能够被2~23整除数的特征

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能够被2〜23的素数整除的数的特征
【能被7整除的数的特征】
一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能
被7整除。

例如:判断6692能不能被7整除.
这种方法叫“割减法”。

此法还可简化为:从一个数减去7的10倍、20倍、30倍、,,到余下一个100以内的数为止,如果余数能被7整除,那么,这个数就
能被7整除。

【能被11整除的数的特征】
把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它
们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。

例如:判断491678能不能被11整除。

9+6+8=23
T奇位数字的和
偶位数位的和4+1+7=12
23-12=11
因此,491678能被11整除。

这种方法叫“奇偶位差法”。

除上述方法外,还可以用割减法进行判断。

即:从一个数里减去11的10倍、20
倍、30倍,,至除下一个100以内的数为止。

如果余数能被11整除,那么,原
来这个数就一定能被11整除。

又如:判断583能不能被11整除。

用583减去11的50倍(583-11 X 50=33)余数是33, 33能被11整除,583也一定能被11整除。

【能被13整除的数的特征】
一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被13整除,那么,这个多位数就一定能被13整除。

例如:判断383357能不能被13整除。

这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的
差是:383-357=26,26能被13整除,因此,383357也一定能被13整除。

这个方法也同样适用于判断一个数能不能被7或11整除。

如:283679的末三位
数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整
除,因此,283679就一定能被11整除。

仍以原数为例,末三位数字与前两数字的差是396,396不能被7整除,因此,283697就一定不能被7整除。

【其它知识】
(1)1与0的特性:
1是任何整数的约数,即对于任何整数a,总有1|a.
0是任何非零整数的倍数,a z 0,a为整数,则a|0.
(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

(3)若一个整数的数字和能被3整除,则这个整数能被3整除。

(4)若一个整数的末尾两位数能被4整除,则这个数能被4整除。

(5)若一个整数的末位是0或5,则这个数能被5整除。

(6)若一个整数能被2和3整除,则这个数能被6整除。

(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。


如,判断133是否7的倍数的过程如下:13- 3X 2= 7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613- 9X 2= 595, 59- 5X 2= 49,
所以6139是7的倍数,余类推。

(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。

(9)若一个整数的数字和能被9整除,则这个整数能被9整除。

(10)若一个整数的末位是0,则这个数能被10整除。

(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!
(12)若一个整数能被3和4整除,则这个数能被12整除。

(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

(14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

如果差太大或心算不易看出是否17的倍数,就需
要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

(15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。

如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

(16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。

(17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。

(18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除。

相关文档
最新文档