互关系,为许多实际问题提供了解决思路。

1. 复杂网络的理论复杂网络学理论基础主要有三个方面:图论、随机过程、统计物理学。

图论是复杂网络学理论的基础,它将复杂网络看作由节点和边构成的图。

随机过程是强大的工具,它可以描述复杂网络的动态演化。

统计物理学则为复杂网络提供了相当严密的理论基础,将网络中的节点当作对象,基于概率论和热力学的基本假设,研究网络的各种性质。

在以上基础上,复杂网络的理论发展主要包括以下几个方面:1.1. 网络的基本属性网络的基本属性包括:度数分布、聚类系数和平均路径长度。

其中,度数分布指的是每个节点拥有的链接数,而聚类系数和平均路径长度则分别描述了节点间的紧密程度和短距离程度。

1.2. 小世界效应小世界网络是指网络具有高聚类系数和短路径长度的共同特点。

研究表明,许多真实网络都具有小世界特性,表现为较高的聚集指数和较短的平均路径长度。

这种现象被称为小世界效应。

1.3. 无标度网络与节点重要性无标度网络是指网络中节点度数分布呈幂律分布。

具有该特性的网络具有重要的节点。

研究表明,少数节点在网络中的重要性远高于其他节点,这些节点被称为“关键节点”。

识别和保护这些关键节点对于网络的稳定性和鲁棒性至关重要。

1.4. 阻尼振荡阻尼振荡是复杂网络中的一种现象,它可以描述节点之间的同步现象。

研究表明,网络的结构和同步现象密切相关,不同的结构会导致不同的同步行为。

2. 复杂网络的应用复杂网络的应用广泛,尤其在社会学、生物学等领域中有着非常重要的地位。

下面分别介绍常见的应用领域。

2.1. 社交网络社交网络指的是人与人之间的联系网络。

研究表明,社交网络中的节点和联系具有很多特性,比如关闭性、传染性等。

基于这些特性,社交网络可以应用于疾病的传播、信息的传递等领域。

复杂网络的基本统计特征理论知识

复杂网络的基本统计特征理论知识

复杂网络的基本统计特征理论知识复杂网络的基本统计特征理论知识2.1 路网拥挤核2.1.1路网拥挤核的定义路网的总体拥堵评估,用路网拥挤核这一指标来进行评估。

路网拥挤核为路段拥挤度居全网前k%且相互连通成为一个局部网络,并且不能忽略的是,该网络对于所研究区域整体的人口,经济,政策等与人类活动的因素有着不可忽视的作用,那么这个城市道路局部网络,称为路网拥挤核。

2.1.2路网拥挤核k 值的计算根据宁波市交通工程的实际情况,考虑到宁波市的经济社会发展水平以及交通需求水平,利用宁波市的GDP 增长率、国省道日均流量增长比以及汽车拥有量增长比这三个指标,运用以下公式:;(2.1)本文选择的研究对象为宁波市,所以这里K 值计算暂时只讨论宁波市的路网拥挤核;根据公式,结合你宁波近十年数据,计算可得k=17.7,而考虑到宁波市的经济总量和汽车拥有量较大,在经济总量足够大以及汽车拥有量趋于饱和后,它们的增长率和增长比的数值会有所下降,所以将k 值暂定为15,即路段拥挤度居全网前15%且相互连通成为一个局部网络,就称该局部网络为一个路网拥挤核。

2.2复杂网络的基本统计特征对于城市道路网络演化模型构建与评估必须对于复杂网络的一些基础知识进行必要的了解。

汽车拥有量增长比增长率国省道日均流量增长比??=GDP K2.2.1复杂网络的度与度分布度是对于复杂网络系统里面,最常用同时也是最简单的一种概念。

在一个复杂网络系统里面,具体的每个节点的度m i 是指与这个节点连接在一起的边的具体的数量,而如果给这个复杂网络系统加上方向,那么具体的度可以分为二种:出度和入度;前者指的是从选定的节点,沿着复杂网络系统的方向指向的其他节点的具体的边的数目,后者指的是从选定的节点,反着复杂网络系统的方向指向的其他节点的具体的边的数目。

复杂网络系统的度m i 平均值叫做,网络的平均度用符号表示。

对于有向的复杂网络系统,有如下公式m m m out in i +=;(2.2)其中,m in 表示选定的节点的入度;m out 表示选定的节点的出度。

复杂网络理论和应用研究PPT课件

复杂网络理论和应用研究PPT课件
最近的研究文献揭示了复杂网络的许多重 要特性,其中最有影响的是小世界(smallworld)特性和无标度(scale-free)特性。
早期网络模型-ER模型
Erdös和Rényi (ER)最早提出随机网 络模型并对模型进行了深入研究,他们 是用概率统计方法研究随机图统计特性 的创始人。
在模型开始阶段给定N个节点,没有边, 以概率p用边连接任意一对节点,用这样 的方法产生一随机网络。
~ 1.5 Poisson distribution
小世界模型
为了描述从一个局部有序系统到一个随机 网络的转移过程,Watts和 Strogatz (WS)提出了一个新模型,通常称为小 世界网络模型。
WS模型始于一具有N个节点的一维网络, 网络的节点与其最近的邻接点和次邻接点 相连接,然后每条边以概率p重新连接。 约束条件为节点间无重边,无自环。
成的一张图。
中国教科网
中国教科网拓扑结构
网络(图)的基本概念
• 关联与邻接 • 度、平均度 • 节点的度分布 • 最短路径与平均路径长度 • 群系数
网络(图)的基本概念
a
b
c
d
e
网络(图)的基本概念
节点的度分布是指网络(图)中 度为 k的节点的概率 p(k随) 节点
度 的变k化规律。
网络(图)的基本概念
规则图的特征
平均度为3
随机图的特征
节点确定,但边以概率 p任意连
接。 节点不确定,点边关系也不确定。
随机图——节点19,边43
平均度为2.42,集群系数为0.13。
随机图——节点42,边118
平均度为5.62,集群系数为0.133。
4. 复杂网络的演化模型
复杂网络是大量互联的节点的集合,节点 是信息的载体,比如互联网,万维网,以 及各种通信网、食物网、生物神经网、电 力网、社会经济网、科学家合作网等。

《复杂网络简介》课件

《复杂网络简介》课件

100%
小世界网络
指网络中节点间的平均距离很短 ,即信息在网络中传播的速度很 快。
80%
随机网络
节点和边的出现是随机过程的结 果,网络结构相对均匀。
03
复杂网络的演化
网络演化的基本规律
自相似性
复杂网络在演化过程中表现出 自相似性,即在不同尺度上网 络的结构和性质具有相似性。
无标度性
复杂网络中节点的度分布遵循 幂律分布,即少数节点拥有大 量连接,而大多数节点只有少 数连接。
小世界效应
复杂网络中的节点平均距离较 小,信息在网络中传播迅速。
网络演化的机制
01
02
03
增长
随着时间的推移,网络中 的节点数量不断增加,新 的节点通过与已有节点建 立连接加入网络。
优先连接
新加入的节点更倾向于与 已有节点中连接数较多的 节点建立连接,从而形成 层次结构。
自组织
网络中的节点通过局部规 则和相互作用,在演化过 程中形成复杂的结构和模 式。
复杂网络的重要性
揭示现实世界中复杂系统的内在规律和机制
复杂网络是描述现实世界中复杂系统的重要工具,可以帮助我们 揭示系统内在的规律和机制。
促进跨学科研究
复杂网络涉及多个学科领域,如数学、物理、计算机科学、社会 学等,通过复杂网络的研究可以促进跨学科的合作与交流。
复杂网络的应用领域
01
02
03
04
网络控制的基本概念
1 2
状态反馈控制
通过测量节点的状态,并利用状态反馈控制方法 调整节点的输入,实现网络的控制。
输出反馈控制
通过测量节点的输出,并利用输出反馈控制方法 调整节点的输入,实现网络的控制。
3

复杂网络基础理论(ppt)

复杂网络基础理论(ppt)

IP



址 网
关系

数理统计基础
概率论基础 数理统计基础 统计假设及检验 一元线性回归分析
图论的基本概念
图的基本概念 图的路和连通性 图的基本运算 树与生成树 图的矩阵表示
复杂网络的研究内容和意义
研究的主要内容包括:网络的几何性质,网络 的形成机制,网络演化的统计规律,网络上的模 型性质,网络的结构稳定性,网络的演化动力学 机制等。
间的距离dij和从节点vj到vi之间的距离dji是不同的。距离dij 定义为从节点vi出发沿着同一方向到达节点vj所要经历的弧的 最少数目,而它的倒数1/dij称为从节点vi到节点vj的效率, 记为εij。
有向连通简单网络的平均距离L
因为效率可以用来描述非连通网络,所以可以定义有向网 络的效率LC为
介数
介数 节点的介数Bi定义为
式中,Njl表示从节点vj到vl的最短路径条数,Njl(i)表示 从节点vj到vl的最短路径经过节点vi的条数。 边的介数Bij定义为
式中,Nlm表示从节点vl到vm的最短路径条数,Nlm(eij )表示从节点vl到vm的最短路径经过边eij(方向相同)的 条数。
加权网络的静态特征
核度 一个图的k-核是指反复去掉度值小于k的节点及其连线后
,所剩余的子图,该子图的节点数就是该核的大小。 节点核度的最大值叫做网络的核度。 节点的核度可以说明节点在核中的深度,核度的最大值自然
就对应着网络结构中最中心的位置。
度中心性
度中心性分为节点度中心性和网络度中心性。 节点vi的度中心性CD(vi)定义为
网络G的度中心性CD定义为
介数中心性
介数中心性分为节点介数中心性和网络介数中心性。 节点vi的介数中心性CB(vi)定义为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
度<k>
无向无权图邻接矩阵A的二次幂A2的对角元素 就 是节点vi的邻边数,即 。实际上,无向无权图邻接 矩阵A的第i行或第i列元素之和也是度。从而无向无权 网络的平均度就是A2对角线元素之和除以节点数,即
<k>=tr(A2)/N。式中,tr(A2)表示矩阵A2的迹
,即对角线元素之和。
2.2.3 度分布
式中,U表示单位指示函数,即当x>0,U(x)=1; 否则U(x)=0。当i=j时,δij=1;否则δij=0。
2.2.1 平均距离
容易用数学归纳法证明
据此,若D为网络直径,则两节点vi和vj之间的距离dij可 以表示为
2.2.2 集聚系数
首先来看节点的集聚系数定义。假设节点vi与ki个节 点直接连接,那么对于无向网络来说,这ki个节点间可 能存在的最大边数为ki(ki-1)/2,而实际存在的边 数为Mi,由此我们定义Ci=2Mi/[ki(ki-1)]为节 点vi的集聚系数。
显然,邻接矩阵二次幂A2的对角元素 表示的是与 节点vi相连的边数,也就是节点vi的度ki。而邻接矩阵三 次幂A3的对角元素 =∑(aij·ajl·ali)(j≠l)表示的是从 节点vi出发经过三条边回到节点vi的路径数,也就是与 节点vi相连的三角形数的两倍(正向走和反向走)。因 此,由集聚系数的定义可知
2.2.2 集聚系数
【例2.1】计算下面简单网络的直径、平均距离和各节 点的集聚系数。
解:首先计算出所有节点对的距离:d12=1;d13=1; d14=2;d15=1;d16=2;d23=1;d24=1;d25=2;d26 =2;d34=2;d35=2;d36=1;d45=3;d46=1;d56=3 。由此可得直径和平均距离为
对于无向简单图来说,dij=dji且dii=0,则上式可简 化为
很多实际网络虽然节点数巨大,但平均距离却小得 惊人,这就是所谓的小世界效应。
2.2.1 平均距离
2.距离与邻接矩阵的关系 定义
对于无权简单图来说,当l=1时, 。容易证明无权 简单图邻接矩阵A的l次幂Al的元素 表示节点vi和vj之间 通过l条边连接的路径数。当l=2时,容易推出
对于有向网络来说,这ki个节点间可能存在的最大 弧数为ki(ki-1),此时vi的集聚系数Ci=Mi/[ki(ki -1)]。
将该集聚系数对整个网络作平均,可得网络的平均 集聚系数为
2.2.2 集聚系数
显然,0≤C≤1。当C=0,所有节点都是孤立节点, 没有边连接。当C=1时,网络为所有节点两两之间都 有边连接的完全图。对于完全随机网络来说,当节点 数很大时,C→O(1/N)。而许多大规模的实际网络 的集聚系数通常远小于1而大于O(1/N)。对于社会网 络来说,通常随着N→∞,集聚系数C→O(1),即趋 向一个非零常数。
第二章 网络拓扑结构与静态特征
2.1 引言 2.2 网络的基本静态几何特征 2.3 无向网络的静态特征 2.4 有向网络的静态特征 2.5 加权网络的静态特征 2.6 网络的其他静态特征 2.7 复杂网络分析软件
2.1 引言
与图论的研究有所不同,复杂网络的研究更侧重于 从各种实际网络的现象之上抽象出一般的网络几何量 ,并用这些一般性质指导更多实际网络的研究,进而 通过讨论实际网络上的具体现象发展网络模型的一般 方法,最后讨论网络本身的形成机制。
统计物理学在模型研究、演化机制与结构稳定性方 面的丰富的研究经验是统计物理学在复杂网络研究领 域得到广泛应用的原因;而图论与社会网络分析提供 的网络静态几何量及其分析方法是复杂网络研究的基 础。
2.1 引言
静态特征指给定网络的微观量的统计分布或宏观统 计平均值。
在本章中我们将对网络的各种静态特征做一小结。 由于有向网络与加权网络有其特有的特征量,我们将 分开讨论无向、有向与加权网络。
也可以利用式
计算,因为邻接矩
阵A的前三次幂为
2.2.2 集聚系数
故 =2, =3,从而 同理可得其他各节点的集聚系数为
C2=1/3;C3=1/3;C4=0;C5=0;C6=0 由此很容易算出该网络的集聚系数
2.2.3 度分布
1.节点的度 在网络中,节点vi的邻边数ki称为该节点vi的度。 对网络中所有节点的度求平均,可得到网络的平均
2.2.2 集聚系数
下面以节点v1的集聚系数计算为例:采用第一种定 义可知,节点v1与3个节点直接连接,而这3个节点之间 可能存在的最大边数为3(3-1)/2,而实际存在的
边数为1,由此可得C1=2/[3(3-1)]=1/3。
若采用第二种定义可知:与相连的三角形数为N1Δ =1,而与v1相连的三元组数为N1Λ=3,故C12.1 平均距离 2.2.2 集聚系数 2.2.3 度分布 2.2.4 实际网络的统计特征
2.2.1 平均距离
1.网络的直径与平均距离 网络中的两节点vi和vj之间经历边数最少的一条简单
路径(经历的边各不相同),称为测地线。 测地线的边数dij称为两节点vi和vj之间的距离(或叫
2.度分布
大多数实际网络中的节点的度是满足一定的概率分 布的。定义P(k)为网络中度为k的节点在整个网络中 所占的比率。
测地线距离)。 1/dij称为节点vi和vj之间的效率,记为εij。通常效率
用来度量节点间的信息传递速度。当vi和vj之间没有路 径连通时,dij=∞,而εij=0,所以效率更适合度量非 全通网络。
网络的直径D定义为所有距离dij中的最大值
2.2.1 平均距离
平均距离(特征路径长度)L定义为所有节点对之 间距离的平均值,它描述了网络中节点间的平均分离 程度,即网络有多小,计算公式为
节点vi的集聚系数也可定义为Ci=NiΔ/NiΛ。式中NiΔ 代表与节点vi相连的“三角形”数目,数值上就等于Mi ;NiΛ代表与节点vi相连的“三元组”数目,即节点vi与 其它两个节点都有连接,即“至少与其他两个分别认 识”,数值上就等于ki(ki-1)/2。
2.2.2 集聚系数
如何根据无向无权简单图的邻接矩阵A来求节点vi的 集聚系数Ci?
相关文档
最新文档