2018常微分方程考研复试真题及答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常微分方程计算题

2.指出下列方程中的阶数,是线性方程还是非线性方程,并说明理由;

(1) t 2

2

2dt

u d +t dt du +( t 2

-1)u=0 (2)

dx dy =x 2+y 2

; (3)dx dy +

2

x

y =0 3.求曲线族y=C 1e x

+C 2x e x

所满足的微分方程 4.验证函数y= C 1e

x

2+

C 2e

x

2-是微分方程y ``

-4y=0的解,进一步验证它是通解。

5.试用一阶微分方程形式不变性求解方程dx

dy =2x 6.什么叫积分一个微分方程

7.什么是求解常微分方程的初等积分法 8.分离变量一阶方程的特征是什么 9.求下列方程的通解

(1)

y `

=sinx

(2)

x 2

y 2

y `

+1=y

(3) tgx

dx

dy

=1+y (4)

dx

dy

=exp(2x-y) (5) dx

dy =21y 2-

(6) x 2

ydx=(1- y 2

+x-2

x

2

y 2

)dx

(7)( x 2

+1)( y 2

-1)dx+xydy=0 10.叙述齐次函数的定义

11.试给出一阶方程y `

=f(x,y)或p(x,y)dx+ q(x,y)dy=0为齐次方程的特征。说明二

个方程的关系。

12.求解齐次方程通常用什么初等变换,新旧函数导数关系如何 13.求解下列方程

dx dy

=2

22y x xy - 14.求解下列方程 (1)(x+2y )dx —xdy=0 (2)

dx dy =x y +y

x

2 15.

dx dy =22y

x xy + 16(x 2

+y 2

)dx —2xydy=0 17.

dx dy =5

242+---y x x y 18―――――19

20―――――――27

28――――37 38――――44

45――――49 50――――56

57――――62 63――――68

69―――71 72――――81

82――――87 88――――92

93――――94 95――――97

98――――100

101――――105

106――――113 114――――122

2(1)未知函数u的导数最高阶为2,u``,u`,u 均为一次,所以它是二阶线性方程。(2)为y最高阶导数为1,而y2为二次,故它是一阶非线性常微分方程。

(3)果y是未知函数,它是一阶线性方程;如果将x看着未知函数,它是一阶非线性方程。

3. 提示:所满足的方程为y``-2 y`+y=0

4.直接代入方程,并计算Jacobi行列式。

5.方程变形为dy=2xdx=d(x2),故y= x2+C

6. 微分方程求解时,都与一定的积分运算相联系。因此,把求解一个微分方程的过程称为一个微分方程。微分方程的解又称为(一个)积分。

7.把微分方程的通解用初等函数或通过它们的积分来表达的方法。注意如果通解能归结为初等函数的积分表达,但这个积分如果不能用初等函数表示出来,我们也认为求解了这个微分方程,因为这个式子里没有未知函数的导数或微分。

8. y`=f(x,y)主要特征是f(x,y)能分解为两个因式的乘积,其中一个因式仅含有x,另一因式仅含y,而方程p(x,y)dx+q(x,y)dy=0是可分离变量方程的主要特征,就像f(x,y)一样,p,q分别都能分解成两个因式和乘积。

9

(1)积分得x=-cosx+c

(2) 将方程变形为x 2

y 2

dy=(y-1)dx 或1-y y 2=2x

dx

,当xy ≠0,y ≠1时积分得

22x +y+ln 1-y +x

1=c (3)方程变形为

y dy +1=x

x sin cos dx,当y ≠-1,sinx ≠0时积分得 y=Csinx-1

(4)方程变形为 exp(y)dy=exp(2x)dx,积分得

exp(y)=

2

1

exp(2x)+C (5)当y ≠±1时,求得通积分ln 1

1

+-y y =x+c

(6)方程化为 x 2

ydx=(1- y 2

)(1+x 2

)dx 或2

2

1x x +dx=y y 21-dy,积分得

x -arctgx -ln y +

2

1y 2

=C (7)当x(y 2

--1)≠0时,方程变形得

x x 12+dx+1

2-y ydy

=0

两边积分并化简得 y 2

=1+

2x

C exp(-x 2

) 10.二元函数f(x,y)满足f(rx,ry)=r m

f(x,y),r.>0,则称f(x,y)为m 次齐次函数。m=0则称它为0次齐次函数。

11.如果f(x,y)是0次齐次函数,则y `

=f(x,y)称为齐次方程。 如果p(x,y)和q(x,y)同为m 次齐次函数,则pdx+qdy=0为齐次方程。 如果q ≠0则

dx

dy

=-

y)q(x,y)p(x,≡ f(x,y),由p,q 为m 次齐次函数推知f(x,y)为0次齐次函数故y `

=f(x,y)为齐次方程。

相关文档
最新文档