高三数学二轮专题复习教案――立体几何

合集下载

高三数学复习教案10套立体几何与空间向量

高三数学复习教案10套立体几何与空间向量

yk iA(x,y,z)O jxzlB'O'A'B O A βα1 空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r 表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k r r r ,以点O 为原点,分别以,,i j k r r r 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O叫原点,向量 ,,i j k r r r都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面;2.空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++u u u r r r,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz-中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.3.空间向量的直角坐标运算律:(1)若123(,,)a a a a =r ,123(,,)b b b b =r,则112233(,,)a b a b a b a b +=+++r r ,112233(,,)a b a b a b a b -=---r r ,123(,,)()a a a a R λλλλλ=∈r , 112233a b a b a b a b ⋅=++r r , 112233//,,()a b a b a b a b R λλλλ⇔===∈r r, 1122330a b a b a b a b ⊥⇔++=r r.(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---u u u r.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标4 模长公式:若123(,,)a a a a =r , 则222123||a a a a a a =⋅=++r r r .5.夹角公式:112233222222123123cos ||||a ba b a b a a a b b b ⋅⋅==⋅++++r rr r r r .6.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2222212121||()()()AB AB x x y y z z ==-+-+-uuu r uuu r7.直线和平面所成角:(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角 一直线垂直于平面,所成的角是直角一直线平行于平面或在平面内,所成角为0︒角直线和平面所成角范围: [0,2π] (2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角8.公式:已知平面的斜线a 与内一直线b 相交成θ角,且a 与相交成1角,a 在上的射影c 与b 相交成2角,则有θϕϕcos cos cos 21=ϕ2ϕ1c b aθPαO ABED'B'C'A'ODACBαHDCBA9 二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为l ,两个面分别为,αβ的二面角记为l αβ--10.二面角的平面角:(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角(1)二面角的平面角范围是[0,180]o o ;(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直11 两个平面垂直的定义:两个相交成直二面角的两个平面互相垂直;相交成直二面角的两个平面叫做互相垂直的平面12.面面垂直的判定定理: 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 13.面面垂直的性质定理: 若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面 练习:1设231(,,)a a a a =r ,231(,,)b b b b =r,且a b ≠r r ,记||a b m -=r r ,求a b -r r 与x 轴正方向的夹角的余弦值2. 在ΔABC 中,已知AB =(2,4,0),BC =(-1,3,0),则∠ABC =___ 3.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5),⑴求以向量AC AB ,为一组邻边的平行四边形的面积S ;⑵若向量a r 分别与向量AC AB ,垂直,且|a r |=3,求向量a r的坐标4.直角ABC ∆的斜边AB 在平面α内,,AC BC 与α所成角分别为30,45oo,CD 是斜边AB 上的高线,求CD 与平面α所成角的正弦值5.如果二面角l αβ--的平面角是锐角,点P 到,,l αβ的距离分别为22,4,42,求二面角的大小6.如图,正方体的棱长为1,'B C BC O '=I ,求:(1)AO 与A C ''所成角; (2)AO 与平面ABCD 所成角的正切值;(3)平面AOB 与平面AOC 所成角7已知正方体1AC 的棱长为a ,E 是1CC 的中点,O 是对角线1BD 的中点,(1)求证:OE 是异面直线1CC 和1BD 的公垂线;(2)求异面直线1CC 和1BD 的距离参考答案: 1设231(,,)a a a a =r ,231(,,)b b b b =r,且a b ≠r r ,记||a b m -=r r ,αHDCBA求a b -r r与x 轴正方向的夹角的余弦值解:取x 轴正方向的任一向量(,0,0)c x =r,设所求夹角为α,∵22331111()(,,)(,0,0)()a b c a b a b a b x a b x -⋅=---⋅=-r r r∴1111()()cos ||||a b c a b x a bmx m a b c α-⋅--===-⋅r r r r rr ,即为所求 2. 在ΔABC 中,已知AB =(2,4,0),BC =(-1,3,0),则∠ABC =___解:(2,4,0),(1,3,0),BA BC =--=-u u u r u u u rQcos ,||||BA BC BA BC BA BC ⋅∴===u u u r u u u r u u u r u u u r u u u r u u u r ∴∠ABC =45°3.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)⑴求以向量,为一组邻边的平行四边形的面积S ;⑵若向量a r 分别与向量AC AB ,垂直,且|a r |=3,求向量a r的坐标分析:⑴21||||cos ),2,3,1(),3,1,2(==∠∴-=--=AC AB BAC Θ ∴∠BAC =60°,3760sin ||||==∴οAC AB S ⑵设a r=(x,y,z),则,032=+--⇒⊥z y x AB a33||,023222=++⇒==+-⇒⊥z y x z y x解得x =y =z =1或x =y =z =-1,∴a r =(1,1,1)或a r=(-1,-1,-1).4.直角ABC ∆的斜边AB 在平面α内,,AC BC 与α所成角分别为30,45o o,CD 是斜边AB 上的高线,求CD 与平面α所成角的正弦值解:过点C 作CH α⊥于点H ,连接,,AH BH OH ,则30CAH ∠=o,45CBH ∠=o,CDH ∠为所求CD 与α所成角,记为θ, 令CH a =,则2,AC a BC ==,则在Rt ABC ∆中,有AC BC CD AB ⋅==βαlP C B图1AED'B'C'A'ODACB在Rt CDH ∆中,sin CH CD θ==∴CD 与平面α所成角的正弦值2. 5.如果二面角l αβ--的平面角是锐角,点P 到,,l αβ的距离分别为4,,求二面角的大小分析:点P 可能在二面角l αβ--内部,也可能在外部,应区别处理解:如图1是点P 在二面角l αβ--的内部时,图2是点P 在二面角l αβ--外部时, ∵PA α⊥ ∴PA l ⊥ ∵AC l ⊥ ∴面PAC l ⊥ 同理,面PBC l ⊥而面PAC I 面PBC PC = ∴面PAC 与面PBC 应重合 即,,,A C P B 在同一平面内,则ACB ∠是二面角l αβ--的平面角在Rt APC ∆中,1sin 2PA ACP PB ∠=== ∴30ACP ∠=o在Rt BPC ∆中,sin 2PB BCP PC ∠===∴45BCP ∠=o故304575ACB ∠=+=ooo(图1)或453015ACB ∠=-=ooo(图2) 即二面角l αβ--的大小为75o 或15说明:作一个垂直于棱的平面,此平面与两个半平面的交线所成的角就是二面角的平面角6.如图,正方体的棱长为1,'B C BC O '=I ,求:(1)AO 与A C ''所成角;(2)AO 与平面ABCD 所成角的正切值; (3)平面AOB 与平面AOC 所成角 解:(1)∵//A C AC '' ∴AO 与A C ''所成角就是OAC ∠∵,OC OB AB ⊥⊥平面BC ' ∴OC OA ⊥(三垂线定理)βαlPCB图2AO ED 1C 1B 1A 1DCBA OD 1C 1B 1A 1D CB A在Rt AOC ∆中, 2,2OC AC == ∴30OAC ∠=o (2)作OE BC ⊥,平面BC '⊥平面ABCD∴OE ⊥平面ABCD ,OAE ∠为OA 与平面ABCD 所成角 在Rt OAE ∆中,22115,1()22OE AE ==+= ∴5tan 5OE OAE AE ∠== (3)∵,OC OA OC OB ⊥⊥ ∴OC ⊥平面AOB 又∵OC ⊂平面AOC ∴平面AOB ⊥平面AOC 即平面AOB 与平面AOC 所成角为907已知正方体1AC 的棱长为a ,E 是1CC 的中点,O 是对角线1BD 的中点,(1)求证:OE 是异面直线1CC 和1BD 的公垂线;(2)求异面直线1CC 和1BD 的距离 解:(1)解法一:延长EO 交1A A 于F ,则F 为1A A 的中点,∴//EF AC , ∵1CC AC ⊥,∴1C C EF ⊥,连结1,D E BE ,则1D E BE =, 又O 是1BD 的中点,∴1OE BD ⊥,∴OE 是异面直线1CC 和1BD 的公垂线(2)由(1)知,OE 122AC ==. 解法二:建立空间直角坐标系,用坐标运算证明(略)引申:求1B C 与BD 间的距离解法一:(转化为1B C 到过BD 且与1B C 平行的平面的距离) 连结1A D ,则1A D //1B C ,∴1B C //平面1A DB ,连1AC ,可证得1AC BD ⊥,1AC AD ⊥,∴1AC ⊥平面1A DB ,∴平面1AC ⊥平面1A DB ,且两平面的交线为1A O ,过C 作1CE AO ⊥,垂足为E ,则CE 即为1B C 与平面1A DB 的距离,也即1B C 与BD 间的距离,在1A OC ∆中,111122OC A A CE AO ⋅=⋅,∴CE a =. (解法二):坐标法:以D 为原点,1,,DA DC DD 所在的直线分别为x 轴,y 轴、z 轴建立空间直角坐标系, 则(,0,0),(,,0),(0,,0)A a B a a C a ,11(,,),(,0,),(0,0,0)B a a a A a a D , 由(解法一)求点C 到平面1A DB 的距离CE ,设(,,)E x y z , ∵E 在平面1A DB 上,∴111A E A D A B λμ=+u u u u r u u u u r u u u r,即(,,)(,0,)(0,,)x a y z a a a a a λμ--=--+,∴x a a y a z a a a λμμλ=-⎧⎪=⎨⎪=--⎩, ∵1,CE A D CE BD ⊥⊥u u u r u u u u r u u u r u u u r ,∴(,2,)(,0,)0(,2,)(,,0)0x y z a a x y z a a ---=⎧⎨---=⎩,解得:23λμ==,∴111(,,)333CE a a a =--u u u r,∴3CE a =. 解法三:直接求1B C 与BD 间的距离设1B C 与BD 的公垂线为1OO ,且11,O B C O BD ∈∈,设(,,)O x y z ,设DO BD λ=u u u r u u u r,则(,,)(,,0)x y z a a λ=--,∴0x a y a z λλ=-⎧⎪=-⎨⎪=⎩,∴(,,0)O a a λλ--,同理1(,,)O a a a μμ,∴1((),,)OO a a a a μλλμ=++u u u u r ,∴111,OO BD OO B C ⊥⊥u u u u r u u u r u u u u r u u u u r , ∴1110,0OO BD OO B C ⋅=⋅=u u u u r u u u r u u u u r u u u u r,解得:21,33λμ=-=,1OO =u u u u r 111(,,)333a a a -,1||OO =u u u u r .。

第16讲 立体几何的翻折问题 讲义-2021-2022学年高三数学二轮复习专题

第16讲 立体几何的翻折问题 讲义-2021-2022学年高三数学二轮复习专题

第15讲 立体几何中的翻折问题一、学习目标1. 掌握翻折问题的基本结论;2. 掌握翻折问题的基本处理策略.翻折问题的基本结论:ABC ∆中,BC AO ⊥,将ABC ∆沿着边BC 翻折到BC A '∆,在翻折的过程中有 ①BC OA ⊥,BC OA ⊥','AOA ∠是二面角'A BC A --的平面角; ②'A 在底面上的投影一定在直线''AA 上; ③'BA BA =,'CA CA =;④点A 的轨迹是以O 为圆心的圆,AC AB 、的轨迹是以BC 为旋转轴的两个圆锥侧面.二、典例分析例1.(1)如图,在正方形ABCD 中,点F E 、分别是BC AB 、的中点,点G 是EF 的中点,现在沿DF DE 、及EF 把这个正方形折成一个四面体,使C B A 、、三点重合,重合后的点记为P ,则在四面体DEF A -'中必有( )A.⊥PD 平面EF A 'B.⊥DG 平面PEFC.⊥PE 平面DEFD.PG ⊥平面DEF9.如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,翻折ABD △和ACD △,使得平面ABD ⊥平面ACD .下列结论错误的是( )A .BD AC ⊥B .ABC 是等边三角形 C .三棱锥D ABC -是正三棱锥D .平面ACD ⊥平面ABC【答案】(1)C ; (2)D. 变式:(1)已知正三角形ABC 的中线AF 与中位线DE 相交于点G ,ED A '∆是AED ∆绕DE 旋转过程中的一个图形,则下列结论错误的是( )A.动点'A 在平面ABC 上的射影在线段AF 上B.三棱锥FED A -'的体积有最大值C.恒有平面⊥GF A '平面BCEDD.异面直线E A '与BD 不可能互相垂直【答案】D(2)如图,在矩形ABCD 中,AD AB 2=,E 为AB 的中点,将ADE ∆沿直线DE 翻折成DE A '∆,若M 是线段C A 1的中点,则在ADE ∆翻折的过程中,下列命题正确的是( )A.BM 是定值B.M 的轨迹是一段圆弧C.//BF 平面DE A 'D.存在某个位置,使得C A DE 1⊥【答案】D例2.(1)已知矩形ABCD ,1,2AB BC ==ABD ∆沿矩形的对角线BD 所在的直线经翻折,在翻折过程中( )A.存在某个位置,使得直线AC 与BD 垂直B.存在某个位置,使得直线AB 与CD 垂直C.存在某个位置,使得直线AD 与BC 垂直D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直(2)如图,在菱形ABCD 中,︒=∠60BAD ,线段BD AD ,的中点分别为F E ,,现将ABD ∆沿对角线BD 翻折,则异面直线BE 与CF 所成角的取值范围是( )A.)3,6(ππ B.]2,6(ππ C.]2,3(ππ D.)32,3(ππ【答案】(1)B ; (2)C.. 变式:1.在正方形ABCD 中,点F E 、分别是AD BC 、的中点,将ABF ∆沿BF 所在的直线进行翻折,将CDE ∆沿DE 所在的直线进行翻折,在翻折的过程中,( ) A.点A 与点C 在某一位置可能重合 B.点A 与点C 的最大距离为AB 3 C.直线AB 与直线CD 可能垂直 D.直线AF 与直线CE 可能垂直【答案】D2.如图,在ABC Rt ∆中,1=AC ,x BC =,D 是斜边AB 的中点,将BCD ∆沿直线CD 翻折,若在翻折过程中存在某个位置,使得AD CB ⊥,则x 的取值范围是( ) A.]3,0( B.]2,22( C.]32,3( D.]4,2( 【答案】A例3.(1)如图,在长方形ABCD 中,3,1AB BC ==,E 为线段DC 上一动点,现将AED ∆沿AE 折起,使得点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成的轨迹的长度是__________.(2)如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .【答案】(1)3π; (2))1,21(. 变式:1.在矩形ABCD 中,3=AB ,1=BC ,E 为DC 的三等分点(靠近C 处),F 为线段EC 上一动点(包括端点),现将AFD ∆沿AF 折起,使D 点在平面内的射影恰好落在边AB 上,则当F 运动时,二面角B AF D --的余弦值的取值范围是________.【答案】]41,91[例4.如图,在平行四边形ABCD 中,2AB BC =,120ABC ∠=︒,E 为线段AB 的中点,将ADE ∆沿直线DE 翻折成'A DE ∆,使平面'A DE ⊥平面BCD ,F 为线段'A C 的中点。

数学高中立体几何初步教案

数学高中立体几何初步教案

数学高中立体几何初步教案
教学目标:
1.了解立体几何的基本概念和性质
2.掌握立体几何的基本公式和计算方法
3.培养学生分析和解决问题的能力
教学内容:
1. 立体几何的基本概念
2. 空间的点、直线、面
3. 空间几何体的投影
4. 空间几何体的旋转体
教学过程:
1.导入:通过展示几何体模型或图片引发学生对立体几何的兴趣
2.讲解立体几何的基本概念和性质,如点、直线、面等的定义和特点
3.讲解空间几何体的投影和旋转体的概念,引导学生理解其形成及应用
4.指导学生完成相关练习和作业,巩固所学知识
5.进行课堂讨论和展示,总结重点知识和难点
教学方法:
1.讲授法:通过教师讲解和示范引导学生理解概念和性质
2.讨论法:通过小组讨论和互动,促进学生思考和交流
3.实践法:通过实际练习和应用, 提高学生解决问题的能力
评价与反思:
1.对学生掌握情况进行诊断性评价,及时调整教学步骤和方法
2.反思教学过程中的不足和改进方案,提高教学效果和学生学习质量拓展与应用:
1.鼓励学生积极参与校内外竞赛或活动,提高立体几何能力
2.激发学生对数学的兴趣, 培养其数学建模和解决实际问题的能力教学反馈:
1.及时对学生的学习情况进行反馈,并提供个性化指导和帮助
2.鼓励学生在学习立体几何中发现问题,并主动探索解决方案
教师签名:_________ 日期:_________。

高三数学二轮复习:立体几何

高三数学二轮复习:立体几何
板块三 专题突破 核心考点
专题四 立体几何
第1讲 空间几何体
[考情考向分析]
1.以三视图为载体,考查空间几何体面积、体积的计算. 2.考查空间几何体的侧面展开图及简单的组合体问题.
内容索引
热点分类突破 真题押题精练
热规则 俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视 图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图 的宽度一样.即“长对正、高平齐、宽相等”. 2.由三视图还原几何体的步骤 一般先依据俯视图确定底面再利用正(主)视图与侧(左)视图确定几何体.
跟踪演练3 (1)(2018·咸阳模拟)在三棱锥P-ABC中,PA⊥平面ABC,
AB⊥BC,若AB=2,BC=3,PA=4,则该三棱锥的外接球的表面积为
A.13π C.25π
B.20π
√D.29π
解析 答案
(2)(2018·四川成都名校联考)已知一个圆锥的侧面积是底面积的2倍,
√ 记该圆锥的内切球的表面积为S1,外接球的表面积为S2,则SS12 等于
例3 (1)(2018·百校联盟联考)在三棱锥P-ABC中,△ABC和△PBC均为
边长为3的等边三角形,且PA=326 ,则三棱锥P-ABC外接球的体积为
13 13 A. 6 π
10 10 B. 3 π
√C.5
15 2π
55 D. 6 π
解析 答案
(2)(2018·衡水金卷信息卷)如图是某三棱锥的三视
跟踪演练1 (1)(2018·衡水模拟)已知一几何体的正(主)视图、侧(左)视 图如图所示,则该几何体的俯视图不可能是

解析 答案
(2)(2018·合肥质检)在正方体ABCD-A1B1C1D1中,E是棱 A1B1的中点,用过点A,C,E的平面截正方体,则位于 截面以下部分的几何体的侧(左)视图为

2019届高三理科数学第二轮专题复习配套文档专题四 第3讲立体几何中的向量方法

2019届高三理科数学第二轮专题复习配套文档专题四 第3讲立体几何中的向量方法

第3讲立体几何中的向量方法[真题再现]1.(2018·课标Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC使点C到达点P的位置,且PF⊥BF。

(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.[解](1)证明:由已知可得BF⊥PF,BF⊥EF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD。

(2)解:如图,作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD。

以H为坐标原点,错误!的方向为y轴正方向,|错误!|为单位长,建立如图所示的空间直角坐标系H.xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=错误!.又PF=1,EF=2,所以PE⊥PF.所以PH=错误!,EH=错误!.则H(0,0,0),P错误!,D错误!,错误!=错误!,错误!=错误!.又错误!为平面ABFD的法向量,设DP与平面ABFD所成角为θ,则sin θ=错误!=错误!=错误!。

所以DP与平面ABFD所成角的正弦值为错误!.2.(2018·课标Ⅱ)如图,在三棱锥P-ABC中,AB=BC=22,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M。

P A-C为30°,求PC与平面P AM所成角的正弦值[解](1)证明:因为P A=PC=AC=4,O为AC的中点,所以OP⊥AC,且OP=2错误!.如图,连接OB.因为AB=BC=错误!AC,所以△ABC为等腰直角三角形,且OB ⊥AC,OB=错误!AC=2。

由OP2+OB2=PB2知PO⊥OB.由OP⊥OB,OP⊥AC,OB∩AC=O,得PO⊥平面ABC.(2)解:如图,以O为坐标原点,错误!的方向为x轴正方向,建立空间直角坐标系O。

xyz。

由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0),P(0,0,2错误!),错误!=(0,2,2错误!).取平面P AC的一个法向量错误!=(2,0,0).设M (a ,2-a,0)(0≤a ≤2),则错误!=(a ,4-a,0).设平面P AM 的法向量为n =(x ,y ,z ).由AP ,→·n =0,错误!·n =0得错误!可取y =错误!a ,得平面P AM 的一个法向量为n =(错误!(a -4),错误!a ,-a ),所以cos 错误!,n =错误!。

高三文科数学立体几何复习课教学设计

高三文科数学立体几何复习课教学设计

高三文科数学立体几何复习课教学设计作者:薛超群来源:《考试周刊》2012年第94期摘要:根据《数学课程标准》及现代认知心理学理论,本节课从介绍立体几何证明常见二十四招式前半部分开始,应用发现思维等寻找证明思路,在寻找证明思路的过程中,学生通过不同形式的自主学习、探究活动,体验数学发现和创造的历程.关键词:立体几何证明常见招式证明思维教学设计【教学目标】1.知识与技能:掌握立体几何证明常见二十四招式中的前半部分并能应用.2.过程与方法:能应用立体几何证明常见二十四招式中的前半部分解决证明问题;应用发现思维等寻找证明思路.3.情感态度与价值观:在寻找证明思路的过程中培养合作学习、共同探究的精神.【教学重点】掌握立体几何证明常见二十四招式中的前半部分并能应用.【教学难点】应用发现思维等寻找立体几何证明的思路.【教学方法】讲授法、发现法.【教学手段】多媒体.【教学流程】【教学过程】一、问题导学立体几何证明常见招式有哪些?看到等腰就劈断、看到中点找中点、看到垂直做垂直、电线杆和田埂、泥工师傅灌平台、吊瓶架两垂直、公理四传染病、透过竹签就垂直、三推一……招式简介:看到等腰就劈断:看到等腰三角形,连接顶点和底边中点.看到中点找中点:看到三角形一条边的中点,寻找另一边的中点并连接之.看到垂直作垂直:看到两个平面互相垂直,在其中一个平面内过一个点作垂直于两平面的交线的直线,则所作的直线与另一个平面垂直.电线杆和田埂:一条直线和一个平面垂直,则这条直线垂直于平面内的任一直线.泥工师傅灌平台:一个平面内两交线分别平行于另一个平面,则这另个平面平行.吊瓶架两垂直:一条直线垂直于一个平面内的两条交线,则这条直线与平面垂直.公理四传染病:两条直线都与第三条直线平行,则这两条直线平行.透过竹签就垂直:一个平面经过另一个平面的垂线,则这两个平面垂直.三推一:平面外的一条直线平行于一个平面内的一条直线,则平面外的直线与平面平行.设计意图:复习旧知识,自然引出新问题.二、讲授新课例1.在三棱锥A-BCD中,AD=AC,BC=BD,求证:AB⊥CD.分析:证明思路是什么?应用什么招式?要证明AB⊥CD,只需证明AB垂直于CD所在的平面.看到AD=AC,BC=BD,用“看到等腰就劈断” 招式.看到CD⊥AE,CD⊥BE,用“吊瓶架两垂直” 招式.看到CD⊥平面ABE,用“电线杆和田埂” 招式.证明:取CD中点E,连接AE、BE,∵AD=AC,∴CD⊥AE,同理CD⊥BE,∵AE∩BE=E,∴CD⊥平面ABE,∵AB?奂平面ABE,∴AB⊥CD.小结:这是年全国高考改编题,题目简洁明了,用三个招式就可以解决问题.例.正方体中ABCD-A■B■C■D■,AA■=2,E为棱AA■的中点.(Ⅰ)求证:AC■⊥B■D■;(Ⅱ)求证:AC■∥平面B■D■E.分析:证明思路是什么?应用什么招式?(Ⅰ)要证明B■D■⊥AC■,只需证明B■D■垂直于AC■所在的平面,用“吊瓶架两垂直” 招式.(Ⅱ)要证明AC■∥平面B■D■E,只需证明AC■平行于平面B■D■E内的一条直线,用“看到中点找中点”、“三推一” 招式.证明:(Ⅰ)连接AC■,交B■D■于点O,由正方体的性质可知AA■⊥平面AA■C■,∵AA■⊥B■D■,又A■C■⊥B■D■,∵AA■∩A■C■=A■,∴B■D■⊥平面AA■C■又AC■?奂平面AA■C■,∴B■D■⊥A■C■,即AC■⊥B■D■.(Ⅱ)连接EO,在△A■AC■中,A■E=EA,A■O=OC■,∴EO∥AC■,又EO?奂平面B■ED■,AC■?埭平面B■ED■,∴AC■∥平面B■D■E.小结:这是2012年宁德市高中毕业班单科质检(文)试题,题目精美,用三个招式就可以解决问题.例3.如图,已知AB⊥平面ACD,DE∥AB,AD=DE=2AB,△ACD为正三角形,且F是边CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求证:平面BCE⊥平面CDE.分析:证明思路是什么?应用什么招式?(Ⅰ)要证明AF∥平面BCE,只需证明AF平行于平面BCE内的一条直线,用“看到中点找中点”、“三推一”、“公理四传染病”招式.(Ⅱ)要证明平面BCE⊥平面CDE,只需证明平面BCE内的一条直线与平面CDE垂直,用“看到中点找中点”、“三推一”、“公理四传染病”、“透过竹签就垂直”招式.证明:(Ⅰ)取CE中点P,连接FP,BP,∵F为CD中点,∴FP∥DE,且FP=■DE.又AB∥DE,且AB=■DE,AB∥FP,且AB=FP,∴ABPF为平行四边形,∴AF∥BP.又∵AF?埭平面BCE,BP∥平面BCE,∴AF∥平面BCE.(Ⅱ)∵△ACD为正三角形,∴AF⊥CD,∵AB⊥平面ACD,DE∥AB,∴DE⊥平面ACD,∴DE⊥AF,又CD∩DE=D,∴AF⊥平面CDE,∵BP?奂平面BCE,∴平面BCE⊥平面CDE.小结:这是南平市届高三适应性考试数学(文)试题,题目精美,用五个招式就可以解决问题.设计意图:应用立体几何证明常见二十四招式中的前半部分解决证明问题.通过三道例题的讲解,由易到难,引导学生应用发现思维寻找证明思路,培养学生能力.三、课堂练习如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=■,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.求证:PO⊥平面ABCD.设计意图:初步巩固所学知识.四、课堂小结通过本节学习,要求大家掌握立体几何证明常见二十四招式中的前半部分并能应用,应用发现思维等寻找证明思路.设计意图:对本节课知识结构进行概括,使学生对知识横而成网、纵而成链,在招式应用方面能用一招一式解决问题,为下一步的招式相连做准备.五、课后作业年、年福建省高考(文)立体几何大题.设计意图:巩固所学知识.【设计说明】一、设计理念根据《数学课程标准》及现代认知心理学理论,本节课从介绍立体几何证明常见二十四招式前半部分开始,应用发现思维等寻找证明思路.在寻找证明思路的过程中,学生通过不同形式的自主学习、探究活动,体验数学发现和创造的历程.二、本节内容的地位作用立体几何证明常见二十四招式前半部分,是立体几何复习课的第一课时,在教学时可以复习旧知识,又可以对后面的立体几何证明起到承上启下的作用.三、教学诊断分析学生容易理解的内容.立体几何证明常见二十四招式中的前半部分.学生不容易理解的内容.应用立体几何证明常见二十四招式中的前半部分解决证明问题;应用发现思维等寻找证明思路.四、教学媒体的运用适当应用多媒体.【教学反思】学生学习数学的过程实际上是一个数学认知的过程,是学生在老师的指导下把教材知识转化成自己的数学认知结构的过程.本节课从介绍立体几何证明常见二十四招式前半部分开始,应用发现思维等寻找证明思路,在寻找证明思路的过程中,学生能力得到了提高.参考文献:[1]数学课程标准.北京:北京师范大学出版社,2007.。

2012届高三数学文科二轮专题复习教案――立体几何

2012届高三数学文科二轮专题复习教案――立体几何

专题八 立体几何知识点1.空间几何体的三视图:正俯长对正,正左高平齐,左俯宽相等.2.空间几何体的侧面积、表面积、体积(1)直棱柱的侧面积S ch =侧.V Sh =柱体(2)正棱锥的周长为c ,斜高为h ',12S ch '=侧.13V Sh =锥体(3)正棱台的上、下底面的周长是c c ',,斜高是h ',1()2S c c h ''=+侧.1()3V S S S S h '=++台体 (4)圆柱母线的长为l ,底面半径为r ,2πS rl =侧,2πS r =底.圆柱的表面积222π2π2π()S S S rl r r r l =+=+=+侧底.2πV r h =圆柱(5)圆锥底面半径为r ,母线长为l,πS rl=侧,2πππ()S S S rl r r r l =+=+=+侧底.21π3V r h =圆锥(6)圆台的上、下底面半径分别为r r ',,母线长为l ,π()S r r l '=+侧.圆台的表面积2222π()πππ()S S S S r r l r r r r r l rl ''''=++=+++=+++侧上底下底.221π()3V r Rr R h =++圆台(7)球的表面积24πS R =.334R V π=3.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

(2)公理2:过不在一条直线上的三点,有且只有一个平面。

(3)公理3:如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线。

4. 直线与直线的位置关系(1)空间直线位置分三种:相交、平行、异面. (2)平行公理:平行于同一条直线的两条直线互相平行.(3)等角定理:如果一个角的两边和另一个角的两边分别平行那么这两个角相等或互补。

5. 直线与平面的位置关系.(1)空间直线与平面位置分三种:相交、平行、在平面内. (2)直线与平面平行判定定理:ααα////l l m m l ⇒⎪⎭⎪⎬⎫⊄⊂ (3)直线和平面平行性质定理:m l m l l ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα(4)直线与平面垂直判定定理:αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l ACl ,推论:如果两条直线同垂直于一个平面,那么这两条直线平行. (5)直线与平面垂直的性质定理:m l m l ⊥⇒⎭⎬⎫⊂⊥αα6. 平面与平面的位置关系:(1)空间两个平面的位置关系:相交、平行.ml αlmβαABC αlm αlγmβαllαβ(2)平面平行判定定理:βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交m l m l推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. (3)两个平面平行的性质定理:m l m l ////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα αββα////l l ⇒⎭⎬⎫⊂(4)两个平面垂直性质判定:βαβα⊥⇒⎭⎬⎫⊂⊥l l(5)两个平面垂直性质定理:αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m , 7.空间距离,空间角(1)点到平面的距离的求解方法①直接求解法:从该点向平面引垂线,求垂线的长度 ②等体积代换法(2)空间角:①异面直线所成的角②直线和平面所成的角:直线和在平面的摄影所成的角 二面角例题1.(2008安徽文\理)已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖例2 .下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ( )A .9πB .10π C .11π D .12π例3.如图,在四棱锥P-ABCD 中,PD⊥平面ABCD ,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900. (1)求证:PC⊥BC; (2)求点A 到平面PBC 的距离.例4.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,045ADC ∠=,1AD AC ==,O 为AC 中点,PO ⊥平面ABCD , 2PO =,M 为PD 中点.(Ⅰ)证明:PB //平面ACM(Ⅱ)证明:AD ⊥平面PAC ;(Ⅲ)求直线AM 与平面ABCD 所成角的正切值.DCABPMOmβαllβαlβαmP A B D C练习1.(2010浙江)(6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若l m ⊥,m α⊂,则l α⊥ (B )若l α⊥,l m //,则m α⊥ (C )若l α//,m α⊂,则l m // (D )若l α//,m α//,则l m //2.(2010陕西文数) 8.若某空间几何体的三视图如图所示,则该几何体的体积是 [B](A )2 (B )1(C )23(D )133.若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为( )A.26B. 23C. 33D. 234.(湖北卷)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( ) A.38π B. 328πC. π28D. 332π 5.(2010全国卷)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为(A ) 34 (B) 54(C)74(D) 346.设图1是某几何体的三视图,则该几何体的体积为A .429+πB .1836+πC .1229+πD .1829+π7.几何体的三视图如图所示,则这个几何体的直观图可以是8.已知正方体ABCD-A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE 与BC 所成角的余弦值为 .9.(2011.上海)若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为 .10.如图,在四棱台111A B C D A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,AB=2AD,11AD=A B ,BAD=∠60°(Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11CC A BD ∥平面.11.如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP,AD的中点求证:(1)直线EF ‖平面PCD ;(2)平面BEF ⊥平面PAD正视图俯视图侧视图图1233FE ADPxyz NMABD C OP利用空间向量解立体几何一、用向量法解空间位置关系 1.平行关系线线平行⇔两线的方向向量平行线面平行⇔线的方向向量与面的法向量垂直 面面平行⇔两面的法向量平行 2.垂直关系线线垂直(共面与异面)⇔两线的方向向量垂直 线面垂直⇔线与面的法向量平行 面面垂直⇔两面的法向量垂直 三、用向量法解空间距离1.点点距离:点()111,,P x y z 与()222,,Q x y z 的距离为222212121()()()PQ x x y y z z =-+-+-2.点线距离:求点()00,P x y 到直线:l 0Ax By C ++=的距离:方法:在直线上取一点(),Q x y ,则向量PQ在法向量(),n A B =上的射影P Q n n⋅ =0022Ax By C A B+++即为点P 到l 的距离. 3.点面距离 :求点()00,P x y 到平面α的距离:方法:在平面α上去一点(),Q x y ,得向量PQ ,计算平面α的法向量n ,计算PQ在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角1.线线夹角(共面与异面)线线夹角⇔两线的方向向量的夹角或夹角的补角 2.线面夹角:求线面夹角的步骤:① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角;②再求其余角,即是线面的夹角. 3.面面夹角(二面角):若两面的法向量一进一出,则二面角等于两法向量的夹角;法向量同进同出,则二面角等于法向量的夹角的补角.1.(2009北京卷)如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.2.安徽卷(18)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点(Ⅰ)证明:直线MN OCD平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。

高三数学二轮专题复习教案――立体几何

高三数学二轮专题复习教案――立体几何

高三数学二轮专题复习教案――立体几何一、本章知识结构:二、重点知识回顾1、空间几何体的结构特征(1)棱柱、棱锥、棱台和多面体棱柱是由满足下列三个条件的面围成的几何体:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等.棱柱性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质:①底面是多边形;②侧面是以棱锥的顶点为公共点的三角形;③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方.棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥.多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体.(2)圆柱、圆锥、圆台、球分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球圆柱、圆锥和圆台的性质主要有:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥.2、空间几何体的侧面积、表面积(1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和.因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形.如果设直棱柱底面周长为c,高为h,则侧面积S ch=侧.若长方体的长、宽、高分别是a、b、c,则其表面积2() S ab bc ca=++表.(2)圆柱的侧面展开图是一个矩形.矩形的宽是圆柱母线的长,矩形的长为圆柱底面周长.如果设圆柱母线的长为l,底面半径为r,那么圆柱的侧面积2πS rl=侧,此时圆柱底面面积2πS r=底.所以圆柱的表面积222π2π2π()S S S rl r r r l=+=+=+侧底.(3)圆锥的侧面展开图是以其母线为半径的扇形.如果设圆锥底面半径为r,母线长为l,则侧面积πS rl=侧,那么圆锥的表面积是由其侧面积与底面面积的和构成,即为2πππ()S S S rl r r r l=+=+=+侧底.(4)正棱锥的侧面展开图是n个全等的等腰三角形.如果正棱锥的周长为c,斜高为h',则它的侧面积12S ch'=侧.(5)正棱台的侧面积就是它各个侧面积的和.如果设正棱台的上、下底面的周长是c c',,斜高是h',那么它的侧面积是12S ch'=侧.(6)圆台侧面展开图是以截得该圆台的圆锥母线为大圆半径,圆锥与圆台的母线之差为小圆半径的一个扇环.如果设圆台的上、下底面半径分别为r r',,母线长为l,那么它的侧面积是π()S r r l'=+侧.圆台的表面积等于它的侧面积与上、下底面积的和,即2222π()πππ() S S S S r r l r r r r r l rl''''=++=+++=+++侧上底下底.(7)球的表面积24πS R =,即球的表面积等于其大圆面积的四倍.3、空间几何体的体积(1)柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh=柱体.其中底面半径是r ,高是h 的圆柱的体积是2πV r h=圆柱.(2)如果一个锥体(棱锥、圆锥)的底面积是S ,高是h ,那么它的体积是13V Sh=锥体.其中底面半径是r ,高是h 的圆锥的体积是21π3V r h=圆锥,就是说,锥体的体积是与其同底等高柱体体积的13.(3)如果台体(棱台、圆台)的上、下底面积分别是S S ',,高是h,那么它的体积是1()3V S S h=+台体.其中上、下底半径分别是r R ,,高是h 的圆台的体积是221π()3V r Rr R h=++圆台.(4)球的体积公式:334R V π=.4、中心投影和平行投影(1)中心投影:投射线均通过投影中心的投影。

高三数学立体几何专题复习教案

高三数学立体几何专题复习教案
高三数学立体几何专题复习教案
(解题思想方法归纳)
问题一: 证明线线平行
1.证明两直线 、 平行,若直线 和直线 共面时,则可以用平面几何中常用的一些方法(如证明 和 是一个平行四边形的一组对边)证明它们无公共点。
在立体几何中一般还有以下几种思路:
①根据公理4
②根据“线面平行Байду номын сангаас的性质定理
③根据“线面垂直”的性质定理,若直线 和 都与平面 垂直,则 // 。
②利用中位法。如给出异面直线AB和CD,连接AC、AD、BC,然后再分别取这三条线段的中点E、F、G,连接EF、EG、FG得到△EFG,则∠FEG就是所求角或所求角的补角。这种方法优点是作异面直线所成角比较容易,但缺点是△EFG中有一边GF的长度不容易求。
3.向量方法:
转化成求两个向量的夹角(即等于所求的异面直线所成的角或其补角的大小)
2.向量方法:
①转化为证明向量共线。
②根据共面向量定理。
③证明向量与平面的法向量相互垂直。
问题三: 证明面面平行
1.传统几何方法:
①根据两个平面平行的定义
②根据两个平面平行的判定定理
③垂直于同一条直线的两个平面平行
④平行于同一平面的两个平面平行
2.思维过程:
线线平行 线面平行 面面平行
线线平行 线面垂直 面面平行
问题八: 求平面的斜线与平面所成角
1.传统几何方法:
①转化为求斜线与它在平面内的射影所成的角,通过直角三角形求解。
②利用三面角定理(即最小角定理) 求 。
2.向量方法:设 为平面 的法向量,直线 与平面 所成的角为 ,则
问题九: 求二面角
1.作出二面角的平面角并通过解三角形计算。作平面角常用方法如下:

高中数学立体空间几何教案

高中数学立体空间几何教案

高中数学立体空间几何教案
一、教学目标:
1. 知识目标:学生能够掌握立体空间的基本概念和相关定理,能够运用立体空间几何知识解决实际问题。

2. 能力目标:培养学生的空间想象能力和逻辑思维能力,提高学生的应用能力和解决问题的能力。

3. 情感目标:激发学生对数学的兴趣,培养学生的数学学习兴趣和探究精神。

二、教学内容:
1. 立体空间的基本概念
2. 立体空间的投影相关定理
3. 立体空间的相交和平行关系
4. 立体空间的角度关系
三、教学过程:
1. 导入:通过展示一些立体空间的实际图像,引导学生了解立体空间的概念,并讨论立体空间在生活中的应用。

2. 学习:介绍立体空间的相关定理和概念,并通过实例分析让学生掌握立体空间的投影、相交及平行关系。

3. 巩固:设计一些练习题目,让学生运用所学知识,巩固立体空间几何的相关概念。

4. 拓展:引导学生继续探索立体空间的角度关系,并引导学生进行拓展思考,解决一些具有挑战性的问题。

5. 总结:总结本节课的重点知识,让学生对立体空间几何的知识有一个清晰的认识。

四、作业布置:
1. 完成课堂练习题
2. 自主拓展思考,设计一个与立体空间相关的问题,并尝试解答
五、教学反思:
本节课程注重学生的主动学习和思维能力的培养,通过实际的例题分析和练习引导学生掌握立体空间几何知识。

同时也通过拓展思考和问题解决,激发学生学习的兴趣,提高学生
的空间想象和推理能力。

在未来的教学中,可以更多地引导学生进行实际问题的拓展与解决,帮助学生深入理解立体空间几何知识。

高三数学二轮复习教学案——立体几何(2)

高三数学二轮复习教学案——立体几何(2)

高三数学二轮复习教学案——立体几何(2)班级__________姓名_____________学号_________【基础训练】1. 如图,正方体ABCD ­A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.2.三棱锥P -ABC 中,三条侧棱两两垂直,且长度都为1,点E 为BC 上一点,则截面PAE 面积的最小值为_____________.3、已知a 、b 、c 是三条不重合直线,α、β、γ是三个不重合的平面,下列命题:⑴a ∥c ,b ∥c ⇒a ∥b ;⑵a ∥γ,b ∥γ⇒a ∥b ;⑶c ∥α,c ∥β⇒α∥β;⑷γ∥α,β∥α⇒γ∥β;⑸a ∥c ,α∥c ⇒a ∥α;⑹a ∥γ,α∥γ⇒a ∥α。

其中正确的命题是 。

4、已知正方体ABCD -A'B'C'D',则该正方体的体积、四棱锥C'-ABCD 的体积以及该正方体的外接球的体积之比为 _________________.5.. 如图,四棱锥P -ABCD 的底面是边长为3的正方形,侧棱PA ⊥平面ABCD ,点E 在侧棱PC 上,且BE ⊥PC ,若6=BE ,则四棱锥P -ABCD 的体积为 _________ .6. 由曲线22x y =,2||=x 围成的图形绕y 轴旋转一周所得的旋转体的体积为1V ;满足422≤+y x ,1)1(22≥-+y x ,1)1(22≥++y x 的点组成的图形绕y 轴旋转一周所得的旋转体的体积为2V ,则1V :2V = .【典型例题】7. 已知三棱锥P —ABC 中,PC ⊥底面ABC ,AB=BC ,D 、F 分别为AC 、PC 的中点,DE ⊥AP 于E .(1)求证:AP ⊥平面BDE ;(2)求证:平面BDE ⊥平面BDF ;(3)若AE ∶EP=1∶2,求截面BEF 分三棱锥P —ABC 所成两部分的体积比.8. 如图,四棱锥P -ABCD 中,底面ABCD 是一个边长为2的正方形,PA⊥平面ABCD ,且24=PC .M 是PC 的中点,在DM 上有点G ,过G 和AP作平面交平面BDM 于GH .(1)求四棱锥P -ABCD 的体积;(2)求证:AP ∥GH .9. 如图,在棱长均为4的三棱柱111ABC A B C -中,D 、1D分别是BC 和11B C 的中点. (1)求证:11A D ∥平面1AB D ;(2)若平面ABC ⊥平面11BCC B ,160B BC ∠= ,求三棱锥1B ABC -的体积.10. 如图一简单几何体的一个面ABC 内接于圆O ,G ,H 分别是AE ,BC 的中点,AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC .(1)求证:GH //平面ACD ;(2)证明:平面ACD ⊥平面ADE ;(3)若AB =2,BC =1,23tan =∠EAB ,试求该几何体的体积V .。

高考高频点-立体几何球的切接之几何体外接球“球心”探究讲义-2023届高三数学二轮专题复习

高考高频点-立体几何球的切接之几何体外接球“球心”探究讲义-2023届高三数学二轮专题复习

几何体外接球“球心”探究外接球问题是立体几何的一个重点,也是高考考查的一个热点,简单多面体外接球问题是立体几何中的难点和高考重要的考点,此类问题实质是定球心求半径,确定球心位置是解决此类问题的关键,本专题我们来研究定球心的办法:预备知识:1.平面内的线段的垂直平分线:平面内到线段AB两端点距离相等的点在中垂线上,如下图,平面内经过AB中点垂直于AB的直线即为线段AB的中垂线2.多边形各顶点都在圆上的圆叫做多边形的外接圆,三角形的外接圆圆心是任意两边或三边的垂直平分线的交点,三角形外接圆圆心叫外心。

3.三角形外接圆半径求解需先求出三角形三条边垂直平分线的交点,再用两边的乘积除以第三边上的高,这样求出来是外接圆直径,然后再根据假设的方程代入即可得出。

4.正弦定理是解三角形的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a b c2 sin sin sinRA B C===5.空间内线段的中垂面:在空间内到两定点的距离相等的点在线段AB的中垂面上,如下图:在空间内过AB中点C作垂直于AB的平面即为线段AB的中垂面6.空间内到多边形各定点距离相等的点的轨迹:过多边形的外心作多边形所在平面的垂线即为点的轨迹。

如下为到三角形三点的距离相等的点的轨迹(直线)7.定义:在空间内如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个点就是该简单多面体的外接球的球心,距离即为球半径。

8.直棱柱的外接球的球心是上、下底面多边形外心连线的中点;(1)长方体或正方体的外接球的球心是其体对角线的中点;(2)正三棱柱的外接球的球心是上、下底面中心连线的中点;(3)直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;(4)顶点在底面射影在多边形顶点的棱锥可构造成直棱柱寻找球心;可利用公式222h 2R r =+()(R 为球的半径,r 为底面多边形外接圆的半径,h 为直棱柱的高)求几何体外接球的半径。

第二十一讲空间向量在立体几何中的应用原卷版2023届高考数学二轮复习讲义

第二十一讲空间向量在立体几何中的应用原卷版2023届高考数学二轮复习讲义

第二十一讲:空间向量在立体几何中的应用【考点梳理】1.法向量的求解①法向量一定是非零向量;②一个平面的所有法向量都互相平行;③向量 n 是平面的法向量,向量 m 是与平面平行或在平面内,则有0⋅= m n .第一步:写出平面内两个不平行的向()()111222,,,,,== a x y z b x y z ;第二步:那么平面法向量(),,= n x y z ,满足1112220000⎧++=⋅=⎧⎪⇒⎨⎨++=⋅=⎩⎪⎩ xx yy zz n a xx yy zz n b .第三步:化解方程组令z y x ,,其中一个为1,求其它两个值.2.判定直线、平面间的位置关系①直线与直线的位置关系:不重合的两条直线a ,b 的方向向量分别为 a , b .若 a ∥ b ,即= a b λ,则∥a b ;若⊥ a b ,即0⋅= a b ,则⊥a b .②直线与平面的位置关系:直线l 的方向向量为 a ,平面α的法向量为 n ,且⊥l α.若 a ∥ n ,即= a n λ,则⊥l α;若⊥ a n ,即0⋅= a n ,则∥ a α.3.平面与平面的位置关系平面α的法向量为1 n ,平面β的法向量为2 n .若1 n ∥2 n ,即12= n n λ,则∥αβ;若1 n ⊥2 n ,即120⋅= n n ,则α⊥β.4.空间角公式.(1)异面直线所成角公式:设 a , b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅== a b a b a bθ.(2)线面角公式:设l 为平面α的斜线, a 为l 的方向向量, n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅== a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,= n n θ或12,- n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅= n n n n θ.5.点到平面的距离A 为平面α外一点(如图), n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH.||||⋅= AB n d n 【典型题型讲解】考点一:直线与平面所成的角【典例例题】例1.(2022·广东茂名·一模)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,底面ABCD 为平行四边形,E 为CD 的中点,12AE CD =.(1)证明:PC AD ⊥;(2)若三角形AED 为等边三角形,PA =AD =6,F 为PB 上一点,且13PF PB =,求直线EF 与平面PAE 所成角的正弦值.【方法技巧与总结】设l 为平面α的斜线, a 为l 的方向向量, n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅== a n a n a nθ.【变式训练】1.(2022·广东惠州·一模)如图1所示,梯形ABCD 中,AB=BC=CD=2,AD=4,E 为AD 的中点,连结BE ,AC 交于F ,将△ABE 沿BE 折叠,使得平面ABE ⊥平面BCDE (如图2).(1)求证:AF ⊥CD ;(2)求平面AFC 与平面ADE 的夹角的余弦值.2.(2022·广东广州·一模)如图,在五面体ABCDE 中,AD ⊥平面ABC ,//AD BE ,2AD BE =,AB BC =.(1)求证:平面CDE ⊥平面ACD ;(2)若AB =2AC =,五面体ABCDE ,求直线CE 与平面ABED 所成角的正弦值.3.(2022·广东汕头·一模)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =,ABC 是底面的内接正三角形,且6DO =,P 是线段DO 上一点.(1)是否存在点P ,使得PA ⊥平面PBC ,若存在,求出PO 的值;若不存在,请说明理由;(2)当PO 为何值时,直线EP 与面PBC 所成的角的正弦值最大.考点二:二面角【典例例题】例1.(2021·广东佛山·一模)某商品的包装纸如图1,其中菱形ABCD 的边长为3,且60ABC ∠=︒,AE AF ==BE DF ==,将包装纸各三角形沿菱形的边进行翻折后,点E ,F ,M ,N 汇聚为一点P ,恰好形成如图2的四棱锥形的包裹.(1)证明PA ⊥底面ABCD ;(2)设点T 为BC 上的点,且二面角B PA T --的正弦值为14,试求PC 与平面PAT 所成角的正弦值.【方法技巧与总结】设12, n n 是二面角--l αβ的两个半平面的法向量,其方向一个指向二面角内侧,另一个指向二面角的外侧,则二面角--l αβ的余弦值为1212n n |n ||n |⋅⋅ .【变式训练】1.(2022·广东·一模)如图,ABCD 为圆柱OO '的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若2AB BC ==,当三棱锥B DEF -的体积最大时,求二面角B DF E --的余弦值.2.(2022·广东湛江·一模)如图,在三棱柱111ABC A B C -中,平面ABC ⊥平面11ACC A ,90ABC ∠= ,AB BC =,四边形11ACC A 是菱形,160A AC ∠=,O 是AC 的中点.(1)证明:BC ⊥平面11B OA ;(2)求二面角11A OB C --的余弦值.3.(2022·广东深圳·一模)如图,在四棱锥E -ABCD 中,//AB CD ,12AD CD BC AB ===,E 在以AB 为直径的半圆上(不包括端点),平面ABE ⊥平面ABCD ,M ,N 分别为DE ,BC 的中点.(1)求证://MN 平面ABE ;(2)当四棱锥E -ABCD 体积最大时,求二面角N -AE -B 的余弦值.4.(2022·广东广东·一模)如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,四边形ABCD 是等腰梯形,//AB DC ,2BC CD AD ===,4AB =,M ,N 分别是AB ,AD 的中点.(1)证明:平面PMN ⊥平面PAD ;(2)若二面角C AB P --的大小为60°,求四棱锥P ABCD -的体积.5.(2022·广东韶关·一模)如图,在四棱锥M ABCD -中,底面ABCD 是直角梯形,AB ∥,90C D A D C ∠= ,MBC 是以BC 为斜边的等腰直角三角形,E 为AB 中点,222AB AD D C M E ====.(1)求证:BC ME ⊥;(2)点P 为棱AM 上一点,若12AP AM =,求二面角P BD A --的余弦值.6.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,且PA ⊥底面ABCD ,2,4,60AB PA BC ABC ===∠=︒,点E 是线段BC (包括端点)上的动点.(1)探究点E 位于何处时,平面PAE ⊥平面PED ;(2)设二面角P ED A --的平面角的大小为α,直线AD 与平面PED 所成角为β,求证:π2αβ+=考点三:点到平面距离【典例例题】例1.(2022·广东中山·高三期末)已知圆锥AO 的底面半径为2,母线长为,点C 为圆锥底面圆周上的一点,O 为圆心,D 是AB 的中点,且2BOC π∠=.(1)求三棱锥D OCB -的表面积;(2)求A 到平面OCD 的距离.例2.在正方体1111ABCD A B C D -中,E 为11A D 的中点,过1AB E 的平面截此正方体,得如图所示的多面体,F 为棱1CC 上的动点.(1)点H 在棱BC 上,当14CH CB =时,//FH 平面1AEB ,试确定动点F 在棱1CC 上的位置,并说明理由;(2)若2AB =,求点D 到平面AEF 的最大距离.【方法技巧与总结】如图所示,平面α的法向量为n ,点Q 是平面α内一点,点P 是平面α外的任意一点,则点P 到平面α的距离d ,就等于向量 PQ 在法向量n 方向上的投影的绝对值,即|||cos ,|==<> d PQ PQ n 或||=||||⋅⋅ PQ n d PQ n 【变式训练】1.(2022·广东梅州·二模)如图①,在直角梯形ABCD 中,AB AD ⊥,AB DC ∥,2AB =,4AD CD ==,E 、F 分别是AD ,BC 的中点,将四边形ABFE 沿EF 折起,如图②,连结AD ,BC ,AC .(1)求证:EF AD ⊥;(2)当翻折至AC =时,设Q 是EF 的中点,P 是线段AC 上的动点,求线段PQ 长的最小值.2.如图,在三棱柱111ABC A B C -中,ABC 为等边三角形,四边形11BCC B 是边长为2的正方形,D 为AB 中点,且1A D =.(1)求证:CD ⊥平面11ABB A ;(2)若点P 在线段1BC 上,且直线AP 与平面1ACD ,求点P 到平面1ACD 的距离.3.如图,矩形ABCD 和梯形ABEF ,,//AF AB EF AB ⊥,平面ABEF ⊥平面ABCD ,且2,1AB AF AD EF ====,过DC 的平面交平面ABEF 于MN .(1)求证:DN 与CM 相交;(2)当M 为BE 中点时,求点E 到平面DCMN 的距离:4.某市在滨海文化中心有滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体1111ABCD A B C D -中,14,2AB AD AA ===,圆台下底圆心O 为AB 的中点,直径为2,圆与直线AB 交于,E F ,圆台上底的圆心1O 在11A B 上,直径为1.(1)求1A C 与平面1A ED 所成角的正弦值;(2)圆台上底圆周上是否存在一点P 使得1FP AC ⊥,若存在,求点P 到直线11A B 的距离,若不存在则说明理由.【巩固练习】一、单选题1.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,BC CD ⊥,且AB BC CD ==,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为()A .3B .3C .2D .22.如图,正方体1111ABCD A B C D -的棱长为a ,E 是棱1DD 的动点,则下列说法正确的()个.①若E 为1DD 的中点,则直线1//B E 平面1A BD②三棱锥11C B CE -的体积为定值313a③E 为1DD 的中点时,直线1B E 与平面11CDD C④过点1B ,C ,E 的截面的面积的范围是22⎤⎥⎣⎦A .1B .2C .3D .4二、多选题2.在空间直角坐标系Oxyz 中,已知点(1,1,1)P ,(1,0,1)A ,(0,1,0)B ,则下列说法正确的是()A .点P 关于yOz 平面对称的点的坐标为(1,1,1)-B .若平面α的法向量(2,2,2)n =- ,则直线//AB 平面αC .若PA ,PB 分别为平面α,β的法向量,则平面α⊥平面βD .点P 到直线AB 3.直三棱柱111ABC A B C -,中,AB AC ⊥,11AB AC AA ===,点D 是线段1BC 上的动点(不含端点),则()A .//AC 平面1A BDB .CD 与1AC 不垂直C .ADC ∠的取值范围为,42ππ⎛⎤ ⎥⎝⎦D .AD DC +三、填空题4.如图,在棱长为2的正方体1111ABCD A B C D -中,点E 为棱CD 的中点,点F 为底面ABCD 内一点,给出下列三个论断:①1A F BE ⊥;②13=A F ;③2ADF ABF S S =△△.以其中的一个论断作为条件,另一个论断作为结论,写出一个正确的命题:___________.5.如图,在正方体1111ABCD A B C D -中,,E F 分别为棱11A B ,BC 的中点,则EF 与平面11A BC 所成角的正弦值为___________.四、解答题6.如图,在三棱柱111ABC A B C -中,11222A C AA AB AC BC ====,160BAA ∠=︒.(1)证明:平面ABC ⊥平面11AA B B .(2)设P 是棱1CC 的中点,求AC 与平面11PA B 所成角的正弦值.7.如图,ABCD 是边长为6的正方形,已知2AE EF ==,且////ME NF AD 并与对角线DB 交于G ,H ,现以ME ,NF 为折痕将正方形折起,且BC ,AD 重合,记D ,C 重合后为P ,记A ,B 重合后为Q .(1)求证:平面PGQ ⊥平面HGQ ;(2)求平面GPN 与平面GQH 所成二面角的正弦值.8.如图所示,在直四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,AB CD ∥,2AB CD =,60BAD ∠=︒,四边形11CDD C 是正方形.(1)指出棱1CC 与平面1ADB 的交点E 的位置(无需证明),并在图中将平面1ADB 截该四棱柱所得的截面补充完整;(2)求二面角11B AD A --的余弦值.9.如图,圆锥PO ,ABC 是⊙O 的内接三角形,平面PAC ⊥平面PBC .BC =60ABC ∠=︒.(1)证明:PA PC ⊥;(2)设点Q 满足OQ OP λ= ,其中()0,1λ∈,且二面角O QB C --的大小为60︒,求λ的值.10.如图,在三棱柱111ABC A B C -中,1AA ⊥底面111A B C ,1A C 的中点为O ',四面体111O A B C '-的体积为13,四边形11BCC B 的面积为(1)求O '到平面11BCC B 的距离;(2)设1AB 与1A B 交于点O ,ABC 是以ACB ∠为直角的等腰直角三角形且111AA A B =.求直线1'B O 与平面1A BC 所成角的正弦值.。

高三数学高考二轮复习教案、考案(3)立体几何(精品) 教案

高三数学高考二轮复习教案、考案(3)立体几何(精品) 教案

立体几何初步【专题要点】1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.【考纲要求】(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系(2)了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离)(3)了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理(4)了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。

(完整word版)高三数学二轮专题复习教案设计――立体几何

(完整word版)高三数学二轮专题复习教案设计――立体几何

高三数学二轮专题复习教案――立体几何一、本章知识结构:二、重点知识回顾1、空间几何体的结构特征(1)棱柱、棱锥、棱台和多面体棱柱是由满足下列三个条件的面围成的几何体:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等.棱柱性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质:①底面是多边形;②侧面是以棱锥的顶点为公共点的三角形;③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方.棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥.多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体.(2)圆柱、圆锥、圆台、球分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球圆柱、圆锥和圆台的性质主要有:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥.2、空间几何体的侧面积、表面积(1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和.因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形.如果设直棱柱底面周长为c,高为h,则侧面积S ch=侧.若长方体的长、宽、高分别是a、b、c,则其表面积2() S ab bc ca=++表.(2)圆柱的侧面展开图是一个矩形.矩形的宽是圆柱母线的长,矩形的长为圆柱底面周长.如果设圆柱母线的长为l,底面半径为r,那么圆柱的侧面积2πS rl=侧,此时圆柱底面面积2πS r=底.所以圆柱的表面积222π2π2π()S S S rl r r r l=+=+=+侧底.(3)圆锥的侧面展开图是以其母线为半径的扇形.如果设圆锥底面半径为r,母线长为l,则侧面积πS rl=侧,那么圆锥的表面积是由其侧面积与底面面积的和构成,即为2πππ()S S S rl r r r l=+=+=+侧底.(4)正棱锥的侧面展开图是n个全等的等腰三角形.如果正棱锥的周长为c,斜高为h',则它的侧面积12S ch'=侧.(5)正棱台的侧面积就是它各个侧面积的和.如果设正棱台的上、下底面的周长是c c',,斜高是h',那么它的侧面积是12S ch'=侧.(6)圆台侧面展开图是以截得该圆台的圆锥母线为大圆半径,圆锥与圆台的母线之差为小圆半径的一个扇环.如果设圆台的上、下底面半径分别为r r',,母线长为l,那么它的侧面积是π()S r r l'=+侧.圆台的表面积等于它的侧面积与上、下底面积的和,即2222π()πππ() S S S S r r l r r r r r l rl''''=++=+++=+++侧上底下底.(7)球的表面积24πS R =,即球的表面积等于其大圆面积的四倍. 3、空间几何体的体积(1)柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh=柱体.其中底面半径是r ,高是h 的圆柱的体积是2πV r h=圆柱.(2)如果一个锥体(棱锥、圆锥)的底面积是S ,高是h ,那么它的体积是13V Sh=锥体.其中底面半径是r ,高是h 的圆锥的体积是21π3V r h=圆锥,就是说,锥体的体积是与其同底等高柱体体积的13.(3)如果台体(棱台、圆台)的上、下底面积分别是S S ',,高是h,那么它的体积是1()3V S S h=+台体.其中上、下底半径分别是r R ,,高是h 的圆台的体积是221π()3V r Rr R h=++圆台.(4)球的体积公式:334R V π=.4、中心投影和平行投影(1)中心投影:投射线均通过投影中心的投影。

高三数学复习教案-立体几何判定方法汇总

高三数学复习教案-立体几何判定方法汇总

立体几何判定方法汇总一、判定两线平行的方法1、平行于同一直线的两条直线互相平行2、垂直于同一平面的两条直线互相平行3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、在同一平面内的两条直线,可依据平面几何的定理证明二、判定线面平行的方法1、据定义:如果一条直线和一个平面没有公共点2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行3、两面平行,则其中一个平面内的直线必平行于另一个平面4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面三、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行四、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面五、判定线面垂直的方法1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面六、判定两线垂直的方法1、定义:成90角2、直线和平面垂直,则该线与平面内任一直线垂直3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直4、 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直5、 一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法1、 定义:两面成直二面角,则两面垂直2、 一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、 二面角的平面角为︒902、 在一个平面内垂直于交线的直线必垂直于另一个平面3、 相交平面同垂直于第三个平面,则交线垂直于第三个平面九、各种角的范围 1、异面直线所成的角的取值范围是:︒≤<︒900θ (]︒︒90,02、直线与平面所成的角的取值范围是:︒≤≤︒900θ []︒︒90,03、斜线与平面所成的角的取值范围是:︒≤<︒900θ (]︒︒90,04、二面角的大小用它的平面角来度量;取值范围是:︒≤<︒1800θ(]︒︒180,0十、三角形的心1、 内心:内切圆的圆心,角平分线的交点2、 外心:外接圆的圆心,垂直平分线的交点3、 重心:中线的交点4、 垂心:高的交点一、面积:1、ch s =直棱柱侧 ()为直截面周长斜棱柱侧``c l c s = rh cl s π2==圆柱侧2、中截面面积:2`0ss s += 3、`21ch s =正棱锥侧 rl cl s π==21圆锥侧 4、()``21h c c s +=正棱台侧()()l r r l c c s ``21+=+=π圆台 5、预备定理ph s π2=锥球内接圆台,圆柱,圆①24r s π=球 ②rh s π2=球带 ③)(222h r rh s +==ππ球冠 6、面积比是相似比的平方,体积比是相似比的立方7、圆锥轴截面的顶角α和侧面展开图的圆心角θ的关系为:2sin22αππθ⋅=⋅=lr8、圆台上、下底面半径为r`、r ,母线为l,圆台侧面展开后所得的扇环圆心角为θ,则:lc c l r r l r r `2`360`-=⋅-=︒⋅-=πθ 9、圆锥中,过两母线的截面面积为s当轴截面顶角(]︒︒∈90,0α时,αsin 212l s s ==轴截面截面最大 当轴截面顶角[)︒︒∈180,90α时,轴截面截面最大s l l s ≠=︒=222190sin 2110、球面距离θ⋅=R l (θ用弧度表示,R l=θ)二、体积1、l s sh V `==棱柱(s`为直截面面积) sh h r V =⋅=2π圆柱2、sh V 31=棱锥sh h r V 31312=⋅=π圆锥3、`)`(31s s s s h V +⋅+=棱台 =++=)``(3122r rr r h V π圆台`)`(31s s s s h +⋅+4、334R V π=球5、)3(31)3(61222h R h h r h V -=+=ππ球缺6、)(31体适用于有内切球的多面内切球半径表体r S V ⋅=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学二轮专题复习教案――立体几何一、本章知识结构:二、重点知识回顾1、空间几何体的结构特征(1)棱柱、棱锥、棱台和多面体棱柱是由满足下列三个条件的面围成的几何体:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等.棱柱性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等; ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质:①底面是多边形;②侧面是以棱锥的顶点为公共点的三角形;③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方.棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥.多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体.(2)圆柱、圆锥、圆台、球分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球 圆柱、圆锥和圆台的性质主要有:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥. 2、空间几何体的侧面积、表面积(1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和.因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形.如果设直棱柱底面周长为c ,高为h ,则侧面积S ch=侧.若长方体的长、宽、高分别是a 、b 、c ,则其表面积2()S ab bc ca =++表.(2)圆柱的侧面展开图是一个矩形.矩形的宽是圆柱母线的长,矩形的长为圆柱底面周长.如果设圆柱母线的长为l ,底面半径为r ,那么圆柱的侧面积2πS rl=侧,此时圆柱底面面积2πS r =底.所以圆柱的表面积222π2π2π()S S S rl r r r l =+=+=+侧底.(3)圆锥的侧面展开图是以其母线为半径的扇形.如果设圆锥底面半径为r ,母线长为l ,则侧面积πS rl =侧,那么圆锥的表面积是由其侧面积与底面面积的和构成,即为2πππ()S S S rl r r r l =+=+=+侧底.(4)正棱锥的侧面展开图是n 个全等的等腰三角形.如果正棱锥的周长为c ,斜高为h ',则它的侧面积12S ch '=侧.(5)正棱台的侧面积就是它各个侧面积的和.如果设正棱台的上、下底面的周长是c c ',,斜高是h ',那么它的侧面积是12S ch '=侧.(6)圆台侧面展开图是以截得该圆台的圆锥母线为大圆半径,圆锥与圆台的母线之差为小圆半径的一个扇环.如果设圆台的上、下底面半径分别为r r ',,母线长为l ,那么它的侧面积是π()S r r l'=+侧.圆台的表面积等于它的侧面积与上、下底面积的和, 即2222π()πππ()S S S S r r l r r r r r l rl ''''=++=+++=+++侧上底下底.(7)球的表面积24πS R =,即球的表面积等于其大圆面积的四倍. 3、空间几何体的体积(1)柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh=柱体.其中底面半径是r ,高是h 的圆柱的体积是2πV r h=圆柱.(2)如果一个锥体(棱锥、圆锥)的底面积是S ,高是h ,那么它的体积是13V Sh =锥体.其中底面半径是r ,高是h 的圆锥的体积是21π3V r h =圆锥,就是说,锥体的体积是与其同底等高柱体体积的13.(3)如果台体(棱台、圆台)的上、下底面积分别是S S ',,高是h ,那么它的体积是1()3V S S h=台体.其中上、下底半径分别是r R ,,高是h 的圆台的体积是221π()3V r Rr R h=++圆台.(4)球的体积公式:334R V π=.4、中心投影和平行投影(1)中心投影:投射线均通过投影中心的投影。

(2)平行投影:投射线相互平行的投影。

(3)三视图的位置关系与投影规律三视图的位置关系为:俯视图在主视图的下方、左视图在主视图的右方. 三视图之间的投影规律为:主、俯视图———长对正;主、左视图———高平齐;俯、左视图———宽相等. 5、直观图画法 斜二测画法的规则:(1)在空间图形中取互相垂直的x 轴和y 轴,两轴交于O 点,再取z 轴,使xOz ∠=90°,且yOz ∠=90°.(2)画直观图时把它们画成对应的x '轴、y '轴和z '轴,它们相交于O ',并使x O y '''∠=45°,x O z '''∠= 90°。

(3)已知图形中平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成平行于x '轴、y '轴和z '轴的线段.(4)已知图形中平行于x 轴和z 轴的线段,在直观图中长度相等;平行于y 轴的线段,长度取一半.6.平面(1)对平面的理解平面是一个不加定义、只须理解的最基本的原始概念.立体几何中的平面是理想的、绝对平且无限延展的模型,平面是无大小、厚薄之分的.类似于我们以前学的直线,它可以无限延伸,它是不可度量的.(2)对公理的剖析(1)公理1的内容反映了直线与平面的位置关系,公理1的条件“线上不重合的两点在平面内”是公理的必要条件,结论是“线上所有点都在面内”.这个结论阐述了两个观点:一是整条直线在平面内;二是直线上所有点在平面内.其作用是:可判定直线是否在平面内、点是否在平面内.(2)公理2中的“有且只有一个”的含义要准确理解.这里的“有”是说图形存在,“只有一个”是说图形唯一,确定一个平面中的“确定”是“有且只有”的同义词,也是指存在性和唯一性这两方面.这个术语今后也会常常出现,要理解好.其作用是:一是确定平面;二是证明点、线共面.(3)公理3的内容反映了平面与平面的位置关系,它的条件简而言之是“两面共一点”,结论是“两面共一线,且过这一点,线唯一”.对于本公理应强调对于不重合的两个平面,只要它们有公共点,它们就是相交的位置关系,交集是一条直线.其作用是:其一它是判定两个平面是否相交的依据,只要两个平面有一个公共点,就可以判定这两个平面必相交于过这点的一条直线;其二它可以判定点在直线上,点是两个平面的公共点,线是这两个平面的公共交线,则这点在交线上.7. 空间直线.(1)空间直线位置分三种:相交、平行、异面. 相交直线—共面有且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内。

(2)异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(3)平行公理:平行于同一条直线的两条直线互相平行.(4)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.8. 直线与平面平行、直线与平面垂直.(1)空间直线与平面位置分三种:相交、平行、在平面内.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.直线与平面垂直判定定理:如果一条直线和一个平面内的两条相交直线垂直,则这条直线与这个平面垂直。

推论:如果两条直线同垂直于一个平面,那么这两条直线平行.9. 平面平行与平面垂直.(1)空间两个平面的位置关系:相交、平行.(2)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.(3)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)(4)两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直. 两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)(5)两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面. 10. 空间向量.(1)a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.(2)空间向量基本定理:如果三个向量,,不共面,那么对空间任一向量,存在一个唯一的有序实数组x 、y 、z ,使cz b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使z y x ++=(这里隐含x+y+z≠1).(3)a.空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标). ①令a =(a1,a2,a3),),,(321b b b =,则),,(332211b a b a b a ±±±=+,))(,,(321R a a a ∈=λλλλλ,332211b a b a b a ++=⋅ ,∥)(,,332211R b a b a b a ∈===⇔λλλλ332211b a b a b a ==⇔。

332211=++⇔⊥b a b a b a 。

222321a a a ++==(用到常用的向量模与向量之间的转化:OABCDaa=⇒⋅=)空间两个向量的夹角公式232221232221332211||||,cosbbbaaababababababa++⋅++++=⋅⋅>=<(a=123(,,)a a a,b=123(,,)b b b)。

相关文档
最新文档