地震波运动学第六节——折射波运动学1
地震波的反射投射和折射
§地震波的反射、透射和折射序:在§中讨论了无限均匀完全弹性介质中波的传播情况。
当地震波遇到岩层界面时,波的动力学特点会发生变化。
地震勘探利用界面上的反射、透射和折射波。
一、平面波的反射及透射同光线在非均匀介质中传播一样,地震波在遇到弹性分界面时,也要发生反射和透射。
首先讨论平面波的反射与透射。
(一)斯奈尔(snell)定律1.费马原理(最小时间原理)波从一点传播到另一点,以所需时间最小来取传播路径。
如图,波从匕点传到匕点。
速度均匀时,走路径①,直线,t最小,s也最小。
速度变化时,走路径②,曲线,t最小,S不最小。
注意:时间最小,不一定路程最小(取决于速度)。
例1:人要去火车站(见图)。
方法①从A步行到B,路程短,用时却多。
方法②从A步行到C,再坐车到B,路程长,用时却少。
C公汽站步行速度V:也>>£ 汽车速度V:例2:尽快地将信从A送到B①傻瓜路径②经验路径2.反射定律、透射定律、斯奈尔定律波遇到两种介质的分界面,就发生反射和透射(注:地震透射、物理折射)。
(1)反射定律:反射波位于法平面内,反射角二入射角。
注:法平面——入射线与界面法线构成的平面,也叫入射平面或射线平面。
入射角二反射角与下式等价:③最小时间路径,满足透射定律:sine? _ sin0(2) 透射定律透射线位于法平面内,入射角与透射角满足下列关系:sin a sina 7(3) 斯奈尔定律综合(1)和(2)式,有sin a _ sine/) _ sina 2 _ ------ = -------- = ------- —=r X 匕 V 2这就是斯奈尔定律,P 叫射线参数。
• • • •推广到水平层状介质有:sin er, _ sina 2 _ _ sin a n _V. V 2匕注:斯奈尔定律满足费马原理,上例2中把信曲A 送到B 路径③是最小时 间路径,它满足透射定律(用高等数学求极值可证明)。
第1章 地震波的运动学
hi vi p 1 (vi p) 2 hi
)
t 2
i 1
2 x 2 t t t0 t0 2 t0 v x2 t( ) t0 0 1 2 4h x 当 1时,按泰勒公式展开: 2h 1 x 2 t t0 [1 ( ) ] t0 2 2h x2 x2 t0 2 2 2(vt0 ) 2v t 0
直 达 波 , 反 射 波 , 折 射 波 的 实 际 记 录
反射波
折射波
三、多界面水平层状介质折射波时距曲线:
1、 交叉时的概念。 x ti t v1 ON OM ti v0 v1 折射波的延迟时 注:ti 在数值上等于沿实际路 径传播时间与从激发点 直接 沿地面以速度 v1传到接收点的时间差。
• 概念:时距曲线----地震波的传播时间与距离的 关系曲线。 • 正演:地质模型->物理模型->数学模型 ->分析波场特征、传播规律(理论) • 反演:在理论的指导下由观测数据作地质分 析(构造、物性参数)。
地 质 模 型
正 演
反 演
地 震 数 据
一、时距曲线的概念及直达波时距曲线
1、直达波时距曲线方程:
四、正常时差
3、动校正:
在水平界面情况下,从 地震 记录中减去正常时差 t,即 得到 x 处的自激自收时间 t0, 2 这一过程称为正常时差 校正, 或者动校正。 补充:相对应的,静校 正常在 《地震资料数字处理》 中用到。
(b)多道接收同相轴与界面形态不对应 (a)自激自收同相轴与界面形态相对应
(b)多道接收同相轴形态与界面形态不对应
二、水平界面共炮点反射波时距曲线
2、曲线方程:
o*S t V
2 x 2 4h0 V
地震折射波法课件
折射波的解析方法
波动方程建立
波速结构反演
基于波动理论,建立折射波的波动方 程,描述波在地下介质中的传播规律 。
利用折射波的传播特征,反演地下介 质的波速结构,为地质解释提供依据 。
波场分离
将复杂的地震波场分离为折射波分量 和其他分量,以便单独研究折射波的 传播特征。
折射波的解释技术
波形分析
对折射波的波形进行详细分析, 提取关键参数,如初至时间、振
地震折射波法可用于研究 地球内部结构和地球动力 学过程。
资源勘探
地震折射波法可用于石油 、天然气和矿产资源勘探 ,确定地下资源的分布和 储量。
工程地质勘查
地震折射波法可用于工程 地质勘查,评估地质灾害 风险和地下工程稳定性。
02
折射波的形成与传播
折射波的形成
折射波的形成
当地震波在地下介质中传播时, 如果遇到不同介质的分界面,波 的传播方向会发生改变,形成折
折射波法的缺点
对地表条件要求高
折射波法需要地表平坦、无障碍物,限制了其应用范围。
对地下介质变化敏感
折射波法对地下介质的均匀性要求较高,介质变化可能导致结果 失真。
数据处理复杂
折射波法的数据处理较为复杂,需要专业的技术人员进行解释和 分析。
折射波法的发展趋势与展望
技术改进
01
随着科技的发展,折射波法将不断改进,提高分辨率和穿透能
力。
数据处理自动化
02
未来将发展更高效的数据处理方法,实现折射波法的自动化解
释。
多方法综合应用
03
将折射波法与其他地球物理方法结合使用,提பைடு நூலகம்探测精度和可
靠性。
THANKS
感谢观看
地震折射波法反射波法(1)
检波器
4
震源要求有适当的能量、安全可靠便于使用,能产生较 高频率成分。常用的有:锤击震源、雷管和炸药、地震 枪震源、电火花震源等。 地震仪是将检震器的输出的电信号放大,显示并记录下 来的仪器,具有滤波、放大、信号叠加、高精度计时及
数字记录和微机处理等功能 。
检波器又叫检震器,是把地震波到达引起地面微弱振动 转换成电讯号的换能装置。目前常用的检波器主要由线 圈、弹簧片和永久磁钢架及外壳组成。
Xi=0时,t0=2h/V。
对共反射点时距曲线动校正:
h
26
把各叠加道的时间校正到M点的回声时间,或者把曲线 拉平,如图(c)示。
假设各叠加道波形相似,必是同相叠加,叠加后振幅
成倍增加。如图(d)
h
27
2.共反射点多次波的叠加效应 如图示,在水平界面R1上产生二次全程反射,在R2界
面上产生一次反射,假设一次波的t0时间等于二次波的t0 时间t0D。用视速度定理易证:具有相同t0时间的二次波曲 线比一次波弯曲。
相遇时距曲线观测系统 折射界面起伏明显,不规则。 特点:解释精度高,中间部分重复观测。
追逐时距曲线观测系统 对折射界面连续追踪,曲线形态和折射界面形态相关。 特点:时距曲线平行相似;界面上凸,则不平行
h
12
双重相遇时距曲线观测系统 表层条件复杂条件下采用 特点:可弥补近炮点时距曲线不足,并可连续追踪。
激发点和接收点之间的位置关系和排列和排列间的位置 关系统称为观测系统。
表示方法有:综合平面图和时距平面图
折射波法观测系统:
1、单支时距曲线观测系统
2、相遇时距曲线观测系统
3、追逐时距曲线观测系统
4、双重相遇时距曲线观测系统
5、双重相遇追逐时距曲线观测系统
地震波动力学-折射波
8
三、水平界面下折射波的时距曲线
已知: 界面深度为h0 ,介质的速度为v0和v1 ,且v1 ﹥v0 , 在O点激发, OA1 以临界角入射,在测线S点接收的, 距离为x。 求:折射波t=f(x,v, h0 )的函数
第一章 地震波的运动学
第一节 地震波的基本概念 第二节 一个界面情况下反射波的时距曲线 第三节 地震折射波运动学 第四节 多层水平反射波时距曲线 第五节 连续介质中地震波的运动学 第六节 透射波和反射波时距曲线
1
二、折射波的形成和传播规律
1、折射波形成的条件
1)当波从介质1传到介质2,两种介质的阻抗不同时,在分界面 上会产生透射和反射,且满足斯奈尔定律。 2)当V2﹥V1时,透射角大于入射角。当入射角达到临界角θC,时 透射角达到90度,这时波沿界面滑行,称滑行波。 3)滑行波是以下层的介质速度V2传播。 4)由于两种介质是密接的,为 了满足边界条件,滑行波的 传播引起了上层介质的扰动, 在第一种介质中要激发出新 的波动,即地震折射波。
一、讨论多层介质问题的思路
1、地震勘探中建立的多种地层介质结构模型 ①均匀介质 ②层状介质 ③连续介质
均匀介质
认为反射界面R以上的介质是均匀的,即层内介质 的物理性质不变,如地震波速度是一个常数V0。反射 界面R是平面,可以是水平的或是倾斜面。
16
第四节 多层介质的反射波时距曲线 层状介质
认为地层剖面是层状结构,在每一层内速度是均匀 的,但层与层之间的速度不相同,介质性质的突变。 界面R可以是水平(称水平层状介质)或是倾斜的。 把实际介质理想化为层状介质,因为沉积岩地区一般为层 性较好,岩层的成层性又由不同岩性决定,不同岩性则往 往有不同的弹性性质,因此岩层的岩性分界面有时同岩层 的弹性分界面相一致。
第1篇地震折射波法详解
在工程地震勘探中,地震折射波法是一种 简便经济的勘探方法,在精度要求不高的情况 下,它可为工程地质提供浅层地层起伏变化和 速度横向变化资料以及潜水面的变化资料等, 还可为反射波法勘探提供用于静校正的表层速 度和低速带起伏变化资料。有关折射波的形成 及正演时距曲线的特征等问题已在本篇的第一 和第二章中讨论过了,在此,仅就资料的采集 和处理解释问题进行论述。
(1.5.5)
5.2.2.3
t 相遇时距曲线的 法
0
t 该方法又称 差数时距曲线法
0
成都理工大学信息工程学院
返回
6 地震透射波法
在工程地震勘探中,透射波法主要用于地 震测井(地面与井之间的透射)、地面与地面 之间凸起介质体的勘查和井与井之间地层介质 体的勘查。地质目的不同,所采用的方法手段 也不同。但从原理上讲,均是采用透射波理论, 利用波传播的初至时间,反演表征岩土介质的 岩性、物性等特性以及差异的速度场,为工程 地质以及地震工程等提供基础资料或直接解决 其问题。
2.透射CT成像技术(专题)
成都理工大学信息工程学院
返回
7 瑞雷波法
瑞雷波法勘探实质上是根据瑞雷面波传播的 频散特性,利用人工震源激发产生多种频率成分 的瑞雷面波,寻找出波速随频率的变化关系,从 而最终确定出地表岩土的瑞雷波速度随场点坐标 的变化关系,以解决浅层工程地质和地基岩土的 地震工程等问题。
成都理工大学信息工程学院 返回
6.1 地面与井的透射
井口附近激发,井中不同深度上接收透 射波或反之的地震工作称为地震测井。
6.1.1 透射波垂直时距曲线
成都线方程为
n
z1 z z1 t V1 V2
从两层介质很容易推广到 层介质,对应的透射波垂 直时距曲线方程为
折射波
二、折射波法的观测系统
(3)地震仪滤波器的选择
工程地震仪中,大部分都装有较完善的滤波系 统。例如,声波的主频段一般大于100Hz。而折 射波的主频段为40Hz,比声波低,可以用低通 滤波装置来压制声波。工业电通过电磁感应影响 地震记录,所以接收点应尽量避开干扰源,并利 用仪器的滤波器压制工业电的干扰。
对于一个特定的工作地区,是否需要使用滤波 器或使用什么频率段的滤波器,要通过试验来确 定。
3、追逐时距曲线观测系统 是在剖面上测得一段时距曲线S1之后,将激发点沿
剖面移动一定的距离再进行激发观测得到另一段时距 曲线S2,这种互相对应的时距曲线就称为‘‘追逐’ 时距曲线。如图所示。
追逐时距曲线观测系统还可以了解折射界面有无横 向速度变化。如图所示,水平三层大地与有覆盖层 的直立接触面上的简单观测系统的时距曲线形态相 似,无法仅根据单支时距曲线判断地下的地层结构。
在浅层工程地震中一般采用2-5m的 道间距.12-24道地震仪接收。
3、激发点位置及间距
折射波的接受地段必须在盲区 范围之外,但盲区范围随折射界面 的深度、倾斜情况以及临界角的大 小而变化。因此,要根据试验工作 设计激发点位置及激发点距离。
二层构造时情况比较简单,偏移距小于盲 区,设计的排列应能够接收到直达波和折射 波。激发点的间距应能够连续探测目的折射 界面。
在此,仅就资料的采集和处理 解释问题进行论述。
第一节 野外工作方法
几何地震学 第二章 地震波运动学
地震波运动学(又称几何地震 学)—是研究地震波波前的空间位 置与其传播时间的关系。
用波前与射线等几何图形来 描述波的运动过程和规律
§1.1 地震波的基本概念
一、地震波在岩石中传播 (一)讨论条件: ⒈ 波动—是质点振动在介质中的传播 为弹性波或机械波 ⒉ 地下岩石为均匀的各向同性的完全 弹性体 ⒊ 岩石存在有两面性:弹性和塑性
S波传播方向
vs
S波传播
当 = 0.25(岩石),vp = 1.73 vS
⒊面波
⑴定义:在界面附近传播的波叫面波
⑵种类:
a.瑞雷面波(R面波)
x
在地表面传播
的波,其轨迹
为椭圆。
z
ux+uy y
传播
x
b.勒夫面波:在界面附近传播的波 c.斯通利波
⒋探测中的波:
深部地震—P、S波 浅层地震—P、S、R、L波
sin
视速度定理
① 当(入射角) 0,垂直入射,
sin 0, v*
② 当 90,水平 入射 , sin 1, v* v
③ 当 0 ~ 90,v* ~ v
v—真速度
人工激发的地震波示意图
1.二维地震观测图
人工激发的各种波的传播图
地震波实际记录图
记录1
记录2
记录2
三、弹性波的基本类型与地震勘探中的波
1
双 曲 线 公 式
此式为双曲线方程,即时距曲线 为双曲线
⒉正常时差⊿t(水平界面情况)
⑴ ⊿t概念:由同一个激发点对应不同 距离接收点的地震波的到达时间与激 发点的自激自收时间(垂直入反射)之
差(即纯粹由接收距离所引起的时 间差)称作正常时差,记作⊿t
《地震波运动学》PPT课件
(2)当测线平行于地层走
相等。此时,射线平面是铅直的 ,在该平面内可见到界面的法
线深度h,即 h Vav t0 / 2 ,表示 界面到O点的垂直距离。而从O
点垂直地面向下到界面的深度 称为真深度,也称之为铅垂深 度或钻井深度。界面的法线深
度h与真深度hz之间有下列关系
: hz h / cos
真深度、法线深度的关系
测线平行界面走向时深度间的关系
x
x
R
Ds
A
C
h
1
2
φ
C h C
I
R
B
倾斜界面反射波时距曲线的特点
t
1 v
x2 4h2 4xhsinφ
1、时距曲线为双曲线;
2、xm = ∓2hsinφ 是时距曲线极小点的横坐
标,极小点相对激发点偏向界面上倾一侧;
3、在极小点处,反射波返回地面的时间最短,
tm=2hcosφ/v
4、 xm 点实际上就是虚震源在测线上的投影,
多次覆盖剖面上的特殊波
回转波的水平叠加剖面(a)和偏移剖面(b)
第五节 地震反射的时间记录剖面
原始的地震资料上,地下地质界面是 以双曲线型的时距曲线表现出来的, 水平界面的时距曲线是一条双曲线, 倾斜界面的时距曲线也是一条双曲线, 很显然,时距曲线不能直观地反映实 际的地下界面。
时间记录剖面:用时间来标定同相轴 所代表的界面深度的地震记录。
2、断面反射波的时距曲线为双曲线;
3、特点:倾角大;反射波振幅强度变化 大;断点有可能产生绕射。
4、地质意义:指示断层的存在及大致的 位置。
三、凹界面上的反射波
凹界面按其具体特点又可分为几种 情况
圆弧的曲率半径为ρ界面的埋藏深
地震折射波运动学
x m 2h0 tg c 2h0 tm V1 cos c
可知,产生折射波的界面 埋藏越深,盲区越大。在 M1点反射波和折射波时距 曲线相切。请自行验证之
第四节 地震折射波运动学
通过以上讨论我们看到:折射波与反射波相比,其主要 差别在于:(1)折射波有一个盲区,而盲区的大小取 决于界面的埋藏深度,因此,在地震勘探中要观测到折 射波,炮检距应该大于折射波盲区;(2)折射波法通 常只能研究其速度大于上面所有各层波速的地层,在实 际的地层剖面中,往往只有某些层能满足这个条件,因 此折射层的数目要比反射层数目少得多,这点也正是目 前石油地震勘探中广泛使用反射波法的原因之一;( 3) 如果地层剖面中存在速度很高的厚层,就不能使用折射 波法研究更深处的低速地层,这种现象称为“屏蔽效 应”。如果高速层厚度小于地震波的波长,则实际上并 不发生屏蔽作用。
地球物理勘探
地球物理系
王永刚
课程内容
• • • • • •
第1章 绪论 第2章 地震波运动学理论 第3章 地震资料采集方法与技术 第4章 地震波速度 第5章 地震资料解释的理论基础 第6章 地震资料构造解释
第2章 地震波运动学理论
• 第一节 几何地震学基本概念 • 第二节 常速单界面的反射波路径及
第四节 地震折射波运动学
M
直达波、反射 波与折射波的 实际记录
低速折射层的初至波
高速折射层的初至波
二次折射波初至
S
第四节 地震折射波运动学
三、水平层状介 质的折射波时距 曲线
考虑到折射波法在地 震勘探中的应用,我 们来比较详细地推导 三层水平介质的折射 波时距曲线方程,据 此可以进一步得出m层 水平介质的折射波时 距曲线方程。
2-4地震折射波运动学
•当x<x’时,方程没有物理意义,折 射波时距曲线的起点为:
v2 2 x ' 2htgc 2h ( v ) 1 1 2h t' v1 cos c
1
§ 2.4 地震折射波运动学
盲区范围
2 z tan ic
埋藏深度越ห้องสมุดไป่ตู้,盲区越大。
§ 2.4 地震折射波运动学
震波。
§ 2.4 地震折射波运动学
§ 2.4 地震折射波运动学
§ 2.4 地震折射波运动学
1、折射波时距曲线
§ 2.4 地震折射波运动学
§ 2.4 地震折射波运动学
t 折射波旅行时方程:
其中 t1
2h cos c v1
x t1 v
折射波时距曲线的特点: •斜率为1/V2,截距为t1的直线
§ 2.4 地震折射波运动学
折射波
两层介质,下伏层的速度大于上覆层的速度,即V2>V1,
这时地层中才会产生折射波。 滑行波: 当入射角等于临界角时,透射波的射线与界面 平行,以下界面的地震波速度沿界面滑行传播的波。 折射波: 滑行波在滑行的过程中,下层介质中的质点就
会产生振动,形成新的震源,并在上层介质中产生新的地
§ 2.4 地震折射波运动学
§ 2.4 地震折射波运动学
§ 2.4 地震折射波运动学
3、三层介质的折射波时距曲线方程
2、反射波、直达波和折射波时距曲线的关系
直达波时距曲线: td
x v1
2 0
x2 反射波时距曲线: tr t 2 v1
折射波时距曲线:t
x 2h cos c v2 v1
1、反射波时距曲线和折射波时距 曲线相交于D点。
(6)地震波的反射、透射和折射
2h[(V2 )2 V1
1
1] 2
一般情况下,折射波只有在炮检距大于两倍折射界面深度
时才能观测到,即
X M 2h
பைடு நூலகம்
折射波形成条件:下伏介质波速必须大于上覆介质波速
波的强度条件:速度界面是透射界面,波阻抗界面是反射界
面。当入射波振幅Ai一定时,T越大,则R越 小,即透射波强,反射波弱;反之,T越小, 则R越大,即透射波弱,反射波强。
折射波的形成
折射波:对于V2>V1的水平速度界面,由斯奈尔定律可知,当入
射角大于某临界角i时,可使透射角等于900,此时透
射波以V2速度沿界面滑行。根据斯奈尔定律,可求得
R AR Zn Zn1 Ai Zn Zn1
反射波形成条件:地下岩层存在波阻抗分界面,即
Zn Zn1;
R0
反射系数R的取值范围及其极性:
1 R 1
R有正负值,当R>0,Zn>Zn-1,反射波和入射波相位相同,都 为正极性,地震记录初至波上跳;当R<0,Zn<Zn-1,反射波和入射 波相位相差1800,入射波与反射波反相,反射波为负极性,地震记 录初至波下跳。
(6)地震波的反射、透射和折射 入射波、反射波、透射波和界面法线的关系
反射波的形成 反射定律:反射角等于入射角,反射线、入射线位于反射界面
法线的两侧,反射线、入射线和法线位于同一个平 面内。
波阻抗Z:密度和波速的乘积射角称为波阻抗。上、下两层介质
的波阻抗差别越大,反射波越强。 Z V
反射系数R:反射波振幅和入射波振幅之比称为反射系数。
临界角i为
折射波的形成与传播
sin i V1 V2
地震波运动学第六节——折射波运动学1
通过E点作这两个球面的公切面,就得到折射波的 波前,如图中的EE′所示,而波线是垂直波前的。
不难证明,折射波的射线和分界面的法线之间的夹 角等于临界角θc
由图可见,∠C′EE′和∠ NEA′都是∠ NEE′的余角,从 而两角相等。在直角三角形ΔC′EE′中,有 sin ∠C′EE′=C′E′/C′E. 前已说明C′E′=2R1= C′E · V1/V2 ,从而 sin∠C′EE′=V1/V2。 这正是临界角满足的关系,结果就有 ∠NEA′= ∠C′EE′= θc
左图,两条直线同相轴在A点上方相交,这表明:波I的所有 射线是互相平行的,波Ⅱ的所有射线也是互相平行的,但这 两个波的射线并不平行,因为两条同相轴的斜率不相同。在A 点,这两个波的到达时间相等,但两个波在A点出射的两条射 线并不平行。 右图,一条弯曲的同相轴与一条直线同相轴在A点上方的B点 处相切,这表明两个波的同相轴在B点有相同的斜率和相同的 到达时间,也即是两个波出射到A点的射线是重合的。
二、折射波的形成和传播规律
在前面已经提到,当界面下部介质波速V2大于上部
介质波速V1,波的入射角等于临界角时,透射波就
会变成沿界面以V2速度传播的滑行波。 滑行波的传播引起了新的效应:因为两种介质是密 接的,为了满足边界条件,在第一种介质中要激发 出新的波动,即地震折射波。
本节从几何地震学出发导出折射波的传播规律。
当界面速度大时,时距曲线较平缓,反之,时距曲 线较陡。这是水平界面折射波时距曲线的特点之一。
2、水平界面折射波时距曲线方程
在S点接收,折射波所走的路程为 OA1B1S,所需时间为
F1
0
当x=0时 这说明折射波时距曲线延长 后与时间轴交于ti,ti的数值 如上式所示。这个ti称为与时 间轴的交叉时,这是折射波 时距曲线与反射波时距曲线 的又一区别。 折射波时距曲线的始点坐标 可以从右图直接得出
1实验一地震勘探实验(折射波法)
1实验一地震勘探实验(折射波法)实验一地震勘探实验(折射波法)一、实验原理地震勘探是根据人工激发(爆炸或撞击地面)的地震波在地下传播过程中,遇到弹性性质不同的地震界面后,在地层中产生反射和折射,部分地传回地表,用专门的仪器记录返回地面的波的旅行时间,研究振动的特征,来确定产生反射或折射的界面的埋深和产状,并根据所观测的地震波在介质中传播速度及波的振幅与波形变化,探讨介质的物性与岩性。
就波的传播特点而言,地震勘探一般可分为反射波勘探和折射波勘探。
二、实验目的1.了解地震勘探的原理;2.了解地震勘探工作布置及观测方法;3.掌握地震勘探数据采集、处理和解释,熟练操作相关软件。
三、实验仪器Strata Visor NZⅡ数字地震勘探仪。
Strata Visor NZⅡ地震勘探系统一般由主机、多芯电缆、检波器、触发器、震源(大锤或炸药)、铁板、直流电源、直流电源线以及数据采集、处理和解释软件等。
四、实验步骤1.在工区布设测线在工区布设测线,原则:由南向北、由西向东测线号与测点号依次增大。
使用皮尺标注检波器位置与激发点位置。
2.连接仪器的各个部分将主机、电源、多芯电缆、检波器、大锤、触发器按正确的方式一一连接起来。
注意:各接口均使用“防呆”设计,电缆插头与对应的插槽才能连接,电缆插头与非对应的插槽不能连接。
禁止暴力插拔各插头、插槽,以防仪器损坏。
3.采集开机后,直接进入SCS软件。
(1)survey--new survey菜单:设置测区名称和测线号;(2)system--set date/time菜单:设置时间、日期;(3)geom--survey mode菜单:设置地震勘探类型,本次实验为折射波勘探,即refraction;geom--geophone interval菜单:设置检波器距离,即道间距,本次实验设为2m;geom--group/shot location菜单:设置shot coordinate炮点坐标、geophone coordinate检波器坐标(自动或手动设置)、gain 增益(本次实验设为HIGH 36)、use道设置(可选DATA、INACTIVE等,本次实验设为DATA)、freeze道冻结(叠加冻结,本次实验设为NO)等;(4)acquisition--sample interval/record length菜单:设置时间采样间隔、记录长度(时窗)和delay延迟,本次实验sample interval设为0.25ms,record length设为0.25m,delay 设为0;acquisition--filter菜单:滤波器设置,本次实验屏蔽采集滤波器,设为FILTER OUT;acquisition--correlation菜单:相关设置,本次实验屏蔽相关,设为OFF;acquisition--stack option菜单:叠加设置,本次实验设为auto stack,即自动叠加;acquisition--specify channels菜单:选定某些道,屏蔽某些道。
(6)地震波的反射、透射和折射ppt课件
面。当入射波振幅Ai一定时,T越大,则R越 小,即透射波强,反射波弱;反之,T越小, 则R越大,即透射波弱,反射波强。 6
折射波的形成
折射波:对于V2>V1的水平速度界面,由斯奈尔定律可知,当入
射角大于某临界角i时,可使透射角等于900,此时透
射波以V2速度沿界面滑行。根据斯奈尔定律,可求得
临界角i为
R AR Zn Zn1
Ai Zn Zn1
2
反射波形成条件:地下岩层存在波阻抗分界面,即
Zn Zn1;
R0
反射系数R的取值范围及其极性:
1 R 1
R有正负值,当R>0,Zn>Zn-1,反射波和入射波相位相同,都 为正极性,地震记录初至波上跳;当R<0,Zn<Zn-1,反射波和入射 波相位相差1800,入射波与反射波反相,反射波为负极性,地震记 录初至波下跳。
(6)地震波的反射、透射和折射 入射波、反射波、透射波和界面法线的关系
1
反射波的形成
反射定律:反射角等于入射角,反射线、法线位于同一个平 面内。
波阻抗Z:密度和波速的乘积射角称为波阻抗。上、下两层介质
的波阻抗差别越大,反射波越强。 Z V
反射系数R:反射波振幅和入射波振幅之比称为反射系数。
折射波的形成与传播
sin i V1 V2
7
折射波的波前、射线和盲区:折射波的波前是界面上各
点源向上覆介质中发出的半圆形子波的包线。折射波的
射线是垂直于波前的一簇平行直线,并与界面法线的夹
角为临界角。从震源到观测到折射波的始点之间,不存
在折射波,称为折射波的盲区。盲区半径XM为
XM
2h sini cosi
3
透射波的形成 透射定律:反射线、透射线位于法线的两侧,入射线、透射线、
折射波
折射波一、特殊情况下的时距曲线(二)隐伏层假定下层波速大于上层且有一定层厚度作为产生返回地表的折射波的条件.但实际情况并非都是如此.若地层中出现低速夹层,或速度递增,但其中某层的厚度很小时,折射波不能以初至波的形式出现在地震记录上,用折射法的勘测时不能记录到该层的存在.故称该层为”隐伏层”.有时当某层的速度大于其上下地层的速度时,将出现高速屏蔽。
1.水平层状介质中的低速层然而 ,如果存在321V V V 〈〉;(且13V V 〉)的层状介质,则时距曲线将发生很大变化.由于在21/V V 的分界面上不能产生折射波,没有2V 低速度的初至波的地震记录.并从时距曲线上看只相当于两层介质,即存在低速度 层异常的情况.此时若无钻孔或波速测井等相应的资料来验核,就很容易把三层介质作为两层介质。
从而把3V 当作2V ,把02t 当01t ,而造成深度计算上的较大误差。
因此,在有低速层存在的地区进行折射法工程勘测时,应该有钻孔资料,夺震波速测井或其他物探资料配合,才能进行解释,而得出正确的结果。
2.正常速度中的隐伏层这种隐伏层,是在各层速度的分布满足了n V V V 〈〈〈Λ21的关系,但基中某层的厚度较小,使得该层与下层介质的分界面产生的折射波不能以初至波的形式出现在记录上,导臻资料处理时地层缺失或深度上的较大误差。
我们以三层模型讨论隐伏层的基本特性。
如图1图1 隐伏层地质模型图所示:在a 图中,第二层足够厚,时距曲线中2V 层就有一定长度的一段初至区与该层相对应。
当第二层厚度减小时,时距曲线上与第二层相应的初至区线段长度与变短,图b 所示。
如果第二层的厚度进一步减少,如图c 所示,第一层和第三层所对应的时距曲线同时通过了一点,与第二层对应初至区的时距曲线消失了,时距曲线上不能反映第二层介质的存在,故将此厚度定义为盲带。
从理论上讲,它是该层不能以初至形式探测到的最大厚度。
如图d 所示,第二层的厚度进一步减小时,则定义这样鹌鹑2的地层为隐伏层。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
左图,两条直线同相轴在A点上方相交,这表明:波I的所有 射线是互相平行的,波Ⅱ的所有射线也是互相平行的,但这 两个波的射线并不平行,因为两条同相轴的斜率不相同。在A 点,这两个波的到达时间相等,但两个波在A点出射的两条射 线并不平行。 右图,一条弯曲的同相轴与一条直线同相轴在A点上方的B点 处相切,这表明两个波的同相轴在B点有相同的斜率和相同的 到达时间,也即是两个波出射到A点的射线是重合的。
但是在图中所示的情况下,由于入射线并不平行, 从而反射线也不平行。除了C′这样的点以外,任何 地方的反射角都不等于临界角θc ,而折射波的射线 却是平行的,到处都和法线成θc角度。 在oA范围内是接收不到折射波的,这个范围叫折射 波的“盲区”。
在波源所在的水平面上,“盲区”是一个圆, 它的半径是
OB BC t2 V1 V2
要证明滑行波比 入射波先到达C 点,即 t1>t2 或 △t = t1- t2 > 0
OC t1 V1
OB BC t2 V1 V2
h 1 h htg htgi t ( ) cos V1 V1 cosi V2 V2
V1 V2 sin i
通过E点作这两个球面的公切面,就得到折射波的 波前,如图中的EE′所示,而波线是垂直波前的。
不难证明,折射波的射线和分界面的法线之间的夹 角等于临界角θc
由图可见,∠C′EE′和∠ NEA′都是∠ NEE′的余角,从 而两角相等。在直角三角形ΔC′EE′中,有 sin ∠C′EE′=C′E′/C′E. 前已说明C′E′=2R1= C′E · V1/V2 ,从而 sin∠C′EE′=V1/V2。 这正是临界角满足的关系,结果就有 ∠NEA′= ∠C′EE′= θc
对折射波时距曲线的讨论,主要是关于如
何用视速度概念来说明地震波传播的某些特 点,即波出射到地面的射线的角度、地震剖 面上同相轴的形态、波的视速度三者之间的 关系。
图(a)中,射线互相平行,垂直地面出射,波的视速 度Va=∞(Δt =0,波前同时到达地面),波的同相轴 是一条水平线; 在下图(b)中,射线互相平行,但不是垂直地面,同 相轴是一条倾斜直线,视速度为常数Va=Δx/Δt; 在下图(c)中,波的射线出射角是变化的,互相不平 行,同相轴是一条曲线,视速度也是逐点变化的, Va=Δx/Δt,出射角θ越大,同相轴越陡,Va越小。
主要内容
视速度概念 折射波的形成及传播 单一水平界面折射波时距曲线 水平层状介质折射波时距曲线 倾斜界面折射波时距曲线
一、 视速度概念
地震波在空间介质内是沿射线方向以真速度V传播 的,但地震勘探的观测大多是在地表沿测线进行, 因测线的方向与波的射线方向常常不同,沿测线 “传播”的速度也就不同于真速度,称为视速度 V*。所谓视速度,就是沿测线方向观测到的传播 速度。物理含义是把在地下用真速度沿射线传播 的反射波看作是用视速度沿地面测线传播的波动。 在地震勘探中沿测线观测时,得到的往往是视速 度而不是真速度,主要突出介绍视速度与真速度 的差别和联系。
根据波动理论,这时界面上部同时有波动传播。 只有在界面上部也形成某种波,这样才符合波动 理论。
2、证明在临界角以外(B点以外),界面上任 一点滑行波比入射波先到
在B点波正好以临界角i入射,在C点入射角α已大 于临界角。 入射波到达C点 的传播时间:
OC t1 V1
滑行波到达C点的 传播时间:
3、折射波传播的规律和特点 波在C′点以临界角θc 入射在两种均匀介质的分界面
上,作为透射波之特例的滑行波也就从这一点开始 滑行,其波速是V2。
根据惠更斯原理,当滑行开始时,可以认为C′也向 第一种介质中发出波速为V1的球面子波。
过了一段时间△t=C′B/V2,滑行波到达分界面上的B点,这 时B点开始向第一种介质中发射速度为V1的球面子波,而从C′ 点发出的子波已传到半径为R1=V1Δt=C′B ·V1/V2的球面上。 (红色圆弧) 又过了同样的一段时间△t,滑行波到达E点,C′B = BE;这 时E点开始向第一种介质中发射子波,而从B点发出的子波已 传到半径为R1的球面上,从C′点发出的子波已传到半径为 2R1=2C′B ·V1/V2=C′E ·V1/V2的球面上。
h 1 cos( i ) t [ ] V1 cos
• 当α=i,cos(α-i) = cos0°= 1,Δt=0
• 当α>i,0<cos(α- i)<1, Δt>0
即证明了在临界角以外,界面上任一点滑行波比 入射波先到,也就是说折射波总是首至波。
折 射 波 总 是 首 至 波二、折射波的形成和传播规律
在前面已经提到,当界面下部介质波速V2大于上部
介质波速V1,波的入射角等于临界角时,透射波就
会变成沿界面以V2速度传播的滑行波。 滑行波的传播引起了新的效应:因为两种介质是密 接的,为了满足边界条件,在第一种介质中要激发 出新的波动,即地震折射波。
本节从几何地震学出发导出折射波的传播规律。
1、折射波形成的关键 当入射角在临界角以内,在界面上每一点都同时有 三个波出现入射波、透射波、反射波。
而在临界角以外,由于滑行波以速度V2沿界面在第 二种介质中向前传播,滑行波到达界面各点比入射 波要早(下面要证明这个结论)。 于是就出现了这样的情况:
在两种介质密接的界面下部有波传播。
OA=2h tanθc
只有当两种介质分界面下部介质的波速比上覆介质 的波速大时,在这个分界面上才能形成折射波。
实际地层剖面中由很多地层组成,这时只有在它的 速度大于其上所有各层速度的地层顶面才能形成折 射波。也就是说,折射波法通常只能研究其速度大 于上面所有各层速度的地层。 在实际的地层剖面中往往只有某些层能满足这个条 件,因此“折射层”的数目要比“反射层”数目少 得多。并且,如果剖面中有速度很高的厚层存在, 就不能用折射波法研究更深处的速度比它低的地层。 这种现象称为“屏蔽效应”。如果高速层厚度小于 地震波的波长(此时应使用地震波动力学,地震波 运动学就解释不了此现象),则实际上并不发生屏 蔽作用。