(完整)小学六年级奥数时钟问题(含例题讲解分析和答案)

合集下载

小学六年级奥数时钟问题

小学六年级奥数时钟问题

小学六年级奥数教案—24时钟问题时钟问题“时间就是生命”。

自从人类发明了计时工具——钟表,人们的生活就离不开它了。

什么时间起床,什么时间吃饭,什么时间上学……全都依靠钟表,如果没有钟表,生活就乱套了。

时钟问题就是研究钟面上时针和分针关系的问题。

大家都知道,钟面的一周分为60格,分针每走60格,时针正好走5格,所以时针的速度是分针速度垂直、两针成直线、两针成多少度角提出问题。

因为时针与分针的速度不同,并且都沿顺时针方向转动,所以经常将时钟问题转化为追及问题来解。

例1现在是2点,什么时候时针与分针第一次重合?分析:如右图所示,2点分针指向12,时针指向2,分针在时针后面例2在7点与8点之间,时针与分针在什么时刻相互垂直?分析与解:7点时分针指向12,时针指向7(见右图),分针在时针后面5×7=35(格)。

时针与分针垂直,即时针与分针相差15格,在7点与8点之间,有下图所示的两种情况:(1)顺时针方向看,分针在时针后面15格。

从7点开始,分针要比时针多走35-15=20(格),需(2)顺时针方向看,分针在时针前面15格。

从7点开始,分针要比时针多走35+15=50(格),需例3在3点与4点之间,时针和分针在什么时刻位于一条直线上?分析与解:3点时分针指向12,时针指向3(见右图),分针在时针后面5×3=15(格)。

时针与分针在一条直线上,可分为时针与分针重合、时针与分针成180°角两种情况(见下图):(1)时针与分针重合。

从3点开始,分针要比时针多走15格,需15÷(2)时针与分针成180°角。

从3点开始,分针要比时针多走15+30例4 晚上7点到8点之间电视里播出一部动画片,开始时分针与时针正好成一条直线,结束时两针正好重合。

这部动画片播出了多长时间?分析与解:这道题可以利用例3的方法,先求出开始的时刻和结束的时刻,再求出播出时间。

但在这里,我们可以简化一下。

小学六年级奥数时钟问题(含例题讲解分析和答案)

小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

分。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

小学六年级奥数教案—24时钟问题

小学六年级奥数教案—24时钟问题

小学六年级奥数(24)—时钟问题时钟问题知识点拨:时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

钟面的一周分为60格,分针每走60格,时针正好走5格,所以时针的速度是分针速度的5÷60=121。

具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度 时针速度:每分钟走112小格,每分钟走0.5度 例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。

例1 现在是2点,什么时候时针与分针第一次重合?分析:如右图所示,2点分针指向12,时针指向2,分针在时针后面例2在7点与8点之间,时针与分针在什么时刻相互垂直?分析与解:7点时分针指向12,时针指向7(见右图),分针在时针后面5×7=35(格)。

时针与分针垂直,即时针与分针相差15格,在7点与8点之间,有下图所示的两种情况:(1)顺时针方向看,分针在时针后面15格。

从7点开始,分针要比时针多走35-15=20(格),需(2)顺时针方向看,分针在时针前面15格。

从7点开始,分针要比时针多走35+15=50(格),需例3在3点与4点之间,时针和分针在什么时刻位于一条直线上?分析与解:3点时分针指向12,时针指向3(见右图),分针在时针后面5×3=15(格)。

时针与分针在一条直线上,可分为时针与分针重合、时针与分针成180°角两种情况(见下图):(1)时针与分针重合。

从3点开始,分针要比时针多走15格,需15÷(2)时针与分针成180°角。

经典奥数时钟问题

经典奥数时钟问题

四、时钟问题解法与算法公式解题关键:时钟问题属于行程问题中的追及问题。

钟面上按“时”分为12大格,按“分”分为60小格。

每小时,时针走1大格合5小格,分针走12大格合60小格,时针的转速是分针的,两针速度差是分针的速度的,分针每小时可追及。

1、二点到三点钟之间,分针与时针什么时候重合?分析:两点钟的时候,分针指向12,时针指向2,分针在时针后5×2=10(小格)。

而分针每分钟可追及1-=(小格),要两针重合,分针必须追上10小格,这样所需要时间应为(10÷)分钟。

解:(5×2)÷(1-)=10÷=10(分)答:2点10分时,两针重合。

2、在4点钟至5点钟之间,分针和时针在什么时候在同一条直线上?分析:分针与时针成一条直线时,两针之间相差30小格。

在4点钟的时候,分针指向12,时针指向4,分针在时针后5×4=20(小格)。

因分针比时针速度快,要成直线,分针必须追上时针(20小格)并超过时针(30小格)后,才能成一条直线。

因此,需追及(20+30)小格。

解:(5×4+30)÷(1-)=50÷=54(分)答:在4点54分时,分针和时针在同一条直线上。

3、在一点到二点之间,分针什么时候与时针构成直角?分析:分针与时针成直角,相差15小格(或在前或在后),一点时分针在时针后5×1=5小格,在成直角,分针必须追及并超过时针,才能构成直角。

所以分针需追及(5×1+15)小格或追及(5×1+45)小格。

解:(5×1+15)÷(1-)=20÷=21(分)或(5×1+45)÷(1-)=50÷=54(分)答:在1点21分和1点54分时,两针都成直角。

4、星期天,小明在室内阳光下看书,看书之前,小明看了一眼挂钟,发现时针与分针正好处在一条直线上。

小学六年级奥数时钟问题(含例题讲解分析和答案)

小学六年级奥数时钟问题(含例题讲解分析和答案)

小学六年级奥数时钟问题(含例题讲解分析和答案)篇章重构:时钟问题是一个特殊的圆形轨道上两个指针的追及或相遇问题。

在时钟问题中,我们研究的是时钟的快慢、周期以及时针和分针所成的角度等等。

时钟问题的速度和总路程的度量方式不同于其他行程问题,而是以“每分钟走多少角度”或“每分钟走多少小格”为单位。

对于标准的时钟,整个钟面为360度,上面有12个大格,每个大格为30度,60个小格,每个小格为6度。

分针每分钟走1小格或6度,时针每分钟走1小格或0.5度。

然而,在许多时钟问题中,我们会遇到各种“怪钟”或“坏了的钟”,它们的时针和分针每分钟走的度数与常规的时钟不同,因此需要对不同的问题进行独立的分析。

要将时钟问题视为行程问题,分针快,时针慢,因此分针和时针之间的问题就是追及问题。

在解决时钟的快慢问题时,需要学会十字交叉法。

例如,对于时钟问题,需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65分钟。

下面是例题精讲:例1:XXX有一只手表,他发现手表比家里的闹钟每小时0秒,而闹钟却比标准时间每小时慢30秒。

那么XXX的手表一昼夜比标准时间差多少秒?解析:闹钟每小时只走(3600-30)/3600个小时,而手表每小时走(3600+30)/3600个小时。

因此,标准时间走1小时,手表走(3600-30)/3600*(3600+30)/3600个小时。

手表每小时比标准时间慢1-(3600-30)/3600*(3600+30)/3600=1-/=1/个小时,即四分之一秒。

因此,一昼夜24小时比标准时间慢四分之一乘以24等于6秒。

巩固题1:XXX家有一个闹钟,每小时比标准时间分。

有一天晚上10点整,XXX对准了闹钟,他想第二天早晨6:00起床,他应该将闹钟的铃定在几点几分?解析:从晚上10点到第二天早晨6点,共计8小时。

因为闹钟比标准时间分,所以实际上只需要设置闹钟在标准时间的8小时之前3*8=24分即可。

六年级奥数 时钟问题(一)

六年级奥数  时钟问题(一)

时钟问题(一)月 日 姓名:【知识要点】钟面是一个360°的周角(即60格),分针1小时旋转1周,即360°(即60格),时针1小时旋转121周,即30°(即5格),即时针1分钟旋转: )121(5.06030格即︒=︒;分针1分钟旋转:)1(0660360格即︒=︒.时针1分钟走 121格,分针1分钟走1格,分针每分钟比时钟多走1211-。

常用原基本公式:初始时刻需追赶的格数÷(1211-)=追及时间(分钟); 其中,(1211-)为分针与时针的速度差.钟面一周平均分为60格,相邻两格刻度之间的时间间隔为1分钟,【典型例题】例1 (1)9点几分,时针和分针重合?时针和分针成反向一直线?(2)9点几分,时针和分针相互垂直?时针和分针成30°角?例2 10点24分时,分针与时针的夹角是多少度?再过多少分钟,时针与分针垂直?例3 分针和时针每隔多少时间重合一次?一个钟面上分针和时针一昼夜重合几次?例4 小明在7点多开始解一道题,开始时分针落后时针5格,解完题时两针正好成反向直线,小明解题共用了多少时间?此时是什么时刻?例5 4点整,再经过多少分钟,时针正好与分针第二次重合?时针与分针第三次成30°角?课堂小测姓名:成绩:1.7点几分,时针和分针重合?时针和分针成反向一直线?2.4点48分时,分针与时针的夹角是多少度?再过多少分钟,时针与分针垂直?3.在0到12时之间,钟面上的时针与分针成60°角共有几次?分针与时针正好成一条直线的机会有多少次?4.5点整,再经过多少分钟,时针正好与分针第三次重合?时针与分针第三次成80°角?5.双休日,小明一家去欢乐谷游玩,上午八点多从家出发,小明发现钟面上时针与分针恰好重合,下午2点多,他们回到家,小明发现时针与分针正好成反向直线。

问:在欢乐谷玩了多久?小明一家上午几点几分离家的?下午几点几分回家的?7.观察在镜面反射后的钟面的指针位置,并说出:(1)两钟面所表示的实际时刻;(2)两钟面的时间差。

小学奥数 钟面行程问题 完整版 带解析答案

小学奥数 钟面行程问题 完整版 带解析答案
所以此时的标准时间为:8时+45分=8时45分
8、一个时钟现在显示的时间是3点整,请问:
(1)多少分钟后,时针与分针第一次重合?
(2)再经过多少分钟后,时针与分针第一次张开成一条直线?
解答:
(1)3点整时,分针落后时针90°,第一次重合时,分针追上了时针,夹角是0°,所以在整个过程中,追及路程是90-0=90°,速度差为:6-0.5=5.5°,所以追及时间:
钟面行程问题
钟表问题是一类特殊的行程问题,掌握钟表问题的相关知识,学会将角度问题转化为环形追及问题或相遇问题,学会用比例分析两个速度不同的钟表之间的时间对比关系.
钟面上,分针每分钟转( 6 )度,时针每分钟转( 0.5 )度。
例题讲解:
1、有一座时钟现在显示上午10点整,问:
(1)多少分钟后,分针与时针第一次重合?
(90-0)÷(6-0.5)= (分)
(2)重合时,分针和时针夹角时0°,当时针与分针第一次张开成一条直线时,分针领先180°,所以在整个过程中,追及路程是180-0=180°,速度差为:6-0.5=5.5°,所以追及时间:(180-0)÷(6-0.5)= (分)
9、在9点23分时,时针和分针的夹角是多少度?从这一时刻开始,经过多少分钟,时针和分针第一次垂直?
360÷(6-0.5)= (分)
2、小悦早上6点半起床,赶到学校时发现手表上的时针和分针恰好第一次张开成一条直线,那么小悦到达学校的时间是几点几分?
解答:
6点半时,分针落后时针:15°当时针和分针第一次张开成一条直线时,分针超过时针180°,所以整个过程的追及路程为:180+15=195°,所以追及时间为:
4、下午6点多时冬冬吃完晚饭开始看动画片,动画片开始时他看手表,发现时针和分针的夹角为110°.在新闻联播前动画片放完了,冬冬又看手表,发现时针和分针的夹角仍是110°.那么动画片一共放了多少分钟?

(完整)小学六年级奥数时钟问题(含例题讲解分析和答案)

(完整)小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上 2 人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为 6 度。

分针速度:每分钟走 1 小格,每分钟走 6 度1时针速度:每分钟走小格,每分钟走0.5 度12注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

5例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65 分。

11例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走( 3600-30 )/3600 个小时,手表又比闹钟快那么它一小时走(3600+30 )/3600 个小时,则标准时间走 1 小时手表则走 ( 3600-30 )/3600* ( 3600+30 ) /3600 个小时,则手表每小时比标准时间慢1—【( 3600-30 )/3600* (3600+30 ) /3600 】=1 —14399/14400=1/14400 个小时,也就是1/14400*3600= 四分之一秒,所以一昼夜24 小时比标准时间慢四分之一乘以24 等于 6 秒【巩固】小强家有一个闹钟,每时比标准时间快 3 分。

小学奥数:时钟问题讲义

小学奥数:时钟问题讲义

小学奥数:时钟问题讲义小学奥数:时钟问题讲义一、时钟问题第一部分(例题讲解)1、从时钟指向4点开始,再经过多少分钟,时针正好与分针重合?(迎新春初赛试题)2、有一个时钟,它的每一个小时慢25秒,今年3月21日中午12点它的指示正确。

请问,这个时钟下一次指示正确的时间是几月几日几点钟?(华杯赛初赛试题)3、钟面上3时过几分,时针与分针离3的距离是相等的,并且在3的两旁?(九章杯初赛试题)4、从三点开始,分针与时针第二次形成30度角的时间是三点几分?(迎春杯决赛试题)5、科技馆里有一只奇妙的钟,一圈共有20格,每过7分钟,指针就跳一次,每跳一次就要跳过9个格,今天早上8点整的时候,指针恰好从0到跳到9,问昨天晚上8点整的时候指针指着几?(小学奥林匹克总决赛试题)6、把一个时钟改装成一个玩具钟,使得时针每转一圈,分针就转16圈,秒针转36圈,开始时三针重合。

问在时针旋转一周的过程中,三针重合了几次?(华杯赛决赛口试题)7、甲乙两个钟表都不准确,甲钟每24小时,恰好就快了1分钟;乙钟每走24小时,恰好就慢了1分钟。

假定今天下午三点钟的时候,将甲乙两钟调好,指在正确的时间上,任其不停地走下去,问一下这两只钟表都同样指在三点钟表的时候,要隔多少天的时间?(江西八一杯决赛试题)8、王叔叔有一只手表,他发现手表比家里的闹钟每个小时快30秒,而闹钟却比标准时间每个小时慢30秒,那么王叔叔的手表一个昼夜比标准时间差几秒的时间?(迎春杯决赛试题)9、在10点和11点之间,钟面上时针和分针在什么时间垂直?10、一只钟的时针与分针均指向4与6之间,且钟面上“5”字恰好在时针与分针的正中央。

问这是什么时刻?11、一旧钟面上的两针(分针与时针)每66分重合一次,这只旧钟一天中比标准时间快或慢几分?12、小明家的挂钟走起来每小时慢1.5分钟,早上8时小朋把钟对准了标准时间,那么这只表走到中午12点的时候,标准时间是几时几分?13、3时后的某一刻,时针与分针的位置,恰好与5 时后(不超过6时)的某一刻时针与分针的位置互换,即分针在先前时针所在的位置上,时针在先前分针所在的位置上。

小学六年级奥数时钟问题(含例题讲解分析和答案)

小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

分。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

六年级奥数第1讲:时钟问题-课件

六年级奥数第1讲:时钟问题-课件

距离相等,并分别在“5”的两旁,过了几分
钟?
转化为相遇问
题来试一试:
时间=路程÷
速度和
(30×5)÷(6+0.5)=300 (分钟)
13
答:过了300 分钟。
13
练习五(选做) 从4时开始,时针和分针第一次与“3”的 距离相等,并分别在“3”的两旁,过了几分钟?
转化为相遇问 题来试一试: 时间=路程÷
时针:0.5×30=15(度) 分针: 6 ×30=180(度) 答:时针走了15度,分针走了180度。
练习二
从8时15分到9时25分,时针和分针各转了多 少度?
时针和分针每 分钟走几度?
经过时间:25+60-15=70(分钟) 时针:0.5×70=35(度) 分针: 6 ×70=420(度)
答:时针走了35度,分针走了420度。
速度和
(30×2)÷(6+0.5)=120 (分钟)
13
答:过了120 分钟。
13
总结
1. 时针每小时走30度,每分钟走 0.5 度; 分针每小时走360度,每分钟走6度。
2. 一段时间内,两针走过的度数=转速×时间 。 3. 时钟问题中的“追及问题”:
时间=夹角变化量÷转速差 4. 时钟问题中的“相遇问题”:
11
答:6时 180 分和6时540 分,分针和 时针1是1 直角。 11
练习四
7时多少分的时候,分针落后于时针100°?
从7时开始,过了几 分钟,分针落后于
时针100°?
(30×7-100)÷(6-0.5)=20(分钟)
答:7时20分的时候,分针落后于时针100°。
例题五(选讲)
从5时开始,时针与分针第一次与“5”的

六年级奥林匹克数学基础教程25时间问题

六年级奥林匹克数学基础教程25时间问题

小学数学奥数基础教程时间问题同学们都知道,任何一块手表或快或慢都会有些误差,所以手表指示的时刻并不一定是准确时刻。

这一讲的内容是与不准确时钟有关的时间问题。

这类题目的变化很多,无论怎样变,关键是抓住单位时间内的误差,然后根据某一时间段内含多少个单位时间,就可求出这一时间段内的误差。

例1 肖健家有一个闹钟,每小时比标准时间慢半分钟。

有一天晚上8点整时,肖健对准了闹钟,他想第二天早晨5点55分起床,于是他就将闹钟的铃定在了5点55分。

这个闹钟将在标准时间的什么时刻响铃?分析与解:因为这个闹钟走得慢,所以响铃时间肯定在5点55分后面。

,闹钟走595分相当于标准时间的响铃时是标准时间的6点整。

例2爷爷的老式时钟的时针与分针每隔66分重合一次。

如果早晨8点将钟对准,到第二天早晨时针再次指示8点时,实际上是几点几分?分析与解:由上一讲知道,时针与分针两次重合的时间间隔为所以老式时钟每重合一次就比标准时间慢时钟24时重合多少次呢?我们观察从12点开始的24时。

分针转24圈,时针转2圈,分针比时针多转22圈,即22次追上时针,也就是说 24时正好例3 小明家有两个旧挂钟,一个每天快20分,一个每天慢30分。

现在将这两个旧挂钟同时调到标准时间,它们至少要经过多少天才能再次同时显示标准时间?分析与解:由时钟的特点知道,每隔12时,时针与分针的位置重复出现。

所以快钟和慢钟分别快或慢12时的整数倍时,将重新显示标准时间。

快钟快12时,需经过(60×12)÷20=36(天),即快钟每经过36天显示一次标准时间。

慢钟慢12时需要(60×12)÷30=24(天),即慢钟每经过24天显示一次标准时间。

因为[36,24]=72,所以两个钟同时再次显示标准时间,至少要经过72天。

例4一个快钟每时比标准时间快1分,一个慢钟每时比标准时间慢2分。

若将两个钟同时调到标准时间,结果在24时内,快钟显示9点整时,慢钟恰好显示8点整。

小学奥数题及答案:时钟问题

小学奥数题及答案:时钟问题

这篇关于⼩学奥数题及答案:时钟问题,是⽆忧考特地为⼤家整理的,希望对⼤家有所帮助![专题介绍]钟⾯上有时针与分针,每针转动的速度是确定的。

分针每分钟旋转的速度: 360°÷60=6° 时针每分钟旋转的速度: 360°÷(12×60)=0.5° 在钟⾯上总是分针追赶时针的局⾯,或是分针超越时针的局⾯。

这⾥的转动⾓度⽤度数来表⽰,相当于⾏⾛的路程。

因此钟⾯上两针的运动是⼀类典型的追及⾏程问题。

[经典例题]例1 钟⾯上3时多少分时,分针与时针恰好重合?分析正3时时,分针在12的位置上,时针在3的位置上,两针相隔90°。

当两针第⼀次重合,就是3时过多少分。

在正3时到两针重合的这段时间内,分针要⽐时针多⾏⾛90°。

⽽可知每分钟分针⽐时针多⾏⾛6-0.5=5.5(度)。

相应的所⽤的时间就很容易计算出来了。

解 360÷12×3= 90(度) 90÷(6-0.5)= 90÷5.5≈16.36(分)答两针重合时约为3时16.36分。

例2 在钟⾯上5时多少分时,分针与时针在⼀条直线上,⽽指向相反?分析在正5时时,时针与分针相隔150°。

然后随时间的消逝,分针先是追上时针,在此时间内,分针需⽐时针多⾏⾛150°,然后超越时针180°就成⼀条直线且指向相反了。

解 360÷12×5=150(度) (150+ 180)÷(6— 0.5)= 60(分) 5时60分即6时正。

答分针与时针在同⼀条直线上且指向相反时应是5时60分,即6时正。

例3 钟⾯上12时30分时,时针在分针后⾯多少度?分析要避免粗⼼的考虑:时针在分针后⾯180°。

正12时时,分针与时针重合,相当于在同⼀起跑线上。

当到12时30分钟时,分针⾛了180°到达6时的位置上。

小学六年级数学拓展:时钟问题习题及解析

小学六年级数学拓展:时钟问题习题及解析

时钟问题及习题解析1.(1) 3点16分时针与分针的夹角为__________度.(2)16点16分时针和分针的夹角是__________度.【答案】(1) 2(2) 32【解析】(1)3点的时候夹角为90度,分针每分钟转6度,时针每分钟转0.5度,3点16分的时候夹角为90160.51662+⨯-⨯=度(2)16点的时候夹角为120度,每分钟,分针转6度,时针转0.5度,16点16分的时候夹角为120-6×16+0.5×16=32度.2.有一座时钟现在显示10时整.(1)经过多少分钟,分针与时针第一次重合?(2)再经过多少分钟,分针与时针第二次重合?【答案】(1)65411;(2)56511【解析】(1) 10点整时夹角为300度,所以有6006 300(60.5)54min1111÷-==(2) 分针比时针多走360度,所以有7205 360(60.5)65min1111÷-==3.钟表的时针与分针在8点多少分第一次垂直?【答案】8点32711分【解析】此题属于追及问题,8点时夹角为240度,所以追及路程是24090150-=度,追及时间是:3003150(60.5)271111÷-==(分钟),所以8点32711分第一次垂直.4.时钟的时针和分针在6点钟反向成一直线,问:它们下—次反向成—直线是在什么时间?(准确到秒)【答案】7点5分27秒【解析】时针、分针下一次反向时分针应比时针多走360度,则有7205 360(60.5)651111÷-==分钟,精确到秒511×60≈27,即在7点5分27秒时,时针、分针再次反向成一直线。

5.一部动画片放映的时间不足1时,小明发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。

这部动画片放映了多长时间?【答案】55513分钟【解析】根据题意可知,时针恰好走到分针的位置,分针恰好走到时针的位置,它们一共走了一圈,即5360(60.5)5513÷+=(分)6. 8时到9时之间时针和分针在“8”的两边,并且两针所形成的射线到“8”的距离相等.问这时是8时多少分?【答案】8点123613分 【解析】8点整的时候,时针与分针夹角为240度,时针走的角度沿8点对称过来,得到时针与分针走的路程和为240度,所以所需时间为48012240(60.5)361313÷+==分钟,即8点123613分钟为题中所求时刻. 7. 晚上8点刚过,不一会小华开始做作业,一看钟,时针与分针正好成一条直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

分。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。

有一天晚上10点整,小强对准了闹钟,他想第二天早晨6∶00起床,他应该将闹钟的铃定在几点几分?【解析】6:24【巩固】小翔家有一个闹钟,每时比标准时间慢3分。

有一天晚上9点整,小翔对准了闹钟,他想第二天早晨6∶30起床,于是他就将闹钟的铃定在了6∶30。

这个闹钟响铃的时间是标准时间的几点几分?【解析】7点【巩固】当时钟表示1点45分时,时针和分针所成的钝角是多少度?【解析】 142.5度【例 2】 有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【解析】 在lO 点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“112”,于是需要时间:1650(1)541211÷-=.所以,再过65411分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过65(1210)6054651111-⨯-=分钟,时针与分针第二次重合.标准的时钟,每隔56511分钟,时针与分针重合一次. 我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的112.如果设分针的速度为单位“l”,那么时针的速度为“112”. 【巩固】 钟表的时针与分针在4点多少分第一次重合? 【解析】 此题属于追及问题,追及路程是20格,速度差是11111212-=,所以追及时间是:11920211211÷=(分)。

【巩固】 现在是3点,什么时候时针与分针第一次重合?【解析】根据题意可知,3点时,时针与分针成90度,第一次重合需要分针追90度,490(60.5)1611÷-=(分)【例 3】 钟表的时针与分针在8点多少分第一次垂直?【解析】 32711此题属于追及问题,但是追及路程是4401525-=格(由原来的40格变为15格),速度差是11111212-=,所以追及时间是:11325271211÷=(分)。

【例 4】 2点钟以后,什么时刻分针与时针第一次成直角?【解析】根据题意可知,2点时,时针与分针成60度,第一次垂直需要90度,即分针追了90+60=150(度),3150(60.5)2711÷-=(分)【例 5】8时到9时之间时针和分针在“8”的两边,并且两针所形成的射线到“8”的距离相等.问这时是8时多少分?【解析】8点整的时候,时针较分针顺时针方向多40格,设在满足题意时,时针走过x格,那么分针走过40-x格,所以时针、分针共走过x+(40-x)=40格.于是,所需时间为11240(1)361213÷+=分钟,即在8点123613分钟为题中所求时刻.【例 6】现在是10点,再过多长时间,时针与分针将第一次在一条直线上?【解析】时针的速度是360÷12÷60=0.5(度/分),分针的速度是360÷60=6(度/分),即分针与时针的速度差是6-0.5=5.5(度/分),10点时,分针与时针的夹角是60度,,第一次在一条直线时,分针与时针的夹角是180度,,即分针与时针从60度到180度经过的时间为所求。

,所以答案为9(18060) 5.52111-÷=(分)【巩固】在9点与10点之间的什么时刻,分针与时针在一条直线上?【解析】根据题意可知,9点时,时针与分针成90度,第一次在一条直线上需要分针追90度,第二次在一条直线上需要分针追270度,答案为490(60.5)1611÷-=(分)和1270(60.5)4911÷-=(分)【例 7】晚上8点刚过,不一会小华开始做作业,一看钟,时针与分针正好成一条直线。

做完作业再看钟,还不到9点,而且分针与时针恰好重合。

小华做作业用了多长时间?【解析】根据题意可知,从在一条直线上追到重合,需要分针追180度,8180(60.5)3211÷-=(分)【例 8】某人下午六时多外出买东西,出门时看手表,发现表的时针和分针的夹角为1100,七时前回家时又看手表,发现时针和分针的夹角仍是1100.那么此人外出多少分钟?【解析】如下示意图,开始分针在时针左边1100位置,后来追至时针右边1100位置.于是,分针追上了1100+1100=2200,对应2206格.所需时间为2201(1)40612÷-=分钟.所以此人外出40分钟. 评注:通过上面的例子,看到有时是将格数除以1(1)12+,有时是将格数除以1(1)12-,这是因为有时格数是时针、分针共同走过的,对应速度和;有时格数是分针追上时针的,对应速度差.对于这个问题,大家还可以将题改为:“在9点多钟出去,9点多钟回来,两次的夹角都是1100”,答案还是40分钟.【例 9】 上午9点多钟,当钟表的时针和分针重合时,钟表表示的时间是9点几分?【解析】 时针与分针第一次重合的经过的时间为:11451491211⎛⎫÷-= ⎪⎝⎭(分),当钟表的时针和分针重合时,钟表表示的时间是9点14911分。

【例 10】 小红上午8点多钟开始做作业时,时针与分针正好重合在一起。

10点多钟做完时,时针与分针正好又重合在一起。

小红做作业用了多长时间?【解析】 8点多钟时,时针和分针重合的时刻为:17401431211⎛⎫÷-= ⎪⎝⎭(分)10点多钟时,时针和分针重合的时刻为:16501541211⎛⎫÷-= ⎪⎝⎭(分)67101054843210111111-=时分时分时分,小红做作业用了1021011时分时间 【例 11】 小红在9点与10点之间开始解一道数学题,当时时针和分针正好成一条直线,当小红解完这道题时,时针和分针刚好第一次重合,小红解这道题用了多少时间?【解析】 9点和10点之间分针和时针在一条直线上的时刻为:14151161211⎛⎫÷-= ⎪⎝⎭(分),时针与分针第一次重合的时刻为: 11451491211⎛⎫÷-= ⎪⎝⎭(分),所以这道题目所用的时间为:148491632111111-=(分) 【例 12】 一部动画片放映的时间不足1时,小明发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。

这部动画片放映了多长时间?【解析】 根据题意可知,时针恰好走到分针的位置,分针恰好走到时针的位置,它们一共走了一圈,即5360(60.5)5513÷+=(分) 【例 13】 有一座时钟现在显示10时整。

那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【解析】 根据题意可知,10点时,时针与分针成60度,第一次重合需要分针追360-60=300(度),6300(60.5)5411÷-=(分)第二次重合需要追360度,即56511分。

模块二、时间标准及闹钟问题【例 14】 钟敏家有一个闹钟,每时比标准时间快2分。

星期天上午9点整,钟敏对准了闹钟,然后定上铃,想让闹钟在11点半闹铃,提醒她帮助妈妈做饭。

钟敏应当将闹钟的铃定在几点几分上?【解析】 闹钟与标准时间的速度比是62:60=31:30, 11点半与9点相差 150分, 根据十字交叉法,闹钟走了 150×31÷30=155(分),所以 闹钟的铃应当定在11点35分上。

【例 15】 小翔家有一个闹钟,每时比标准时间慢2分。

有一天晚上9点整,小翔对准了闹钟,他想第二天早晨6∶40起床,于是他就将闹钟的铃定在了6∶40。

这个闹钟响铃的时间是标准时间的几点几分?【解析】 闹钟与标准时间的速度比是 58:60=29:30 晚上9点与次日早晨6点40分相差580分, 即 标准时间过了 580×30÷29=600(分),所以 标准时间是7点。

【例 16】 有一个时钟每时快20秒,它在3月1日中午12时准确,下一次准确的时间是什么时间?【解析】 时钟与标准时间的速度差是 20秒/时,因为经过12小时,时钟的指针回到起始的位置,所以到下一次准确时间时,时钟走了 12×3600÷20=2160(小时) 即 90天, 所以 下一次准确的时间是5月30日中午12时。

【例 17】 小明家有两个旧挂钟,一个每天快20分,另一个每天慢30分。

现在将这两个旧挂钟同时调到标准时间,它们至少要经过多少天才能再次同时显示标准时间?【解析】 快的挂钟与标准时间的速度差是 20分/天,慢的挂钟与标准时间的速度差是 30分/天,快的每标准一次需要 12×60÷30=24(天),慢的每标准一次需要 12×60÷20=36(天),24与36的最小公倍数是 72,所以 它们至少要经过72天才能再次同时显示标准时间。

相关文档
最新文档