极限部分练习题答案
第一章求极限练习题答案
n dAl l th i nb ea rgo1.求下列极限:(1) 解:原式===22221lim(1)n n n n →∞++-2221lim 21n n n n n →∞++-+22112lim 211n n n n n→∞++-+(2) 解:原式==(3) 解:原式20lim(1)x x x →+12lim[(1)]x x x →+2e 3x →==(4) 解:原式=3x →x →141lim (1)xx x e →∞-=1(5) 求.解:原式=1(1)lim1xx e x→∞-0x ≠当当当lim cos cos cos 242nn x x x→∞==cos cos (2cos sin )2422lim2sin 2n n n n x x x x x →∞ 1cos sin22lim 2sin 2n n nx xx →∞-sin lim 2sin 2n nn x x →∞ ==(6) 解:原式==sin 2lim()sin 2n n nx x x x →∞A sin x x limx lim x (7) limx lim x 22212lim(12n nn n n n n n n→∞+++++++++ 解:令 2221212n ny n n n n n n n =+++++++++ 因 2222(1)(1)12122211n n n n n n ny n n n n n n n n n n ++++++++=≤≤=++++++++ 而,,2(1)12lim 2n n n n n n →∞+=++2(1)12lim 12n n n n n →∞+=++故222121lim(122n n n n n n n n n →∞+++=++++++ (8)解:原式=n →∞Al th ng i nt hi n g2n n →∞→∞==1.3 函数的极限 作业1.根据函数极限的定义,验证下列极限:(1) 解: ,要使, 即,31lim0x x→∞=0ε∀>3311|0|||x x ε-=<||x >只要取,则当时,恒有 , 所以. X =||x X >31|0|xε-<31lim0x x→∞=(2) 解: ,要使,2x →=0ε∀>|4||2|2x ε-=<<还要使,即,或,只要取,0x ≥44x -≥-|4|4x -<min{2,4}δε=则当时,恒有 , 所以. 0|4|x δ<-<|2|ε-<42x →=2.求下列数列极限:(1) 22212lim(12n nn n n n n n n→∞+++++++++ 解:令2221212n ny n n n n n n n =+++++++++ 因 2222(1)(1)12122211n n n n n n ny n n n n n n n n n n ++++++++=≤≤=++++++++ 而,,2(1)12lim 2n n n n n n →∞+=++2(1)12lim 12n n n n n →∞+=++故222121lim(122n n n n n n n n n →∞+++=++++++ (2)解:原式=n →∞2n n →∞→∞==3.求下列函数极限:(1) 解:原式=-9(2) 解:原式==4225lim 3x x x →+-224lim 2x x x →--2lim(2)x x →+a re (3)解:原式=1x→11x x →→==(4) 解:原式=x →∞x =(5) 解:原式=2(21)(32)lim (21)x x x x →∞--+226723lim 4412x x x x x →∞-+=++(6) 解:原式=2121lim()11x x x →---211(1)11lim lim 112x x x x x →→---==--+4.设,分别讨论在,和23 2 0() 1 01 1 x>11x x f x x x x ⎧⎪+≤⎪=+<≤⎨⎪⎪-⎩()f x 0x →1x →时的极限是否存在.2x →解:,,故不存在.0lim ()2x f x -→=0lim ()1x f x +→=0lim ()x f x →,趋向无穷大,故不存在.1lim ()2x f x -→=1lim ()x f x +→1lim ()x f x →,,故.2lim ()1x f x -→=2lim ()1x f x +→=2lim ()1x f x →=1.43.求下列函数极限:(1) =-9(3) ==4225lim 3x x x →+-224lim 2x x x →--2lim(2)x x →+1x →1x x →→==(7) 00h h h →→→===(9) =x →∞x =ngsin(11) =2(21)(32)lim(21)xx xx→∞--+226723lim4412xx xx x→∞-+=++(13) lim lim0x x==(15) =2121lim(11x x x→---211(1)11lim lim112x xxx x→→---==--+2. 设,分别讨论在,时的左右1100()01112xxxf xx xx-⎧<⎪-⎪⎪==⎨⎪<<⎪≤<⎪⎩()f x0x→1x→极限,并说明这两点的极限是否存在.解:,,故001lim()lim11x xf xx--→→-==-00lim()lim0x xf x x++→→==00lim()lim()x xf x f x-+→→≠不存在.,lim()xf x→11lim()lim1x xf x x--→→==11lim()lim11x xf x++→→==.11lim()lim()x xf x f x-+→→=1lim()1xf x→=1.51.求下列极限:(1)00sin3sin3lim lim333x xx xx x→→=⋅=00tan333(3)lim limsin444x xx xx x→→==2220002sin22(5)24()2x x xxxxxx→→→⋅===注:在,.0(0,)Uδ2sin02x≥220002(5)4x x xxx→→→===Al ng snt he (7) 解: 原式=0x →0x →=202sin sin lim sin 2x x x x x x→→+==42021sin sin lim2()2x x x xx →+220sin sin 2lim ()x x x x x →=+注意: 代数和中的一部分不能用无穷小替换.错 原式=0x →0→ (8)1sin cos lim1sin cos x x xx xββ→+-+-解: 原式==2022sin cos 2sin 222lim2sin cos 2sin 222x x x x x x x βββ→++0sin (cos sin )222lim sin (cos sin )222x x x x x x x βββ→++===00sin cos sin 222limlim sin cos sin222x x x x x x x x βββ→→++A 02lim 12x x x β→A 1β注意: 代数和的一部分不能用无穷小替换.错 =01sin cos lim 1sin cos x x x x x ββ→+-+-202112lim 12x x xx x βββ→+=+33333(9)lim(1)lim[(1)]xx x x e x x →∞→∞+=+=244424(11)lim(lim[(1]22x x x x x e x x +---→∞→∞--=+=++113330(13)lim(13)lim[(13)]xx x x x x e →→+=+=4. 当时,下列函数中哪些是的高阶无穷小,哪些是的同阶0x →x x无穷小,哪些是的低阶无穷小?x32(1)1000x x+322001000lim lim(1000)0x xx xx xx→→+=+=解:因为321000()x x o x+=所以3(2)2sin x32002sin sinlim lim2sin0x xx xxx x→→=⋅=解:因为3sin()x o x=所以(3) 解:ln(1)x+100ln(1)lim lim ln(1)1xx xxxx→→+=+=因为ln(1)~x x+所以(4) 解: ,1cos x-20002sin sin1cos22lim lim lim(sin)022x x xx xx xxx x→→→-===A因为1cos()x o x-=所以(5) 解: 因为==2,故是的同sinx x+sinlimxx xx→+sinlim(1xxx→+sinx x+x阶无穷小.解: 因为==,x→131233sin11lim[()cosxxxx x→A A∞的低阶无穷小.或:因为=xx→0x→是的低阶无穷小.x→x思考题:1.==9=911331lim(39)lim9(13xxx x x xxx x→+∞→+∞+=+A A1331lim9[(1]3x xxxx→+∞+A0e2.,因为当时,.arccotlimxxx→=∞0x→arccot2xπ→习题2.2 1.求下列函数的导数:解:2(1)cosy x x=+'sin2y x x=-+(3) 解:(注:)sin cosy x x e=++'cos1y x=+(cos)'0e=(5) 解2cos2xy='2cos(cos)'22x xy=A==2cos(sin)('222x x x-A A2cos(sin)22x x-cos sin22x x-A解:(7)sin3y x='3cos3y x=解:2(9)sin(1)y x x=++2'(21)cos(1)y x x x=+++解:3(11)lny x=+1139'(ln)'(3ln)'222y x xx x x=+=+=(6) 解:=6(21)y x=+5'6(21)2y x=+A512(21)x+(10) 解:=ln(ln)y x=1'(ln)'lny xx=11ln x xA(11) 解:ln(sin)y x=1''(sin)'siny xx=+1cossinxx+A2.在下列方程中,求隐函数的导数:(1)解:cos()y x y=+'sin()(1')y x y y=-+⋅+(2)解:222333x y a+=113322'033x y y--+=3. 求反函数的导数:(1)解:lny x x=+1111dxdydydx x===+(2) 解:,故arcsin xy e=sin lnx y=1cos lndxydy y=⋅4. 求下列函数的导数(1) 解:2siny x x='y=22sin cosx x x x+(5) 解:3(3)lny x x=23221'3ln3lny x x x x x xx=+=+解:1ln1lnxyx-=+21ln1ln'(1ln)x xx xyx+---=+211lnyx=-++eanrb22212'0(1ln)(1ln)yx x x x=-⋅=-++(7) 解21cosy xx=1'2cosy xx=+2x1(sinx-12cosxx+2x1(sinx-(9)ln(y x=+''y x=+==解:(10) 解:12 (0)xy x e a=->112'2x xy xe x e=+A(ln(x xa a a--(11) arccos xyx=-arccosln(1lnxy xx=-+-解:1'yx=-+2arccos1xx x=+2arccos xx=-ln(13)xy x=2ln ln(ln)x x xy e e⋅==解:ln ln11'2ln2lnx xy x x x xx-=⋅⋅=⋅(14) cos(sin)xy x=解:,对该式两边求导数得ln cos ln siny x x=11'sin ln sin cos cossiny x x x xy x=-+cos'(sin)(sin ln sin cos tan)xy x x x x x∴=-+(15) 解:,对该式两边求导y x=11ln ln ln(1)ln(1)22y x x x=+--+数得1111'2(1)2(1)yy x x x=---+Al t he (10)解:arcsin lnx y x =-'[ln(1(ln )'y x =++-(1'1x+(2)x -1x +1x4. 求反函数的导数:(1)解:ln y x x =+1111dxdy dydx x===+arcsin xy e =解:,故求下列参数方程的导数:sin ln x y =1cos ln dx y dy y =⋅'y 211(1)(1)x t t y t ⎧=⎪+⎪⎨⎪=+⎪⎩242(1)2(1)'()1(1)1'()1(1)t t t dy y t t t dx x t t t +-⋅+-+===+-+解: (2) 解:3233131at x t at y t ⎧=⎪⎪+⎨⎪=⎪+⎩322332323326(1)333(2)(1)3(1)333(12)(1)at t at t dy dy at t t dt dxa x at t dx a t dt t +-⋅-+===+-⋅-+(3) 解:2ln(1)arctan x t y t t ⎧=+⎨=-⎩222111221dy dyt dt tdx t dx t dt t-+===+2.若在点连续,且。
数学—极限练习题及详细答案
一、选择题1.若0()lim1sin x x xφ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。
A.sin ||xB.ln(1)x -C.11.【答案】D 。
2.设f(x)在x=0处存在3阶导数,且0()lim 1tan sin x f x x x→=-则'''f (0)=( )A.5B.3C.1D.0 2.【答案】B.解析由洛必达法则可得30002()'()''()limlimlim1tan sin 2cos sin sin cos cos x x x f x f x f x x x x x xx x -→→→==-+-42200''()''()lim lim 16cos sin 2cos cos 21x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3xB.34x C.32xD.x3.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=选A 。
4.函数2sin f ()lim 1(2)nn xx x π→∞=+的间断点有( )个A.4B.3C.2D.14.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故20.5sin 12lim1(2(0.5))2n x π→--=-+⨯-, 20.5sin12lim1(20.5)2n x π→=+⨯,故,有两个跳跃间断点,选C 。
5.已知()bx xf x a e=-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )A.a>0,b>0B.a ≤0,b>0C.a ≤0,b<0D.a>0,b<05.【答案】B 。
高数练习册答案
第一章 函数与极限部分习题答案§1 映射与函数一、填空题:1、224>-<<-x x 或2、)01(1ln>>-=x x x y 3、奇函数 4、41 §2 数列的极限一、填空题:1、不存在 2、必要 3、1二、计算题:1、0 2、1 3、21§3 函数的极限一、填空题:1、 充要 2、1 3、1;不存在 二、计算题:1、 6 2、21 3、62- 4、(1):1;(2):-1;(3):不存在§4 无穷小和无穷大二、计算题:1、0 2、1 3、2§5 极限的运算法则一、计算题:1、-11 2、32 3、214、-15、236、17、528、1二、计算:a=2; b=-8 三、计算;a=1; b=-1§6 极限存在准则 两个重要极限一、填空题:1、0;1;1;0 2、1-e ;2e ;3e ;2e ;二、计算题:1、0; 2、2; 3、2; 4、2e ; 5、 3-e ; 6、6-e ;三、计算:1§7无穷小的比较一、 计算题:1、2; 2、32; 3、0; 4、1 二、 计算题;3=α§8函数的连续性与间断点一、 填空题:1、充要; 2、可去;二、不连续,跳跃间断点 三、跳跃间断点 四、41=a §9连续函数的运算与初等函数的连续性一、计算题;∞,21,31;二、1、2ln π2、1;3、0;4、1三、计算a=1; b=-1第一章自测题一、填空题:1、0≠x,1,-1; 2、0; 3、0; 4、2; 5、21三、计算题:1、2 x ; 2、1; 3、1; 4、3e ; 5、; 6、41; 7、1; 8、1四、计算;a=1; 23-=b§ 2.1 二、 )(a φ;三、 4311;33x ---;四、460;470x y x y --=++=;五、连续且可导。
§2.2 二、2,e e ππ--; 三、(1; (2);(3)1tan 221111(cos sin sec )x e x x x x-+;(4)22sin 2[(sin )(cos )]x f x f x -。
高数极限真题及答案解析
高数极限真题及答案解析引言:高等数学是大多数理工科学生必修的一门课程,其中极限是数学中的重要概念之一。
作为基础与应用数学的桥梁,掌握高数极限的理论和解题方法对学生的学习和发展至关重要。
本文将介绍几道经典的高数极限真题,并对它们的答案进行详细解析,帮助读者深入理解高数极限的概念和运用。
第一道题目:求极限:lim(x→2) (3x² - 7x + 2)解析:对于这道题目,我们可以使用极限的性质,将其分解为更简单的形式。
首先,我们将3x² - 7x + 2因式分解为(x - 2)(3x - 1)。
然后,我们可以得到:lim(x→2) (x - 2)(3x - 1) = lim(x→2) (x - 2) ×lim(x→2) (3x - 1)将极限运算分解为两个单独的极限,便于计算。
此时,我们可以得到:lim(x→2) (x - 2) = 2 - 2 = 0lim(x→2) (3x - 1) = 3(2) - 1 = 5因此,原极限的结果为0 × 5 = 0。
第二道题目:求极限:lim(x→∞) (2x² - 5x) / (3x² + 4)解析:对于这道题目,我们需要考虑的是当自变量趋向于无穷大时的极限情况。
首先,我们可以使用同除法的原则,将分子和分母同时除以x²,得到:lim(x→∞) (2x² - 5x) / (3x² + 4) = lim(x→∞) (2 -5/x) / (3 + 4/x²)随着x趋向于无穷大,5/x和4/x²的值都趋近于0,因此我们可以得到:lim(x→∞) (2 - 5/x) / (3 + 4/x²) = 2/3所以,原极限的结果为2/3。
第三道题目:求极限:lim(x→0) (sin²x) / x解析:对于这道题目,我们可以使用极限的定义,即lim(x→a) f(x) = L。
高一数学函数与极限分析练习题及答案
高一数学函数与极限分析练习题及答案一、选择题1. 设函数$f(x)=\sqrt{1-x^2}$,其定义域为$[-1,1]$,关于该函数,下列说法正确的是:A. $f(x)$在$[-1,1]$上单调递增B. $f(x)$在$[-1,1]$上单调递减C. $f(x)$在$x=\frac{\pi}{4}$处取得最大值D. $f(x)$在$x=0$处取得最大值答案:D2. 设函数$f(x)=\frac{1}{x}$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:D3. 设函数$f(x)=e^x$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:A、B、C4. 设函数$f(x)=\sin x$,下列说法正确的是:A. $f(x)$在$x=\frac{\pi}{2}$处连续B. $f(x)$在$x=\frac{\pi}{2}$处可导C. $f(x)$在$x=\frac{\pi}{2}$处极限存在D. $f(x)$在$x=\frac{\pi}{2}$处极限不存在答案:B、C5. 设函数$f(x)=x^3$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:A、B、C二、填空题1. 函数$f(x)=\sin x$在$x=\frac{\pi}{2}$处的导数为______。
答案:12. 函数$f(x)=\frac{1}{x}$在$x=0$处的极限为______。
答案:无穷大或$+\infty$3. 函数$f(x)=e^x$在$x=0$处的连续性、可导性、极限存在性均为______。
极限计算练习题
极限计算练习题首先,让我们研究一些关于极限计算的练习题。
通过解答这些问题,我们将深入理解极限的概念,并熟悉常见的计算方法。
问题一:计算 $\lim_{x\to 2} (3x+1)$解答:对于这个问题,我们可以直接将 $x$ 替换为 2 来计算极限。
因此,我们有:$$\lim_{x\to 2} (3x+1) = 3(2) + 1 = 7$$因此,上述极限的结果为 7。
问题二:计算 $\lim_{x\to 0} \frac{\sin(x)}{x}$解答:这是一个经典的极限计算问题,也被称为正弦极限。
我们可以利用泰勒级数展开式来解决该问题。
根据泰勒级数展开式,我们有:$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} +\ldots$$如果我们将上式代入所给的极限,则会发现 $x$ 的系数逐渐消失,得到以下结果:$$\lim_{x\to 0} \frac{\sin(x)}{x} = \lim_{x\to 0} \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \ldots\right) = 1$$因此,上述极限的结果为 1。
问题三:计算 $\lim_{x\to \infty} \left(1 + \frac{1}{x}\right)^x$解答:这个问题涉及到一个重要的极限,也就是自然对数的底,通常用 $e$ 来表示。
我们可以重写问题三的极限表达式:$$\lim_{x\to \infty} \left(1 + \frac{1}{x}\right)^x = \lim_{x\to \infty} \left(\left(1 + \frac{1}{x}\right)^x\right)$$我们知道,上述极限的结果是 $e$。
因此,问题三的答案为 $e$。
通过以上的练习题,我们巩固了极限计算的基本方法。
(完整word版)数学分析—极限练习题及详细答案
一、选择题1.若0()lim1sin x x xφ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。
A.sin ||xB.ln(1)x -C.11.【答案】D 。
2.设f(x)在x=0处存在3阶导数,且0()lim 1tan sin x f x x x→=-则'''f (0)=( )A.5B.3C.1D.0 2.【答案】B.解析由洛必达法则可得30002()'()''()limlimlim1tan sin 2cos sin sin cos cos x x x f x f x f x x x x x xx x -→→→==-+-42200''()''()lim lim 16cos sin 2cos cos 21x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3xB.34x C.32xD.x3.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=选A 。
4.函数2sin f ()lim 1(2)nn xx x π→∞=+的间断点有( )个A.4B.3C.2D.14.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故20.5sin 12lim1(2(0.5))2n x π→--=-+⨯-, 20.5sin12lim1(20.5)2n x π→=+⨯,故,有两个跳跃间断点,选C 。
5.已知()bx xf x a e=-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )A.a>0,b>0B.a ≤0,b>0C.a ≤0,b<0D.a>0,b<05.【答案】B 。
极限与配合习题及答案
极限与配合习题及答案极限是高等数学中的一个重要概念,它描述了函数在某一点附近的行为。
极限的理解和应用是解决许多数学问题的基础。
配合极限的概念,我们可以通过极限来研究函数的连续性、导数、积分等。
以下是一些极限与配合的习题及答案。
习题 1:求极限\[ \lim_{x \to 0} \frac{\sin x}{x} \]答案 1:根据极限的定义,我们知道当\( x \)趋近于0时,\( \sin x \)趋近于\( x \)。
因此,这个极限的值为1。
习题 2:求函数的连续性判断函数\( f(x) = x^2 \)在\( x = 1 \)处是否连续。
答案 2:函数\( f(x) = x^2 \)是一个二次函数,它在定义域内处处连续。
因此,\( f(x) \)在\( x = 1 \)处是连续的。
习题 3:求函数的导数求函数\( f(x) = x^3 - 2x + 1 \)的导数。
答案 3:根据导数的定义,我们可以应用幂函数的导数规则,得到:\[ f'(x) = 3x^2 - 2 \]习题 4:求无穷小量的阶确定\( x \)趋近于0时,\( \sin x \)与\( x \)的无穷小量的阶。
答案 4:由于\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),我们可以得出\( \sin x \)与\( x \)是同阶无穷小量。
习题 5:求函数的积分求函数\( f(x) = 2x + 3 \)在区间[1, 4]上的定积分。
答案 5:根据积分的基本公式,我们可以得到:\[ \int_{1}^{4} (2x + 3) \, dx = \left[ x^2 + 3x\right]_{1}^{4} = (16 + 12) - (1 + 3) = 28 \]习题 6:求函数的极限求极限\( \lim_{x \to \infty} \frac{2x^2 + 3x}{x^2 - 1} \)。
高中数学函数的极限与连续练习题及参考答案2023
高中数学函数的极限与连续练习题及参考答案2023题目一:函数极限1. 计算以下极限:a) lim(x→2) (x^2 + 3x - 4)b) lim(h→0) [(4+h)^2 - 16]/hc) lim(x→∞) [(x+1)/(x-1)]^2d) lim(x→0) (1/x - 1)/(1 - sqrt(1 + x))解答:a) 将x代入函数,得到:lim(x→2) (2^2 + 3*2 - 4) = 8b) 将h代入函数,得到:lim(h→0) [(4+0)^2 - 16]/0 = 0c) 当x趋向于正无穷大时,[(x+1)/(x-1)]^2 = 1d) 将x代入函数,得到:lim(x→0) (1/0 - 1)/(1 - sqrt(1)) = undefined题目二:连续函数2. 判断以下函数在给定区间是否连续:a) f(x) = x^2 - 5x + 6, 在区间[1, 5]上b) g(x) = √(x + 2), 在区间[-2, 3]上c) h(x) = 1/(x-2), 在区间(-∞, 2)上解答:a) 函数f(x)是一个二次函数,对于任意实数x,f(x)都是连续的。
因此,f(x)在区间[1, 5]上连续。
b) 函数g(x)是一个开根号函数,对于非负实数x,g(x)都是连续的。
在区间[-2, 3]上,g(x)的定义域为[-2, ∞),因此在该区间上连续。
c) 函数h(x)在x=2处的定义域为无穷,因此在该点不连续。
在区间(-∞, 2)上除x=2之外的点,h(x)为一个连续函数。
题目三:函数极限的性质3. 判断以下命题的真假,并简要说明理由:a) 若lim(x→a) f(x) = L,且L≠0,则lim(x→a) [f(x)]^2 = L^2。
b) 若lim(x→a) f(x) = L,且f(x) > 0,那么lim(x→a) 1/f(x) = 1/L。
c) 若lim(x→a) f(x) = L,且lim(x→a) g(x) = M,则lim(x→a) [f(x) +g(x)] = L + M。
极限方程题型练习题答案
极限方程题型练习题答案随着教育水平的提高,数学的重要性日益凸显。
而在数学中,极限是一个关键的概念,涉及到许多不同的题型和解题方法。
本文旨在提供一些极限方程题型的练习题答案,帮助读者更好地理解和掌握这一知识点。
1. 问题:求极限lim(x→0) [(sin2x)/(x^2)]解答:我们可以使用泰勒级数展开来解决这个问题。
根据泰勒级数展开公式,sinx在x等于0的情况下的展开式为x-x^3/6。
将其代入题目中的极限式中得到:lim(x→0) [(sin2x)/(x^2)] = lim(x→0) [(2x-2x^3/3)/(x^2)] = lim(x→0) [2-2x^2/3] = 2-0 = 2。
因此,极限lim(x→0) [(sin2x)/(x^2)]等于2。
2. 问题:求极限lim(x→∞) [ln(x+1)/ln(x)]解答:我们可以利用洛必达法则来解决这个问题。
洛必达法则可以用于解决形如f(x)/g(x)形式的极限问题,其中f(x)和g(x)均可导。
不妨设f(x) = ln(x+1)和g(x) = ln(x),则我们可以直接对其求导:f'(x) = 1/(x+1) 和 g'(x) = 1/x。
根据洛必达法则,当x趋于正无穷时,lim(x→∞) [f(x)/g(x)] =lim(x→∞) [f'(x)/g'(x)],所以我们可以计算lim(x→∞) [f'(x)/g'(x)]:lim(x→∞) [f'(x)/g'(x)] = lim(x→∞) [(1/(x+1))/(1/x)] = lim(x→∞)[(x/(x+1))] = 1。
因此,极限lim(x→∞) [ln(x+1)/ln(x)]等于1。
通过以上两个解答示例,我们可以看到在解决极限方程题时,有时需要运用到泰勒级数展开和洛必达法则等更高级的数学工具。
这也反映了数学的深度和复杂性。
极限基础练习题及答案
极限基础练习题及答案极限是微积分中非常重要的一个概念,它在解决许多高阶数学和物理问题时起到了至关重要的作用。
针对极限的练习题有助于我们巩固和扩展对此概念的理解。
下面将为大家提供一些常见的极限基础练习题及答案。
1. 求极限(a) lim(x→0) sin(x)/x(b) lim(x→∞) (2x^2 + 3x)/(x^2 - 5x)解答:(a) 对于极限lim(x→0) sin(x)/x,我们可以利用泰勒展开式展开sin(x),得到sin(x)=x-1/6x^3+O(x^5),其中O(x^5)表示x^5阶无穷小。
将此结果代入极限式中,可以得到lim(x→0) sin(x)/x = lim(x→0) (x-1/6x^3+O(x^5))/x = lim(x→0) (1-1/6x^2+O(x^4)) = 1。
因此,该极限等于1。
(b) 对于极限lim(x→∞) (2x^2 + 3x)/(x^2 - 5x),我们可以将分子和分母都除以x^2,并取x趋近于无穷大,得到lim(x→∞) (2 + 3/x)/(1 - 5/x) = (2 + 0)/(1 - 0) = 2/1 = 2。
因此,该极限等于2。
2. 求极限(a) lim(x→∞) (e^x + 2)/(e^x - 3)解答:对于极限lim(x→∞) (e^x + 2)/(e^x - 3),我们可以将分子和分母同时除以e^x,并取x趋近于无穷大,得到lim(x→∞) (1 + 2/e^x)/(1 - 3/e^x)= (1 + 0)/(1 - 0) = 1。
因此,该极限等于1。
3. 求极限(a) lim(x→0) (sqrt(1 + 3x) - 1)/x(b) lim(x→∞) (3x^2 + 2x - 1)/(2x^2 - 5)解答:(a) 对于极限lim(x→0) (sqrt(1 + 3x) - 1)/x,我们可以将分子有理化,得到lim(x→0) ((sqrt(1 + 3x) - 1)(sqrt(1 + 3x) + 1))/(x(sqrt(1 + 3x) + 1))。
二元极限习题及答案
二元极限习题及答案二元极限习题及答案在数学中,二元极限是研究函数在二维平面上的极限行为的重要概念。
它在微积分和数学分析中扮演着重要的角色。
本文将介绍一些常见的二元极限习题,并提供详细的解答。
1. 习题一:计算二元函数f(x, y) = (x^2 + y^2)/(x + y)在点(0, 0)处的极限。
解答:要计算该二元函数在(0, 0)处的极限,可以尝试使用极坐标变换。
令x = rcosθ,y = rsinθ,其中r为距离原点的距离,θ为与x轴的夹角。
将x和y代入原函数中得到:f(r, θ) = (r^2cos^2θ + r^2sin^2θ)/(rcosθ + rsinθ)= r(cos^2θ + sin^2θ)/(cosθ + sinθ)= r/(cosθ + sinθ)当r趋近于0时,函数f(r, θ)趋近于0。
因此,原函数在(0, 0)处的极限为0。
2. 习题二:计算二元函数f(x, y) = (x^2 - y^2)/(x - y)在点(1, 1)处的极限。
解答:要计算该二元函数在(1, 1)处的极限,可以尝试使用直接代入法。
将x和y分别替换为1,得到:f(1, 1) = (1^2 - 1^2)/(1 - 1)= 0/0由于分子和分母都为0,无法直接计算极限。
这时可以尝试对函数进行化简。
将分子进行因式分解,得到:f(x, y) = ((x - y)(x + y))/(x - y)当x ≠ y时,可以约去分子和分母的(x - y)项,得到f(x, y) = x + y。
因此,在点(1, 1)处,函数的极限为2。
3. 习题三:计算二元函数f(x, y) = xy*sin(1/x)在点(0, 0)处的极限。
解答:要计算该二元函数在(0, 0)处的极限,可以尝试使用夹逼定理。
根据夹逼定理,如果存在两个函数g(x, y)和h(x, y),满足对于所有的(x, y) ∈ D,有g(x, y) ≤ f(x, y) ≤ h(x, y),且lim(g(x, y)) = lim(h(x, y)) = L,那么lim(f(x, y)) = L。
极限的运算练习题
极限的运算练习题本文档提供了一些极限运算的练题,旨在帮助您提高解决这类问题的能力。
请按照题目要求进行计算,并在答案的后面进行简要解答。
问题一计算以下极限:$$\lim_{x \to 2} (x^3 - 8) / (x - 2)$$答案和解答:首先将$x^3 - 8$因式分解为$(x - 2)(x^2 + 2x + 4)$,然后我们可以简化极限表达式为:$$\lim_{x \to 2} (x^2 + 2x + 4)$$将$x$代入表达式,可得:$$(2^2 + 2 \cdot 2 + 4) = 12$$所以,极限的结果为12。
问题二计算以下极限:$$\lim_{x \to 0} \frac{\sin(x)}{x}$$答案和解答:这个极限是非常经典的,我们知道当$x \to 0$时,$\sin(x) \to 0$,而分母$x \to 0$,所以可以使用洛必达法则进行计算。
洛必达法则告诉我们,对于形式为$\frac{f(x)}{g(x)}$的极限表达式,当$f(x)$和$g(x)$都在$x \to a$时趋于0或无穷大时,如果$f'(x)$和$g'(x)$都存在且$g'(x) \neq 0$,则可以计算$\lim_{x \to a}\frac{f'(x)}{g'(x)}$。
在这个问题中,我们有$f(x) = \sin(x)$和$g(x) = x$,它们在$x \to 0$时都趋于0,然后我们对$f(x)$和$g(x)$分别求导,得到$f'(x) = \cos(x)$和$g'(x) = 1$。
按照洛必达法则,我们可以计算:$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{\cos(x)}{1} = \cos(0) = 1$$所以,极限的结果为1。
问题三计算以下极限:$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$$答案和解答:这个极限是以自然对数常数$e$定义的一个重要极限,即$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$。
(完整word版)第一章求极限练习题答案
(完整word版)第⼀章求极限练习题答案1.求下列极限:(1) 2221lim (1)n n n n →∞++- 解:原式=2221lim 21n n n n n →∞++-+=22112lim 211n n n n n→∞++-+=2 (2) 20lim(1)x x x →+解:原式=12lim[(1)]x x x →+=2e(3) 32lim3x x →- 解:原式=3x →=x →=14(4) 1lim (1)x x x e →∞-解:原式=1(1)lim1xx e x→∞-=1(5) 0x ≠当时,求lim cos cos cos 242n n x x x→∞L .解:原式=cos cos (2cos sin )2422lim2sin 2n n n n x x x x x →∞L =1cos sin22lim 2sin 2n n nx x x →∞-=sin lim 2sin 2n nn x x →∞ =sin 2lim()sin 2n n n x x x x →∞g =sin x x(6) 21sinlim x x 解:原式=21limx x g=limx=limx=(7)22212lim()12n nn n n n n n n→∞+++++++++L 解:令2221212n ny n n n n n n n=+++++++++L 因 2222(1)(1)12122211n n n n n n ny n n n n n n n n n n ++++++++=≤≤=++++++++L L ⽽2(1)12lim 2n n n n n n →∞+=++, 2(1) 12lim 12n n n n n →∞+=++,故222121n n n n n n n n n →∞+++=++++++L(8) n →∞解:原式=2n n →∞→∞==1.3 函数的极限作业1. 根据函数极限的定义,验证下列极限: (1) 3 1lim0x x→∞= 解: 0ε?>,要使3311|0|||x x ε-=<,即||x >只要取X =,则当||x X >时,恒有 31|0|x ε-<, 所以31lim 0x x →∞=.(2) 42x →= 解: 0ε?>,要使|4||2|2x ε-=<<,则当0|4|x δ<-<时,恒有|2|ε<,所以42x →=. 2. 求下列数列极限:(1) 22212lim()12n nn n n n n n n→∞+++++++++L 解:令2221212n ny n n n n n n n =+++++++++L 因 2222(1)(1)12122211n n n n n n ny n n n n n n n n n n ++++++++=≤≤=++++++++L L ⽽2(1)12lim 2n n n n n n →∞+=++, 2(1) 12lim 12n n n n n →∞+=++,故222121lim()122n n n n n n n n n →∞+++=++++++L(2) n →∞解:原式=2n n →∞→∞==3.求下列函数极限:(1) 225lim 3x x x →+- 解:原式=-9(2) 224lim 2x x x →-- 解:原式=2 lim(2)x x →+=4(3) 21lim1x x →-解:原式=14x x →→==-(4) x →∞ 解:原式=0x =(5) 2(21)(32)lim (21)x x x x →∞--+ 解:原式=226723lim4412x x x x x →∞-+=++ (6) 2121lim()11x x x →--- 解:原式=211(1)11lim lim 112x x x x x →→---==--+ 4. 设23 2 0() 1 01 1 x>11x x f x x x x ?+≤=+<≤-? ,分别讨论()f x 在0x →,1x →和2x →时的极限是否存在.解:0lim ()2x f x -→=,0lim ()1x f x +lim ()x f x →不存在. 1lim ()2x f x -→=,1lim ()x f x +→趋向⽆穷⼤,故1lim ()x f x →不存在. 2lim ()1x f x -→=,2lim ()1x f x +→=,故2lim ()1x f x →=.1.43.求下列函数极限:(1) 225lim 3x x x →+-=-9(3) 224lim 2x x x →--=2lim(2)x x →+=4 1x →14x x →→==-(7) 000h h h →→→===(9) x →∞=0x =(11) 2(21)(32)lim (21)x x x x →∞--+=226723lim 4412x x x x x →∞-+=++(13) limlim0x x == (15) 2121lim()11x x x →---=211(1)11lim lim 112x x x x x →→---==--+ 2. 设10100()01112x x x f x x x x -?==<极限,并说明这两点的极限是否存在. 解:001lim ()lim11x x f x x --→→-==-,00lim ()lim 0x x f x x ++→→==,00lim ()lim ()x x f x f x -+→→≠ 故lim ()x f x →不存在.11lim ()lim 1x x f x x --→→==,11lim ()lim11x x f x ++→→== 11lim ()lim ()x x f x f x -+→→= 1lim ()1x f x →=. 1.51.求下列极限:(1) 0sin 3sin 3lim lim 333x x x xx x→→=?=00tan 333(3)limlim sin 444x x x x x x →→==222200022sin 222(5)lim 2sin 224()2x x x x x x x xx→→→?===? 注:在0(0,)U δ,2sin 02x ≥.222000222(5)lim 2sin24x x x x x x x →→→===(7) 02cos lim sin 2x x x →解: 原式=2021sin cos lim sin cos )2x x x x=2002sin sin lim sin 2x x x x x x →→+g =2021sin sin lim2()2x x x xx →+220sin sin 2lim ()x x x x x →=+=4 注意: 代数和中的⼀部分不能⽤⽆穷⼩替换. 错原式=0x →220212lim 1cos )4x x x x x →+ (8) 01sin cos lim1sin cos x x xx xββ→+-+-解: 原式=2022sin cos 2sin 222lim 2sin cos 2sin 222x x x x x x x βββ→++=0sin (cos sin ) 222lim sin (cos sin )222x x x x x x x βββ→++=00sin cos sin 222limlim sin cos sin222x x x x x x x x βββ→→++g =02lim 12x x x β→g =1β注意: 代数和的⼀部分不能⽤⽆穷⼩替换.错 01sin cos lim 1sin cos x x x x x ββ→+-+-=202112lim 12x x x x x βββ→+=+ 33333(9)lim(1)lim[(1)]xx x x e x x →∞→∞+=+=244424(11)lim()lim[(1)]22x x x x x e x x +---→∞→∞--=+=++330(13)lim(13)lim[(13)]x x x x x x e →→+=+=4. 当0x →时,下列函数中哪些是x 的⾼阶⽆穷⼩,哪些是x 的同阶⽆穷⼩,哪些是x的低阶⽆穷⼩?32(1)1000x x +322001000lim lim (1000)0x x x x x x x→→+=+=解:因为 321000()x x o x +=所以3(2)2sin x 32002sin sin lim lim 2sin 0x x x x x x x→→=?=解:因为 3sin ()x o x =所以(3) ln(1)x +解: 100ln(1)limlim ln(1)1x x x x x x→→+=+=因为ln(1)~x x +所以 (4) 1cos x -解: 2002sin sin1cos 22limlim lim(sin )022x x x x xxx xxx →→→-===g 因为,1cos ()x o x -=所以(5) sin x x + 解: 因为 0sin limx x x x →+=0sin lim(1)x xx→+=2,故sin x x +是x 的同阶⽆穷⼩.(6): 因为0x →=1312033sin 11lim[())cos x x xx x →g g =∞,故是x的低阶⽆穷⼩.或:因为0x →=0x →0x →x 的低阶⽆穷⼩. 思考题:1.11331lim (39)lim 9(1)3x x xx xx x x x →+∞→+∞+=+g g =1331lim 9[(1)]3x xx x x →+∞+g =90e =9 2.0arccot limx x x →=∞,因为当0x →时,arccot 2 x π→.习题2.2 1.求下列函数的导数:2(1)cos y x x =+解:'sin 2y x x =-+=2cos (sin )()'222x x x -g g =2cos (sin )22x x -gcos sin 22x x -g(7)sin 3y x =解:'3cos3y x =2(9)sin(1)y x x =++解:2'(21)cos(1)y x x x =+++3(11)ln y x =解:1139'(ln )'(3ln )'222y x x x x x=+=+=(6) 6(21)y x =+解:5'6(21)2y x =+g =512(21)x + (10) ln(ln )y x =解:1'(ln )'ln y x x ==11ln x x g(11)ln ln(sin )y x =解:1'(sin )'sin y x x =+1cos sin x x +g2.在下列⽅程中,求隐函数的导数: (1)cos()y x y =+解:'sin()(1')y x y y =-+?+(2)222333x y a +=解:113322x y y --+=3. 求反函数的导数:(1)ln y x x =+解:1111dx dy dy dx x==+(2) arcsin x y e =解:sin ln x y =,故1cos ln dx y dyy=?=4. 求下列函数的导数(1) 2sin y x x =解:'y =22sin cos x x x x + 3(3)ln y x x=23221'3ln 3ln y x x x x x x x=+=+解: (5) 1ln 1ln xy x-=+解:21ln 1ln '(1ln )x xx x y x +---=+211ln y x=-++ 22212'0(1ln )(1ln )y x x x x =-=-++ (7) 21cosy x x=解1'2cos y x x =+2x 1(sinx -12cos x x +2x 1(sin)x -(9)ln(y x ='y x =+==解:(10)12(0)xxy x e a =->解:112'2xxy xe x e =+g g(ln (x x a a a --(11) arccos ln x y x = -arccos ln(1ln xy x x=--解:1'y x=-+2arccos 1x x x =-+2arccos x x =- ln (13)x y x =2ln ln (ln )x x x y e e ?==解: ln ln 11'2ln 2ln x x y x x x x x-=??=? (14) cos (sin )xy x =解:ln cos lnsin y x x =Q ,对该式两边求导数得11'sin ln sin cos cos sin y x x x x y x=-+cos '(sin )(sin ln sin cos tan )x y x x x x x ∴=-+ (15) y x =11ln ln ln(1)ln(1)22y x x x =+--+Q ,对该式两边求导数得1111'2(1)2(1)y yxx x =---+arcsin lnx y x =-解:'[ln(1(ln )'y x =++(11x +(2)x -1x +1x4. 求反函数的导数:(1)ln y x x =+解:1111dx dy dydx x==+arcsin x y e =解:sin ln x y =,故=?=求下列参数⽅程的导数'y : 211(1)(1)x t t y t ?=?+?=+242(1)2(1)'()1(1)1'()1(1)t t t dy y t t t dx x t t t +-?+-+===+-+解:(2)3233131at x t at y t ?=??+??=?+? 解:322332323326(1)333(2)(1)3(1)333(12)(1)at t at t dydy at t t dt dx a x at t dxa t dt t +-?-+===+-?-+(3)2ln(1)arctan x t y t t ?=+?=-? 解:222111221dy dyt dt tdx t dx t dt t-+===+2.若()F x 在点a 连续,且()0F x ≠。
极限练习题含答案
极限练习题含答案极限是数学分析中的一个重要概念,它描述了当自变量趋近于某个值时,函数值的行为。
下面是一些极限练习题及其答案,供同学们学习和练习。
练习题1:求极限\[ \lim_{x \to 0} \frac{\sin x}{x} \]答案1:根据洛必达法则或者直接使用三角函数的性质,我们可以知道:\[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \]练习题2:求极限\[ \lim_{x \to \infty} \frac{3x^2 + 2x + 1}{x^2 - 3x + 2} \]答案2:分子和分母同时除以\( x^2 \),得到:\[ \lim_{x \to \infty} \frac{3 + \frac{2}{x} +\frac{1}{x^2}}{1 - \frac{3}{x} + \frac{2}{x^2}} = 3 \]练习题3:求极限\[ \lim_{x \to 0} (1 + x)^{1/x} \]答案3:这是e的极限定义,即:\[ \lim_{x \to 0} (1 + x)^{1/x} = e \]练习题4:求极限\[ \lim_{x \to 1} \frac{1}{x - 1} \]答案4:这是一个无穷小量的倒数,当\( x \)趋近于1时,\( x - 1 \)趋近于0,所以:\[ \lim_{x \to 1} \frac{1}{x - 1} \text{ 不存在} \]练习题5:求极限\[ \lim_{x \to 0} \frac{\sin 2x}{\sin 3x} \]答案5:分子分母同时除以\( \sin x \),得到:\[ \lim_{x \to 0} \frac{2}{3} \cdot \frac{\sin x}{x} \cdot\frac{\sin 2x}{\sin 3x} = \frac{2}{3} \cdot 1 \cdot 1 =\frac{2}{3} \]练习题6:求极限\[ \lim_{x \to 0} x \cdot \tan x \]答案6:使用洛必达法则或者直接利用三角函数的性质,我们可以得到:\[ \lim_{x \to 0} x \cdot \tan x = \lim_{x \to 0} \frac{\sin x}{\cos x} = 0 \]练习题7:求极限\[ \lim_{x \to \infty} \frac{\sin x}{x} \]答案7:当\( x \)趋近于无穷大时,\( \sin x \)的值在-1和1之间波动,但相对于\( x \)来说,它趋近于0,所以:\[ \lim_{x \to \infty} \frac{\sin x}{x} = 0 \]练习题8:求极限\[ \lim_{x \to 0} \frac{e^x - 1}{x} \]答案8:这是e的导数的极限定义,即:\[ \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \]以上练习题和答案可以帮助同学们更好地理解和掌握极限的概念和求解方法。
高数极限习题测验及答案
练习题1. 极限xx x x x x x x xx x x x x x 1lim)4(11lim)3(15865lim )2(31lim )1(2312232---+-+-+++-∞→→→∞→(5) 已知011lim 2=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x , 求常数a , b .(6) x x x x sin 1sin lim 20→ (7) 211lim 22x x x x ⎪⎪⎭⎫⎝⎛+-∞→(8) xx x21lim 0-→ (9)x x x sin )31ln(lim 0-→(10)⎪⎪⎭⎫⎝⎛-∞→1lim 1xx e x2. 函数的连续性(1) 确定b 的值, 使函数⎩⎨⎧<≥+==-002)(1x e x b x x f y x 在x =0点连续.(2) 确定a , b 的值, 使函数1lim)(2212+-+==-∞→nn n x bxax xx f y 在整个实数轴上连续.(3) 讨论下列函数的连续性, 并判断其间断点的类型.①x xx f sin )(=② ⎪⎪⎩⎪⎪⎨⎧=≠+-=0001212)(11x x x f xx3. 连续函数的性质 (1) 设1)(1-+++=-x xx x f n n ,证明:)(x f 有一个不大于1的正根.(2) 若),()(∞+-∞∈C x f , 且A x f x =∞→)(lim , 证明: ),()(∞+-∞在x f 内有界.提高1º),()(∞+-∞在x f 内至少有一个最值存在. 2º 对于最值与A 间的任意值C , 存在21,ξξ, 使得C f f ==)()(21ξξ.2. 函数的连续性(1) 确定b 的值, 使函数⎩⎨⎧<≥+==-002)(1x ex b x x f y x在x =0点连续.解:1)(lim )(lim )0(-→→====-+e x f b x f f x x(2) 确定a , b 的值, 使函数1lim)(2212+-+==-∞→nn n x bxax xx f y 在整个实数轴上连续.解:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=++-=-+<->==121121111)(2x b a x ba x bx ax x x x f yb a x f x f b a f x x -====-+=-+→→)(lim 1)(lim 21)1(11 b a x f x f b a f x x +==-==++-=--→-→-)(lim 1)(lim 21)1(_111,0-==b a(3) 讨论下列函数的连续性, 并判断其间断点的类型.①x x x f sin )(=解: x =0为可去间断点.②⎪⎪⎩⎪⎪⎨⎧=≠+-=0001212)(11x x x f xx解:1)(lim 1)(lim 0-=≠=-+→→x f x f x x , x =0为跳跃间断点.3. 连续函数的性质 (1) 设1)(1-+++=-x xx x f n n ,证明:)(x f 有一个不大于1的正根.解: 若n=1, 则显然有解x =1. 若n>1, 则01)1(,01)0(>-=<-=n f f , 由零点定理可知在(0, 1)内至少有一个根..(2) 若),()(∞+-∞∈C x f , 且A x f x =∞→)(lim , 证明: ),()(∞+-∞在x f 内有界.解: 由A x f x =∞→)(lim 可知: 0>∃X , 当X x >时, 1)(<-A x f , 故1)(+<A x f由),()(∞+-∞∈C x f 可知]1,1[)(+--∈X X C x f , 故01>∃M ,当1+<X x 时, 1)(M x f <取}1,max{1+=A M M 即可.提高1º),()(∞+-∞在x f 内至少有一个最值存在. 2º 对于最值与A 间的任意值C , 存在21,ξξ, 使得C f f ==)()(21ξξ.证明: 若A x f ≡)(, 则显然结论成立.设存在A x f >)(0, 则存在X >0, 当X x ≥时, 有2)()(0Ax f A x f -<- 于是: )(2)()(00x f A x f x f <+< 由],[)(X X C x f -∈, 可知存在],[X X -∈ξ{})(],[:)(max )(0x f X X x x f f ≥-∈=ξ从而),()(∞+-∞在x f 内有最大值)(ξf .对于任意的C , )(ξf C A <<, 存在X 1>0, 当1X x ≥时, 有 C AC x f <+<2)( 于是有CAC X f <+<±2)(1. 分别在闭区间],[],,[11X X ξξ-上使用介值定理即可得结论2º.。
高等数学练习册及答案
高等数学练习册及答案### 高等数学练习册及答案#### 第一章:极限与连续练习题1:计算下列极限:1. \(\lim_{x \to 0} \frac{\sin x}{x}\)2. \(\lim_{x \to \infty} \frac{\sin x}{x}\)3. \(\lim_{x \to 1} (x^2 - 1)\)答案:1. 根据洛必达法则,我们首先对分子分母同时求导,得到 \(\lim_{x \to 0} \frac{\cos x}{1} = 1\)。
2. 由于 \(\sin x\) 的周期为 \(2\pi\),当 \(x\) 趋向无穷大时,\(\frac{\sin x}{x}\) 趋向于0。
3. 直接代入 \(x = 1\),得到 \(\lim_{x \to 1} (x^2 - 1) = 0\)。
练习题2:判断函数 \(f(x) = \frac{x^2 - 1}{x - 1}\) 在 \(x =1\) 处是否连续。
答案:函数 \(f(x)\) 在 \(x = 1\) 处的极限为2,但 \(f(1)\) 未定义,因此 \(f(x)\) 在 \(x = 1\) 处不连续。
#### 第二章:导数与微分练习题1:求下列函数的导数:1. \(f(x) = x^3 - 2x\)2. \(g(x) = \sin x + e^x\)答案:1. \(f'(x) = 3x^2 - 2\)2. \(g'(x) = \cos x + e^x\)练习题2:利用导数求函数 \(h(x) = x^2\) 在 \(x = 2\) 处的切线方程。
答案:首先求 \(h'(x) = 2x\),然后计算 \(h'(2) = 4\),切点坐标为\((2, 4)\)。
切线方程为 \(y - 4 = 4(x - 2)\),简化得 \(y = 4x - 4\)。
#### 第三章:积分学练习题1:计算下列不定积分:1. \(\int x^2 dx\)2. \(\int \frac{1}{x} dx\)答案:1. \(\int x^2 dx = \frac{x^3}{3} + C\)2. \(\int \frac{1}{x} dx = \ln |x| + C\)练习题2:计算定积分 \(\int_{0}^{1} x^2 dx\)。
(完整word版)数学分析—极限练习题及详细答案
(完整word版)数学分析—极限练习题及详细答案⼀、选择题1.若0()lim1sin x x xφ→=,则当x 0→时,函数(x)φ与()是等价⽆穷⼩。
A.sin ||xB.ln(1)x -C.11.【答案】D 。
2.设f(x)在x=0处存在3阶导数,且0()lim 1tan sin x f x x x→=-则'''f (0)=()A.5B.3C.1D.0 2.【答案】B.解析由洛必达法得30002()'()''()limlimlim1tan sin 2cos sin sin cos cos x x x f x f x f x x x x x xx x -→→→==-+-42200''()''()lim lim 16cos sin 2cos cos 21x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶⽆穷⼩的是() A.3x B.34x C.32xD.x3.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+?==+=选A 。
4.函数2sin f ()lim 1(2)nn xx x π→∞=+的间断点有()个A.4B.34.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故20.5sin 12lim1(2(0.5))2n x π→--=-+?-, 20.5sin12lim1(20.5)2n x π→=+?,故,有两个跳跃间断点,选C 。
5.已知()bx xf x a e=-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满⾜的充要条件是()A.a>0,b>0B.a ≤0,b>0C.a ≤0,b<0D.a>0,b<05.【答案】B 。
极限练习题及答案
极限练习题及答案一. 选择题1.设F是连续函数f的一个原函数,”M?N”表示“M 的充分必要条件是N”,则必有.F是偶函数?f)是奇函数.F是奇函数?f是偶函数. F是周期函数?f是周期函数. F是单调函数?f是单调函数.设函数f?1x,则ex?1?1x?0,x x?0,x?1都是f?1都是f的第一类间断点. 的第二类间断点x?0是f的第一类间断点,x?1是f的第二类间断点. x?0是f的第二类间断点,x3.设f?x??x?1x?1是f的第一类间断点.1,则f[,x?0、,1f]?1A) 1?xB) 1?x4.下列各式正确的是 C)XD) x1+ )?exx11lim??elimC) D)?exxA) limx?0?1x?1B)limx?01x?x?xx??x??5.已知lim?9,则a?。
A.1;B.?;C.ln3;D.2ln3。
.极限:lim x??2A.1;B.?;C.e7.极限:lim; D.e。
2x??x3?2= x3A.1;B.?;C.0;D.2.8.极限:limx?0x?1?1x=A.0;B.?;C 1; D.2.29. 极限:lim=x???A.0;B.?;C.2;D. 1.2sinx10.极限: limtanx?=x?0sin2xA.0;B.?;C.二. 填空题 11.极限limxsinx??116; D.16.2xx?12= ; 12. limarctanx= ;x?0x13. 若y?f在点x0连续,则lim[f?f]= ; x?x?14. limsin5xxx?0?;15. limn?;16. 若函数y?x?1x?3x?222,则它的间断点是17. 绝对值函数?x,x?0;?f?x??0,x?0;??x,x?0.?其定义域是,值域是。
?1,x?0;?18.符号函数 f?sgnx??0,x?0;其定义域是,值域是三个点的集合。
??1,x?0.?19无穷小量是。
20. 函数y?f在点x0连续,要求函数y?f满足的三个条件是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《极限部分练习题》参考答案1. 42lim416--→x x x解1 ()()()()()()84244x 48422lim 42lim4424344243416416++++-++++-=--→→x x x x x x x x x x x x x()()()()84216x 416lim4424316+++-+-=→x x x x x x 418888448424lim4424316=++++=++++=→x x x x x .解2 ()()4122121lim 222lim 42lim41644416416=+=+=+--=--→→→x x x x x x x x x . 【注】解1中是分子、分母同乘分子24-x 的共轭根式84244243+++x x x ,解2中是分子、分母同乘分母4-x 的共轭根式4+x ,显然解2比解1简单.2. 求a 的值,使得411lim =⎪⎭⎫ ⎝⎛-∞→xx x a解 a aa xx aa xx xx e x a x a x a ---∞→--∞→∞→=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-+=⎪⎭⎫ ⎝⎛-1lim 1lim 1lim ,41=∴-a e ,即4=ae ,取对数得2ln 24ln ==a . 3. ⎪⎭⎫ ⎝⎛+∞→x x x x x sin 11sinlim 解 101sin 1lim 11sinlim sin 1lim 1sin lim sin 11sin lim =+=⎪⎭⎫ ⎝⎛⋅+=+=⎪⎭⎫ ⎝⎛+∞→∞→∞→∞→∞→x x xx x x x x x x x x x x x x x .【注】解题中求极限xx x 1sin lim ∞→时应用了第一个重要极限,而求极限x x x sin 1lim ∞→时则应用了无穷小量的性质(无穷小量与有界变量的乘积仍为无穷小量).4. 当∞→n 时,n 1sin2与k n1等价,则=k ? 解 当∞→n 时k n n 1~1sin 2,111sin lim2=∴∞→k n n n ,而111sin lim 11sin lim 11sin lim =⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛=∞→∞→∞→kn kn k k n n n n n n n ,2=∴k .5. xx x x ⎪⎭⎫ ⎝⎛-+∞→1212lim 解1 e e e x x x x x x x x x x xx x xx x x x x ==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+---∞→∞→--∞→∞→∞→2121212212212212211lim 211lim 211211lim 211211lim 1212lim . 解2 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛-+⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+-∞→∞→∞→2121212211221lim 1221lim 1212lim x x x x x x x xx xxe e x x x x x =⋅=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-+=∞→-∞→11221lim 1221lim 21212. 6. ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-∞→22211311211lim n n 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-∞→22211311211lim n n ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=∞→n n n 1111311311211211lim 21121lim 1134322321lim =⎪⎭⎫ ⎝⎛+⋅=⎪⎭⎫ ⎝⎛+⋅-⋅⋅⋅=∞→∞→n n n n n n n n . 7. 设()3222+-=+x x x f ,则()[]=2f f ?解 在()3222+-=+x x x f 中令0=x ,得()32=f ,从而()[]()32f f f =;再在()3222+-=+x x x f 中令1=x ,得()23=f ,即()[]22=f f .8. xxx 3sin 11lim0--→解1 ()()()()xx xx x x x x x x x x -+=-+-+--=--→→→113sin lim113sin 1111lim 3sin 11lim000 ()()616111131lim 3sin 3lim 11313sin 3lim 000=⨯=-+⋅=⎥⎦⎤⎢⎣⎡-+⋅=→→→x x x x x x x x x . 解2 注意,当0→x 时,x x 3~3sin ,且()2~1111xx x ---+=--,所以当0→x 时,()2~1111x x x ---=--,于是由无穷小量替换法得613lim 3sin 11lim 00==--→→x 2xx x x x .9. xx x x ⎪⎭⎫⎝⎛-+∞→12lim 解1 31212212211lim 21lim 1121lim 1121lim 12lim e e e x x x x x x x x x x xx x x x xx x x ==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+---∞→∞→--∞→∞→∞→. 解2 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛-+⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+-∞→∞→∞→131131lim 131lim 12lim 331x x x x x x x xx xx333311131lim 131lim e e x x x x x =⋅=⎪⎭⎫ ⎝⎛-+⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∞→-∞→. 10. ⎪⎭⎫ ⎝⎛+→x x x x x sin 11sinlim 0解 110sin lim 1sin lim sin 11sinlim 000=+=+⎪⎭⎫ ⎝⎛⋅=⎪⎭⎫ ⎝⎛+→→→x x x x x x x x x x x .【注】解题中求极限⎪⎭⎫⎝⎛⋅→x x x 1sin lim 0时应用了无穷小量的性质(无穷小量与有界变量的乘积仍为无穷小量).11. 623lim 2232--++-→x x xx x x解 ()()()()()5231lim 2321lim 623lim 222232-=-+=+-++=--++-→-→-→x x x x x x x x x x x x x x x x .12. hx h x h 330)(lim -+→解1 ()()2220322033333lim 33lim limx h xh x hh xh h x hx h x h h h =++=++=-+→→→. 解2 ()()()[]()()[]2220220333lim lim limx x x h x h x hx x h x h x h hx h x h h h =++++=++++=-+→→→.【注】解1中分子是直接将二项式()3h x +展开再减3x ,而解2中分子是直接对()33xh x -+应用立方差公式. 13. 321lim3--+→x x x解 ()()()()()()41211lim 2133lim 2132121lim 321lim3333=++=++--=++-++-+=--+→→→→x x x x x x x x x x x x x x . 14. ()x x x x -+++∞→)2)(1(lim解 ()()()[]()()[]()()xx xx x x x x x x x x x x ++++++-++=-+++∞→+∞→212121lim )2)(1(lim()()()()23123123lim2323lim 2121lim222=++++=++++=+++-++=+∞→+∞→+∞→x x x xx x x x x x x x x x x x . 【注】仿上步骤可知,()()()[]()()[]()()xx xx x x x x x x x x x x ++++++-++=-++-∞→-∞→212121lim )2)(1(lim()()()()+∞=+++-+=++++=+++-++=-∞→-∞→-∞→123123lim2323lim 2121lim222x x xxx x x x x x x x x x x x ,即极限()x x x x -++-∞→)2)(1(lim不存在,所以()x x x x -++∞→)2)(1(lim 也不存在,故将原题改为()x x x x -+++∞→)2)(1(lim .15. xx xx x e e e e 2223lim ++-+∞→解1 21231lim 23lim 322=++=++--+∞→-+∞→x x x x x x x x e e e e e e .解2 令xe u =,则当+∞→x 时,+∞→u ,故由无穷小量分出法,有212311lim 231lim23lim32222=++=++=+++∞→+∞→-+∞→uu u u u u e e e e u u x x xx x .16. xxx x 3sin sin 2tan 2lim+-+→ 解 ()()()xx x xx x x xxx x x sin 2tan 2sin sin 2tan 2sin 2tan 2lim sin sin 2tan 2lim3030+++++++-+=+-+→→ ⎪⎭⎫⎝⎛+++⋅⋅-=→x x x x x x sin 2tan 21cos 1sin cos 1lim 20(以下分3种作法) ① 原式⎪⎪⎪⎪⎭⎫ ⎝⎛+++⋅⋅=→x x x x xx sin 2tan 21cos 1sin 2sin 2lim 220 241221111121sin 2tan 21lim cos 1lim sin lim 22sin lim21002020=⨯⨯⨯⨯=+++⋅⋅⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛⋅=→→→→x x x x x x x x x x x .② 原式⎪⎪⎭⎫ ⎝⎛+++⋅⋅+⋅-=→x x x x x x x sin 2tan 21cos 1cos 11sin cos 1lim 220 2412211121sin 2tan 21lim cos 1lim cos 11lim000=⨯⨯⨯=+++⋅⋅+=→→→x x x x x x x .③ 当0→x 时,2~cos 12x x -,且22~sin x x ,∴由无穷小量替换法,原式⎪⎪⎪⎪⎭⎫ ⎝⎛+++⋅⋅=→x x x x x x sin 2tan 21cos 12lim 220⎪⎭⎫ ⎝⎛+++⋅⋅=→x x x x sin 2tan 21cos 121lim 0 2412211121sin 2tan 21lim cos 1lim 2100=⨯⨯⨯=+++⋅⋅=→→x x x x x . 17. xx x x ⎪⎪⎭⎫⎝⎛-∞→1lim 22 解 x x xx x x x ⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-∞→∞→222111lim 1lim xx x x x x x x x x ⎪⎭⎫ ⎝⎛+⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛-=--∞→∞→11111lim 11111lim 11111lim 11lim 111=⋅=⎪⎭⎫⎝⎛+⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=-∞→--∞→ee x x xx x x . 18. ()xx x 3sin 21ln lim 0+→ 解1 ()()()xx x xx x x x x x x x x x x 33sin 21ln lim 32333sin 221ln 21lim 3sin 21ln lim 21000+=⋅⋅+=+→→→()x x x x xx 33sin lim 21ln lim 320210→→+= ()321ln 3233sin lim 21lim ln 320210=⋅=⎥⎦⎤⎢⎣⎡+=→→e x x x x x x . 解2 ()3232lim 3sin 21ln lim 00==+→→x x x x x x ( 当0→x 时,x x 2~)21ln(+,且x x 3~3sin ).19. 9lim =⎪⎭⎫⎝⎛-+∞→xx a x a x ,求=a ?解 aa a a a x x aa xx a a x aa x x xx x x e e e x a x a x a x a x a x a a x a x 21lim 1lim 11lim 11lim lim ==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+---∞→∞→--∞→∞→∞→. ∴92=a e ,两边取对数,得3ln 29ln 2==a ,3ln =a .20. ()x x xx ++-∞→100lim2解 ()()()xx x xx xxx xx x x x x -+-+++=++-∞→-∞→100100100lim100lim 22225011001100lim100100lim100100lim2222-=-+-=-+=-+-+=-∞→-∞→-∞→xxx x x xx x x x x x x x .【注】解题过程中要特别注意的是,由于-∞→x ,故x <0,于是作到第3步骤后,分母中的根式x x x x x x 1001100110022+-=⎪⎭⎫⎝⎛+=+(同样的情况前面也有遇到,请参见第14题【注】的第4步骤).。