(物理) 高考物理动能定理的综合应用专题训练答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(物理) 高考物理动能定理的综合应用专题训练答案

一、高中物理精讲专题测试动能定理的综合应用

1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250

17

N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =

17

5

m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:

(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;

(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.

【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】

对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】

(1)小球从A 到B 过程,由动能定理得:212

B Fx mv = 解得:v B =10 m/s

(2)在C 点,由牛顿第二定律得mg +F N =2

c v m R

又据题有:F N =2.6mg 解得:v C =6 m/s.

(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22

1122

c B mv mv - 解得克服摩擦力做的功:W f =12 J

(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =

12

gt 2

由小球垂直打在斜面上可知

:c

gt

v =tan 45° 联立解得:h =0.2 m 【点睛】

本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.

2.如图所示,AB 是竖直面内的四分之一圆弧形光滑轨道,下端B 点与水平直轨道相切.一个小物块自A 点由静止开始沿轨道下滑,已知轨道半径为R =0.2m ,小物块的质量为m =0.1kg ,小物块与水平面间的动摩擦因数μ=0.5,g 取10m/s 2.求:

(1)小物块在B 点时受到的圆弧轨道的支持力大小; (2)小物块在水平面上滑动的最大距离. 【答案】(1)3N (2)0.4m 【解析】(1)由机械能守恒定律,得

在B 点

联立以上两式得F N =3mg =3×0.1×10N =3N. (2)设小物块在水平面上滑动的最大距离为l ,

对小物块运动的整个过程由动能定理得mgR -μmgl =0, 代入数据得

【点睛】解决本题的关键知道只有重力做功,机械能守恒,掌握运用机械能守恒定律以及

动能定理进行解题.

3.如图所示,半径2R m =的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h =1.25m ,现将一质量m =0.2kg 的小滑块从A 点由静止释放,滑块沿圆弧轨道运动至B 点以5/v m s =的速度水平飞出(g 取210/m s ).求:

(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B 点时对圆轨道的压力大小; (3)小滑块着地时的速度大小.

【答案】(1) 1.5f W J = (2) 4.5N F N = (3)152/v m s = 【解析】 【分析】 【详解】

(1)滑块在圆弧轨道受重力、支持力和摩擦力作用,由动能定理

mgR -W f =

12

mv 2

W f =1.5J

(2)由牛顿第二定律可知:

2

N v F mg m R

-=

解得:

4.5N F N =

(3)小球离开圆弧后做平抛运动根据动能定理可知:

22111

m m 22

mgh v v =-

解得:

152m/s v =

4.如图,I 、II 为极限运动中的两部分赛道,其中I 的AB 部分为竖直平面内半径为R 的

1

4

光滑圆弧赛道,最低点B 的切线水平; II 上CD 为倾角为30°的斜面,最低点C 处于B 点的正下方,B 、C 两点距离也等于R.质量为m 的极限运动员(可视为质点)从AB 上P 点处由静止开始滑下,恰好垂直CD 落到斜面上.求:

(1) 极限运动员落到CD 上的位置与C 的距离; (2)极限运动员通过B 点时对圆弧轨道的压力; (3)P 点与B 点的高度差.

【答案】(1)4

5R (2)75mg ,竖直向下(3)15

R

【解析】 【详解】

(1)设极限运动员在B 点的速度为v 0,落在CD 上的位置与C 的距离为x ,速度大小为v ,在空中运动的时间为t ,则xcos300=v 0t R-xsin300=

12

gt 2 0

tan 30

v gt = 解得x=0.8R

(2)由(1)可得:02

5

v gR =

通过B 点时轨道对极限运动员的支持力大小为F N

20

N v F mg m R

-=

极限运动员对轨道的压力大小为F N ′,则F N ′=F N , 解得'

7

5

N F mg =

,方向竖直向下; (3) P 点与B 点的高度差为h,则mgh=1

2

mv 02 解得h=R/5

5.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:

(1)物块与传送带间的动摩擦因数;

(2)物块从A 到B 的过程中,传送带对物块做的功.

相关文档
最新文档