材料力学-03扭转
材料力学 第03章 扭转
sin 2 , cos 2
由此可知:
sin 2 , cos 2
(1) 单元体的四个侧面( = 0°和 = 90°)上切 应力的绝对值最大; (2) =-45°和 =+45°截面上切应力为零,而 正应力的绝对值最大;
[例5-1]图示传动轴,主动轮A输入功率NA=50 马力,从 动轮B、C、D输出功率分别为 NB=NC=15马力 ,ND=20马 力,轴的转速为n=300转/分。作轴的扭矩图。
解:
NA 50 M A 7024 7024 1170 N m n 300 NB 15 M B M C 7024 7024 351 m N n 300 NC 20 M D 7024 7024 468N m n 300
第3章
扭
转
§3.1
一、定义 二、工程实例 三、两个名词
概
述
一、定义
Me Me
扭转变形 ——在一对大小相等、转向相反的外力偶矩
作用下,杆的各横截面产生相对转动的
变形形式,简称扭转。
二、工程实例
1、螺丝刀杆工作时受扭。
Me
主动力偶
阻抗力偶
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
公式的使用条件:
1、等直的圆轴, 2、弹性范围内工作。
圆截面的极惯性矩 Ip 和抗扭截面系数Wp
实心圆截面:
2 A
I p d A (2π d )
2
d 2 0
O
2 π(
4
d /2
4
)
0
πd 4 32
d
d A 2π d
材料力学第三章 扭转
n
250
横截面上的最大切应力为
max
T Wt
T (D4 d 4)
16D
16 0.55573000 Pa 19.2MPa [ ] 50MPa (0.554 0.34 )
满足强度要求。
跟踪训练 7.机车变速箱第II轴如图所示,轴所传递的功率为
p 5.5KW,转速n 200r / min,材料为45钢,
(3)主动轮放在两从动轮之间可使最大扭矩取最小值
B
A
C
Me2
Nm
M e1
Me3
4220
2810
本章小结
1.外力偶矩的计算 内力的计算——扭矩图
P M e 9549 n (N m)
2.圆轴扭转切应力公式的建立
τρ
Tρ Ip
强度条件的应用
max
Tmax Wt
[ ]
刚度条件的应用
' max
T
180 [']
(3)主动轮和从动轮应如何安排才比较合理。
再根据平衡条件,可得 Me1 Me2 Me3 (2810 4220)N m 7030N m
所作扭矩图如右图
(1)试确定AB段的直径d1和BC段的直径d2。
根据强度条件确定AB直径d1
AB
TAB Wt
16TAB
d12
[ ]
根据刚度条件确定AB直径d1
mB
(a)
1
350 2
C
1
2
T1
11463
446
A
D
3
mB
(b)
(c) mB
mC
T2
mC
mA T3
mD
T1 350N m 350 1 350 2
材料力学-第三章扭转
3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件
0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析
圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16
强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3
4
3
d 0.886 d
2
Mn
a
2
Mn 0.208 0.886 d
b
6.913
材料力学第3章扭转
试问:纵向截面里的切应力是由什么内力平衡的?
§3.8 薄壁杆件的自由扭转
薄壁杆件:杆件的壁厚远小于截面的其它尺寸。 开口薄壁杆件:杆件的截面中线是不封闭的折线或曲
线,例如:工字钢、槽钢等。 闭口薄壁杆件:杆件的截面中线是封闭的折线或曲线,
例如:封闭的异型钢管。
一、开口薄壁杆的自由扭转
= Tl
GI t
变形特点:截面发生绕杆轴线的相对转动 本章主要研究圆截面等直杆的扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
功率: P(kW) 角速度:ω 外力偶矩:Me
P = Meω
转速:n(r/min)
2n/ 60
Me
1000 P=9549
P n
(N
m)
内力偶矩:扭矩 T 求法:截面法
符号规则: 右手螺旋法则 与外法线同向“ + ” 与外法线反向“-”
max
T max
It
It
1 3
hi
3 i
二、闭口薄壁杆的自由扭转
max
T
2 min
TlS
4G 2
其中:ω截面为中线所围的面积
S 截面为中线的长度
闭口薄壁杆的应力分布:
例: 截面为圆环形的开口和闭口薄壁杆件如图所 示,设两杆具有相同平均半径 r 和壁厚δ,试 比较两者的扭转强度和刚度。
开=3 r 闭 开=3( r )2 闭
8FD3n Gd 4
C
ห้องสมุดไป่ตู้
Gd 4 8D3n
F C
§3.7 矩形截面杆扭转的概念
1) 翘曲
变形后杆的横截面不再保持为平面的现象。
2) 自由扭转和约束扭转
自由扭转:翘曲不受限制的扭转。 各截面翘曲程度相同,纵向纤维无伸缩, 所以,无正应力,仅有切应力。
材料力学第3章扭转
τ ρ = Gγ ρ
=G
ρdϕ
dx
22
C)静力平衡关系 C)静力平衡关系
T = ∫ A dA ⋅ τ ρ ⋅ ρ
2 dϕ = ∫ A Gρ dA dx
τ ρ = Gγ ρ
=G
dA
ρdϕ
dx
ρ
O
=G
dϕ ∫ A ρ 2dA dx
令
dϕ T = GI p dx
dϕ T = dx GIp
I p = ∫ A ρ 2dA
由公式
Pk/n
11
§3-2、外力偶矩 扭矩和扭矩图
(2)计算扭矩 (2)计算扭矩
(3) 扭矩图
12
§3-3、纯剪切
1、薄壁圆筒扭转:壁厚 、薄壁圆筒扭转:
t≤
1 r0 10
为平均半径) (r0:为平均半径)
A)观察实验: )观察实验:
实验前: 实验前: ①绘纵向线,圆周线; 绘纵向线,圆周线; ②施加一对外力偶 m。 。
16
纯剪切的概念: 纯剪切的概念:
当单元体的侧面上只有剪应力而无正应力时, 当单元体的侧面上只有剪应力而无正应力时, 就称为纯剪切。 就称为纯剪切。
3、剪应变与扭转角
设轴长为L,半径为R 设轴长为L 半径为R Φ称为扭转角,是用来表示轴变形的量; 称为扭转角,是用来表示轴变形的量; 且的剪应变 γ Φ的关系如下: 与 的关系如下:
∑ mz = 0
a dy
γ τ´
dx
τ´
b
τ ⋅ t ⋅ dxdy = τ ′ ⋅ t ⋅ dxdy
故
τ
c z
τ
d t
τ =τ′
上式称为剪应力互等定理。 上式称为剪应力互等定理。 为剪应力互等定理
材料力学答案03
T2 = M B + M C = 764 N ⋅ m Tmax = 764 N ⋅ m
其绝对值比第(1)种情况小,即对轴的受力有利。 3-3 试绘出图示截面上切应力的分布图,其中 T 为截面的扭矩。
(a1)
(b1)
(c1)
3-4 图示圆截面轴, AB 与 BC 段的直径分别为 d1 与 d 2 ,且 d1 = 4d 2 / 3 。求轴内的 最大扭转切应力。
ϕ = ∫ dϕ = ∫
l l
T (x ) dx GI p ( x )
上式适用于等截面圆轴和截面变化不大的圆锥截面轴。对等截面圆轴,若在长 l 的两横截面 间的扭矩 T 为常量,则
ϕ=
圆轴扭转的刚度条件为
Tl GI p
⎟ ≤ [θ ] θ max = ⎜ ⎜ GI ⎟ ⎝ p ⎠ max
⎛ T ⎞
对于等截面圆轴为 或
28
答 同一变速箱中的高速轴与低速轴指相对转速高低,其传递的功率相同(不计功率损 耗) ,啮合处线速度相同。要啮合处产生相同的线速度,则高速轴的啮合半径就较小;又因 为啮合处相互作用力相同,该作用力对啮合半径就较小的高速轴线产生的外力偶矩就较小, 从而在高速轴中产生的扭矩较小,故高速轴可做得较细。 3-12 图示轴 A 和套筒 B 牢固地结合在一起,两者切变模量分别为 G A 和 G B ,两端受扭 转力偶矩,为使轴和套筒承受的扭转相同而必须满足的条件是什么?
(
)
16 × 500 = 194 MPa ⎡ ⎛ 40 ⎞ 4 ⎤ 3 −9 π × 42 × 10 × ⎢1 − ⎜ ⎟ ⎥ ⎢ ⎝ 42 ⎠ ⎦ ⎥ ⎣
(2)若考虑薄壁 ,可求其平均扭转切应力
τ=
Me = 2 πR 2δ
材料力学第3章扭转总结
5 圆截面的极惯性矩Ip和扭转截面系数Wt
πd 4 实心圆截面: I P 32
πd 3 Wt 16
πD4 空心圆截面: I ( 4) 1 P 32
πd 3 Wt ( 4) 1 16
6. 强度条件
max [ ]
对于等直圆轴亦即
Tmax [ ] Wt
7. 刚度条件 等直圆杆在扭转时的刚度条件:
圆周扭转时切应力分布特点:
T
max
Tr r Ip
max
d
圆周扭转时切应力分布特点:在横截面的同一半径 r 的圆周上各点处的切应力r 均相同,其值 与r 成正比,
其方向垂直于半径。
横截面周边上各点处(r r)切应力最大。
即单元体的两个相互垂直的面上,与该两个面的交线 垂直的切应力 和 数值相等,且均指向(或背离)该两个 面的交线——切应力互等定理。
Tmax
180 [ ] GI p
l
Ti li *若为阶梯扭矩、阶梯截面 GI i 1 pi
总结
1 扭转外力特点:
垂直轴线的平面内受一对大小相等、转向相反 力偶作用
变形特点: 杆件的任意两个横截面围绕其轴线作相对转动
外力矩计算
{M e }Nm
{P}kw 9.55 10 {n} r
3
min
2 扭转时内力:扭矩
扭矩(torque)--其力偶作用面与横截面平行
Me
T(+) T
T(-)
3
第三章 材料力学-扭转
上计算中对此并未考核。
例题3-2、3-4好好看一下(重要)
第三章 扭转
§3-5 等直圆杆扭转时的变形· 刚度条件
Ⅰ. 扭转时的变形
等直圆杆的扭转变形可用两个横截面的相对扭转角(相对角位移) 来度量。
Me
Me
A D B C
由前已得到的扭转角沿杆长的变化率(亦称单位长度扭 d T 转角)为 可知,杆的相距 l 的两横截面之间的 d x GI p 相对扭转角为 l T d dx l 0 GI p
!把重点放在前两条上面(红色字体)
第三章 扭转
受力特点: 杆件的两端作用两个大小相等、转向相反、且作用面垂直于杆件轴线
的力偶。
Me
Me
变形特点: Ⅰ. 相邻横截面绕杆的轴线相对转动; Ⅱ. 杆表面的纵向线变成螺旋线; Ⅲ. 实际构件在工作时除发生扭转变形外,
还伴随有弯曲或拉、压等变形。
第三章 扭转
D
解:轴的扭矩等于轴传递的转矩
T M 1.98KNm
轴的内,外径之比
M M t
d D 2t 0.934 D D
d
D
D 4 (1 4 ) IP 7.82105 mm4 32 IP Wt 2.06104 mm3 D 2
由强度条件 由刚度条件
max
第三章
扭转
扭转这一章节一般出一道大题,而且这一章题型比较独立,不牵涉其 他章节的知识点,这一章题分值大概15分,而且题型比较简单,把公式记 牢,概念好好理解,应该问题不大。
• 铁大考试大纲: 扭转(5-10%) (1)掌握圆轴扭转时横截面上的扭矩计算和切应力计算方 法,掌握握圆轴扭转的变形计算方法。 (2)熟练运用强度条件和刚度条件对圆轴进行设计。 (3)理解应变能的概念并能够进行杆件的应变能计算。 (4)了解矩形截面杆自由扭转时的应力和变形计算方法。
材料力学-第三章
21
第三章 扭转
3.5 圆轴扭转强度计算
22
扭转失效与扭转极限应力
扭转屈服应力:s 扭转强度极限:b 扭转强度极限:b 扭转屈服应力(s )和扭转强度极限(b ),统 称为材料的扭转极限应力u。
23
圆轴扭转强度条件
材料的扭转许用应力为:
u
n
n为安全系数。
强度条件为:
max
(2) 若将轮1与轮2的位置对调,试求轴内的最大扭矩。
(3) 若将轮1与轮3的位置对调,试求轴内的最大扭矩。
33
提高圆轴扭转时强度和刚度的措施
• 提高轴的转速 • 合理布局主动轮和被动轮的位置 • 采用空心轴 • 选用优质材料,提高剪切模量
34
例3-8:图示圆柱形密圈螺旋弹簧,承受轴向载荷F作用。 所谓密圈螺旋弹簧,是指螺旋升角α很小(例如小于5º )的 弹簧。设弹簧的平均直径D,弹簧丝的直径d,试分析弹簧 丝横截面上的应力并建立相应的强度条件。
第三章 扭转
3.1 扭转的概念
1
扭转的概念
以横截面绕轴 线作相对旋转为 主要特征的变形 形式,称为扭转。
2
受力特点: 变形特点:
受到垂直于构件轴线的外力偶 矩的作用。
构件的轴线保持不变,各横截面绕 轴线相对转动 截面间绕轴线的相对角位移,称为扭转角
使杆发生扭转变形的外力偶,称为扭力偶,其矩 称为扭力偶矩。 凡是以扭转为主要变形的直杆,称为轴。
公式的适用条件:以平面假设为基础;适用胡克定律。
18
圆轴截面的极惯性矩和抗扭截面模量
IP
d4
32
WP
d3
16
19
空心圆截面的极惯性矩和抗扭截面模量
材料力学——第三章 扭转
33
材 料 力 学
表明: 当薄壁圆筒扭转时,其横截面和包含轴线的纵向截
面上都没有正应力; 横截面上便只有切于截面的切应力;
34
材 料 力 学
4、切应力分布规律假设
因为筒壁的厚度很小,可以认为沿筒壁厚度切应力均匀分布;
35
材 料 力 学
5、薄壁圆筒的扭转切应力
T
rm
2 rm t T
m1
m4
15.9(kN m)
A
P2 m2 m3 9.549 4.78 (kN m) n P4 m4 9.549 6.37 (kN m) n
17
B
C
D
材 料 力 学
2、求扭矩
m2
T1 m2 0
T1 4.78kN m
T2 m2 m3 0
材 料 力 学
三、切应变
纯剪切单元体的相对两侧面 发生微小的相对错动, a
´
c
´
b
d
t
使原来互相垂直的两个棱边 的夹角改变了一个微量γ;
圆筒两端的相对扭转角为υ,圆筒 的长度为L,则切应变为
L r
r L
39
材 料 力 学
四、剪切虎克定律:
当剪应力不超过材料的剪切比例
齿轮轴
9
材 料 力 学
§3-2、外力偶矩的计算 扭矩和扭矩图
一.外力偶矩的计算 ——直接计算
M=Fd
10
材 料 力 学
按输入功率和转速计算
已知 轴转速-n 转/分钟 输出功率-P 千瓦 计算:力偶矩M
电机每秒输入功: 外力偶作功:
W P 1000(N.m)
材料力学 03章1-3扭转
TB
1210
Tn 2
x
Tn
-1590
A
B
C
19 TA 9549 1210 Nm 150 同样 TB =2800Nm, TC =1590Nm
Tn
-2800
x
-1590
接下来该讨论圆轴扭转时的应力问题了!
关于应力的三个问题:
存在什么应力 应力如何分布 应力如何计算 TK 先研究一个比较简单的问题 TK A
MA A
MD D x
PA 60kW , PB 10kW P C 20kW , P D 30kW
试画轴的扭矩图。
1面 MB
3面
T3
MD D x
解:求外力偶矩
B MB B
P 由M 9549 解得: n M A 1910 N m M B 318 N m M C 637 N m M D 955 N m
Me
Pk t Pk Pk M t
Me
e
Me
n r / min(转 / 分);
rad /(弧度 9549 Pk 2 n n M e 9549 60 n
2. 扭矩
横截面上的内力偶矩
确定方法:截面法 符号:T 由静平衡确定其大小 正负规定:右手法则
TK
y
dy o dx
a
,
b
c x
TK
( dy)
与
( dx)
,
z
d
组成一力偶,由力偶平衡得:
( dy)dx ( dx)dy 0
,
,
剪应力互等定理 :在相互垂直的两个面上,剪应力必然成 对出现,且大小相等,方向或指向、或背离两面的交线。
材料力学 第三章 扭转
为一很小的量,所以
tan 1.0103rad
G
(80 109 Pa)(1.0 103rad) 80 MPa
注意: 虽很小,但 G 很大,切应力 不小
例 3-3 一薄壁圆管,平均半径为R0,壁厚为,长度为l, 横截面上的扭矩为T,切变模量为G,试求扭转角。
解:
T
2πR02
G
T
2πGR02
塑性材料:[] =(0.5~0.6)[s] 脆性材料:[] = (0.8~1.0)[st]
例 3-1 已知 T=1.5 kN . m,[τ] = 50 MPa,试根据强度条 件设计实心圆轴与 a = 0.9 的空心圆轴,并进行比较。 解:1. 确定实心圆轴直径
max [ ]
max
T Wp
T πd 3
表示扭矩沿杆件轴线变化的图线(T-x曲线)-扭矩图
Tmax ml
[例3-1]已知:一传动轴, n =300r/min,主动轮输入 P1=500kW, 从动轮输出 P2=150kW,P3=150kW,P4=200kW,试绘制扭矩图。
解:1、计算外力偶矩
m2
m3
m1
m4
m1
9.55
P1 n
9.55
一、薄壁圆筒扭转时的应力
t
1、试验现象
壁厚
t
1 10
r0(r0:平均半径)
rO
各圆周线的形状不变,仅绕轴线作相对转动,距离不变。 当变形很小时,各纵向平行线仍然平行,倾斜一定的角度。
由于管壁薄,可近似认 为管内变形与管表面相 同,均仅存在切应变γ 。
2、应力公式 微小矩形单元体如图所示:
´
①无正应力
d T
dx GI p
材料力学课件第三章 扭转
工程上采用空心截面构件:提高强度,节约材料,重量轻, 结构轻便,应用广泛。
3.4 圆轴扭转时横截面上的应力
3.4.2 最大扭转切应力和强度条件
第三章 扭转
1. 最大扭转切应力:
由
T
Ip
知:当
R , max
max
TR Ip
T Ip R
T Wp
(令 Wp I p R )
max
T Wp
Wp — 扭转截面系数,单位:mm3或m3。
对于实心圆截面: 对于空心圆截面:
Wp
d3
16
Wp
(D4
16
d4)
D3(1 4 )
16
3.4 圆轴扭转时横截面上的应力
2、强度条件
强度条件:
max
Tm a x Wp
[ ]
第三章 扭转
许用切应力 u
n
τ s---- 扭转屈服极限 ——塑性材料 τ b---- 扭转强度极限 ——脆性材料 τ u---- 扭转极限应力 ——τs和τb的统称
MB
MC
MA
MD
B
C
解:计算外力偶矩
A
D
MA
9549 PA n
1592N m
MB
MC
9549 PB n
477.5N m
MD
9549 PD n
637N m
3.2 外力偶矩的计算 扭矩和扭矩图
第三章 扭转
3.2.2 扭矩和扭矩图
1 扭矩:构件受扭时,横截面上的内力偶矩,记作“T”。
2 截面法求扭矩
剪应力在互相垂直的面上同时存在,数值相等,其方向都垂直于这 两个面的交线,且都指向或者都背离该交线。
材料力学第三章扭转
材料力学
中南大学土木工程学院
三、扭 矩
x 扭矩的矢量表示
Me
Me
Me
T
定义:扭转内力偶矩, 1、定义:扭转内力偶矩,用T表示 大小: 2、大小:可用截面法取局部平衡求出 扭矩大小= 截面一侧所有外扭转力偶矩之代数和 T =ΣMe 正负号: 3、正负号:扭矩矢与截面外法线一致为正 (图中T为正,必须按“设正法”画扭矩) 为正,必须按“设正法”画扭矩) 单位: 4、单位:N·m 或 kN·m
τ =τ′
切应力互等定理
在单元体相互垂直的两个平面上, 在单元体相互垂直的两个平面上,切应力必然成对出 且数值相等,两者都垂直于两平面的交线, 现,且数值相等,两者都垂直于两平面的交线,其方 向则共同指向或共同背离该交线。 向则共同指向或共同背离该交线。
材料力学
中南大学土木工程学院
单元体的四个侧面上只有切应力而无正应 纯剪切应力状态。 力作用,这种应力状态称为纯剪切应力状态 力作用,这种应力状态称为纯剪切应力状态。
O
定义内径与 外径的比值
d α= D
D d
πD πD 4 Ip = (1 − α 4 ) 32
I p π(D 4 − d 4 ) πD 3 Wp = = = (1 − α 4 ) D 16 D 16 2
特别注意:抗扭截面系数不满足叠加法的计算,括号里的仍是四次方。 特别注意:抗扭截面系数不满足叠加法的计算,括号里的仍是四次方。
材料力学 中南大学土木工程学院
分布如图所示。 横截面上各点处的切应力τ 分布如图所示 取微面积dA,则横截面上的分布 的合成其主矢为零, 力系τ dA的合成其主矢为零,主矩就 是扭矩T。
δ
r0
O
τ
∫
材料力学第3章-扭转
第3章 扭转1、扭转的概念:杆件的两端个作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动,即为扭转变形。
2、外力偶矩的计算{}{}{}min /95491000602r KW m N e e n P M P M n=⇒⨯=⨯⨯⋅π 式中,e M 为外力偶矩。
又由截面法:e e M T M T =⇒=-0 T 称为n n -截面上的扭矩。
规定:若按右手螺旋法则把T 表示为矢量,当矢量方向与研究部分中截面的外法线的方向一致时,T 为正;反之为负。
3、纯剪切(1)薄壁圆筒扭转时的切应力 δπττδπ222r M r r M ee =⇒••=(2)切应力互等定理:在单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于平面的交线,方向则共同指向或背离这一交线。
(3)切应变 剪切胡克定律:当切应力不超过材料的剪切比例极限时,切应变γ与切应力τ成正比。
γτG = G 为比例常数,称为材料的切变模量。
弹性模量E 、泊松比μ和切变模量G 存在关系:)1(2μ+=EG 4、圆轴扭转时的应力(1)变形几何关系:距圆心为ρ处的切应变为dxd ϕργρ=(2)物理关系:ρτ为横截面上距圆心为ρ处的切应力。
dxd G G ϕρτγτρρρ=⇒= (3)静力关系:内力系对圆心的力矩就是横截面的扭矩:dA d d GdA T AxA⎰⎰==2ρρτϕρ 以p I 表示上式右端的积分式:dA I Ap ⎰=2ρ p I 称为横截面对圆心O 点的极惯性矩(截面二次极矩)横截面上距圆心为ρ的任意点的切应力:pI T ρτρ=ρ最大时为R ,得最大切应力:pI TR =max τ引用记号RI W p t =t W 称为抗扭截面系数。
则tW T =max τp I 和t W 的计算(1)实心轴:3224420032D R d d dA I RAp ππθρρρπ====⎰⎰⎰16233D R RI W p t ππ===(2)空心轴:)1(32)(324444202/2/32αππθρρρπ-=-===⎰⎰⎰D d D d d dA I D d Ap)1(16)(164344αππ-=-==D d D DRI W p t5、圆轴扭转时的变形pGI Tl =ϕ ϕ为扭转角,l 为两横截面间的距离。
材料力学3-第三章扭转
第三章扭转目录第三章扭转 3§3-1 扭转的概念 3一、定义 3二、基本概念 3三、实例 3§3-2 外力偶矩计算、扭矩和扭矩图 3一、外力偶矩计算 3二、扭矩和扭矩图 3§3-3 纯剪切 5一、薄壁圆筒扭转时的剪应力 5二、剪应力互等定理 5三、剪应变、剪切胡克定律 6§3-4 圆轴扭转时的应力 6一、圆轴扭转时的应力计算公式 6二、极惯性矩计算 7三、圆轴扭转强度条件 7§3-5 圆周扭转时的变形 9一、相邻截面扭转角计算公式 9第三章扭转§3-1 扭转的概念一、定义在杆两端作用两大小相等、方向相反、且作用面垂直于杆件轴线的力偶,使杆的任意两个截面发生绕轴的相对转动。
杆件的这种变形形式称为扭转。
二、基本概念轴:工程中一般将发生扭转变形的直杆称为轴扭转角:扭转时杆的任意两个横截面的相对角位移三、实例搅拌机轴、汽车传动轴等1、螺丝刀杆工作时受扭2、汽车方向盘的转动轴工作时受扭3、机器中的传动轴工作时受扭。
§3-2 外力偶矩计算、扭矩和扭矩图一、外力偶矩计算在工程实际中,作用于轴上的外力偶矩往往上未知的,已知的往往是轴的转速以及轴上各轮所传送的功率。
以下图所示的齿轮轴简图为例,主动轮B的输入功率经轴的传递,由从动轮A、C输出给其它构件。
1. 外力偶矩与功率、角速度关系2. 外力偶矩与功率、转速关系(1马力=735.5N?m/s)二、扭转杆件的内力——扭矩和扭矩图1、扭转杆件的内力(截面法)由平衡方程,,称为截面m-m上的扭矩。
按右手螺旋法则把表示为矢量,当矢量方向与截面的外法线的方向一致时,为正;反之,为负。
2、扭矩的符号规定:按右手螺旋法则判断。
右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向与截面的外法线方向相同,则扭矩规定为正值,反之为负值。
以横轴表示横截面的位置,纵轴表示相应截面上的扭矩,绘成的图形称为扭矩图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18
§3-3、外力偶矩 扭矩和扭矩图
2Me Me T m T m
2Me
2MeT=Me m mT=-2MMee+Me=-Me 19
§3-4 等直圆杆扭转时的应力、强度条件
一、圆轴的扭转时的应力
1、变形几何关系
mn
R
O
mn
dx
mn
Me
mn
平面假定 横截面形状、大小不变 横截面只有切应力 切应力与圆周相切
T = Me
14
§3-3、外力偶矩 扭矩和扭矩图
扭矩正负规定
右手螺旋法则
右手拇指指向外法线方向为 正(+),反之为 负(-)
15
§3-3、外力偶矩 扭矩和扭矩图
扭矩图
16
§3-3、外力偶矩 扭矩和扭矩图
例题3-1
解:
(1)计算外力偶矩
由公式
Pk/n
17
§3-3、外力偶矩 扭矩和扭矩图
(2)计算扭矩
E
其中,比例常数E 称为拉
拉压虎克定律 压弹性模量。常用单位GPa 8
§3-2、薄壁圆筒的扭转
对各向同性材料可以证明,弹性常数E、G、 μ存在关系
G E
2(1 )
表明3个常数只有2个是独立的
9
§3-3、外力偶矩 扭矩和扭矩图
1.外力偶矩 直接计算
10
二、外力偶矩 扭矩和扭矩图
§3-3、外力偶矩 扭矩和扭矩图
第三章 扭转
1
第三章 扭 转
§3-1、概述 §3-2、外力偶矩 扭矩和扭矩图 §3-3、圆轴扭转时截面上的应力计算 §3-4、圆轴扭转时的变形计算 §3-5、圆轴扭转时的强度条件 刚度条件
圆轴的设计计算 §3-6、材料扭转时的力学性质 §3-7、圆柱形密圈螺旋弹簧的应力和变形 §3-8、矩形截面杆自由扭转理论的主要结果 §3-9、扭转超静定问题
23
§3-4 等直圆杆扭转时的应力、强度条件
4. Ip 与 Wp 的计算
实心轴
24
§3-4 等直圆杆扭转时的应力、强度条件
空心轴
令
则
25
§3-4 等直圆杆扭转时的应力、强度条件
实心轴与空心轴 Ip 与 Wp 对比
26
§3-4 等直圆杆扭转时的应力、强度条件 二.切应力互等定理
27
§3-3 纯剪切 切应力互等定理 剪切胡克定律
70mm, d 2=50mm, d3=35mm.
求:各轴横截面上的最大切应力。
解:1、计算各轴的功率与转速 2、计算各轴的扭矩
P1=14kW, P2= P3= P1/2=7 kW
n1=n2= 120r/min
n3=n1
z1 z3
=120
36 12
r/min
=360r/min
20
§3-4 等直圆杆扭转时的应力、强度条件
m
n
O1
A B
m
d O2 C
C’
D D’ n
dx
A
B
a C
b C’ D
D’
1.几何关系 2.物理关系
tan Rd
dx
tan
d
dx
(1)
G
G
d
dx
(2)
O1
dx
c d
d C’
O2
O1
O2
d’
A
C
B
D
21
§3-4 等直圆杆扭转时的应力、强度条件
大切应力不得超过40MPa,空心圆轴
的内外直径之比 = 0.5。二轴长
度相同。
求: 实心轴的直径d1和空心轴的外 直径D2;确定二轴的重量之比。
解: 首先由轴所传递的功率计算作用在轴上的扭矩
实心轴
Mx
T
9549
P n
9549 7.5 100
716.2N m
max1
MT x
WP1
16MT x
空心轴
T T max2
Mx WP 2
16M x
πD23 1 4
40MPa
16 716.2
D2 3 π 1- 4 40106 0.046m=46mm
d2=0.5D2=23 mm
32
§3-4 等直圆杆扭转时的应力、强度条件
实心轴
空心轴
d1=45 mm
D2=46 mm d2=23 mm
o
o
o T
dA
T
3.静力关系
由合力矩定理 A dA T
极惯性矩
G
G
d
dx
(2)
G d 2dA T
dx A
I p
2dA
A
d
T GI p dx
d T
dx GI p
(3) 切应力公式
T
Ip
(4)
22
§3-4 等直圆杆扭转时的应力、强度条件
3、切应力计算
令
抗扭截面系数
28
§3-4 等直圆杆扭转时的应力、强度条件
三、纯剪切
切应力
γ - 切应变
单元体截面上只有切应力而无正应力作用,
这种应力状态叫做纯剪切应力状态。
29
下面单元体的切应变分别是?
α
α
α
α
0 2
30
§3-4 等直圆杆扭转时的应力、强度条件例题3-2
已知:P=7.5kW, n=100r/min,最
2
标题
§3-1、概述
汽车传动轴
一、概
3
述
§3-1、概述
汽车方向盘 4
§3-1、概述
丝锥攻丝
5
§3-1、概述
扭转变形是指杆件受到大小相等,方向 相反且作用平面垂直于杆件轴线的力偶作用, 使杆件的横截面绕轴线产生转动。
受扭转变形杆件通常为轴类零件,其横 截面大都是圆形的。所以本章主要介绍圆轴 扭转。
6
§3-2、薄壁圆筒的扭转
一、薄壁圆筒的扭转 横截面只有切应力
横截面形状、大小不变
γ
φ
平面假定 切应力与圆周相切
沿圆周切应变相等
各点切应力相等
AdA r T
T T 2ro2 2 A0
7
§3-2、薄壁圆筒的扭转
二.剪切胡克定律
G
剪切虎克定律
其中,比例常数G 称
为剪切弹性模量。常用单 位GPa
πd13
40MPa
d1
3
16 716.2 π 40106
0.045m=45mm
31
§3-4 等直圆杆扭转时的应力、强度条件
已知:P=7.5kW, n=100r/min,最大
切应力不得超过40MPa,空心圆轴的
内外直径之比 = 0.5。二轴长度
相同。
求: 实心轴的直径d1和空心轴的外 直径D2;确定二轴的重量之比。
确定实心轴与空心轴的重量之比
长度相同的情形下,二轴的重量之比即为 横截面面积之比:
A1
d2 1
45
103
2
1
=1.28
A2
D2 2
12
46 103 1 0.52
33
§3-4 等直圆杆扭转时的应力、强度条件
例题3-3
已知:P1=14kW,P2= P3=P1/2,
3
n1=n2=120r/min,z1=36,z3=12;d1=
按输入功率和转速计算
已知
轴转速-n 转/分钟 输出功率-Pk 千瓦 求:力偶矩Me
电机每秒输入功: 外力偶作功完成:
W Pk 1000(N.m)
W
MeBiblioteka 2n 60Pk
Pk
11
§3-3、外力偶矩 扭矩和扭矩图
2.扭矩和扭矩图
12
§3-3、外力偶矩 扭矩和扭矩图
T = Me
13
§3-3、外力偶矩 扭矩和扭矩图