晶闸管参数名词解释
电气自动化技术《100-晶闸管的主要参数及型号》
同学们!今天我们来学习晶闸管的主要参数和型号。
先来学习主要的电压参数。
额定电压U D,指加在管子上的最大允许电压,俗称耐压。
要求大于实际工作峰值电压的2—3倍。
通态平均电压U F,通过正向正弦半波额定电流时,管子两端的平均电压。
一般为0.6—1.2V。
反向击穿电压U BR,指到达反向击穿时所加反向电压。
反向重复峰值电压U RRM,指的是当控制极开路时,允许重复加在管子上的反向峰值电压。
其值为U RRM =U BR—100V 。
现在我们来看电流参数。
额定正向平均电流I F,指允许通过工频正弦半波的电流平均值。
一般取正常平均电流的 1.5—2倍。
维持电流,是维持晶闸管导通的最小阳极电流。
浪涌电流IFSM ,是指晶闸管能承受的最大过载电流的峰值。
控制极触发电压和电流U G、I G:指在室温下,阳极电压为直流6V 时,使晶闸管完全导通所必须的最小控制极直流电压、电流。
一般U G为1~5V,I G 为几十到几百毫安。
最后,我们来看晶闸管的型号。
型号的第一个字母K外表这是一个晶闸管,第二个字母可能是P,K,S,其中P代表普通型,K代表快速型,S代表双向型,紧随其后的数字代表额定正向平均电流IF系列,从1—1000A内分14个规格。
接着是一个横岗,横岗后的第一个数字为额定电压等级,在1000V以下,级差为100V,在1000—3000V之间,级差为200V,单位用100V表示。
最后一个字母为通态平均电压组别,共分9级,用A—I表示。
例如,KP100-12G,表示IF=100A,UD=1200V,UF=1V的普通型晶闸管。
目前国际水平已达12KV每千安培,及5KV每千安培,其开关频率为400赫兹。
晶闸管电压、电流级别:额定通态电流〔I TAV〕通用系列为1、5、10、20、30、50、100、200、300、400、500、600、800、1000A 等14种规格。
通态平均电压〔U TAV〕等级一般用A ~ I字母表示:由0.4 ~ 1. 2V每0.1V 为一级。
晶闸管的参数说明
晶闸管(thyristor)其派生器件有,快速晶闸管,双向晶闸管,逆导晶闸管,光控晶闸管,是一种大功率开关型半导体器件,V,Vt ,旧标准中用的是SCR,重要参数说明1.断炉重复峰值电压,udrm ,,是指晶闸管在正向阻断时,允许加在A,K 间的电压。
此电压为不重复峰值电压udsm的90%。
2.反向重复峰值电压urrm,在控制极断路时,允许重复加在晶闸管上的反向峰值电压,称为反向阻断峰值电压。
此电压约为不重复峰值电压udsm的90%。
udrm ,和urrm在数值上一般相近,统称为晶闸管的阻断峰值电压,通常把其中较小的那个数值作为该型号器件上的额定电压值,由于瞬时过电压也会使晶闸管损坏,因此晶闸管的乖宝宝电压应选为正常工作峰值电压的,2-3倍以确保安全。
3.额定正向平均电流if在规定的标准散热条件和环境温度40度下,晶闸管的阳极和阴极间允许连接贯通过的工频正统半波电流的平均值。
称为额定正向平均电流。
由于晶闸管的过载能力小,选用晶闸管的额定正向平均电流时,至少应大于正常工作平均电流的1.5-2倍以留有一定的余地。
4.维持电流ih:在室温下,控制极开路时,维持晶闸管继续导通所必须的最小电流,称为维持电流,当正向电流于ih值时,晶闸管就自行判断,ih值一般为几十至一百多毫安。
5.控制极触发电压VG,触发电流IG在室温下,阳极加正向电压为直流6V 时,使晶闸管由阻断变为导通所需要的最小控制极电压和电流,称为控制极触发电压和触发电流。
VG一般为1/ 23.5-5V,IG约为几十至几百毫安。
实际应用时,加到控制极的触发电压和触发电流应比额定值稍微大点,以保证可靠触发。
6.电压上升率DV/DT,晶闸管阻断时其阴阳极之间相当于一个结电容当突加阳极电压时会产生充电电容电流,此电流可能导致晶闸管误导通,因此对管子的最大正向电压上升率,必须加愉限制,一般采用阻容吸收元件并联在晶闸管两端的办法加以限制。
7.电流上升率DI/DT,晶闸管开通时电流是从靠近门极区的阴极开始然后逐渐2/ 2。
晶闸管的主要参数
晶闸管的主要参数一、额定电压(VDRM/VRRM)额定电压是指晶闸管能够承受的最大正向/反向电压。
在电力控制中,晶闸管通常用于控制交流电压,因此额定电压是一个重要的参数。
当晶闸管的电压超过额定电压时,可能会发生击穿现象,导致器件损坏。
二、额定电流(IDRM/IRRM)额定电流是指晶闸管能够承受的最大正向/反向电流。
晶闸管通常用于控制大电流,因此额定电流是一个关键参数。
当晶闸管的电流超过额定电流时,可能会导致器件过热甚至烧毁。
三、触发电流(IT)触发电流是指晶闸管正向电流达到一定数值时,晶闸管开始导通。
触发电流的大小决定了晶闸管的触发灵敏度和可靠性。
如果触发电流过高,会增加控制电路的复杂度和成本;如果触发电流过低,可能会导致误触发。
四、保持电流(IH)保持电流是指晶闸管在导通状态下需要供给的最小电流。
保持电流的大小决定了晶闸管的稳态工作能力。
过低的保持电流可能导致晶闸管无法稳定导通,而过高的保持电流会增加功耗和热损失。
五、封装类型晶闸管的封装类型决定了其外形和安装方式。
常见的封装类型有TO-220、TO-247等。
不同的封装类型适用于不同的应用场景,例如TO-220适用于小功率应用,而TO-247适用于大功率应用。
六、工作温度范围工作温度范围是指晶闸管能够正常工作的温度范围。
晶闸管在高温环境下工作时,可能会出现性能降低甚至失效的情况。
因此,工作温度范围是一个重要的参数。
七、开关速度开关速度是指晶闸管在从关断到导通或从导通到关断的切换速度。
开关速度的快慢影响着晶闸管的响应速度和效率。
较快的开关速度可以提高系统的响应速度,但也会增加开关损耗。
八、导通压降(VCE)导通压降是指晶闸管在导通状态下的正向电压降。
导通压降的大小直接影响着晶闸管的导通损耗和功率损耗。
较低的导通压降可以提高系统的效率。
九、关断电流(ICRM)关断电流是指晶闸管在关断状态下的漏电流。
关断电流的大小决定了晶闸管的关断能力和可靠性。
较小的关断电流可以减小系统的功耗。
晶闸管二极管主要参数及其含义
晶闸管二极管主要参数及其含义IEC标准中用来表征晶闸管二极管性能特点的参数有数十项但用户经常用到的有十项左右本文就晶闸管二极管的主要参数做一简单介绍1、正向平均电流IF(AV)(整流管)通态平均电流IT(AV)(晶闸管)是指在规定的散热器温度THS 或管壳温度 TC时,允许流过器件的最大正弦半波电流平均值此时器件的结温已达到其最高允许温度Tjm仪元公司产品手册中均给出了相应通态电流对应的散热器温度THS 或管壳温度 TC值用户使用中应根据实际通态电流和散热条件来选择合适型号的器件2、正向方均根电流IFRMS(整流管)通态方均根电流ITRMS(晶闸管)是指在规定的散热器温度THS 或管壳温度 TC时,允许流过器件的最大有效电流值用户在使用中须保证在任何条件下流过器件的电流有效值不超过对应壳温下的方均根电流值3、浪涌电流IFSM (整流管)ITSM(晶闸管)表示工作在异常情况下器件能承受的瞬时最大过载电流值用10ms底宽正弦半波峰值表示仪元公司在产品手册中给出的浪涌电流值是在器件处于最高允许结温下施加80% VRRM条件下的测试值器件在寿命期内能承受浪涌电流的次数是有限的用户在使用中应尽量避免出现过载现象4、断态不重复峰值电压VDSM反向不重复峰值电压VRSM指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压一般用单脉冲测试防止器件损坏用户在测试或使用中应禁止给器件施加该电压值以免损坏器件5、断态重复峰值电压VDRM反向重复峰值电压VRRM是指器件处于阻断状态时断态和反向所能承受的最大重复峰值电压一般取器件不重复电压的90%标注高压器件取不重复电压减100V标注用户在使用中须保证在任何情况下均不应让器件承受的实际电压超过其断态和反向重复峰值电压6、断态重复峰值漏电流IDRM反向重复峰值漏电流IRRM为晶闸管在阻断状态下承受断态重复峰值电压VDRM 和反向重复峰值电压VRRM时流过元件的正反向峰值漏电流该参数在器件允许工作的最高结温Tjm下测出7、通态峰值电压VTM(晶闸管)正向峰值电压VFM(整流管)指器件通过规定正向峰值电流IFM (整流管)或通态峰值电流ITM(晶闸管)时的峰值电压也称峰值压降该参数直接反映了器件的通态损耗特性影响着器件的通态电流额定能力点图进入相册点图进入相册点图进入相册点图进入相册点图进入相册。
晶闸管的主要参数
晶闸管的主要参数为了正确选用晶闸管元件,必需要了解它的主要参数,一般在产品的名目上都给出了参数的平均值或极限值,产品合格证上标有元件的实测数据。
(1)断态重复峰值电压UDRM在掌握极断路和晶闸管正向阻断的条件下,可以重复加在晶闸管两端的正向峰值电压称为断态重复峰值电压UDRM,其数值比正向转折电压小10%左右。
(2)反向重复峰值电压URRM在掌握极断路时,可以重复加在晶闸管元件上的反向峰值电压称为反向重复峰值电压URRM,此电压数值规定比反向击穿电压小10%左右。
通常把UDRM与URRM中较小的一个数值标作器件型号上的额定电压。
由于瞬时过电压也会使晶闸管遭到破坏,因而在选用元件的时候,额定电压一般应当为正常工作峰值电压的2~3倍作为平安系数。
(3)额定通态平均电流(额定正向平均电流)IT在环境温度不大于40oC和规定的冷却条件下,晶闸管元件在电阻性负载的单相工频半波电路中导通角不小于170°,即全导通的条件下,可以连续通过的电流(在一个周期内)的平均值,称为额定通态平均电流IT,简称额定电流。
即这里需要特殊说明的是,晶闸管允许流过的电流的大小主要取决于元件的结温,而在规定的环境温度和冷却条件下,结温的凹凸仅与发热有关,晶闸管管芯的发热又由流过其电流的有效值打算。
因此,在使用时应根据工作中晶闸管实际流过的电流的有效值与通态平均电流所对应的电流有效值相等的原则来选取晶闸管的额定电流。
(4)维持电流IH在规定的环境温度和掌握极断路的条件下,维持元件连续导通的最小电流称为维持电流IH 。
一般为几十毫安~一百多毫安,其数值与元件的温度成反比,在120℃时维持电流约为25℃时的一半。
当晶闸管的正向电流小于这个电流时,晶闸管将自动关断。
晶闸管的主要参数
晶闸管的主要参数作者:jesse 文章来源:本站原创点击数:273 更新时间:2007-12-6 ★★★【字体:小大】晶闸管的主要电参数有正向转折电压VBO、正向平均漏电流IFL、反向漏电流IRL、断态重复峰值电压V DRM、反向重复峰值电压VRRM、正向平均压降VF、通态平均电流IT、门极触发电压VG、门极触发电流IG、门极反向电压和维持电流IH等。
(一)正向转折电压VBO晶闸管的正向转折电压VBO是指在额定结温为100℃且门极(G)开路的条件下,在其阳极(A)与阴极(K)之间加正弦半波正向电压、使其由关断状态转变为导通状态时所对应的峰值电压。
(二)断态重复峰值电压VDRM断态重复峰值电压VDRM,是指晶闸管在正向阻断时,允许加在A、K(或T1、T2)极间最大的峰值电压。
此电压约为正向转折电压减去100V后的电压值。
(三)通态平均电流IT通态平均电流IT,是指在规定环境温度和标准散热条件下,晶闸管正常工作时A、K(或T1、T2)极间所允许通过电流的平均值。
(四)反向击穿电压VBR反向击穿电压是指在额定结温下,晶闸管阳极与阴极之间施加正弦半波反向电压,当其反向漏电电流急剧增加时反对应的峰值电压。
(五)反向重复峰值电压VRRM反向重复峰值电压VRRM,是指晶闸管在门极G断路时,允许加在A、K极间的最大反向峰值电压。
此电压约为反向击穿电压减去100V后的峰值电压。
(六)正向平均电压降VF正向平均电压降VF也称通态平均电压或通态压降VT,是指在规定环境温度和标准散热条件下,当通过晶闸管的电流为额定电流时,其阳极A与阴极K之间电压降的平均值,通常为0.4~1.2V。
(七)门极触发电压VGT门极触发VGT,是指在规定的环境温度和晶闸管阳极与阴极之间为一定值正向电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电压,一般为1.5V左右。
(八)门极触发电流IGT门极触发电流IGT,是指在规定环境温度和晶闸管阳极与阴极之间为一定值电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电流。
晶闸管的主要参数
晶闸管的主要参数晶闸管的主要电参数有正向转折电压VBO、正向平均漏电流IFL、反向漏电流IRL、断态重复峰值电压VDRM、反向重复峰值电压VRRM、正向平均压降VF、通态平均电流IT、门极触发电压VG、门极触发电流IG、门极反向电压和维持电流IH等。
(一)正向转折电压VBO晶闸管的正向转折电压VBO是指在额定结温为100℃且门极(G)开路的条件下,在其阳极(A)与阴极(K)之间加正弦半波正向电压、使其由关断状态转变为导通状态时所对应的峰值电压。
(二)断态重复峰值电压VDRM断态重复峰值电压VDRM,是指晶闸管在正向阻断时,允许加在A、K(或T1、T2)极间最大的峰值电压。
此电压约为正向转折电压减去100V后的电压值。
(三)通态平均电流IT通态平均电流IT,是指在规定环境温度和标准散热条件下,晶闸管正常工作时A、K(或T1、T2)极间所允许通过电流的平均值。
(四)反向击穿电压VBR反向击穿电压是指在额定结温下,晶闸管阳极与阴极之间施加正弦半波反向电压,当其反向漏电电流急剧增加时反对应的峰值电压。
(五)反向重复峰值电压VRRM反向重复峰值电压VRRM,是指晶闸管在门极G断路时,允许加在A、K极间的最大反向峰值电压。
此电压约为反向击穿电压减去100V后的峰值电压。
(六)正向平均电压降VF正向平均电压降VF也称通态平均电压或通态压降VT,是指在规定环境温度和标准散热条件下,当通过晶闸管的电流为额定电流时,其阳极A与阴极K之间电压降的平均值,通常为0.4~1.2V。
(七)门极触发电压VGT门极触发VGT,是指在规定的环境温度和晶闸管阳极与阴极之间为一定值正向电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电压,一般为1.5V左右。
(八)门极触发电流IGT门极触发电流IGT,是指在规定环境温度和晶闸管阳极与阴极之间为一定值电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电流。
晶闸管原理以及参数介绍
晶閘管結構可等效為一個 NPN型和一個PNP型三極管, 根據其連接方式等效電路 可以基本瞭解到晶閘管控 制導通方式
控制極G加正 向脉衝電壓
NPN管導通
PNP管導通
PNP管關閉
Y
N
NPN管關閉
IT>IH?
整個晶閘管關閉
整個晶閘管 導通
晶閘管的分類
基本分類
按关断导通控制 方式 普通晶闸管(SCR)、双向晶闸管(TRIAC)、逆导晶闸管(RCT)、门极关断晶闸 管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管(LTT)等多种。
普通晶闸管最基本的用途就是可控整流。大家熟悉的二极管整 流电路属于不可控整流电路。如果把二极管换成晶闸管,就可 以构成可控整流电路。
晶閘管的基本應用
1.单相半波相控整流电路 下图为单相半波相控整流电路(Single-phase half wave
controllable rectifier),整流变压器二次电压有效值用U2表 示,瞬时值用u2表示,负载上输出电压用uo表示。
(2)维持电流IH(Holding current) 指在室温和门极开路时,逐渐减小导通状态下晶闸管的
阳极电流,最后能维持晶闸管持续导通所必须的最小阳极电 流,结温越高,维持电流IH越小,晶闸管越难关断。
晶閘管的參數介紹
2. 晶闸管的电流参数
(3)掣住电流IL(Latching current) 指晶闸管触发后,刚从正向阻断状态转入导通状态,在立
(6)通态正向平均电压UF
在规定的环境温度和标准散热条件下,器件正向通过正弦 半波额定电流时,其两端的电压降在一周期内的平均值,又称 管压降,其值在0.6~1.2V之间。
晶閘管的參數介紹
2. 晶闸管的电流参数
晶闸管的定义及主要参数和使用详解
晶闸管的定义及主要参数和使用详解晶闸管的发明在当今高科技时代,电力控制技术的发展对于现代社会的可持续运行至关重要。
而晶闸管作为一种重要的电力控制元件,正发挥着不可或缺的作用。
本文将深入介绍晶闸管的基本原理、控制使用、重要参数以及其应用领域。
晶闸管的发明随着电力系统的扩展和电气设备的广泛应用,对电力控制的需求日益增加。
传统的机械式开关和控制方法存在效率低下、寿命短等问题。
因此,寻找更高效、可靠的电力控制方法成为了一个迫切的需求。
1956年,苏联的科学家Oleg Losev首次提出了PNPN结构的概念。
尽管他没有将其实际制造成可用器件,但这个概念为晶闸管的开发铺平了道路。
他的想法激发了后来研究者们对PNPN结构的探索。
1957年,美国物理学家Robert Noyce和Gordon Moore在贝尔实验室工作时,设计并制造了第一个可实际使用的PNPN结构的器件,被称为“Silicon Controlled Switch”(SCS)。
尽管在当时尚未广泛应用,但这是晶闸管发展的重要里程碑。
1958年,Gerald Pearson、Dawon Kahng和John Moll从贝尔实验室获得了专利,描述了一个在电流触发下能控制电流的器件。
他们将这个器件命名为“晶闸管”,即Thyristor,这个名称在随后的发展中被广泛使用。
晶闸管的重要参数触发电流门限(I_GT):触发电流门限是指需要在栅极施加的最小电流,以使晶闸管从关断状态切换到导通状态。
这个参数决定了触发晶闸管的最小控制电流。
保持电流(I_H):保持电流是指在晶闸管导通状态下,需要流过晶闸管的最小电流,以保持其导通。
如果电流降至保持电流以下,晶闸管将自动关断。
最大额定电压(V_RRM):最大额定电压是晶闸管可以承受的最大反向重复电压。
这个参数与晶闸管的电压耐受能力相关,决定了它适用的电路电压范围。
最大额定电流(I_TAV):最大额定电流是指晶闸管可以承受的最大平均电流。
浅析晶闸管参数选择
浅析晶闸管参数选择晶闸管是一种半导体器件,具有开关功率和控制信号的功能。
在实际的电路设计和应用中,晶闸管的参数选择对于电路的性能和稳定性至关重要。
本文将从晶闸管的工作原理、参数及选择等方面进行浅析,以帮助读者更好地理解晶闸管的选择和应用。
一、晶闸管工作原理晶闸管是一种四层PNPN结构的半导体器件,其工作原理是基于PNP或NPN晶体管的耦合和反馈原理。
当晶闸管的控制端施加一个触发信号时,PNP-NPN结构内部会形成正反馈,导致晶闸管进入导通状态;当控制信号消失时,晶闸管会自动关闭。
这一特性使得晶闸管成为一种可以控制电流的开关器件,广泛应用于电力电子、变频调速、电磁启动、逆变器等领域。
二、晶闸管参数1. 最大反向电压(VRRM):晶闸管能够承受的最大反向电压,决定了晶闸管的安全工作范围。
2. 最大正向电流(ITAV):晶闸管可以持续工作的最大正向电流,直接关系到晶闸管的载流能力和散热能力。
3. 触发电流(IGT):晶闸管进入导通状态所需的最小控制电流,是控制晶闸管导通的关键参数。
4. 阻断能力(di/dt、dv/dt):晶闸管在承受高压和高电流冲击时的性能,涉及到晶闸管的抗干扰和稳定性。
5. 吸收时间(tq):晶闸管在关闭状态转换为导通状态所需的时间,决定了晶闸管的开关速度。
1. 根据实际需求确定VRRM和ITAV:根据具体的电路工作电压和电流要求,选择晶闸管的VRRM和ITAV参数,使其能够稳定工作在所需的工作环境中。
2. 考虑IGT和触发方式:根据控制信号的特点和控制电路的设计要求,选择适合的IGT和触发方式,保证晶闸管可以可靠地控制。
3. 注意di/dt、dv/dt和tq:在高频开关电路中,需要特别注意晶闸管的阻断能力和吸收时间,以降低电压和电流冲击造成的损坏。
四、举例分析以一款控制电机的变频调速器为例,其输出电流为20A,工作电压为220V,控制系统为数字信号控制。
根据上述参数选择原则,我们可以选择VRRM为400V的晶闸管,ITAV为30A,IGT为20mA,di/dt、dv/dt和tq都要能够适应变频调速器的工作条件。
浅析晶闸管参数选择
浅析晶闸管参数选择
1. 主要参数:
(1)额定电流(ID):晶闸管的额定电流是指在正常工作条件下,晶闸管可以承受的最大电流。
在选择晶闸管时,应根据电路中的最大负载电流选择晶闸管的额定电流。
(2)导通压降(VTO):晶闸管导通时的压降,通常指的是正向电压下的导通压降。
在选择晶闸管时,应根据电路要求和功率损耗来确定导通压降是否满足要求。
(3)关断电流(IH):晶闸管的关断电流是指晶闸管在关断状态下通过的最小电流。
较小的关断电流可以减小晶闸管的功耗。
2. 参数选择方法:
(2)根据功率损耗确定导通压降:根据电路要求和功率损耗来确定晶闸管的导通压降。
一般来说,导通压降越小,功耗越小。
(4)根据电路控制信号确定触发电压:根据电路控制信号的要求来确定晶闸管的触发电压。
触发电压应满足电路控制信号的幅值和频率要求。
晶闸管参数的选择应综合考虑电路要求、功耗和可靠性等因素。
根据电路中的负载电流、功率损耗、关断电流和触发电压等要求,选择合适的晶闸管参数,以确保电路的性能
和稳定性。
常见电子元件晶闸管的定义、参数及注意事项介绍
常见电子元件晶闸管的定义、参数及注意事项介绍
晶闸管是电子元件的一种,它能在高电压、大电流的条件下工作,旧称可控硅,是一种以小控大的功率电流型器件。
生活中常见的晶闸管类型多样,主要有单向晶闸管、双向晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管、光控晶闸管等。
在未加说明的情况下,通常晶闸管或可控硅指的是单向晶闸管,且应用较多的是单向晶闸管和双向晶闸管。
今天小编将主要对单向晶闸管的一些常识进行详细地解说。
单向晶闸管
单向晶闸管,简称SCR,常见的单向晶闸管在可控整流、交流调压、逆变器和开关电源电路中广泛应用,其外形结构和等效电路如图1、图2 所示。
单向晶闸管
单向晶闸管三个电极,分别为阳极(A)、阴极(K)和控制极又称门极(G)。
由图1 可见,它是一种PNPN 四层半导体器件,其中控制极是从P 型硅层上引出,供触发晶闸管用。
晶闸管一旦导通,即使撤掉正向触发信号,仍能维护通态。
欲使晶闸管关断,必须使正向电流低于维持电流,或施以反向电压强迫其关断。
普通晶闸管的工作频率一般在400 Hz 以下,随着频率的升高,功耗将增大,器件会发热。
快速晶闸管一般可工作在5 kHz 以上,最高达40kHz
单向晶闸管特性参数
表征单向晶闸管性能的参数也很多,在实际应用中,最关心的是它在阻断状态下能承受多大正向与反向电压,它在导通时能够通过多大的电流,要使它触发导通控制极需加多大的电压(电流),要使它关断时阳极电流要减小到多少等。
1.额定通态平均电流I T(AV)。
晶闸管的各项参数指标(精)
如何形象理解晶闸管的各项参数对于大多数从事电力电子整机和器件的技术人员来说,晶闸管的各项参数的真正含义理解起来是很困难的事,如果单从字面去理解需要十几年甚至几十年才能有正确的认识,而且需要大量的实践经验作依托,没有足够的临场经验可能永远也无法理解其真正的含义。
本人从事电力电子整机技术工作十几年,主要接触过的产品有中频电源、整流器、逆变及整流焊机、直流调速电源、变频调速电源、控温装置、开关电源等,之后又从事电力电子器件的技术工作十几年,主要是器件产品测试仪表的制作、维修、管理等工作,通过测试仪表的这些工作(因为制作仪表、维修仪表必须掌握器件各参数的标准,否则无法做出合格的仪器仪表)让我对晶闸管各项参数的标准有了新的认识,并且将整机技术与器件技术融为一体,由此总结出一套适合所有从事电力电子整机和器件技术人员正确、形象理解晶闸管各项参数的方法,稍微有一些电常识的人利用此方法很短时间内就可以从一名普通技术人员上升为高级设计者,本方法形象生动、通俗易懂、老少皆宜、一经理解终身不忘。
我们知道电荷的移动形成电流、水分子的移动形成水流,要想使电荷移动必须有电压差、要想使水分子移动必须有水位差,由此可以看出,电流可以形象地理解为水流;控制水流要有阀门、控制电流也必须要有“阀门”,这个“阀门”我们就用晶闸管。
水路由水流和阀门构成、电路由电流和晶闸管构成,通过阀门控制水流的大小、有无,通过晶闸管控制电流的大小、有无,可见二者的基础理论基本是一样的,因此我们就可以把电路形象地理解为水路,更确切的说就是可以把晶闸管形象的理解为阀门。
阀门的原理很简单,一种是调节阀门,通过调节阀门可以控制水流的大小;一种是通断阀门,通过阀门可以控制水流的有无。
阀门是我们的日常用品,每天都要接触,因此对于大多数人来说理解阀门的工作原理是很容易的事情。
而且阀门作为一种产品自然有其制作标准,也需有各项参数指标,只要理解了这些参数指标的含义,然后把他们“照抄照搬”到理解晶闸管中就可以了,就是说如想了解晶闸管的参数含义直接套用阀门的参数指标的含义就实现。
晶体管的各种参数有什么意义
晶体管的各种参数有什么意义?晶闸管的电参数,在常规情况下可分为极限参数、直流参数(DC)、交流参数(AC)等。
但在实际的使用中,我发现还有许多想测而无法测量到的参数,为使工作方便,我便称其为“功能参数”。
分别述之:一、极限参数所谓极限参数,是指在晶体管工作时,不管因何种原因,都不允许超过的参数。
这些参数常规的有三个击穿电压(BV)、最大集电极电流(Icm)、最大集电极耗散功率(Pcm)、晶体管工作的环境(包括温度、湿度、电磁场、大气压等)、存储条件等。
在民用电子产品的应用中,基本只关心前三个。
1、晶体管的反向击穿电压定义:在被测PN结两端施加连续可调的反向直流电压,观察其PN结的电流变化情况,当PN结的反向电流出现剧烈增加时,此时施加到此PN结两端的电压值,就是此PN结的反向击穿电压。
每个晶体管都有三个反向击穿电压,分别是:基极开路时集电极—发射极反向击穿电压(BVceo)、发射极开路时集电极—基极反向击穿电压(BVcbo)和集电极开路时基极—发射极反向击穿电压。
此电参数对工程设计的指导意义是:决定了晶体管正常工作的电压范围。
由此电参数的特性可知,当晶体管在工作中出现击穿状态,将是非常危险的。
因此,在设计中,都给晶体管工作时的电压范围,留有足够的余量。
实际上,当晶体管长期工作在较高电压时(晶体管实测值的60%以上),其晶体管的可靠性将会出现数量级的下降。
有兴趣的可以参考《电子元器件降额准则》。
许多公司在对来料进行入库检验时发现,一些品种的反向击穿电压实测值要比规格书上所标的要大出许多。
这是怎么回事呢?晶体管在生产制造过程中,与一些我们常见的生产完全不一样。
在晶体管的生产过程中,可以分成二大块:芯片制造和封装。
在工程分类中,习惯把芯片制造统称为“前道”,而把封装行业统称为“后道”。
在前道生产中,从投料开始选原材料,到芯片出厂,一切控制数据,给出的都是范围。
芯片在正常生产时,投料的最小单位是“编号批”,每批为24或25片4英寸到8英寸直径的园片。
晶闸管的主要参数
晶闸管的主要参数之阳早格格创做(1) 断态没有沉复峰值电压UDSM门极启路时,施加于晶闸管的阳极电压降下到正背伏安个性直线慢遽转合处所对于应的电压值UDSM .它是一个没有克没有及沉复,且屡屡持绝时间没有大于10ms 的断态最大脉冲电压. UDSM值应小于转合电压Ub0.(2) 断态沉复峰值电压UDRM晶闸管正在门极启路而结温为额定值时,允许沉复加于晶闸管上的正背断态最大脉冲电压.每秒50次屡屡持绝时间没有大于10ms,确定UDRM为UDSM的90%.(3) 反背没有沉复峰值电压URSM门极启路,晶闸管启受反背电压时,对于应于反背伏安个性直线慢遽转合处的反背峰值电压值URSM.它是一个没有克没有及沉复施加且持绝时间没有大于10ms 的反背脉冲电压.反背没有沉复峰值电压URSM应小于反背打脱电压.(4) 反背沉复峰值电压URRM晶闸管正在门极启路而结温为额定值时,允许沉复加于晶闸管上的反背最大脉冲电压.每秒50次屡屡持绝时间没有大于10ms.确定URRM为URSM的90%.(5) 额定电压UR断态沉复峰值电压UDRM战反背沉复峰值电压URRM二者中较小的一个电压值确定为额定电压UR.正在采用晶闸管时,该当使其额定电压为仄常处事电压峰值UM的2~3倍,以动做仄安裕量.(6)通态峰值电压UTM确定为额定电流时的管子导通的管压落峰值.普遍为1.5~2.5V,且随阳极电流的减少而略为减少.额定电流时的通态仄衡电压落普遍为1V安排.(7) 通态仄衡电流IT(A V)正在环境温度为+40℃战确定的集热热却条件下,晶闸管正在导通角没有小于170°电阻性背载的单相、工频正弦半波导电,结温宁静正在额定值125°时,所允许通过的最大电流仄衡值.——允许流过的最大工频正弦半波电流的仄衡值.采用一个晶闸管时,要根据所通过的简直电流波形去估计出容许使用的电流灵验值,该值要小于晶闸管额定电流对于应的灵验值.晶闸管才没有会益坏.设单相工频正弦半波电流峰值为Im时通态仄衡电流为:正弦半波电流灵验值为:灵验值与通态仄衡电流比值为:则灵验值为:根据灵验值相等准则去估计晶闸管的额定电流.若电路中本质流过晶闸管的电流灵验值为I ,仄衡值Id , 定义波形系数: 则由于晶闸管的热容量小,过载本领矮,果此正在本质采用时,普遍与1.5~2倍的仄安系数,(8) 保护电流IH (针对于闭断历程)——是指晶闸管保护导通所必须的最小电流.普遍为几十到几百毫安.保护电流与结温有闭,结温越下,保护电流越小,晶闸管越易闭断.(9) 断态电压临界降下率du/dt——电压降下率过大,便会使晶闸管误导通.——指正在额定结温战门极启路的情况下,没有引导晶闸管从断态到通态变换的中加电压最大降下率.(10) 通态电流临界降下率di/dt——如果电流降下太快,大概制成局部过热而使晶闸管益坏 f d I K I。
电气化自动技术 2-3晶闸管的主要特性参数
第三节晶闸管的主要特性参数一、晶闸管的重复峰值电压U Tn――额定电压重复峰值电压是取正向重复峰值电压反向峰值重复电压中较小的一个。
晶闸管工作时外加电压峰值瞬时超过反向不重复峰值电压时可造成永久性损坏,并且由于环境温度升高或散热不良,均可能使正反向转折电压值下降,特别在使用时会出现各种过电压,因此选用元件的额定电压值应比实际工作时的最大电压大2-3倍。
二、晶闸管的额定通态平均电流I T(A V)――额定电流在环境温度为四十度和规定的冷却条件下,元件在电阻负载的单相工频正弦半波、导通角不小于170度的电路中,当结温稳定且不超过额定结温时,所允许的最大通态平均电流,称为额定通态平均电流。
三、门极触发电流门极触发电压在室温下,晶闸管施加6V正向电压时,使元件完全开通所必须的最小门极电流,称为门极触发电流。
对应于门极触发电流时的门极电压就是门极触发电压。
四、通态平均电压U T(A V)在规定环境温度、标准散热条件下,元件通以额定电流即额定正弦半波时,阳极和阴极间电压降的平均值,称为通态平均电压,一般称作管压降。
五、维持电流I H与掣住电流I L在室温下门极断开时,元件从较大的通态电流降至刚好能保持导通的最小阳极电流称为维持电流。
在晶闸管加上触发电压,当元件从阻断状态刚转为导通状态就去除触发电压,此时要保持元件维持导通所需要的最小阳极电流,称为掣住电流。
六、晶闸管的开通与关断时间(一)门极控制的开通时间t gt,简称开通时间通常规定:从门极触发电压前沿的10%到元件阳极电压下降至10%所需的时间,称为开通时间。
(二)关断时间t g元件从正向电流降为零到元件恢复正向阻断的时间称为关断时间。
七、晶闸管的型号晶闸管型号释义:KPX1-X2X3K表示闸流特性P表示普通反向阻断,这一位还可以是K(快速型)、S(双向型)、N(逆导型)、G(可关断型)X1额定通态平均电流系列(额定电流)X2表示正反向重复峰值电压等级(额定电压)X3通态平均电压组别(小于100A不标)例如:KP100-12G表示额定电流为100A,额定电压为1200V,管压降为1V的普通型晶闸管。
晶闸管参数名词解释
晶闸管参数名词解释晶闸管参数名词解释1. 反向重复峰值电压(V):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包RRM括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。
注:反向重复峰值电压(V)是可重复的,值大于工作峰值电压的最大值电压,如每RRM个周期开关引起的毛疵电压。
2. 反向不重复峰值电压(V):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态RSM反向电压。
1) 测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。
2) 测试条件:a)结温:25?和125?; b)门极断路;c)脉冲电压波形:底宽近似10mS的正弦半波; d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压注:反向不重复峰值电压(V)是外部因素偶然引起的,值一般大于重复峰值电压的RSM最大值电压。
通常标准规定V =1.11V。
应用设计应考虑一切偶然因素引起的RSMRRM过电压都不得超过不重复峰值电压。
3. 通态方均根电流:通态电流在一个周期内的方均根值。
4. 通态平均电流:通态电流在一个周期内的平均值。
5. 浪涌电流(I):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温TSM的不重复性最大通态过载电流。
1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。
2)测试条件:a)浪涌前结温:125?;b)反半周电压:80,反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间6. 通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。
1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。
2)测试条件:a)加通态电流前结温: 125?;b)门极触发条件:I =3,5I;c)开通前GMGT断态电压V=2/3V;d)开通后通态电流峰值:2 I,3I; e)t1?1us;f)重复频()()DMDRM TAVTAV率:50HZ;g)通态电流持续时间:5s。
晶闸管参数
晶闸管参数晶闸管是一种常用的电子器件,广泛应用于各种电路中。
了解晶闸管的参数对于正确选择和使用晶闸管至关重要。
本文将介绍晶闸管的几个重要参数,并对其进行详细解析。
1. 电压参数晶闸管的电压参数包括最大可承受电压和触发电压。
最大可承受电压是指晶闸管能够承受的最大电压,超过该电压会导致晶闸管失效。
触发电压是指使晶闸管进入导通状态所需的最小电压值。
2. 电流参数晶闸管的电流参数包括最大可承受电流和触发电流。
最大可承受电流是指晶闸管能够承受的最大电流值,超过该电流会导致晶闸管损坏。
触发电流是指使晶闸管进入导通状态所需的最小电流值。
3. 功率参数晶闸管的功率参数包括最大可承受功率和触发功率。
最大可承受功率是指晶闸管能够承受的最大功率值,超过该功率会导致晶闸管损坏。
触发功率是指使晶闸管进入导通状态所需的最小功率值。
4. 开关特性晶闸管的开关特性包括导通电压降和关断电压降。
导通电压降是指晶闸管在导通状态下的电压降,关断电压降是指晶闸管在关断状态下的电压降。
这两个参数会影响晶闸管的能效和发热情况。
5. 响应时间晶闸管的响应时间是指从触发信号到晶闸管完全进入导通状态所需的时间。
响应时间越短,晶闸管的响应速度就越快,适用于高频开关电路。
6. 温度特性晶闸管的温度特性包括温度系数和工作温度范围。
温度系数是指晶闸管参数随温度变化的程度,工作温度范围是指晶闸管正常工作的温度范围。
了解晶闸管的温度特性有助于正确选择和使用晶闸管。
7. 封装形式晶闸管的封装形式包括直插式封装、表面贴装封装等。
不同的封装形式适用于不同的应用场景,需要根据实际需求选择合适的封装形式。
晶闸管的参数对于正确选择和使用晶闸管至关重要。
通过了解晶闸管的电压参数、电流参数、功率参数、开关特性、响应时间、温度特性和封装形式等参数,可以更好地应用晶闸管于各种电路中,提高电路的稳定性和可靠性。
在实际应用中,还需注意晶闸管的工作条件,避免超过其最大可承受电压、电流和功率,以免损坏晶闸管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶闸管参数名词解释
1.反向重复峰值电压(V RRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包
括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。
注:反向重复峰值电压(V RRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。
2.反向不重复峰值电压(V RSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态
反向电压。
1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。
2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压
注:反向不重复峰值电压(V RSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。
通常标准规定V RSM=1.11V RRM。
应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。
3.通态方均根电流:通态电流在一个周期内的方均根值。
4.通态平均电流:通态电流在一个周期内的平均值。
5.浪涌电流(I TSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温
的不重复性最大通态过载电流。
1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。
2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间
6.通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态
电流上升率。
1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。
2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:I GM=3~5I GT;c)开通前断态电压V DM=2/3V DRM ;d)开通后通态电流峰值:2 I T(A V)~3I T(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。
7.I2t值:浪涌电流的平方在其持续时间内的积分值。
1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值
2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波;
3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。
通过浪涌电流i t对其持续时间t积分∫i t2dt,即可求得I2t值。
8.门极平均值耗散功率(P G(A V)):在规定条件下,门极正向所允许的最大平均功率。
1)测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值
2)测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S;
d)主电路条件:阳,阴极间断路。
3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率P G(A V),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则P G(A V)额定值得到确认。
9.反向重复峰值电流(I RRM):晶闸管加上反向重复峰值电压时的峰值电流。
10.断态重复峰值电流(I DRM):晶闸管加上断态重复峰值电压时的峰值电流。
1)测试目的:在规定条件下,测量晶闸管的断态重复峰值电压下的断态重复峰值
电流和反向重复峰值电压下的反向重复峰值电流。
2)测试条件:a) 结温:25℃和125℃;b)断态电压和反向电压:断态重复峰值电压(V DRM)或反向重复峰值电压(V RRM);c)门极断路。
3)测量程序:A)被测器件分别在25℃和125℃下,调节交流电压源,使断态电压达到断态重复峰值电压,由示波器显示的断态电流即为所测断态重复峰值电
流(I DRM)。
B)被测器件主电极的极性交换,重复上述操作即可测得反向重复峰值电流(I RRM)。
11.峰值通态电压(V TM):晶闸管通以π倍或规定倍数额定通态平均电流值时的瞬态峰值
电压。
1)测试目的:在规定条件下,用脉冲法测量晶闸管的通态峰值电压。
2)测试条件:a)结温:出厂试验为25℃,型式试验为25℃和125℃;b)通态峰值电流:通态平均电流的π倍;c)电流脉冲可以使单次的,也可以是发热效应能
忽略的低重复频率脉冲;d)电流脉冲宽度应足够宽,以使被测器件完全开通。
3)测量程序:a)电源电压和门极触发电压先调至零。
b)被测器件按规定压力和接线法接入电路中。
结温调至规定值,门极电路调至规定的偏置条件。
C)电源电
压由零增加,通过L,C振荡,使流过被测器件的脉冲电流整定到规定值,此
时示波器上显示的数值即为所测通态峰值电压。
12.门槛电压:由通态特性近似直线与电压轴的交点确定的通态电压值。
13.斜率电阻:由通态特性近似直线的斜率电阻确定的电阻值。
14.延迟时间:在用门极脉冲使晶闸管从断态转入通态的过程中,从门极脉冲前沿的规定点
起,至主电压下降到接近初始值的某一规定值为止的时间间隔。
15.关断时间(t q):外部使主电路转换动作后,从主电流下降至零值瞬间起,到晶闸管能
承受规定的断态电压而不致过零开通的时间间隔。
1)测试目的:在规定条件下测量晶反向阻断三极闸管的关断时间。
2)测试条件:a)通电前结温:125℃;b) 关断前通态电流:波形优选位矩形波,峰值优选为3 I TA V,上升率di/dt≤30A/us;c)通态电流持续时间:按被测器件完全导通而发热尽可能小确定,数百微秒至几毫秒;d)关断期间施加反向电压幅值为100V,最小值不小于20V;e)再加断态电压幅值V DM=2/3V DRM,其上升率dv/dt=30V/us;f)重复频率f≤50HZ。
3)测量程序:a)被测器件结温控制在125℃;b)调整通态电流电源使被测器件流过规定的电流I TM,切断门极电流,持续规定的时间;c)调整反向电压电源,对被测器件施加幅值和最小值的反向电压,使其阳极电流反向并可靠地关断;d)在双迹示波器上观察,调整规定值再加断态电压施加时间,当被测器件刚能承受此电压而又不转为通态的最小时间间隔,即为所测关断时间。
16.恢复电荷(Q r):从规定的通态电流条件向规定的反向条件转换期间,晶闸管内存在的
恢复性总电荷。
它包括储存的载流子和耗尽层电容两部分电荷。
1)测试目的:在规定条件下,用测量晶闸管反向恢复电流和反向恢复时间的方法求出恢复电荷。
2)测试条件:a)结温:125℃;b)换向前的通态电流;额定通态平均电流值;c)通态电流下降率:规定;d)通态电流通电时间:按被测器件完全开通,又可忽
视发热效应的原则选取;e)反向电压:50%反向重复峰值电压。
17.临界电压上升率(dv/dt):紧跟着一个方向通态电流之后,在相反方向上导致断态到通
态转换的最小主电压上升率。
1)测试目的:在规定条件下,用电压线形上升法或指数上升法,测量晶闸管的断态电压临界上升率。
2)测试条件:a)结温:125℃;b)断态峰值电压(V DM):从零开始施加2/3倍断态重复峰值电压;c)门极断路或规定偏置电阻值;d)断态电压脉冲间隔时间:
重复频率≤50HZ;
3)测试程序:被测器件加热到125℃。
按示波器或峰值电压表显示,从零开始施加规定的断态电压,调整电压上升率,直至刚好开通,即电压波形突然下降,
开通前瞬间的dV/dt即为所求断态电压临界上升率。
18.门极触发电流(I GT):使晶闸管由断态转入通态所必需的最小门极电流。
19.门极触发电压(V GT):产生门极触发电流所必须的最小门极电压。
1)测试目的:在规定条件下,测量晶闸管的门极触发电流和门极触发电压。
2)测试条件:a)结温:25℃;b)断态电压:直流12V或6V;c)负载电阻(R)值:应予规定;
3)测量:被测器件在25℃下,由零开始逐渐增加门极至阴极间电压,当V1表指示的断态电压突然下降,A1表指示出通态电流的瞬间,此时毫安表A2和V2
表的指示分别为所测门极触发电流和门极触发电压。
20.门极峰值电流:包括所有门极正向瞬态电流的最大瞬时值门极正向电流。
21.门极反向峰值电压:门极反向电压的最大瞬时值,包括所有的门极反向瞬态电压。
1)测试目的:在规定条件下,检验反向阻断三级晶闸管的门极正向额定值。
2)测试条件:a)结温:125℃;b)重复频率:50HZ;c)门极脉冲波形:方波,脉冲幅值对
应的平均功率不超过其额定值;d)试验持续时间:3S;e)主电路条件:阳,阴极间断路。
3)测试程序:A)将被测器件温度加热到规定结温;B)在被测器件的门极和阴极间施加
门极触发脉冲,在示波器上观察门极伏安特性曲线,调整电源E,缓慢增大触发信号,当该曲线与额定门极正向峰值电流,额定门极正向峰值电压和额定门极正向峰值功率三条极限线的任一条相交时,在此点保持触发信号的大小持续3S时间,然后将电源输出调至零;C)测试后,进行断态和反向峰值电流,门极触发电流和电压测量,如无异常,则被测门极反向峰值电压额定值得到确认。
22.结壳热阻:结到管壳基准点的热阻。
23.壳散热阻;管壳基准点到散热器基准点的热阻。