2019-2020年高中数学竞赛模拟试题一

合集下载

浙江省高中数学竞赛模拟试题(1)及参考答案

浙江省高中数学竞赛模拟试题(1)及参考答案

浙江省高中数学竞赛模拟试题(1)及参考答案第一试(时间:8:00-9:20 满分:120)一、填空题:本大题共8小题,每小题8分,共64分. 1.已知函数()()221,0a f x x ax b x R x x x=++++∈≠,若实数,a b 使方程()0f x =有实根,则22a b +的最小值是2.在正三棱台111ABC A B C -中,上底面积11112A B C S =△,下底面积27ABC S =△.若底边BC 到截面11AB C 的距离等于三棱台的高,则11AB C S =△ 3.从1,2,3,,100中取出三个不同的数,使得其不能组成一个三角形的三边长的不同取法有 种4.已知22122cos cos ,,,22sin sin x y x y z i y x ππ⎡∈=+⎢⎣,且12z =若2z x yi =+,则21z z -的取值范围是 . 5. 函数()442222,2233222f x y x y x y xy x y x y =++-++-++的最小值为6.设()()111313,20n n n n n n n x x x x x x --+=+=+>-,则数列{}n x 的通项公式为7.如图,设,P Q 分别是两个同心圆(半径分别为6,4)上的动点.当,P Q 分别在圆上运动时,线段PQ 的中点M 所形成的区域面积为8.设[]122010,,,2,2a a a ∈-且1220100a a a +++=,则333122010a a a +++的最大值为二、解答题:本大题共3小题,共56分.9.(本小题满分16分). 设复数z 满足12z +>.证明:311z +>.10.(本小题满分20分)给定整数a ,设()32f x ax bx cx =++,其中,b c Z ∈,满足()()()11,22f ff =-=求出所有满足条件的函数()f x .11.(本小题满分20分)给定椭圆22221135x y +=及点()10,0D .(1)求r 的值使得对于椭圆的左顶点A ,存在椭圆上的另两点12,M M ,满足以D 为圆心、r 为半径的圆是12AM M △的内切圆;(2)证明:对于椭圆的下顶点,也存在椭圆上的另两点12,N N ,使得D 是12AN N △的内切圆,并确定此时直线12N N 的方程.浙江省高中数学竞赛模拟试题(1)及参考答案加试(时间:9:40-12:10 满分:180)一、(本小题满分40分) 已知ABC △的内心为I ,ABC △的内切圆I 切边BC 于点D ,,ABD ACD △△的内心分别是,b c J J ,b c AJ J △的外心为O .求证:,,A O I 三点共线.二、(本小题满分40分)设,,,0,a b c d >且4a b c d +++=.求证:222222221111a b c d a b c d+++≥+++三、(本小题满分50分)已知正整数n 满足()2014,,20141n n >=.令(){}1,,1,n A k N k n n k =∈≤≤={}{}1,1,n n n n n n B k A k A C k A k A =∈+∉=∈-∉对任意n k A ∈,记nA k k S n⎡⎤=⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数,A 表示集合A 中元素的个数. 证明:(1)()()nnk n k k n k k B k C S S S S --∈∈-=--∏∏;(2)()()mod nnB k n k nk C S S A n -∈-≡∏四、(本小题满分50分)某国建了一座时间机器,形似一条圆形地铁轨道,其上均匀设置了个站台(依次编号为1,2,…,)分别对应一个年份,起始站及终点站均为第一站(对应).为节约成本,机器每次运行一圈,只在其中一半的站台停靠.出于技术原因,每次至多行驶三站必须停靠依次,且所停靠的任两个站台不能是圆形轨道的对径点.试求不同停靠方式的种数.浙江省高中数学竞赛模拟试题(1)及参考答案第一试参考解答(时间:8:00-9:20 满分:120)一、填空题:本大题共8小题,每小题8分,共64分. 1.已知函数()()221,0a f x x ax b x R x x x=++++∈≠,若实数,a b 使方程()0f x =有实根,则22a b +的最小值是2.在正三棱台111ABC A B C -中,上底面积11112A B C S =△,下底面积27ABC S =△.若底边BC 到截面11AB C 的距离等于三棱台的高,则11AB C S =△3.从1,2,3,,100中取出三个不同的数,使得其不能组成一个三角形的三边长的不同取法有 种4.已知22122cos cos ,,,22sin sin x y x y z i y x ππ⎡⎤∈-=+⎢⎥⎣⎦,且12z =,若2z x yi =+,则21z z -的取值范围是 .5. 函数()442222,2233222f x y x y x y xy x y x y =++-++-++的最小值为6.设()()111313,20n n n n n n n x x x x x x --+=+=+>-,则数列{}n x 的通项公式为7.如图,设,P Q 分别是两个同心圆(半径分别为6,4)上的动点.当,P Q 分别在圆上运动时,线段PQ 的中点M 所形成的区域面积为8.设[]122010,,,2,2a a a ∈-且1220100a a a +++=,则333122010a a a +++的最大值为二、解答题:本大题共3小题,共56分. 9.设复数z 满足12z +>.证明:311z +>.10.给定整数a ,设()32f x ax bx cx =++,其中,b c Z ∈,满足()()()11,22f f f =-=求出所有满足条件的函数()f x .11.给定椭圆22221135x y +=及点()10,0D .(1)求r 的值使得对于椭圆的左顶点A ,存在椭圆上的另两点12,M M ,满足以D 为圆心、r 为半径的圆是12AM M △的内切圆;(2)证明:对于椭圆的下顶点,也存在椭圆上的另两点12,N N ,使得D 是12AN N △的内切圆,并确定此时直线12N N 的方程.浙江省高中数学竞赛模拟试题(1)及参考答案试参考解答(时间:9:40-12:10 满分:180)一、(本小题满分40分)已知ABC △的内心为I ,ABC △的内切圆I 切边BC 于点D ,,ABD ACD △△的内心分别是,b c J J ,b c AJ J △的外心为O .求证:,,A O I 三点共线. 证明:设I 分别切边,CA AB 于点,E F ,ABD △的内切圆切AD 于点X ,ACD △的内切圆切AD 于点Y ,则2DX DA DB AB DA DB BF AF DA AF =+-=+--=-, 同理22DY DA AF DX =-=.从而,X Y 重合,所以b c J J AD ⊥.因为b c AJ J △的外心为O ,所以1222b bc b c AOJ J AO AJ J XAJ DAC ππ-∠∠==-∠=∠=∠.从而111222b b BAO BAJ J AO BAD DAC BAC ∠=∠+∠=∠+∠=∠,所以,,A O I 三点共线.二、(本小题满分40分)设,,,0,a b c d >且4a b c d +++=.求证:222222221111a b c d a b c d+++≥+++三、(本小题满分50分)已知正整数n 满足()2014,,20141n n >=.令(){}1,,1,n A k N k n n k =∈≤≤={}{}1,1,n n n n n n B k A k A C k A k A =∈+∉=∈-∉对任意n k A ∈,记n A k k S n⎡⎤=⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数,A 表示集合A 中元素的个数. 证明:(1)()()nnkn k k n k k B k C SS S S --∈∈-=--∏∏;(2)()()mod nnB k n k n kC S S A n -∈-≡∏四、(本小题满分50分)某国建了一座时间机器,形似一条圆形地铁轨道,其上均匀设置了个站台(依次编号为1,2,…,)分别对应一个年份,起始站及终点站均为第一站(对应).为节约成本,机器每次运行一圈,只在其中一半的站台停靠.出于技术原因,每次至多行驶三站必须停靠依次,且所停靠的任两个站台不能是圆形轨道的对径点.试求不同停靠方式的种数.。

全国高中数学联赛模拟试卷试题.doc

全国高中数学联赛模拟试卷试题.doc

全国高中数学竞赛模拟试题一、选择题(每题 6 分共 36 分)1. 由 0,1,2,3,4,5六个数字能组成数字不重复且百位数字不是5 的偶数有 [ ] 个A.360B.252C.720D.2402. 已知数列 { a n }(n ≥ 1) 满足 a n 2 = a n 1 - a n ,且 a 2 =1, 若数列的前2020 项之和为 2020,则前2020 项的和等于 [ ] A.2020B.2020C.2020D.20203. 有一个四棱锥,底面是一个等腰梯形,并且腰长和较短的底长都是1,有一个底角是 60 0,又侧棱与底面所成的角都是450 ,则这个棱锥的体积是[ ]A.1B. 3C.3 D.3424. 若 ( 2x 4)2 naa x ax2a+则 a 2 a 4 a 2 n 被 3 除的余数2 2 n x 2n (n ∈ N ),0 1是 [ ] A.0 B.1C.2D.不能确定5. 已知 x, y(2, 2 ) ,且 xy 1 ,则24 的最小值是[ ]2422 xyA 、20B 、12C 、 16 4 2D 、 16 4 277776. 在边长为 12 的正三角形中有 n 个点,用一个半径为 3 的圆形硬币总可以盖住其中的2 个点,则 n 的最小值是 [ ]A.17B.16C.11D.10二、填空题(每题 9 分共 54 分)7. 在锐角三角形 ABC 中,设 tanA,tanB,tanC 成等差数列且函数 f(x) 满足f(cos2C)=cos(B+C-A) ,则 f(x) 的解析是为100 8.[(10i 1)(10i 3)(10i 7)(10i 9)] 的末三位数是 _______i 19. 集合 A 中的元素均为正整数,具有性质:若a A ,则 12- aA ,这样的集合共有 个 .10. 抛物线的顶点在原点,焦点在 x 轴的正半轴上,直线 x+y-1=0 与抛物线相交于 A 、 B 两点,且 |AB|= 86. 在抛物线上是否存在一点 C ,使△ ABC 为正三角形,若存在, C 点的11坐标是.11. 在数列 { a n } 中, a 1 = 2, a nan 11(n N * ) ,设 S n 为数列 { a n } 的前 n 项和,则S 2007 2S 2006S 2005 的值为12. 函数f ( x) 3 1 x x,其中0. 函数 f ( x)在[ 0, ) 上是减函数;的取范是 _____________________. 三、解答题(每题20 分共 60 分)13. 已知点 A 5,0和曲 x2 y 21 2x2 5,y上的点P、P、P n。

【竞赛试题】2019年全国和高中数学联赛试卷及答案

【竞赛试题】2019年全国和高中数学联赛试卷及答案

æ 4ö 【竞赛试题】2019 年全高中数学联合竞赛一试(B 卷) 参考答案及评分标准1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,解答题中第 9 小题 4 分为一个档次,第 10、 11 小题 5 分为一个档次,不得增加其他中间档次.一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分.1. 已知实数集合{1, 2, 3, x } 的最大元素等于该集合的所有元素之和,则 x 的 值为 .答案:-3 .解:条件等价于1, 2, 3, x 中除最大数以外的另三个数之和为 0 .显然 x < 0 , 从而1 + 2 + x = 0 ,得 x = -3 .2. 若平面向量 a = (2m , -1) 与 b = (2m -1, 2m +1) 垂直,其中 m 为实数,则 a 的 模为 . 答案: 10 . 解:令 2m = t ,则 t > 0 .条件等价于 t ⋅ (t -1) + (-1) ⋅ 2t = 0 ,解得 t = 3 .因此 a 的模为 32 + (-1)2 = 10 .3. 设a , b Î (0, p ) ,cos a , cos b 是方程5x 2 -3x -1 = 0 的两根,则sin a sin b 的 值为. 答案:7 .5解:由条件知 cos a + cos b = 3 , cos a cos b = - 1,从而5 5(s i n a sin b )2 = (1- c os 2 a )(1- c os 2 b ) = 1- cos 2 a - cos 2 b + cos 2 a cos 2 b2 2= (1+ cos a cos b )2 - (cos a + cos b )2 = ÷ æ 3ö - = 7 . ç ÷ ç ÷ çè 5 ø çè5ø 25又由a , b Î (0, p ) 知sin a sin b > 0 ,从而sin a sin b = 7.54. 设三棱锥 P - ABC 满足 PA = PB = 3, AB = BC = CA = 2 ,则该三棱锥的 体积的最大值为 .答案: 2 6 .3解:设三棱锥 P - ABC 的高为 h .取M 为棱 AB 的中点,则h £ PM = 32 -12 = 2 2 .当平面 PAB 垂直于平面 ABC 时, h 取到最大值 2 2 .此时三棱锥 P - ABC 的体r n -rnn积取到最大值 1S⋅= 1 ⋅ = 2 6 .3 D ABC3 35. 将 5 个数 2, 0, 1, 9, 2019 按任意次序排成一行,拼成一个 8 位数(首位不为 0),则产生的不同的 8 位数的个数为 . 答案:95 . 解:易知 2, 0, 1, 9, 2019 的所有不以 0 为开头的排列共有 4´ 4! = 96 个.其中, 除了 (2, 0, 1, 9, 2019) 和 (2019, 2, 0, 1, 9) 这两种排列对应同一个数 20192019 ,其余 的数互不相等.因此满足条件的 8 位数的个数为96 -1 = 95 .6. 设整数 n > 4 ,( x + 2 的值为. 答案:51. y -1)n 的展开式中x n -4 与 xy 两项的系数相等,则 nn解:注意到 ( x + 2 y -1)n= år =0C n x (2 y -1)r . 其中 x n -4 项仅出现在求和指标 r = 4 时的展开式 C 4 x n -4 (2 y -1)4中,其 x n -4 项系数为 (-1)4 C 4 = n (n -1)(n - 2)(n -3) .n24而 xy 项仅出现在求和指标 r = n -1 时的展开式 C n -1x ⋅ (2y -1)n -1 中,其 xy 项系数为 n -1 2 n -3 n -3C n C n -1 4⋅ (-1) = (-1) 2n (n -1)(n - 2) .因此有 n (n -1)(n - 2)(n - 3)= (-1)n -3 2n (n -1)(n - 2) .注意到 n > 4 ,化简得24n - 3 = (-1)n -3 48 ,故只能是 n 为奇数且 n - 3 = 48 .解得 n = 51 .7. 在平面直角坐标系中,若以 (r +1, 0) 为圆心、 r 为半径的圆上存在一点 (a , b ) 满足b 2 ³ 4a ,则 r 的最小值为.答案: 4 .解:由条件知 (a - r -1)2 + b 2 = r 2 ,故4a £ b 2 = r 2 - (a - r -1)2 = 2r (a -1) - (a -1)2 . 即 a 2 - 2(r -1)a + 2r +1 £ 0 . 上述关于 a 的一元二次不等式有解,故判别式(2(r -1))2 - 4(2r +1) = 4r (r - 4) ³ 0 ,解得 r ³ 4 .经检验,当 r = 4 时, (a , b ) = (3, 2 3) 满足条件.因此 r 的最小值为 4 .8. 设等差数列{a n } 的各项均为整数,首项 a 1 = 2019 ,且对任意正整数 n ,总 存在正整数 m ,使得 a 1+ a 2 ++ a n = a m .这样的数列{a n } 的个数为.答案:5 .解:设{a n } 的公差为 d .由条件知 a 1 + a 2 = a k ( k 是某个正整数),则2a 1 + d = a 1 + (k -1)d ,a 1即 (k - 2)d = a 1 ,因此必有 k ¹ 2 ,且d =k - 2.这样就有 a = a + (n -1)d = a + n -1a , n 1 1 k - 2 1í而此时对任意正整数 n ,a +a++ a = a n + n (n -1) d = a + (n -1)a + n (n -1) d 1 2 n 1 2 1 12æ n (n -1) ö = a + (n -1)(k - 2) + d ,确实为{a n } 中的一项.ç 1 çè 2 ø 因此,仅需考虑使 k - 2| a 1 成立的正整数 k 的个数.注意到 2019 为两个素数3 与 673 之积,易知 k - 2 可取-1, 1, 3, 673, 2019 这5 个值,对应得到5 个满足条 件的等差数列.二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过 程或演算步骤.9.(本题满分 16 分)在椭圆G 中, F 为一个焦点, A , B 为两个顶点.若 FA = 3, FB = 2 ,求 AB 的所有可能值.解:不妨设平面直角坐标系中椭圆 G 的标准方程为 x2y 2+= 1 (a > b > 0) ,并记 c = a 2 b 2a 2 -b 2 .由对称性,可设 F 为 G 的右焦点. 易知 F 到 G 的左顶点的距离为 a +c ,到右顶点的距离为 a - c ,到上、下顶点的距离均为 a .分以下情况讨论:(1) A , B 分别为左、右顶点.此时a + c = 3, a - c = 2 ,故 AB = 2a = 5 (相应地,b 2= (a + c )(a - c ) = 6 ,G 的方程为4 x 2y 2+ = 1 ). …………………4 分25 6(2) A 为左顶点,B 为上顶点或下顶点.此时 a + c = 3, a = 2 ,故 c = 1 ,进2 2而 b 2 = a 2 - c 2 = 3 ,所以 AB =a 2 +b 2= 7(相应的 G 的方程为 x + y = 1 ).4 3…………………8 分(3) A 为上顶点或下顶点, B 为右顶点.此时 a = 3, a - c = 2 ,故 c = 1 ,进2 2而 b 2 = a 2 - c 2 = 8 ,所以 AB =a 2 +b 2 = 17(相应的 G 的方程为 x + y= 1 ).9 8…………………12 分综上可知, AB 的所有可能值为5, 7, 17 . …………………16 分10. (本题满分 20 分)设 a , b , c 均大于 1,满足ìïlg a + log b c = 3, ïîlg b + log a c = 4. 求 lg a ⋅ lg c 的最大值.解:设lg a = x , lg b = y , lg c = z ,由 a , b , c >1可知 x , y , z > 0 . 由条件及换底公式知 x + z = 3, y + z= 4 ,即xy + z = 3y = 4x . y x…………………5 分。

2019-2020最新高中数学奥林匹克竞赛训练题(214)

2019-2020最新高中数学奥林匹克竞赛训练题(214)
——教学资料参考参考范本——
2019-2020最新高中数学奥林匹克竞赛训练题(214)
______年______月______日
____________________部门
第一试
一、填空题
1.已知点A(3,1),,且的四个顶点均在函数的图像上,则的面积为 。
2.设集合,若集合A中所有四元子集的四个元素之积组成的集合为,则集合A中的元素和为 。
7.在四面体ABCD中,,AD=BD=3,CD=2,则四面体ABCD的外接球的体积为 。
8.设为定义在R上的奇函数,且当时,,若对任意,均有,则实数的取值范围是 。
二、解ห้องสมุดไป่ตู้题
9.已知函数,设为正实数,且。证明:
10.设抛物线的焦点为F,过F且垂直于轴的直线与抛物线E交于S、T两点,以为圆心的圆过点S、T,且。
二、设为正整数,为素数。求所有满足的三元数组()
三、将编号为1,2,…,9的九个小球随机放置在圆周的九个等分点上,每个等分点上各有一个小球。设圆周上所有相邻两球号码之差的绝对值之和为S,求使S达到最小值的放法的概率。
四、已知正实数满足有一组不全为0的实数解且。证明:
(1)求抛物线的方程。
(2)设M上的点,过点M且垂直于FM的直线与抛物线E交于A、B两点,证明:。
11.记表示不超过实数的最大整数,已知数列满足。设,求
加试
一、如图1,过圆外一点P作圆的两条切线和一条割线,切点为A、B,所作割线与圆交于C、D两点,C在P、D之间,在弦CD上取一点Q,使得,证明:QP平分.
3.在中,,点D在边AB上,BD=1,AC=,DA=DC,则
4.椭圆上任意两点P、Q,O为坐标原点,若,则面积的最小值为 。
5.现安排七名同学去参加五个运动项目,要求甲、乙两名同学不能参加同一个项目,每个项目均有人参加,每人只参加一个项目,则满足上述要求的不同方案数为 。

高中数学竞赛试题汇总

高中数学竞赛试题汇总

高中数学竞赛模拟试题一一 试(考试时间:80分钟 满分100分)一、填空题(共8小题,5678=⨯分)1、已知,点(,)x y 在直线23x y += 上移动,当24x y +取最小值时,点(,)x y 与原点的距离是。

2、设()f n 为正整数n (十进制)的各数位上的数字的平方之和,比如()22212312314f =++=。

记1()()f n f n =,1()(())k k f n f f n +=,1,2,3...k =,则=)2010(2010f。

3、如图,正方体1111D C B A ABCD -中,二面角11A BD A --的度数是 。

4、在2010,,2,1 中随机选取三个数,能构成递增等差数列的概率是 。

5、若正数cb a ,,满足ba cc a b c b a +-+=+,则ca b +的最大值是 。

6、在平面直角坐标系xoy 中,给定两点(1,2)M -和(1,4)N ,点P 在X 轴上移动,当MPN ∠取最大值时,点P 的横坐标是 。

7、已知数列...,,...,,,210n a a a a 满足关系式18)6)(3(1=+-+n n a a 且30=a ,则∑=ni ia 01的值是 。

8、函数sin cos tan cot sin cos tan cot ()sin tan cos tan cos cot sin cot x x x x x x x x f x x xx xx xx x++++=+++++++在(,)2x o π∈时的最小值为 。

二、解答题(共3题,分44151514=++)9、设数列}{n a 满足条件:2,121==a a ,且 ,3,2,1(12=+=++n a a a n n n )求证:对于任何正整数n ,都有:n nn n a a 111+≥+10、已知曲线m y x M =-22:,0>x ,m 为正常数.直线l 与曲线M 的实轴不垂直,且依次交直线x y =、曲线M 、直线x y -=于A 、B 、C 、D 4个点,O 为坐标原点。

高中数学竞赛模拟试题

高中数学竞赛模拟试题
MN 的方 程 为 =£ <t ) 则 (一 < ,
阀 一 j — l
从而k k 寺, 合 . ‘ = 不 题意
( )当 直 线 MN 的 斜 率 存 在 时 , lN Y= 2 设 M:
+b M( Y ) N( 2Y ) 联 立方 程 , x , , x ,2 ,
整得m + 考 √ “+. 理 > 2x 孝 √ + 一Y x Y
设 t +上 则 t 2 要使 m > = 1 > .

1 _ 等 1 ,
得 ( +3 +6 b 1 k) kx+3 一3= 6 0,


所有 t ≥2恒 成 立 , m >—== — 则 因为
2 < m <2 +
令、
= ( > ) 即 3 t+ , £t 0 , k = 8 可得

综 上所 述 , 存在 正 数 m ∈( , ) 得 2一 2+ 使 对 于任 意 正数 , Y可使 口 b c为 三角 形 的 3条 边. ,,



设 A , , E为直线 z , c D, 上顺次排列 的 5 个点 , = C F为直线 z 的一点 , 历 B 外 联结 F c并延长至点 G ,

1 设AO1, , 0 (, 点M N . )
大 值.
x+2 I 且直线A 直 N的 之积为 > ̄ M 面积的 y= 上, M与 线A 斜率 ÷,.A N - J  ̄ 最
1. 1 已知 > , > , = y b o y o 0 + , = ,= , c m 问是否存在正数 m使得对于任意正数 , 可使 Y a bc ,, 为三角形的 3条边构成三角形. 如果存在 , 求出 m的值 ; 如果不存在 , 请说 明理 由.

2019年全国高中数学联赛A卷一试(含附加)参考答案与评分标准

2019年全国高中数学联赛A卷一试(含附加)参考答案与评分标准

为 0),则产生的不同的 8 位数的个数为

答案: 498 .
解:将 2, 0, 1, 9, 20, 19 的首位不为 0 的排列的全体记为 A .
一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分.
1. 已知正实数 a 满足 aa = (9a)8a ,则 loga (3a) 的值为

答案: 9 . 16
1
解:由条件知 9a = a8 ,故 3a =
9a ⋅a
=
9
a 16
,所以 loga (3a)
=
9 16

2. 若实数集合{1, 2, 3, x} 的最大元素与最小元素之差等于该集合的所有元素
所以 EPF
为直角,进而 SDPEF
=
1⋅ 2
PE

PF
=1.
5. 在1, 2, 3, , 10 中随机选出一个数 a ,在-1, - 2, -3, , -10 中随机选出一
个数 b ,则 a2 + b 被 3 整除的概率为

答案:
37 100

解:数组 (a, b) 共有102 =100 种等概率的选法.
台.不妨设正方体棱长为 1,则正方体体积为 1,结合条件知棱台 ABC - KFL 的
体积V = 1 .
4
P

PF
=
h
,则
KF AB
=
FL BC
=
PF PB
=
h
h +1
.注意到
PB,
PF
E
H K
G L
分别是棱锥 P - ABC 与棱锥 P - KFL 的高,于是

高中数学竞赛模拟试题(第一试)及参考答案

高中数学竞赛模拟试题(第一试)及参考答案

高中数学竞赛模拟试题一、填空题:本大题共8小题,每小题8分,共64分.1.若对任意[],2x a a ∈+均有2x a x +≥,则实数a 的取值范围是 解:22323204602x a x x ax a a a +≥⇔--≤⇒+≤⇒≤-. 2.已知()220x y ≥>,则x y +的最小值为解:(221212x x x y y y ⎫+≥⇒≥⇒≥⎪⎪⎭(利用函数单调性)12x y y y+≥+≥,等号当且仅当1x y ==时等号成立,所以x y +的最小值为2. 3.用[]x 表示不超过x 的最大整数.则211sin ⎡⎤⎢⎥⎢⎥⎢⎢⎣等于解:22110sin20142014sin <<⇒>,222111tan 120152014sin tan >⇒=+<,所以2120141sin ⎡⎤⎢⎥=⎢⎥⎢⎢⎣.4.已知()()()()()21,,()21n n fx f x f x f x f x f f x x ===+个则12n f ⎛⎫= ⎪⎝⎭ 解:1222211111111111121n nn n n n n ff f f f f x ----⎛⎫⎛⎫⎛⎫=⇒+=+==+=+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,所以2132n n f ⎛⎫= ⎪⎝⎭. 5.在正方体1111ABCD A B C D -中,已知棱长为1,点E 在11A D 上,点F 在CD 上,112,2A E ED DF FC ==.则三棱锥1B FEC -的体积为解:如图,作111FF C D ⊥,连接11B F 交1EC 于点K 三棱锥1B FEC -的体积为115327BFK EC S =△.6.已知等腰直角△PQR 的三个顶点分别在等腰直角△ABC 的三条边上, 记△PQR ,△ABC 的面积分别为S △PQR ,S △ABC ,则PQR ABCS S ∆∆的最小值为解:(1)当PQR ∆的直角顶点在ABC ∆的斜边上,则,,,P C Q R 四点共圆,180,APR CQR BQR ∠=∠=-∠所以sin sin .APR BQR ∠=∠在,APR BQR ∆∆中分别应用正弦定理得,sin sin sin sin PR AR QR BRA APRB BQR==. 又45,A B ∠=∠=故PR QR =,故AR BR =即R 为AB 的中点.过R 作RH AC ⊥于H ,则12PR RH BC ≥=,所以22221()124PQR ABC BC S PR S BC BC ∆∆=≥=,此时PQR ABCS S ∆∆的最小值为14.(2)当PQR ∆的直角顶点在ABC ∆的直角边上,如图所示,设1,(01),(0)2BC CR x x BRQ παα==≤≤∠=<<,则90.CPR PRC BRQ α∠=-∠=∠= 在Rt CPR ∆中,,sin sin CR xPR αα== 在BRQ ∆中,31,,sin 4x BR x RQ PR RQB QRB B ππαα=-==∠=-∠-∠=+, 由正弦定理, 1sin 3sin sin sin sin()44xPQ RB xB PQB αππα-=⇔=⇔∠+1sin cos 2sin x ααα=+, 因此2221111()()22sin 2cos 2sin PQR x S PR ααα∆===+. 这样,PQR ABCS S ∆∆2222111()cos 2sin (12)(cos sin )5αααα=≥=+++,当且仅当arctan 2α=取等号, 此时PQR ABCS S ∆∆的最小值为15.7.设P 为抛物线22y x =上的一个动点,过P 作抛物线的切线与22:1O x y +=交于点,,M N O 在,M N 两点处的切线交于点Q ,则点Q 的轨迹方程是8.选择集合{}()*1,2,,S n n N =∈的两个不同的非空子集A 和B .则使B 中最小数大于A 中最大数的概率是 设A 中的最大数为k ,其中11k n -≤≤,整数n ≥3,则A 中必含元素k ,另元素1,2,…,k 1-可在A 中,故A 的个数为:0111111C C C 2k k k k k -----++⋅⋅⋅+=, B 中必不含元素1,2,…,k ,另元素k +1,k +2,…,n 可在B 中,但不能都不在B 中,故B 的个数为:12C C C 21n k n kn k n k n k -----++⋅⋅⋅+=-,从而集合对(A ,B )的个数为()1221k n k --⋅-=1122n k ---,所以所有满足A 中最大数小于B 中最小数的集合对(A ,B )的个数为()11111111222(1)2(2)2112n n n k n n k n n ------=--=-⋅-=-⋅+-∑.而所有的集合对(A ,B )的个数为()()2122nn --所以使B 中最小数大于A 中最大数的概率是()()1(2)212122n n nn --⋅+-- 二、解答题:本大题共3小题,共56分.9.(本小题满分16分). 已知椭圆2222:1x y E a b+=的左、右焦点分别为1F ,2F ,直线l 与椭圆E 有且只有一个公共点M ,且交y 轴于点P ,过点M 作垂直于l 的直线交y 轴于点Q .求证:12,,,,F Q F M P 五点共圆.(略)10.(本小题满分20分)已知函数22()1n nx xf x x -=+,12,n x x x ,,为正实数,且12...1n x x x +++=,证明:12()()...()0n n n n f x f x f x +++≥ (略)11.(本小题满分20分).已知数列{}{},n n a b 满足1*1111,0,0,,1n n nn n n a a b a b n N b b a ++⎧=+⎪⎪>>∈⎨=+⎪⎪⎩.证明:505020a b +>. 证明:因为22221122112()n n n n n n n n n na b a b a b a b b a +++=+++++, 所以49492222505011221111()2()i i i i i i ii a b a b a b a b b a ==+=+++++∑∑221122111122494449200.a b a b >++++⨯⨯≥+⨯=又1112n n n n n n a b a b a b ++=++,所以49505011111111124998100i i i a b a b a b a b a b ==++⨯>++≥∑. 所以222505050505050()2200200400a b a b a b +=++>+=.因此505020a b +>2016年浙江省高中数学竞赛模拟试题(2)及参考答案加试一、(本小题满分40分) 已知数列{}n a 满足11a =,13n n a a +=+*n N ∈.(I) 证明:{}n a 是正整数数列;(II) 是否存在*m N∈,使得2015m a ,并说明理由.(Ⅰ)由13n n a a +=+得2211640n n n n a a a a +++++=,(1)同理可得222212640n n n n a a a a +++++++=,(2),由(1)(2)可知,2,n n a a +为方程2211640n n x a x a ++-++=的两根,又2n n a a +<,即有216n n n a a a +++=,即216.n n n a a a ++=- 因为121,5,a a ==所以n a 为正整数.(Ⅱ)不存在*m N ∈,使得2015m a .假设存在*m N ∈,使得2015m a ,则31m a .一方面,2214m m m a a a ++=+,所以21314m a ++,即214(mod31)m a +≡-,所以301530142(mod31)m a +≡-≡-. 由费马小定理知3021(mod31)≡,所以3011(mod31)m a +≡-,另一方面,1(,31)1m a +=.事实上,假设1(,31)1m a d +=>,则31d ,即31d =,所以131m a +,而21314m a ++,这样得到314.矛盾.所以,由费马小定理得3011(mod31)m a +≡.这样得到11(mod31)≡-.矛盾. 所以不存在*m N ∈,使得2015m a二、(本小题满分40分)如图,在等腰ABC ∆中,A B A C B C =>,D 为ABC ∆内一点,满足.DA DB DC =+ 边AB 的中垂线与ADB ∠的外角平分线交于点P ,边AC 的中垂线与ADC ∠的外角平分线交于点Q .证明: B C P Q 、、、 四点共圆.三、(本小题满分50分)设p 为大于3的素数,证明:(1)()11pp -+至少含有一个不同于p 的素因子;(2)设()111inpi i p p α=-+=∏,其中12,,,n p p p 是互不相同的素数,12,,,n ααα为正整数,则212ni i i p p α=≥∑.四、(本小题满分50分)设X 是非空有限集合,12,,,k A A A … 是X 的k 个子集,满足下列条件:(1) 3,1,2,,i A i k ≤=…; (2) X 中任意一个元素属于12,,,k A A A …中的至少4个集合.证明:可从12,,,k A A A …中选出37k ⎡⎤⎢⎥⎣⎦个集合,使得它们的并集为X .解:令{}12,,,k S A A A =.现依次选定集合i A ,使得这些集合的并集i A 的元素个数每次递增3个,选出所有这样的集合后,不妨设{}3312,,,a S A A A =,30a ≥,又设33S X =,其中333X a =.因为3S 已是满足以上性质的最大集合,则对于剩下的任意集合3,i A i a >,有()32iA X X -≤.类似地,在集合3X X -中依次选定集合i A ,使得这些集合的并集i A 的元素个数每次递增2个,不妨设这些集合{}3332212,,,a a a a S A A A +++=全部被选出,则有()232S X X X ⋂-=,且222X a =;同理,对于剩下的任意集合23,i A i a a >+,有()321iA X X X --≤.类似地,{}3232321112,,,a a a a a a a S A A A ++++++=,以及321X X X X --=,注意到32112323X X X X a a a =++=++,323S S S X ⋃⋃= 且321123S S S a a a m ++=++=即为上述选定集合所满足的关系,现说明37km ≤. 注意到1X 中的每一个元素至少出现4次,但11iA X ≤,32i a a ≥+,因此有:3214k a a a ≥++ (1)在12X X +中,每个元素也至少出现4次,但()122iA X X +≤,3i a ≥,因此有:()21332124422a a k a aa a +≥+=++ (2)在X 中,每个元素也至少出现4次,因此有:()3213243a a a k ++≥ (3)现考虑20*(1)12*(2)27*(3)++,()12359140k a a a ≥++,所以5931407k m k ≤<,即为所求.。

高中数学竞赛模拟试题(含详细答案)

高中数学竞赛模拟试题(含详细答案)

高中数学竞赛模拟试题(含详细答案)高中数学竞赛试题(模拟)一、选择题:共10个小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.已知函数f(x)是R上的奇函数,g(x)是R上的偶函数,若f(x)-g(x)=x+9x+12,则f(x)+g(x)=(。

)。

A。

-x+9x-12B。

x+9x-12C。

-x-9x+12D。

x-9x+122.有四个函数:①y=sinx+cosx②y=sinx-cosx③y=sinxcosx④y=(空缺)其中在(x,y)上为单调增函数的是(。

)。

A。

①B。

②C。

①和③D。

②和④3.方程x+x-1=xπ2的解集为A(其中π为无理数,π=3.141…,x为实数),则A中所有元素的平方和等于(。

)。

A。

B。

C。

1D。

44.已知点P(x,y)满足(x-4cosθ)+(y-4sinθ)=4(θ∈R),则点P(x,y)所在区域的面积为(。

)。

A。

36πB。

32πC。

20πD。

16π5.将10个相同的小球装入3个编号为1、2、3的盒子(每次要把10个球装完),要求每个盒子里球的个数不少于盒子的编号数,这样的装法种数为(。

)。

A。

9B。

12C。

15D。

186.已知数列{an}为等差数列,且S5=28,S10=36,则S15等于(。

)。

A。

807.已知曲线C:y=-x2-2x与直线l:x+y-m=0有两个交点,则m的取值范围是(。

)。

A。

(-2-1,2)B。

(-2,2-1)C。

[,2-1)D。

(,2-1)8.过正方体ABCD-A1B1C1D1的对角线BD1的截面面积为S,Smax和Smin分别为S的最大值和最小值,则Smax/Smin的值为(。

)。

A。

B。

C。

D。

9.设x=.82,y=sin1,z=log2237,则x、y、z的大小关系为(。

)。

A。

x<y<zB。

y<z<xC。

z<x<yD。

z<y<x10.如果一元二次方程x-2(a-3)x-b+9=0中,a、b分别是投掷骰子所得的数字,则该二次方程有两个正根的概率P=(。

2019年全国高中数学联赛河南省预赛高一试题Word版含答案

2019年全国高中数学联赛河南省预赛高一试题Word版含答案

2019年全国高中数学联赛河南省预赛高一试题一、填空题(共8小题每小题8分,满分64分)1. 集合2{|560}P x x x =-+=,{|10}M x mx =-=,且M P ⊆,则满足条件的实数m 组成的集 合为 .2.函数()f x =的值域是 .3已知函数|2|3||220181()41x x x f x -+=+在R 上的最大值为M ,最小值为m , 则M m += .4.已知四面体ABCD 中, 5AB CD ==,AD BC ==AC BD ==则该四面体的体积 为 .5.已知关于x 的方程32x ax bx ++10a b ---=有两个根分别在(0,1),(1,)+∞内, 则211a b a +++的取值范围是 . 6.在直线3x =上任取一点P ,过点P 向圆22(2)4x y +-=作两条切线,其切点分别为,A B ,则直线AB经过一个定点,该定点的坐标为 .7.已知A ∠为锐角,的最小值为 .8.甲乙两人打乒乓球,甲每局获胜的概率为23,当有一人领先两局的时候比赛终止比赛的总局数为 +()i x i N ∈的概率为i p ,这里要求1()i I x x i N +<∈,则1i i i S x p +∞===∑ .二、(1)证明对于任意的正实数,a b 都有: a b +≥(2)已知正数,x y 满足: 1x y +=,求14x y +的最小值. 三、设锐角ABC ∆边,,BC CA AB 上的垂足分别为,,D E F ,直线EF 与ABC ∆的外接圆的一个交点为P ,直线BP 与DF 交于点Q .证明: AP AQ =.四、已知实数,x y 满足:21cos (1)x y ++-=222(1)(1)1x y x y x y +++--+,求xy 的最小值. 五、设,S T 是两个非空集合若存在一个从S 到T 的函数()y f x =满足:(i) {()|}T f x x S =∈;(ii) 12,x x S ∀∈,当12x x <时,恒有12()()f x f x <.那么称这两个集合“保序同构”.证明: (1)(0,1),A B R ==是保序同构的;(2)判断,A Z B Q ==是不是保序同构的,若是,请给出一个函数的表达式;若不是,请说明理由.2019年全国高中数学联赛河南省预赛高一试题参考答案一、填空题 1. 11{,,0}23 .2. 2].3. 2.4. 20.5. (0,2).6. 4(,2)3.8. 185. 二、(1)由a b +-20=-≥,故a b +≥ (2) 1414()()x y x y x y+=++ 414y x x y =+++59≥+= 等号在12,33x y ==处取到,故最小值为9. 三、如上图所示,由于,,D E F 是垂足,则90BFC BEC ∠=∠=,故,,,C B F E 四点共圆,从而AFE ACB ∠=∠而 =BFD FQB FBQ BCA PCB PCA ∠∠+∠⎧⎨∠=∠+∠⎩FQB ⇒∠=PCB PAF ∠=∠故,,,A F P Q 四点共圆AQP AFE ⇒∠=∠=ACB APQ ∠=∠AP AQ ⇒=四、21cos (1)x y ++-=222(1)(1)1x y x y x y +++--+=22(2)2()111x y xy x y x y +-+-++-+ 2(1)11x y x y -++==-+111x y x y -++-+ 由于201cos <+(1)2x y +-≤,故10x y -+>,从而1121x y x y -++≥-+ 21cos (1)211x y x y ⎧++-=⇒⎨-+=⎩2cos (1)1x y x y⎧+-=⇒⎨=⎩1,x y k k Z x y π+-=∈⎧⇒⎨=⎩ 12k x y π+⇒==,k Z xy ∈⇒=211(),24k k Z π+≥∈ 故min1()4xy =. 五、(1)令()tan[(f x x =-1)]()2x A π∈, 则()f x 单调增,且其值域为R ,因此A 和B 是保序同构的;(2)集合,A Z B Q ==不是保序同构的.事实上上若集合,A Z B Q ==是保序同构的.则存在函数()y f x =,使得(1),(2)f a f b ==,其中,,a b Q a b ∈<. 考察数2a b c Q +=∈,则a c b <<,由于A 和B 是保序同构的,则存在x Z ∈使()f x c =, 结合()y f x =单调递增,则12x <<,矛盾.。

2019年全国高中数学联合竞赛试题(A卷)与答案

2019年全国高中数学联合竞赛试题(A卷)与答案


8
loga
9
+
8
=
1

16
loga
3
+
16
=
9

loga(3a)
=
9. 16
2. 若实数集合 {1, 2, 3, x} 的最大元素与最小元素之差等于该集合的所有元素之
和,则 x 的值为
.
解答
若 x 为最大元素 ⇒ x − 1 = x + 6,无解;

x
为最小元素

3−x
=
x+
6

x
=
3 −2

若 x 既非最大也非最小 ⇒ 3 − 1 = x + 6 ⇒ x = −4,矛盾.
19 20 20 1 9
20 1 9 20 19
1 9 20 19 20
1 9 20 20 19
故此时排列共有 3 × 5 + 3 × 11 + 6 = 54 个. 同理当出现两个 19 时,相应的排列也有 54 个. 当同时出现两个 19 和两个 20 时,相应的排列有 6 个. 所以总的排列个数为 600 − 2 × 54 + 6 = 498.
⇒ 25t2 + 100t + 25x2 − x4 ⩾ 0 对任意实数 t 成立,
于是 ∆ = 1002 − 4 × 25(25x2 − x4) ⩽ 0 ⇒ x4 − 25x2 + 100 ⩽ 0

5

x2

20

√ 5

x

2√5,所以
| #a»|
的取值范围是
√√ [ 5, 2 5].

2019全国高中数学联赛试题

2019全国高中数学联赛试题

全国高中数学联合竞赛一试试题(A 卷)一、填空题:本大题共 8小题,每小题 8分,共64分.1.设集合{1,2,3,,99}A =,{2}B x x A =∈,{2}B x x A =∈,则B C 的元素个数 .解析:因为{1,2,3,,99}A =,所以{2,4,6,,198}B =,{1,2,3,,49}C =,于是 {2,4,6,,48}B C =,共24个元素.2.设点P 到平面α,点Q 在平面α上,使得直线PQ 与α所成角不小于30且不大于60,则这样的点Q 所构成的区域的面积为 . 解析:过点P 作平面α的垂线,这垂足为O ,则点Q 的轨迹是以O 为圆心,分别以1ON =和3OM =为半径的扇环,于是点Q 所构成的区域的面积为21S S S =-= 98πππ-=.3. 将1,2,3,4,5,6随机排成一行,记为,,,,,a b c d e f ,则abc def +是偶数的概率为 .解析:(直接法)将1,2,3,4,5,6随机排成一行,共有66720A =种不同的排法,要使abc def +为偶数,abc 为与def 同为偶数或abc 与且def 同为奇数.(1)若,,a b c 中一个偶数两个奇数且,,d e f 中一个奇数两个偶数. 共324种情形;(2)若,,a b c 中一个奇数两个偶数且,,d e f 中一个偶数两个奇数. 共324种情形; 共有648种情形.综上所述,abc def +是偶数的概率为648972010=. (间接法)“abc def +是偶数”的对立事件为“abc def +是偶数”, abc def +是偶数分成两种情况:“abc 是偶数且def 是奇数”或“abc 是奇数且def 是偶数”,每P O M N α种情况有333336A A ⋅=种不同情形,共有72中不同情形,abc def +是偶数的概率为729172010-=. 4.在平面直角坐标系xoy 中,椭圆C :22221x y a b+=(0a b >>)的左、右焦点分别是12,F F ,椭圆C 的弦ST 与UV 分别平行于x 轴和y 轴,且相交于点P .已知线段PU 、PS 、PV 、PT 的长分别为1,2,3,6,则12PF F ∆的面积为 .解析:不妨设弦ST 与UV 的交点位于第一象限,如图所示.则8ST =,4UV =,则点P 的坐标为(2,1).直线2x =被椭圆C 截得的弦长为4UV =,由222212x y a b x ⎧+=⎪⎨⎪=⎩得2222(4)b a y a -=,24UV y ===,即2a =.同理,由222212x y a b y ⎧+=⎪⎨⎪=⎩得4b =.联立得220a =,25b =,所以215c =,c =,12PF F ∆的面积为112S =⨯=. 5.设()f x 是定义在R 上的以2为周期的偶函数,在区间[0,1]上严格递减,且满足()1f π=,(2)2f π=,则不等式组121()2x f x ≤≤⎧⎨≤≤⎩的解集为 . 解析:()f x 是定义在R 上的以2为周期的偶函数,()()f x f x =-,(2)()f x f x +=, (2)()f x f x +=-,函数的图像关于1x =对称,()f x 在区间[0,1]上严格递减,所以()f x 在区间[1,2]上严格递增.(2)()1f f ππ-==,122π<-<且(82)(2)f f ππ-= 2=,1822π<-<.1()2f x ≤≤在[1,2]等价于(2)()(82)f f x f ππ-≤≤-,解之得282x ππ-≤≤-.即不等式组121()2x f x ≤≤⎧⎨≤≤⎩的解集为[2,82]ππ--.6.设复数z 满足1z =,使得关于x 的方程2220zx zx ++=有实根,则这样的复数z 的和为 .解析:设复数z a bi =+,(,a b R ∈).因为1z =,所以221a b +=.设方程222zx zx ++0=的实根为m (0m ≠),则2220zm zm ++=,2()2()20a bi x a bi x ++-+=, 2222020am am bm bm ⎧++=⎨-=⎩.由220bm bm -=得,0b =或2m =. (1)当0b =时,又由221a b +=,得1a =或1a =-.当1a =时,2220am am ++=可化为2220m m ++=,方程无实根,舍去; 当1a =-时,2220am am ++=可化为2220m m --+=,方程有实根. 此时,1z i =-.(2)当2m =时,代入2220am am ++=可得14a =-,又由221ab +=,4b =或4b =-.此时2144z =-+,3144z i =--. 综上所述,12332z z z ++=-. 7.设O 为的ABC ∆外心,若2AO AB AC =+,则sin BAC ∠的值为 . 解析:延长AC 到E ,使得CE AC =.连接OA ,OC ,OE .作直径BD ,连接DE . 因为2AO AB AC =+,即AO AB AE =+,所以,四边形ABOE 为平行四边形,四边形ODEA 为菱形.设AC m =,则2OC OA OB m ===.在AOC ∆中, 利用余弦定理可得:1cos 4OAC ∠=,从而sin OAC ∠=. 又OAC AOD π∠+∠=,1cos 4AOD ∠=-.2AOD BAO ∠=∠,21cos cos 22cos 14AOD BAO BAO ∠=∠=∠-=-,所以,cos BAO ∠=B A C E O Dsin 4BAO ∠=. 于是,sin sin()BAC BAO OAC ∠=∠+∠sin cos BAO OAC =∠⋅∠+cos sin BAO OAC ∠⋅∠=144444+⨯=. 8.设整数数列1210,,,a a a 满足1013a a =,2852a a a +=且1{1,2}i i i a a a +∈++, 1,2,,9i =,则这样的数列的个数为 . 解析:因为1{1,2}i i i a a a +∈++,所以11i i a a +=+或12i i a a +=+. 一方面,1019a a ≥+,1013a a =,1139a a ≥+,192a ≥,1a 为整数,15a ≥;另一方面,10129a a ≤+⨯,1013a a =,11318a a ≤+,19a ≤.于是,159a ≤≤. 由2852a a a +=且1{1,2}i i i a a a +∈++,且1210,,,a a a 都是整数,得: 当15a =时,1015a =,这时满足条件的数列共3个; 当16a =时,1018a =,这时满足条件的数列共28个; 当17a =时,1021a =,这时满足条件的数列共36个; 当18a =时,1024a =,这时满足条件的数列共12个; 当19a =时,1027a =,这时满足条件的数列共1个; 共计80个.。

2019-2020最新高中数学奥林匹克竞赛训练题(221)

2019-2020最新高中数学奥林匹克竞赛训练题(221)
——教学资料参考参考范本——
2019-2020最新高中数学奥林匹克竞赛训练题(221)
______年______月______日
____________________部门
第一试
一、填空题
1.在中,,,则的最大值为
2.设,则 。
3.将排成一列,使得每一个数严格大于排在其前面的所有数,或严格小于排在其前面的所有数,记不同的排列个数为。则 。
二、解答题
9.设数列、满足,,证明:对任意的,均有
10.一种排卡游戏规则如下:将写有1,2,…,9的九张卡片随机地排成一行,若第一张卡片(左起)上的标数为,则将前张卡片逆序排过称为一次操作,无法操作时(即第一张卡片上的标数为“1”)游戏停止。若一个排列无法操作,且恰由唯一的另一个排列经过一次操作得到,则此排列称为“二次终止排列”。在所有可能的排列中,求二次终止排列出现的概率。
二、(1)求所有映射,满足
(2)求所有映射,满足
三、证明:给定任意正整数,均有无穷多个素数,对于每个,均存在正整数,使得
四、有三种型号的零件,取个零件围成一个圆依次为abab…abc,现进行如下操作:在保证任意相邻零件型号不同的情况下,每次改变一个零件的型号,问:是否能经过有限次操作,使得最后零件顺序为abab…abc?
11.取定椭圆长轴上的一点K(K不为中心),过K作椭圆的两条弦AC、BD。延长四边形ABCD的对边AB、DC交于点M,延长AD、BC交于点N。当弦AC、BD任意变动时(保持交于点K),证明:
(1)点M、N在同一条定直线上;
(2)的垂心为定点。
加试
一、如图1,圆交于E、F两点,过点F的直线AD、BC与圆分别交于点A、B,与圆分别交于点D、C,且AD=BC,,联结BD,过点C作AB的平行线CG,与BD交于点G,证明:EG//AD.

浙江省磐安县第二中学2019_2020学年高二数学10月竞赛试题201912230286

浙江省磐安县第二中学2019_2020学年高二数学10月竞赛试题201912230286

浙江省磐安县第二中学2019-2020学年高二数学10月竞赛试题 注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题1.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .4CD .32.平面α上有不共线的三点到平面β的距离相等,则α与β的位置关系为( )A .平行+B .相交C .平行或相交D .垂直3.下列命题中正确的个数是( )①平面α与平面β相交,它们只有有限个公共点.②若直线l 上有无数个点不在平面α内,则//l α.③若两条直线和第三条直线所成的角相等,则这两条直线互相平行④已知平面α,β和异面直线a ,b ,满足a α⊂,//a β,b β⊂,//b α,则//αβ.A .0B .1C .2D .34.正方体中,直线与所成的角为( ) A .30o B .45o C .60o D .90o5.已知a ,b ,c 是三条互不重合的直线,α,β是两个不重合的平面,给出四个命题:①a ∥b ,b ∥α,则a ∥α;②a ,b ⊂α,a ∥β,b ∥β,则α∥β;③a ⊥α,a ∥β,则α⊥β;④a ⊥α,b ∥α,则a ⊥b .其中正确的命题个数是 ( )A .1B .2C .3D .46.我国古代《九章算术》将上下两个平行平面为矩形的六面体称为刍童.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和6,高为2,则该刍童的表面积为( )A .40+B .72C .40+D .327.如图所示,已知正方体1111ABCD A B C D -的棱长为3,点E 在11A B 上,且11B E =,记图中阴影平面为平面α,且平面α平面1BC E .若平面α平面111AA B B A F =,则AF 的长为( )A .1B .1.5C .2D .38.ABC ∆的斜二侧直观图如图所示,则ABC ∆的面积为( )A .1B .2C .2D 9.下列图形中不一定是平面图形的是( )A .三角形B .平行四边形C .梯形D .四边相等的四边形10.如图所示的平面结构(阴影部分为实心,空白部分为空心),绕中间轴旋转一周,形成的几何体为( )A .一个球B .一个球中间挖去一个圆柱C .一个圆柱D .一个球中间挖去一个棱柱第II 卷(非选择题)二、填空题11.在棱长为1的正方体1111ABCD A B C D -中,则直线11D B 与平面11A BCD 所成角的正弦值为________.12.正方体的全面积为a ,它的顶点都在球面上,则这个球的表面积是______.13.如图所示,在三棱柱111ABC A B C -中,E F G H ,,,分别是1111AB AC A B A C ,,,的中点,则与平面BCHG 平行的平面为________.14.如图所示,在四面体D ABC -中,若CD =,其余各棱长都为1,则在这个四面体中互相垂直的平面是____________________________________.15.已知ABC ∆,用斜二测画法作它的直观图'''A B C ∆,若'''A B C ∆是斜边平行于'x 铀的等腰直角三角形,则ABC ∆是________三角形(填“锐角”.“直角”.“钝角”)16.某四棱锥的三视图如图所示,那么该四棱锥的体积为____.17.已知圆锥和圆柱的底面半径均为R ,高均为3R ,则圆锥和圆柱的表面积之比是______.三、解答题18.求图中阴影部分绕AB 所在直线旋转一周所形成的几何体的表面积和体积.19.如图,在直三棱柱ABC -A 1B 1C 1中,E ,F 分别为A 1C 1和BC 的中点.(1)求证:EF∥平面AA1B1B;(2)若AA1=3,AB=EF与平面ABC所成的角.20.如图,在四棱锥中,底面ABCD是矩形,,E,F分别为BC,CD的中点,且平面求证:平面PBD;平面PEF.的直观图及三视图如图所示,E、F分别为PC、BD的中点.21.如图,多面题P ABCD(1)求证:EF ∥平面PAD ;(2)求证:平面PDC ⊥平面PAD ;(3)求P ABCD V -.22.如图,四边形ABCD 为菱形, G 为AC 与BD 的交点, BE ⊥平面ABCD . (Ⅰ)证明:平面AEC ⊥平面BED .(Ⅱ)若120ABC ∠=, AE EC ⊥, 2AB =,求点G 到平面AED 的距离.2019-2020学年度磐安二中学校10月月考卷高二数学考试时间:120分钟;命题人:潘建华一、单选题1.某几何体的三视图如图所示,则该几何体的体积为( )A B C D 【答案】C【解析】【分析】根据三视图得到原图,再由椎体公式得到结果.【详解】由三视图可推知,几何体的直观图如图所示,其中平面ABD ⊥平面BCD ,1AO =,三棱锥A BCD -的体积为(2113⨯=故答案为:C.【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整. 2.已知四面体中,平面平面,为边长2的等边三角形,,,则异面直线与所成角的余弦值为()A. B. C. D.【答案】A【解析】【分析】根据题意画出图形,结合图形的特征建立空间直角坐标系,得到相关点的坐标后根据直线方向向量的夹角求出异面直线所成的角.【详解】根据题意画出图形如下图所示.∵平面平面,平面平面,,∴平面,以过点D且与平面垂直的直线为z轴建立空间直角坐标系,则,∴,∴,∴异面直线与所成角的余弦值为.故选A.【点睛】解题的关键是将求两条异面直线所成角转化为两向量夹角的问题求解,其中需要注意异面直线所成角与两向量夹角间的关系,解题的关键是要注意异面直线所成角的范围,此处容易出现错误,属于基础题.3.已知点A,B O表面上运动,且AB=2,过AB作相互垂直的平面α,β,若平面α,β截球O所得的截面分别为圆M,N,则A.MN长度的最小值是2 B.MNC.圆M面积的最小值是2πD.圆M,N的面积和是定值8π【答案】B【解析】【分析】由过AB作相互垂直的平面α,β,确定BA、BC、DB两两互相垂直,M,N分别是AC,AD的中点,求出CD,即可得结论.【详解】如图所示,因为过AB作相互垂直的平面α、β,则面ABC⊥面ABD,由面面垂直的性质定理,得AB⊥面BCD,所以AB⊥BC,AB⊥BD,得BD⊥BC,所以BA、BC、DB两两互相垂直,所以BC2+BD2+2AB=(2,因为AB=4,∴CD2=BC2+BD2=8,所以∵M,N分别是AC,AD的中点,∴MN故选:B.【点睛】本题考查了球的内接几何体和面面垂直,考查学生分析解决问题的能力,属于中档题.4.若三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,PA=AB=2,AC=三棱锥P-ABC的四个顶点都在球O的球面上,则球O的表面积为A.12πB.16πC.20πD.24π【答案】A【解析】【分析】求解底面长方形的外接圆,PA⊥平面ABC,球心到圆心的距离为1,利用圆心与球心构造直角三角形求解即可.【详解】由题意,PA⊥平面ABC,PA=AB=2,AC=ABC是直角三角形,补形底面为长方形.∴球心到圆心的距离为1,底面长方形的外接圆,∴R2=r2+1,即,∴球O的表面积S=4πR2=12π.故选:A.【点睛】本题考查球的表面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.5.平面α上有不共线的三点到平面β的距离相等,则α与β的位置关系为()A.平行B.相交C.平行或相交D.垂直【答案】C【解析】【分析】根据三点在平面的同侧或异侧,两种情况,即可判定得到α与β的位置关系,得到答案.【详解】α平面β;由题意,若三点分布在平面β的同侧,此时平面//若三点分布于平面β的两侧时,此时平面α与平面β相交,综上可知,平面α与平面β平行或相交,故选C.【点睛】本题主要考查了空间中平面的位置关系的判定,其中根据三点在平面β的同侧和异侧,分类讨论是解答的关键,着重考查了推理与论证能力,属于基础题.6.正方形ABCD绕对角线AC所在直线旋转一周所得组()A.由两个圆台组合成的B.由两个圆锥组合成的C.由一个圆锥和一个圆台组合成的D.由两个棱台组合成的【答案】B【解析】【分析】将正方形ABCD绕对角线AC所在的直线旋转一周,根据旋转体的定义,即可求解,得到答案.【详解】由题意,将正方形ABCD绕对角线AC所在的直线旋转一周,根据旋转体的定义,可知得到的组合体是两个同底的圆锥,故选B.【点睛】本题主要考查了旋转体的概念及其应用,其中解答中熟记旋转体的概念,合理判定是解答的关键,着重考查了空间想象能力,属于基础题.7.直线m⊥平面α,下面判断错误的是()A.若直线n⊥m,则n∥αB.若直线n⊥α,则n∥mC.若直线n∥α,则n⊥m D.若直线n∥m,则n⊥α【答案】A【解析】【分析】结合线面垂直、线线平行及线面平行的相关性质可以判断.【详解】由直线m⊥平面α,得:在A中,若直线n⊥m,则由线面平行性质得n与α相交、平行或n⊂α,故A错误;在B中,若直线n⊥α,则由线面垂直的性质得n∥m,故B正确;在C中,若直线n∥α,则由线面垂直的性质得n⊥m,故C正确;在D中,若直线n∥m,则由线面垂直的判定定理得n⊥α,故D正确.故选:A.【点睛】本题主要考查空间位置关系的判定,可以借助模型求解,侧重考查直观想象和逻辑推理的核心素养.8.已知两条不同直线m、n和两个不同平面α﹑β,下列叙述正确的是()A .若//m α,//n α,则//m nB .若////m n m n ααββ⊂⊂,,,,则//αβC .若αβ⊥,m α⊂,则m β⊥D .若αβ⊥,m β⊥,m α⊄,则//m α【答案】D【解析】【分析】A 选项可由线面平行的性质作出判断,B 选项可由面面平行的判定定理作出判断,C 选项可由面面垂直的性质作出判断,D 选项可由线面平行的条件作出判断【详解】当两条直线同时与一个平面平行时,两条直线之间的关系不能确定,故A 不正确,B 选项再加上两条直线相交的条件,可以判断面与面平行,故B 不正确,C 选项再加上m 垂直于两个平面的交线,得到线面垂直,故C 不正确,D 选项中,如下图所示设=b αβ⋂,,a b a β⊥∴⊥,又m β⊥,根据垂直于同一平面的两直线平行,可得m a ∥,又a α⊂,m α∴∥选D【点睛】考生需灵活掌握线线平行到线面平行,面面平行到线面平行的基本转化关系,遇到较为抽象的证明问题时,辅以图像能够更加有效的解决问题9.下列命题中正确的个数是( )①平面α与平面β相交,它们只有有限个公共点.②若直线l 上有无数个点不在平面α内,则//l α.③若两条直线和第三条直线所成的角相等,则这两条直线互相平行④已知平面α,β和异面直线a ,b ,满足a α⊂,//a β,b β⊂,//b α,则//αβ.A .0B .1C .2D .3 【答案】B【解析】【分析】利用线线平行、线面平行以及面面平行的定义来判断选项即可【详解】在①中,平面α与平面β相交,它们有无数个公共点,故①错误;在②中,若直线l 上有无数个点不在平面α内,则l 与α平行或相交,故②错误;在③中,若两条直线和第三条直线所成的角相等,则这两条直线相交、平行或异面,故③错误;在④中,已知平面α,β和异面直线a ,b ,满足a α⊂,//αβ,b β⊂,//b α, 则由面面平行的判定定理得//αβ,故④正确.故选:B .【点睛】本题考查线线平行、线面平行、面面平行的定义,属于基础题10.在长方体1111ABCD A B C D -中,AB ==AD 1AA =1AC 与CD 所成角的大小为( ) A.6π B.4π C.3π D.3π或23π 【答案】C【解析】【分析】平移CD 到AB ,则1C AB ∠即为异面直线1AC 与CD 所成的角,在直角三角形中即可求解.【详解】连接AC 1,CD //AB ,可知1C AB ∠即为异面直线1AC 与CD 所成的角,在1Rt C AB ∆中,11tan BC C AB AB∠=,故选C . 【点睛】 本题考查异面直线所成的角.常用方法:1、平移直线到相交;2、向量法.二、填空题11.在棱长为1的正方体1111ABCD A B C D -中,则直线11D B 与平面11A BCD 所成角的正弦值为________. 【答案】12【解析】【分析】利用平面11ABB A ⊥平面11A BCD 得到 B 1O ⊥平面11A BCD ,进而作出直线与平面所成角,易解.【详解】如图,平面11ABB A ⊥平面11A BCD ,又B 1O ⊥1A B ,∴B 1O ⊥平面11A BCD ,∴∠B 1D 1O 即为所求角,sin∠B 1D 1O 12=, 故答案为:12. 【点睛】求直线和平面所成角的关键是作出这个平面的垂线进而斜线和射影所成角即为所求,有时当垂线较为难找时也可以借助于三棱锥的等体积法求得垂线长,进而用垂线长比上斜线长可求得所成角的正弦值,当空间关系较为复杂时也可以建立空间直角坐标系,利用向量求解.12.正方体的全面积为a ,它的顶点都在球面上,则这个球的表面积是______. 【答案】2a π 【解析】【分析】由题意可得正方体的边长及球的半径,可得球的表面积.【详解】解:根据正方体的表面积可以求得正方体的边长为l =,正方体的外接球球心位于正方体体心,半径为正方体体对角线的一半,求得球的半径r ==积为242aS r ππ==, 故答案:2aπ.【点睛】本题主要考查空间几何体的表面积,得出正方体的边长和球的半径是解题的关键.13.如图所示,在三棱柱111ABC A B C -中,E F G H ,,,分别是1111AB AC A B A C ,,,的中点,则与平面BCHG 平行的平面为________.【答案】平面1A EF【解析】【分析】由E F ,分别为AB AC ,的中点,所以EF BC ∥,利用线面平行的判定定理,得到EF 平面BCHG ,再由四边形1A EBG 是平行四边形,得到1A E GB ∥,证得1A E ∥平面BCHG ,最后利用面面平行的判定定理,即可得到平面1A EF ∥平面BCHG .【详解】由题意,因为E F ,分别为AB AC ,的中点,所以EF BC ∥,因为EF ⊄平面BCHG ,BC ⊂平面BCHG ,可得EF 平面BCHG ,因为1AG EB =且1AG EB ∥,所以四边形1A EBG 是平行四边形,所以1A E GB ∥,又因为1A E ⊄ 平面BCHG ,GB ⊂平面BCHG ,所以1A E ∥平面BCHG ,因为1A EEF E =,所以平面1A EF ∥平面BCHG . 【点睛】主要考查了空间中平行关系的判定与证明,其中解答中熟记线面平行、面面平行的判定定理和性质定理,准确判定是解答的关键,着重考查了推理与论证能力,属于基础题.14.如图所示,在四面体D ABC -中,若CD =,其余各棱长都为1,则在这个四面体中互相垂直的平面是____________________________________.【答案】平面ACD ,平面BCD .【解析】【分析】过A 作AE CD ⊥,得到AEB ∠是二面角A CD B --的平面角,又由222AE BE AB +=,得到90AEB ∠=,即可求解.【详解】由题意,过A 作AE CD ⊥,交CD 于点E ,因为1,AD AC CD ===90DAC =∠,由E 为CD 的中点,所以AE =连接BE ,因为1,BD BC CD ===BE CD ⊥,且2BE =, 所以AEB ∠是二面角A CD B --的平面角,又1AB =,所以222AE BE AB +=,所以90AEB ∠=,∴平面ACD ⊥平面BCD .【点睛】本题主要考查了线面位置关系的应用,其中解答中熟练应用线面垂直的性质定理,合理准确判定是解答的关键,着重考查了推理与论证能力,属于基础题.15.已知ABC ∆,用斜二测画法作它的直观图'''A B C ∆,若'''A B C ∆是斜边平行于'x 铀的等腰直角三角形,则ABC ∆是________三角形(填“锐角”.“直角”.“钝角”).【答案】直角【解析】【分析】根据斜二测画法,45x oy ∠=''︒,直接判断ABC ∆的形状。

高中数学竞赛模拟试题 1

高中数学竞赛模拟试题 1

全国高中数学联赛训练题(1)第一试一、填空题1.函数3()2731x x f x +=-+在区间[0,3]上的最小值为_____.2.在数列{}n a 中,11a =且21n n n a a a ++=-.若20002000a =,则2010a =_____.3.若集合{|61,}A x x n n N ==-∈,{|83,}B x x n n N ==+∈,则A B 中小于2010的元素个数为_____.4.若方程sin (1)cos 2n x n x n ++=+在π<<x 0上有两个不等实根,则正整数n 的最小值为_____.5.若c b a >>,0=++c b a ,且21,x x 为02=++c bx ax 的两实根,则||2221x x -的取值范围为_____.6.有n 个中心在坐标原点,以坐标轴为对称轴的椭圆的准线都是1x =.若第k (1,2,,)k n = 个椭圆的离心率2kk e -=,则这n 个椭圆的长轴之和为_____.7.在四面体-O A B C 中,若点O 处的三条棱两两垂直,且长度均为,则在四面体表面上与点A 距离为2的点所形成的曲线长度之和为_____.8.由A B C ∆内的2007个点122007,,,P P P 及顶点,,A B C 共2010个点所构成的所有三角形,将A B C ∆分 割成互不重叠的三角形个数最多为_____.二、解答题9.设抛物线22y px =(0)p >的焦点为F ,点A 在x 轴上F 的右侧,以F A 为直径的圆与抛物线在x 轴上方交于不同的两点,M N ,求证:F M F N F A +=.10.是否存在(0,)2πθ∈,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列?并说明理由.11.已知实数123123,,,,,a a a b b b 满足:123123a a a b b b ++=++,122331122331a a a a a a b b b b b b ++=++,且123m in{,,}a a a 123min{,,}b b b ≤,求证:123m ax{,,}a a a 123m ax{,,}b b b ≤.第二试一、设圆的内接四边形A B C D 的顶点D 在直线,,AB BC CA 上的射影分别为,,P Q R ,且A B C ∠与A D C ∠的平分线交于点E ,求证:点E 在A C 上的充要条件是PR QR =.二、已知周长为1的i i i A B C ∆(1,2)i =的三条边的长分别为,,i i i a b c ,并记2224i i i i i i i p a b c a b c =+++(1,2)i =,求证:121||54p p -<.三、是否存在互不相同的素数,,,p q r s ,使得它们的和为640,且2p qs +和2p qr +都是完全平方数?若存在,求,,,p q r s 的值;若不存在,说明理由.四、对n 个互不相等的正整数,其中任意六个数中都至少存在两个数,使得其中一个能整除另一个.求n 的最小值,使得在这n 个数中一定存在六个数,其中一个能被另外五个整除.。

2019年高中数学竞赛试题及答案及答案

2019年高中数学竞赛试题及答案及答案

高中数学竞赛试题及答案一、选择题(本大题共6小题,每小题6分,共36分.每小题各有四个选择支,仅有一个选择支正确.请把正确选择支号填在答题卡的相应位置.)1.集合{0,4,}A a =,4{1,}B a =,若{0,1,2,4,16}A B ⋃=,则a 的值为A .0B .1C .2D .2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能... 是.①长方形;②正方形;③圆;④菱形. 其中正确的是 A .①② B .②③ C .③④ D .①④ 3.设0.50.320.5,log 0.4,cos3a b c π-===,则A .c b a <<B .c a b <<C .a b c <<D .b c a <<4. 平面上三条直线210,10,0x y x x ky -+=-=-=,如果这三条直线将平面划分为六部分,则实数k 的值为A . 1B . 2C . 0或2D . 0,1或2 5.函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到()cos 2g x x =的图像,则只要将()f x 的图像A .向右平移6π个单位长度 B .向右平移12π个单位长度 C .向左平移6π个单位长度 D .向左平移12π个单位长度6. 在棱长为1的正四面体1234A A A A 中,记12(,1,2,3,4,)i j i j a A A A A i j i j =⋅=≠,则i j a 不同取值的个数为A .6B .5C .3D .2二、填空题(本大题共6小题,每小题6分,共36分.请把答 案填在答题卡相应题的横线上.) 7.已知)1,(-=m a ,)2,1(-=b ,若)()(b a b a -⊥+,则m = .8.如图,执行右图的程序框图,输出的T= . 9. 已知奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 则不等式0)()1(<⋅-x f x 的解集为 .10.求值:=+250sin 3170cos 1 . 11.对任意实数y x ,,函数)(x f 都满足等式)(2)()(22y f x f y x f +=+,且0)1(≠f ,则(第5题图)(第8题图)3侧视图正视图2222=)2011(f .12.在坐标平面内,对任意非零实数m ,不在抛物线()()22132y mx m x m =++-+上但在直线1y x =-+ 上的点的坐标为 .答 题 卡一、选择题(本大题共6小题,每小题6分,共36分.)二、填空题(本大题共6小题,每小题6分,共36分.)7. 8. 9. 10. 11. 12.三、解答题(本大题共6小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤.) 13.(本小题满分12分)为预防(若疫苗有效已知在全体样本中随机抽取1个,抽到B 组的概率是0.375. (1)求x 的值;(2)现用分层抽样的方法在全部测试结果中抽取360个,问应在C 组中抽取多少个? (3)已知465≥y ,25≥z ,求该疫苗不能通过测试的概率.已知函数x x x f 2sin )12(cos 2)(2++=π.(1)求)(x f 的最小正周期及单调增区间; (2)若),0(,1)(παα∈=f ,求α的值. 15.(本题满分13分)如图,在直三棱柱111C B A ABC -中,21===AA BC AC ,︒=∠90ACB ,G F E ,,分别是AB AA AC ,,1的中点.(1)求证://11C B 平面EFG ; (2)求证:1AC FG ⊥;(3)求三棱锥EFG B -1的体积.ACBB 1A 1C 1FGE已知函数t t x x x f 32)(22+--=.当∈x ),[∞+t 时,记)(x f 的最小值为)(t q . (1)求)(t q 的表达式;(2)是否存在0<t ,使得)1()(tq t q =?若存在,求出t ;若不存在,请说明理由.已知圆22:228810M x y x y +---=和直线:90l x y +-=,点C 在圆M 上,过直线l 上一点A 作MAC ∆.(1)当点A 的横坐标为4且45=∠MAC 时,求直线AC 的方程; (2)求存在点C 使得45=∠MAC 成立的点A 的横坐标的取值范围.18.(本题满分14分)在区间D 上,若函数)(x g y =为增函数,而函数)(1x g xy =为减函数,则称函数)(x g y =为区间D 上的“弱增”函数.已知函数()1f x =-. (1)判断函数()f x 在区间(0,1]上是否为“弱增”函数,并说明理由; (2)设[)1212,0,,x x x x ∈+∞≠,证明21211()()2f x f x x x -<-; (3)当[]0,1x ∈时,不等式xax +≥-111恒成立,求实数a 的取值范围.参考答案一、选择题:C B A D D C二、填空题:7. 2± 8.29 9. ),2()1,0()2,(+∞--∞10.3 11.2201112. 31(,),(1,0),(3,4)22-- 三、解答题:13. (本题满分12分) 解:(1)因为在全体样本中随机抽取1个,抽到B 组的概率0.375,所以375.0200090=+x , ………………2分 即660x =. ………………3分(2)C 组样本个数为y +z =2000-(673+77+660+90)=500, ………………4分 现用分层抽样的方法在全部测试结果中抽取360个,则应在C 组中抽取个数为360500902000⨯=个. ………………7分 (3)设事件“疫苗不能通过测试”为事件M.由(2)知 500y z +=,且,y z N ∈,所以C 组的测试结果中疫苗有效与无效的可能的情况有: (465,35)、(466,34)、(467,33)、……(475,25)共11个. ……………… 9分 由于疫苗有效的概率小于90%时认为测试没有通过,所以疫苗不能通过测试时,必须有9.02000660673<++y, …………………10分即1800660673<++y , 解得467<y ,所以事件M 包含的基本事件有:(465,35)、(466,34)共2个. …………………11分所以112)(=M P , 故该疫苗不能通过测试的概率为211. …………………12分14. (本小题满分12分) 解:x x x f 2sin )62cos(1)(+++=π…………………1分x x x 2sin 6sin2sin 6cos 2cos 1+-+=ππx x 2sin 212cos 231++= ………………… 2分 1)32sin(++=πx . …………………4分(1))(x f 的最小正周期为ππ==22T ; …………………5分 又由]22,22[32πππππ+-∈+k k x , …………………6分得)](12,125[Z k k k x ∈+-∈ππππ, …………………7分 从而)(x f 的单调增区间为)](12,125[Z k k k ∈+-ππππ. …………………8分 (2)由11)32sin()(=++=πααf 得0)32sin(=+πα, …………………9分所以ππαk =+32,62ππα-=k )(Z k ∈. …………………10分又因为),0(πα∈,所以3πα=或65π. …………………12分15. (本题满分13分) 解:(1)因为E G 、分别是AC AB 、的中点,所以BC GE //;……1分 又BC C B //11,所以GE C B //11; …………2分又⊆GE 平面EFG ,⊄11C B 平面EFG ,所以//11C B 平面EFG . …………3分 (2)直三棱柱111C B A ABC -中,因为︒=∠90ACB ,所以⊥BC 平面C C AA 11; ……………4分 又BC GE //,所以⊥GE 平面C C AA 11,即1AC GE ⊥; ……………5分 又因为21==AA AC ,所以四边形11A ACC 是正方形,即11AC C A ⊥; ……………6分 又F E ,分别是1,AA AC 的中点,所以C A EF 1//,从而有1AC EF ⊥, ……………7分 由E GE EF =⋂,所以⊥1AC 平面EFG ,即1AC FG ⊥. ……………8分 (3)因为//11C B 平面EFG ,所以111EFC G EFG C EFG B V V V ---==. ……………10分由于⊥GE 平面C C AA 11,所以GE S V EFC EFC G ⋅=∆-1131,且121==BC GE .…………11分 又由于2321114111111=---=---=∆∆∆∆ECC FC A AEF A ACC EFC S S S S S 正方形,……………12分所以21123313111=⋅⋅=⋅=∆-GE S V EFC EFC G ,即211=-EFG B V . ……………13分16. (本题满分13分)解:(1)t t x x x f 32)(22+--=13)1(22-+--=t t x . ……………1分①当1≥t 时,)(x f 在∈x ),[∞+t 时为增函数,所以)(x f 在∈x ),[∞+t 时的最小值为t t f t q ==)()(;……………3分②当1<t 时,13)1()(2-+-==t t f t q ; ……………5分 综上所述,2(1)()31(1)t t q t t t t ≥⎧=⎨-+-<⎩. ……………6分ACBB 1A 1C 1FGE(2)由(1)知,当0<t 时,13)(2-+-=t t t q ,所以当0<t 时,131)1(2-+-=tt tq . ……………7分 由)1()(t q t q =得:1311322-+-=-+-tt t t , ……………8分即013334=-+-t t t , ……………9分 整理得0)13)(1(22=+--t t t , ……………11分解得:1±=t 或253±=t . ……………12分 又因为0<t ,所以1-=t .即存在1-=t ,使得)1()(tq t q =成立. ……………13分17. (本题满分14分)解:(1)圆M 的方程可化为:2217(2)(2)2x y -+-=,所以圆心M (2,2),半径r=2. ……1分由于点A 的横坐标为4,所以点A 的坐标为(4,5),即AM =……………2分 若直线AC 的斜率不存在,很显然直线AM 与AC 夹角不是45,不合题意,故直线AC 的斜率一定存在,可设AC 直线的斜率为k ,则AC 的直线方程为5(4)y k x -=-,即540kx y k -+-=. ……………3分由于45=∠MAC 所以M 到直线AC 的距离为226||22==AM d ,此时r d <,即这样的点C 存在. ……………4分2=,2=,解得15 5k k =-=或. ……………5分 所以所求直线AC 的方程为0255=-+y x 或0215=+-y x . ……………6分 (2)当r AM 2||=时,过点A 的圆M 的两条切线成直角,从而存在圆上的点C (切点)使得45=∠MAC . ……………7分设点A 的坐标为),(y x ,则有⎪⎩⎪⎨⎧=-+=⋅=-+-09172342)2()2(22y x y x , ……………8分解得⎩⎨⎧==63y x 或⎩⎨⎧==36y x . ……………9分记点)6,3(为P ,点)3,6(为Q ,显然当点A 在 线段PQ 上时,过A 的圆的两条切线成钝角,从而必存在圆上的一点C 使得45=∠MAC ;……当点A 在线段PQ 的延长线或反向延长线上时,过A 的圆的两条切线成锐角,从而必不存在圆上的点C 使得45=∠MAC , …………所以满足条件的点A 为线段PQ 上的点,即满足条件的点的横坐标取值范围是.……14分18.(本题满分14分) 解:(1)由()1f x =-可以看出,在区间(0,1]上,()f x 为增函数. ………………1分 又11()(1f x x x ===3分 显然)(1x f x在区间(0,1]∴ ()f x 在区间(0,1]为“弱增”函数. ………………4分(2)21()()f x f x -===.…6分[)1212,0,,x x x x ∈+∞≠,∴111≥+x ,112≥+x ,21121>+++x x ,即2>,………………8分21()()f x f x ∴-2112x x <-. ………………9分 (3)当0x =时,不等式xax +≥-111显然成立. ………………10分“当(]0,1x ∈时,不等式xax +≥-111恒成立”等价于“ 当(]0,1x ∈时,不等式)111(1xx a +-≤即)(1x f x a ≤恒成立” . ………………11分也就等价于:“ 当(]0,1x ∈时, min )](1[x f xa ≤成立” . ………………12分 由(1)知1()f x x 在区间(0,1]上为减函数, 所以有221)1()](1[min -==f x f x . ……………13分 ∴221-≤a ,即221-≤a 时,不等式xax +≥-111对[]0,1x ∈恒成立. ……………14分。

2020年全国高中数学竞赛试题

2020年全国高中数学竞赛试题

2020高中数学竞赛模拟试题(几何部分)一、选择题1.设D 为△ABC 的边AB 上一点,P 为△ABC 内一点,且满足3,4AD AB = 25AP AD BC =+ ,则APDAbcS S = .A .310B.2-C .12D .12-2.在ABC ∆中,已知AB AC =,D 是AC 上的一点,且AD BD BC ==.则cos BAC ∠=.AB.12C.14D.143.如图,设P 、M 、N 分别是正方体的棱1AA ,AD ,AB 上非顶点的任意点.①PMN 的外心必在PMN 的某一边上;②PMN 的外心必在PMN 的内部;③PMN 的垂心必是点A 在平面PMN 上的射影;④若线段AP 、AM 、AN 的长分别为a 、b 、c ,则6A PMN abcV -=.其中().A .只有①、④正确.B .只有③、④正确.C .只有②、③、④正确.D .只有②、③正确.4.到一个三角形的三个顶点的距离的平方和最小的点,是这个三角形的().A .垂心B .重心C .外心D .内心5.若a 、b R ∈,则(),f a b =.A .B .C .1D .46.半径为r 的1O 内含于半径为R 的O ,已知存在一个四边形ABCD 外切于1O 且内接于O .则Rr的最小值是.AB .2C .2D7.若a 、b R ∈,则(),f a b =.A .B .C .1D .48.如图,已知ABC ∆的三边BC,CA,AB 的中点分别为,,,,L M N D E 分别是,BC AB 上的点,并满足,AD CE 均平分ABC ∆的周长,,P Q 分别是,D E 关于,L N 的对称点,PQ 与LM 交于点F .若AB AC >,则AF 一定过ABC ∆的.A .内心B .外心C .重心D .垂心9.设,,a b c 分别是ABC ∆的三边长,且a a bba b c+=++,则,A B ∠∠的关系是()A .2B A∠>∠B .2B A∠<∠C .2B A ∠=∠D .2B A∠≤∠10.设P 为正方形ABCD 内一点,1PA =,2PB =,3PC =.则PBC 的面积为.A .22+B .22-C .2D .211.已知P 为ABC ∆内一点,直线AP ,BP ,CP 交BC ,CA ,AB 于D ,E ,F ,且1995AP BP CPPD PE PF++=,则AP BP CP PD PE PF ⋅⋅的值为A .1995B .1996C .1997D .199812.设H 是ABC ∆所在平面上的一点,用a 、b 、c 、h 分别表示向量OA 、OB 、OC 、OH .若⋅+⋅=⋅+⋅=⋅+⋅a b c h b c a h c a b h ,则H 是ABC ∆的.A .内心B .外心C .重心D .垂心二、填空题13.设过椭圆2214x y +=上的任意一点P 的直线y kx m =+与椭圆221164x y +=交于A 、B 两点,射线PO 与椭圆221164x y +=交于点Q .则:ABQ ABO S S 的值为________.14.已知在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且5c =,点O 为其外接圆的圆心.已知12BO AC ⋅=,则当角C 取到最大值时ABC 的内切圆半径为________.15.已知ABC ∆的面积为S ,ABC ∆的三条中线构成111A B C ∆,其面积为1S ,()1,2,k k k A B C k ∆=⋅⋅⋅的三条中线构成111k k k A B C +++∆,其面积为1k S +.则12n S S S ++⋅⋅⋅++⋅⋅⋅=______.16.若点G 为ABC 的重心,且AG BG ⊥,则sin C 的最大值为______.17.如图,在四面体ABCD 中,G 是BC 的中点,E ,F 满足13AE AB = ,13DF DC =,设平面EGF 交AD 于点H ,则AH HD=________.18.设I 为ABC ∆的内心,且3450IA IB IC ++=.则∠C 的大小为_________.三、解答题19.点P 为椭圆22221(0)x y a b a b+=>>外一点,过P 作椭圆两条切线PA 、PB ,切点分别为A 、B ,连结AB ,点M 、N 分别为PA 、AB 中点,连结MN 并延长交椭圆于点C ,连结PC 交椭圆于另一点D ,连结ND 并延长交PB 于Q ,证明:Q 为PB 的中点.20.如图,在O 中,弦AB 与直径CD 垂直,垂足为M ,CD 的延长线上有一点P ,满足PBD DAB ∠=∠.过点P 作PN CD ⊥,交OA 的延长线于点N ,连接DN 交AP 于点H .(1)求证:BP 是O 的切线;(2)如果5OA =,4AM =,求PN 的值;21.如图,已知过O 外一点P 作O 的两条切线PE 、PF 及两条割线PDA 、PCB ,联结弦EF ,分别与割线PDA 、PCB 交于点M 、N .求证:(1)PA DM PD MA⋅=⋅;(2)AB、EF、DC三线共点.答案123456789101112A CCBBDBACACD13.3141-15.3S 16.3517.118.2π19PC 与AB 交于点K .首先证明:P 、D 、K 、C 为调和点列,即||||||||PD KD PC KC =.设()00,P x y ,则直线AB 方程为00221x x y ya b+=.设P 、D 、K '、C 为调和点列,且||||K DPD PC K Cλ='='.设()()()112233,,,,,A x y B x y K x y ',则12123121203,,11,.11x x x x x x y y y y y y λλλλλλλλ⎧-+⎧==⎪⎪⎪⎪-+⎨⎨-+⎪⎪==⎪⎪-+⎩⎩故()()()()1212121203032222211x x x x y y y y x x y y a b a b λλλλλ-+-+⎡⎤+=+⎢⎥-⎣⎦22222112222222111x y x y ab a b λλ⎡⎤⎛⎫=+-+=⎢⎥ ⎪-⎝⎭⎣⎦,所以K '在直线AB 上,即K '与K 重合,结论成立.下面证明原题:由梅涅劳斯定理可知1CN MA PKNM AP KC⋅⋅=,又由12AM AP =,可知2CN CK NM PK=,①由直线上托勒密定理可知,CD KP CK PD CP DK ⋅=⋅+⋅,由P 、D 、K 、C 四点调和可知,CK PD CP DK ⋅=⋅,故2CD KP CK PD ⋅=⋅,即2CD CKPD KP=②结合①、②可知,CN CDNM PD=.故//ND PM .又N 为AB 的中点,所以Q 为PB 的中点.20(1)证明:如图,连接BC ,OB .∵CD 是直径,∴90CBD ∠= ,∵OC OB =,∴C CBO ∠=∠,∵C BAD ∠=∠,PBD DAB ∠=∠,∴CBO PBD ∠=∠,∴90OBP CBD ∠=∠= ,∴PB OB ⊥,∴PB 是O 的切线.(2)∵CD AB ⊥,∴PA PB =,∵OA OB =,OP OP =,∴()SSS PAO PBO △≌△,∴90OAP OBP ∠=∠= ,∵90AMO ∠=,∴3OM ===,∵AOM AOP ∠=∠,OAP AMO ∠=∠,∴AOM POA △∽△,∴OA OM OP OA =,∴535OP =,∴253OP =,∵PN PC ⊥,∴90NPC AMO ∠=∠=,∴AM OM PN OP=,∴43253PN =,∴1009PN =.21(1)辅助线如图所示.由共边定理知PED PFD PEA PFA S S PD PA S S ∆∆∆∆==.由PED PAE ∽∆∆及PFD PAF ∆∆∽,分别得22PED PAE S ED S EA ∆∆=,22PFD PAF S FD S FA ∆∆=.则ED FD EA FA =.故22PD ED ED FDPA EA EA FA==⋅.①由MED MAF ∆∆∽及MFD MAE ∆∆∽,分别得ED MEAF MA =,②FD MDAE ME=.③由式①、②、③得PD MDPA AM=.(2)记AB 与DC 交于点为Q .要证AB 、EF 、DC 三线共点,只需证明E 、F 、Q 三点共线.由(1)知DM DP AM AP =,CN CP BN BP =.则DM AM AD DP AP DP AP ==+,CN BN BCCP BP BP CP==+.故211MP DP DP PA AP DM DM AD AD +=+=+=.同理,2PN PB CN BC=.因为直线QBA 与PCD ∆三边的延长线都相交,所以,由梅涅劳斯定理有212CQ DA PB CQ DA PB CQ DM PNQD AP BC QD AP BC QD MP CN=⋅⋅=⋅⋅=⋅⋅.又由梅涅劳斯定理的逆定理知,Q 、N 、M 三点共线.故Q 、F 、E 三点共线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高中数学竞赛模拟试题一
一、填空题 1、已



1
)1(ln )(22+-+=ax x a x f
)
0(>a ,则
=+)1
(ln )(ln a
f a f ____________.
2、A ,B 两点分别在抛物线x y 62
=和1)2(:⊙2
2
=+-y x C 上,则AB 的取值范围是____________.
3、若⎪⎭


⎛<
≤<=20tan 3tan παβαβ,则βα-的最大值为____________.
4、已知△ABC 等腰直角三角形,其中∠C 为直角,AC =BC =1,过点B 作平面ABC 的垂线DB ,使得DB =1,在DA 、DC 上分别取点E 、F ,则△BEF 周长的最小值为____________.
5、已知函数x x x f 3)(3
+=,对任意的[]2,2-∈m ,0)2()8(<+-x
f mx f 恒成立,则正.
实数..x 的取值范围为____________.
6、已知向量c ,b ,a 满足)(3::2||:||:||*N k k c b a ∈=,且)(2b c a b -=-,若α为c ,a 的夹角,则αcos 的值为____________.
7、现有一个能容纳10个半径为1的小球的封闭的正四面体容器,则该容器棱长最小值为____________.
8、将10个小球(5个黑球和5个白球)排场一行,从左边第一个小球开始向右数小球,无论数几个小球,黑球的个数总不少于白球个数的概率为____________.
二、解答题
9.(本小题满分14分)在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,向量()B C A sin ,sin sin +=p ,向量),(a b c a --=q ,且满足q p ⊥. (Ⅰ)求△ABC 的内角C 的值;
(Ⅱ)若c =2,2sin2A +sin(2B +C )=sin C ,求△ABC 的面积.
10.(本小题满分14分)已知数列{}n a 满足:n n n a a ,a a 222
11+==+.
(1)求证:数列{})1lg(+n a 是等比数列,并求{}n a 的通项公式; (2)若2
11++=n n n a a b ,且数列{}n b 的前n 项和为n S ,求证:1<n S .
11.(本小题满分14分)设a ax e x f x
--=)(.(e 是自然对数的底数) (Ⅰ)若0)(≥x f 对一切1-≥x 恒成立,求a 的取值范围;
(Ⅱ)求证:211008
)2016
2015(-<e .
12.(本小题满分15分)设正数x ,y 满足y x y x -=+3
3
,求使12
2
≤+λy x 恒成立的实数λ的最大值.
13.(本小题满分15分)已知椭圆12:22=+y x C 及点)2
1
,1(P ,过点P 作直线l 与椭圆C 交于A 、B 两点,过A 、B 两点分别作C 的切线交于点Q .
(1)求点Q 的轨迹方程;
(2)求△ABQ 的面积的最小值.
数学竞赛模拟试卷(1)答案
1.【解析】
2
2)1ln(2)1ln()1ln()()(22222222=+-+=++++-+=-+x a x a ax x a ax x a x f x f .
2.【解析】由于1-=AC AB ,则只需要考虑AC 的范围.

故又2,0,3)1(426)2()2(min 222222
=≥++=++=+-=+-=AC x x x x x x y x AC 故AB 的取值范围为[)∝+,1
. 3.【解析】()6
tan 33tan 3tan 1
2tan 31tan 2tan tan 1tan tan tan 2πββ
β
β
βαβαβ=≤
+=
+=+-=
-α .2020παπαβ<-≤∴≤≤≤β, .6
π
=-∴βα
4.【解析】由题意可知, 4
π
=∠CDB ,且∠BDA 与∠CDA
之和为
2
π
.如图,将侧面BDA 和侧面CDB 分别折起至面DA B 1和DC B 2,且与侧面ADC 位于同一个平面上.则△BEF 周长的最小值即面C DB AB 21上两点21,B B 之间的线段长.









4
3422121πππCDB ADC DA B DB B =+=
∠+∠+∠=∠, 由余弦定理可得,.DB B D B D B D B D B B B 2222211cos 22121222121+=⎪
⎪⎭
⎫ ⎝
⎛-⋅-+=∠⋅⋅-+= 所以,△BEF 周长的最小值为22+.
αcos 的值为6
-.
7.【解析】这10个小球成棱锥形来放,第一层1个,第2层3个,第3层6个,即每一条棱是3个小球,于是正四面体的一条棱长就应该是4倍的小球的半径加上2倍的球心到四面体顶点的距离到棱长上的射影的长度,又球心到顶点的距离为3,正四面体的高和棱所成角的余弦值为
36,故容器棱长的最小值为6243
6
324+=⨯
⨯+. 8.【解析】法1:如果只有2个小球(1黑1白),则黑球的个数总不少于白球个数的概率为
21;如果只有4个小球(2黑2白),则黑球的个数总不少于白球个数的概率为3
1
;如果只有6个小球(3黑3白),则黑球的个数总不少于白球个数的概率为4
1
;以此类推,可知将
10个小球(5个黑球和5个白球)排成一行,从左边第一个小球开始向右数小球.无论数几个小球,黑球的个数总不少于白球个数的概率为
6
1; 法2:直接从10个小球入手分类讨论.
9.【解析】(Ⅰ)由题意q p ⊥,所以,()()()0sin sin sin =-++-B a b C A c a . 由正弦定理,可得()()()0=-++-b a b c a c a .整理得ab b c a =+-2
2
2
.
由余弦定理可得,212cos 222=-+=
ab c b a C ,又()π,C 0∈,所以, 3
π
C = ……6分 (Ⅱ)由()C C B A sin 2sin 2sin 2=++可得,()()A B A πB A A +=-++sin sin cos sin 4. 整理得,()()A B A B A B A A cos sin 2sin sin
cos sin 4=-++=.
12【解析】由正数x ,y 满足y x y x -=+3
3,知0>>y x .令1>=y
t .

等式
1
2
2≤+λy x 等价于
y
x y x λy x -+≤
+3
32
2
,等价于
y
x y y x x y x y x λy -+=--+≤322
332
,等价于 ()232y y x y y x λ-+≤
等价于 1122
22-+=-+≤t t y xy y x λ.因为22212)1(2212)1(211)(2+=-⋅-+≥-+-+=-+=t t t t t t t f , 等号仅当1
2
1-=-t t ,即21+=t 时成立,
所以,实数λ的最大值为222+. ……15分 13.【解析】(1)设),(),,(),,(002211y x Q y x B y x A ,
则12:11=+y y x x QA 过Q ,有120101=+y y x x ;……①12
:22=+y y x
x QB ,有
120202=+y y x x ,……②故直线12:00=+y y x x AB 过点)2
1
,1(P ,则有
212
2000
0=+⇒=+y x y x ……③故Q 的轨迹方程为 x +y =2.
……5分 (2)对直线AB ,当斜率不存在时,即为x =1,此时)0,2(),
2,1(),2,1(Q B A -。

相关文档
最新文档