一液态金属成形过程及控制
液态金属成形过程及控制
冒口。
冒口补缩原理
二、选择冒口位置的原则
1.冒口应就近设在铸件热节(hot spot)的上方或侧 旁; 2.冒口应尽量设在铸件最高、最厚的部位; 3.冒口不应设在铸件重要的、受力大的部位; 4.冒口不应选在应力集中处; 5.应尽量用一个冒口补缩几个热节或铸件; 6.冒口不应在加工面上。
金属液过滤器安放位置
泡沫陶瓷过滤器过滤机理
• • 1.“滤饼”机制 复杂的泡沫陶瓷结构,可以高效率 地机械挡渣,当金属液通过结构复 杂的泡沫陶瓷过滤器时,通过过滤 介质的机械分离作用,把大于过滤 器表面孔眼的夹杂物滤除,并使之 沉积在过滤器液态金属流入端,成 为过滤器的一个组成部分。随着夹 杂物在过滤器表面上堆积数量的增 多,逐渐形成了一层“滤饼”,使 金属液流道进一步变细,因而新增 的过滤介质表面可以滤除更为细小 的夹杂物。与此同时,介质内部也 有过滤作用,在贯穿于陶瓷体的众 多小孔中,有的呈现微小狭缝,有 的存在死角,这些变化不同的区域 都是截获夹杂物的可能位置。
第一章
液态金属成形过程及控制
1.1 液态金属的充型及流动 1.2 浇注系统 1.3 凝固过程的工艺分析 1.4 冒口和冷铁
1.1液态金属的充型及流动
• 概述:充型+凝固→铸造成形→质量 一、液态金属充型的水力学特征及在浇注系统中的流动 水力学特征: ①粘性流动←粘度→合金成分,温度,结晶 ②流动的不稳定性 ③散体材料的“多孔管流动”
铸件
1.位置(4)-阶梯式
a)多直浇道式 b)用塞球法控制式 c)控制各 组元比例式 d)带缓冲直浇道 e)带反直浇道式
2.按各单元断面积的比例
• 收缩式:A直﹥ A横﹥ A内 • 扩张式: A直﹤ A横﹤ A内 • 半扩张式: A直﹤ A横﹥ A内
液态金属
发
液态金属2015年3月,由清华大学教授、中国科学院理化技术研究所双聘研究员刘静带领的中科院理化技术 研究所、清华大学医学院联合研究小组,发现了一种异常独特的现象和机制,即液态金属可在吞食少量物质后以 可变形机器形态长时间高速运动,实现了无需外部电力的自主运动。
谢谢观看
研究
和简单的非金属液体有许多共同点,20世纪60年代以来对它研究较多。但人们对它的结构细节仍不清楚。熔 融金属的X射线或中子散射可得其径向分布函数g(r),它在平均意义上描述熔体结构。当r<σ(σ为原子有效直径, 图1),g(r)=0,说明原子似硬球,不能互相贯穿,r大于2~3nm时,原子完全无规排列,g(r)→1。原子周围最近 邻的原子数叫配位数Z,其中ρ0是熔体粒子数密度。绝大多数金属熔化时体积约增大5%,原子序数Z减小,金属 键不变。少数“反常金属”(如Ga、Ge、Bi、Sb等)熔化时体积约收缩5%,Z增加,共价键部分地变为金属键。 各种金属熔化后结构趋于相近,Z在9~12左右。熔体的Z和r1随温度上升而稍改变,但g(r)基本特点不变。
技术
中国液态金属变形技术
《不同构象之间的液态金属多变形性》论文,揭示出室温液态金属具有可在不同形态和运动模式之间转换的 普适变形能力。比如,浸没于水中的液态金属对象可在低电压作用下呈现出大尺度变形、自旋、定向运动,乃至 发生液球之间的自动融合、断裂-再合并等行为,且不受液态金属对象大小的限制;较为独特的是,一块很大的金 属液膜可在数秒内即收缩为单颗金属液球,变形过程十分快速,而表面积改变幅度可高达上千倍;此外,在外电 场作用下,大量彼此分离的金属液球可发生相互粘连及合并,直至融合成单一的液态金属球;依据于电场控制, 液态金属极易实现高速的自旋运动,并在周围水体中诱发出同样处于快速旋转状态下的漩涡对;若适当调整电极 和流道,还可将液态金属的运动方式转为单一的快速定向移动。研究表明,造成这些变形与运动的机制之一在于 液态金属与水体交界面上的双电层效应。以上丰富的物理学图景革新了人们对于自然界复杂流体、软物质特别是 液态金属材料学行为的基本认识。这些超越常规的物体构象转换能力很难通过传统的刚性材料或流体介质实现, 它们事实上成为用以构筑可变形智能机器的基本要素,为可变形体特别是液体机器的设计和制造开辟了全新途径。
金属液态成形工艺概述
铸造产品称为: 铸件、铸锭、铸坯、铸带等
一、金属液态成形工艺特点
1. 适应性强
铸件重量:几克 ~ 几百吨 铸件壁厚:0.5 毫米 ~ 1 米 铸件长度:几毫米 ~ 十几米 铸件材质:铁碳合金(鋳铁、鋳钢)、铝合金、铜合金、
镁合金、锌合金、钛合金、复合材料等
速箱体(灰口铸铁)
精密铸造件(不锈钢)
水轮机铸件(铜合金)
箱体(铝合金)
叶轮(钛合金)
一、金属液态成形工艺特点
1. 适应性强
铸件重量:几克 ~ 几百吨 铸件壁厚:0.5 毫米 ~ 1 米 铸件长度:几毫米 ~ 十几米 铸件材质:铁碳合金(鋳铁、鋳钢)、铝合金、铜合金、
镁合金、锌合金、钛合金、复合材料等
铸造方法几乎不受零件大小、形状和结构复杂程度的限制。
轧辊
异型件
装饰件
工艺品
一、金属液态成形工艺特点
2. 尺寸精度高
铸件比锻件、焊接件的尺寸精度高,更接近于零件的尺 寸,可节约大量的金属材料和机械加工工时。
一、金属液态成形工艺特点
2. 尺寸精度高
铸件比锻件、焊接件的尺寸精度高,更接近于零件的尺 寸,可节约大量的金属材料和机械加工工时。
形成的先进铸造技术
精密、优质化
精密成形与加工 近无缺陷成形
数字、网络化
数字造型 虚拟制造
网络制造
精确铸造成形 金属熔体的纯净化、致密化
铸造工艺CAD,铸造模具CAD/CAM一体化 铸造过程宏观模拟及工艺优化 铸件组织微观模拟及性能预测 分散网络化铸造系统
高效、智能化
快速制造 自动化制造系统
智能制造
快速原形及快速制模 铸造过程自动检测与控制,铸造机器人的应用
液态金属凝固成形的方法
液态金属凝固成形的方法
液态金属凝固成形的方法主要是指铸造成形的工艺过程,它是首先制造一个形状、尺寸与所需零件相应的铸型型腔,然后将液态金属充填入型腔,待其冷却凝固后,而获得零件(称为铸件)的方法,今天,山东伊莱特重工有限公司就跟您一起探讨液态金属凝固成形的方法:
凝固成形的方法很多,根据金属液充填进铸型方法是不同可分为重力铸造(液态金属靠自身重力充填型腔),低压铸造、挤压铸造、压力铸造(液态金属在一定的压力下充填型腔)等。
根据形成铸型材料的不同,可分为一次型(如砂型铸造、陶瓷型铸造、壳型铸造)及永久型(如金属型铸造)。
对于砂型铸造,根据型砂粘结剂的不同,有粘土砂、树脂砂、水玻璃砂等。
根据造型方法不同有手工造型和机械造型。
此外,对于一些特殊的凝固成形件,还可采用连续铸造(等截面长铸件)、离心铸造(四筒形铸件)、实型铸造、熔模铸造等方法。
希望以上信息对您有所帮助。
液态金属加工中的凝固控制
液态金属加工中的凝固控制是一个重要环节,因为它对产品的质量和性能有着显著的影响。
通过控制凝固过程,可以确保金属材料得到充分凝固,形成良好的组织和性能。
下面将从三个方面详细介绍液态金属加工中的凝固控制。
一、温度控制在液态金属加工中,温度是影响凝固过程的关键因素之一。
为了确保金属材料充分凝固,需要对加工过程中的温度进行精确控制。
通常,通过使用水冷装置或热管理系统来调节和控制温度。
在加工过程中,温度的波动可能会对金属材料的组织和性能产生不利影响。
因此,需要定期检查冷却系统的运行状况,确保其正常工作。
二、速度控制液态金属加工中的速度控制也是至关重要的。
在金属凝固过程中,过快的加工速度可能会导致金属材料变形或产生裂纹。
因此,需要根据金属材料的性质和加工设备的性能,合理设置加工速度。
同时,在加工过程中还需要密切关注金属材料的流动情况,避免过热或过冷现象的发生。
三、冷却速率控制冷却速率是影响金属材料凝固速度和组织结构的重要因素之一。
通过控制冷却速率,可以调整金属材料的凝固过程,使其达到最佳的性能和组织。
在液态金属加工中,通常使用水冷或空气冷却等方式来控制冷却速率。
通过调节冷却水的流量或空气的压力,可以实现对冷却速率的有效控制。
此外,还可以通过调整模具的结构和形状来改变金属材料的凝固过程,以达到最佳的凝固效果。
总之,液态金属加工中的凝固控制是一个综合性的过程,需要从温度、速度和冷却速率等多个方面进行考虑和控制。
通过精确控制这些因素,可以确保金属材料得到充分凝固,形成良好的组织和性能,从而提高产品的质量和性能。
这需要操作人员具备丰富的经验和专业知识,以及对设备和材料的深入了解。
金属液态成形工艺原理
H0
P杯
v杯2 2g
0
P腔
v内2 2g
hi (2 - 1)
1. 充填下半型 设充填下半型时需要金属液m1,充填时间为t1。 以浇口杯液面和内浇道出口建立伯努利方程(能量方程):
H0
P杯
v杯2 2g
0
P腔
v内2 2g
hi
式中:
P杯 —— 浇口杯液面压力 P腔 —— 型腔内的液面压力 v杯 —— 浇口杯液面金属流动速度 v内 —— 内浇口出口金属流动速度 hi —— 浇注系统中某段的流体压头损失
§2.2 液态金属充型过程的水力学计算
三、计算结果
计算条件: a. 浇注系统为充满流动
封闭式浇注系统; 对于开放式的型腔液面要淹过内浇道。
b. 浇口杯液面保持不变
c. 型腔内压力与外界相同,即砂型透气性要好,有排气孔
1. 充填下半型 设充填下半型时需要金属液m1,充填时间为t1。 以浇口杯液面和内浇道出口建立伯努利方程(能量方程):
γ —— 重度(=ρg)
2. 充填上半型 设充填上半型时需要金属液m2,充填时间为t2。 以浇口杯液面和内浇道出口建立伯努利方程:
H0
P杯
v杯2 2g
0
P内
v内2 2g
hi
3. 充填整个铸型
设充填时需要金属液m,充填时间为t,则
m
F内 t 2gH均
式中 m为充填铸型所需金属液; t为充填时间; 为流量系数; H均为充型平均静压头。
学的规律在一定程度上也适用于液态金属的流动过程。
§2.2 液态金属充型过程的水力学计算 一、浇注系统的结构
§2.2 液态金属充型过程的水力学计算
一、浇注系统的结构
浇注系统:引导金属液进入和充满型腔的一系列通道。
第七章 金属的液态成形
缩松:分散在铸件内部分散而细小的缩孔,大多分布在 铸件中心轴线处、冒口根部、内浇口附近或缩孔下方。形成 的原因与缩孔基本相同。 缩孔及缩松使铸件力学性能下降,防止其发生的主要 措施是“定向凝固”,通过增设冒口、冷铁等一些工艺措施 ,使凝固顺序形成向着冒口方向进行,如下图。远离冒口的 部位先凝固,冒口最后凝固,使缩松和缩孔产生在冒口处。 或在铸件厚大部位增设冷铁,以加快该处的凝固速度。
第七章 金属的液态成形
什么是金属的液态成形: 即将液态金属浇入与零件形状相适应的铸型空腔 中,待其冷却凝固,以获得毛坯或零件的工艺方法,亦 称铸造. 金属的液态成形的作用: 金属的液态成形是制造毛坯、零件的重要方法之一。 按铸型材料的不同,金属液态成形可分为砂型铸造和特 种铸造(包括压力铸造、金属型铸造等)。 其中砂型铸 造产品成本最低,应用最普遍,所生产的铸件要占铸件 总量的80%以上。但工艺过程较复杂不易控制,,铸件内 部常有缩孔、夹渣、气孔、裂纹等缺陷产生,导致铸件 力学性能,特别是冲击性能较低。
• (2) 浇注温度 • 浇注温度越高,液态合金的流动性越好,若过高,铸 件易产生缩松、粘沙等缺陷。一般浇注温度控制在:铸钢 1520~1620℃;铸铁1230~1450℃;铝合金680~780℃。 • (3)铸型填充条件 • 内浇道横截面小、型腔表面粗糙、型砂透气性差都会增加 液态合金的流动阻力;铸型材料的导热性过大,使液体金 属凝固快,同样会降低流动性。
f) 挖砂造型
活块造型是在制模时将铸件上的妨碍起模的小凸台,肋 条等这些部分作成活动的(即活块)。起模时,先起出 主体模样,然后再从侧面取出活块。其造型费时,工人 技术水平要求高。主要用于单件、小批生产带有突出部 分、难以起模的铸件。
活块造型
三箱造型的铸型由上、中、下三型构成。中型高度 需与铸件两个分型面的间距相适应。三箱造型操作 费工。主要适用于具有两个分型面的单件、小批生 产的铸件。
金属液态成形
材料成形技术基础第一章 金属液态成形金属液态成形(铸造):将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件的方法。
液态成形的优点:(1)适应性广,工艺灵活性大(材料、大小、形状几乎不受限制)(2)最适合形状复杂的箱体、机架、阀体、泵体、缸体等(3)成本较低(铸件与最终零件的形状相似、尺寸相近)主要问题:组织疏松、晶粒粗大,铸件内部常有缩孔、缩松、气孔等缺陷产生,导致铸件力学性能,特别是冲击性能较低。
分类:铸造从造型方法来分,可分为砂型铸造和特种铸造两大类。
其中砂型铸造工艺如图1-1所示。
图1-1 砂型铸造工艺流程图第一节金属液态成形工艺基础一、熔融合金的流动性及充型液态合金充满型腔是获得形状完整、轮廓清晰合格铸件的保证,铸件的很多缺陷都是在此阶段形成的。
(一)熔融合金的流动性1.流动性 液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力,称为液态合金的流动性。
流动性差:铸件易产生浇不到、冷隔、气孔和夹杂等缺陷。
流动性好:易于充满型腔,有利于气体和非金属夹杂物上浮和对铸件进行补缩。
螺旋形流动性试样衡量合金流动性,如图1-2所示。
在常用铸造合金中,灰铸铁、硅黄铜的流动性最好,铸钢的流动性最差。
常用合金的流动性数值见表1-1。
表1-1 常用合金的流动性(砂型,试样截面8㎜×8㎜)2. 影响合金流动性的因素(1) 化学成份 纯金属和共晶成分的合金,由于是在恒温下进行结晶,液态合金从表层逐渐向中心凝固,固液界面比较光滑,对液态合金的流动阻力较小,同时,共晶成分合金的凝固温度最低,可获得较大的过热度,推迟了合金的凝固,故流动性最好;其它成分的合金是在一定温度范围内结晶的,由于初生树枝状晶体与液体金属两相共存,粗糙的固液界面使合金的流动阻力加大,合金的流动性大大下降,合金的结晶温度区间越宽,流动性越差。
Fe-C合金的流动性与含碳量之间的关系如图1-3所示。
材料成型原理及工艺第一章液态成型工艺基础理论
二、液态金属的收缩
(一)收缩的概念
合金从液态冷却至室温的过程中,其体积 或尺寸缩减的现象,称为收缩。收缩是合 金的物理本质。合金的收缩给液态成型工 艺带来许多困难,是许多铸造缺陷(如缩孔、 缩松、裂纹、变形等)产生的根源。
液态成型原理及工艺
合金的收缩经历如下三 个阶段,如图1-4:
又同老的核心一起长大,直至凝固
结束。
液态成型原理及工艺
3、形核方式:
均质形核
依靠液态金属(合 金)内部自身的结
构自发地形核
异质形核
依靠外来夹杂 所提供的异质 界面非自发地
形核液态成型原理及工艺
4、纯金属晶体长大:
形成稳定的晶核后,液相中的
原子不断地向固相核心堆积,
使固-液界面不断地向液相中
推移,导致液态金属(合金)的
态 陷产生,导致成型件力学性能,
成 特别是冲击性能较低。
型 2. 涉及的工序很多,难以精确控
的 制,成型件质量不稳定。
缺 3.由于目前仍以砂型铸造为主,
点:
自动化程度还不很高,且属于热 加工行业,因而工作环境较差。
4.大多数成型件只是毛坯件,需 经过切削加工才能成为零件。
液态成型原理及工艺
冲天炉出铁
的 游离原子
级,在此范围 内仍具有一定
近
液
的规律性。原
程
态
子集团间的空
结
空穴或裂纹 穴或裂纹内分
布着排列无规
有 序
构
则的游离的原
子。
液态成型原理及工艺
这样的结构不是静止的,而是 处于瞬息万变的状态,即原子 集团、空穴或裂纹的大小、形 态及分布及热运动的状态都处 于无时无刻不在变化的状态。 液态中存在着很大的能量起伏。
成型法的加工原理
成型法的加工原理材料成形方法是零件设计的重要内容,也是加工过程中的关键因素,除了机加工外,金属注射成型、塑性成型以及近年兴起的3D打印都是主要技术,下面就来细数一下这些金属成形工艺的特点。
铸造液态金属浇注到与零件形状、尺寸相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法,通常称为金属液态成形或铸造。
工艺流程:液体金属→充型→凝固收缩→铸件工艺特点:1、可生产形状任意复杂的制件,特别是内腔形状复杂的制件。
2、适应性强,合金种类不受限制,铸件大小几乎不受限制。
3、材料来源广,废品可重熔,设备投资低。
4、废品率高、表面质量较低、劳动条件差。
铸造分类:(1)砂型铸造(sand casting)在砂型中生产铸件的铸造方法。
钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。
工艺流程:技术特点:1、适合于制成形状复杂,特别是具有复杂内腔的毛坯;2、适应性广,成本低;3、对于某些塑性很差的材料,如铸铁等,砂型铸造是制造其零件或,毛坯的唯一的成形工艺。
应用:汽车的发动机气缸体、气缸盖、曲轴等铸件(2)熔模铸造(investmentcasting)通常是指在易熔材料制成模样,在模样表面包覆若干层耐火材料制成型壳,再将模样熔化排出型壳,从而获得无分型面的铸型,经高温焙烧后即可填砂浇注的铸造方案。
常称为“失蜡铸造”。
工艺流程:优点:1、尺寸精度和几何精度高;2、表面粗糙度高;3、能够铸造外型复杂的铸件,且铸造的合金不受限制。
缺点:工序繁杂,费用较高应用:适用于生产形状复杂、精度要求高、或很难进行其它加工的小型零件,如涡轮发动机的叶片等。
(3)压力铸造(die casting)利用高压将金属液高速压入一精密金属模具型腔内,金属液在压力作用下冷却凝固而形成铸件。
工艺流程:优点:1、压铸时金属液体承受压力高,流速快2、产品质量好,尺寸稳定,互换性好;3、生产效率高,压铸模使用次数多;4、适合大批大量生产,经济效益好。
第二章 液态成型
2.1.1 液态金属的充型能力
(1) 液态合金的充型能力与流动性
液态金属充型一般是纯液态下充满或边充 型边结晶 充型能力:液态合金充满铸型型腔,获得形状 完整,轮廓清晰铸件的能力。
衡量充型能力可用所能形成的铸件最小壁厚
不同金属和铸造方法铸造的铸件最小壁厚/mm
砂型 灰铸铁 铸钢 铝合金
3
金属型
>4
熔模
0.4~0.8
壳型
0.8~1.5
压铸
——
4
8~10
0.5~1
2.5
——
3
3~4
——
——
0.6~0.8
充型能力的好与差, 首先取决于铸 造合金的流动性;同时又受到外界条件, 如铸型性质、浇注条件、铸件结构等因 素的影响,是各种因素的综合反映。
流动性:液态铸造合金本身的流动
能力。 衡量流动性一般采用螺旋试样 长度
合金成分对流动行的影响
金属在结晶状态下流动
Fe-C合金流动性与状态图的关系
总的来说,流动性好的合金在多数 情况下其充型能力都较强;流动性差的 合金其充型能力较差。 但也可以通过改善其它条件来提高 充型能力(如提高熔炼质量、浇注温度 和浇注速度,改善铸型条件及铸件结构 等),以获得健全铸件。
(2) 影响合金充型能力的主要因素
铸造应力是热应力、相变应力和收缩应力 三者的矢量和。 在不同情况下,三种应力有时相互抵消, 时相互叠加;有时是临时的,有时是剩余的。 但在实际生产中,对于不同形状的铸件,其铸 造应力的大小分布是十分复杂的。
铸件中各种应力与产生部位的关 系
铸造应力对厚薄不均、截面不对称,细长杆、板及 轮类结构,当残余应力 >屈服强度,产生翘曲变 形。
材料成型原理与工艺(01)-液态金属成形概论
夹杂物的排除: 夹杂物的排除:
金属液静止处理、真空浇注,加熔剂, 金属液静止处理、真空浇注,加熔剂,过滤法
2012-1-8
凝固区域
固相区、凝固区、液相区
凝固方式
逐层凝固方式 体积凝固(糊状凝固方式) 体积凝固(糊状凝固方式) 中间凝固方式
2012-1-8 22
如果合金的结晶温度范围很宽,且铸件的温度分布较 为平坦,则在凝固的某段时间内,铸件表面并不存在 固体层,而液、固并存的凝固区贯穿整个断面。由于 这种凝固方式与水泥类似,即先呈糊状而后固化,故 称为糊状凝固。球墨铸铁、高碳钢、锡青铜和某些黄 铜等都是糊状凝固的合金。 中间凝固方式 大多数合金的凝固介于逐层凝固和糊状 凝固之间,称为中间凝固方式。中碳钢、高锰钢、白口 铸铁等具有中间凝固方式
气压保温浇包
15
采用德国KW公司技术的新二线主机,发动机缸体造型生产线。
罗兰门第制芯中心
2012-1-8 16
二、液态金属在铸型中的流动
1、 液态金属充型能力的基本概念 、
液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力, 叫做液态金属充填铸型的能力,简称液态金属的充型能力。 液态金属充填铸型一般是在纯液态下充满型腔的,也有边充型边结晶的 情况,在充型过程中当液态金属中形成晶粒堵塞充型通道时,流动则停 止,造成铸件“浇不足”缺陷。 液态金属的充型能力(实验-螺旋形试样):
2012-1-8
18
思考题 1 1. 液态金属成形的概念是什么?液态金属 液态金属成形的概念是什么? 成形具有哪些优点? 成形具有哪些优点? 2. 液态金属成形生产过程。 液态金属成形生产过程。
液态金属成型工艺的研究与应用
液态金属成型工艺的研究与应用导言液态金属成型工艺是一种利用金属在高温状态下具有流动性的特点来进行加工和成型的技术。
它具有高精度、高效率、可塑性强等优点,并在航空航天、汽车制造、电子设备等领域得到广泛应用。
本文将探讨液态金属成型工艺在材料科学与工程中的研究和应用。
一、液态金属成型的基本原理液态金属成型是利用金属在高温状态下的流动性,通过控制金属的温度和形状来进行成型工艺。
通常液态金属成型工艺包括:压铸、浇铸、挤压、注射成形等。
压铸是将金属液体注入模具中,在高压下迅速冷却固化得到零件的一种工艺。
它具有制造复杂形状零件的优势,并且能够实现高度自动化和大规模生产。
浇铸是将金属液体注入到模具中,通过冷却后得到铸件的工艺。
它是一种常用的金属成型工艺,可以制造各种形状和尺寸的零件,广泛应用于汽车制造和航空航天等领域。
挤压是将金属材料加热至液态,通过挤压机的作用将液态金属迫入模具中,然后冷却固化成型。
挤压工艺适用于制造长条形零件或中空零件。
注射成形是将金属液体注射到模具中,通过冷却后得到零件的工艺。
它具有高精度和高稳定性的优势,常用于制造微小和复杂形状的零件。
二、液态金属成型的优势和应用液态金属成型工艺具有以下几个优势:1. 高精度:液态金属成型可以制造出高精度的零件,满足现代产品对精度的要求。
2. 高效率:液态金属成型工艺可以实现连续生产,提高生产效率,节省时间和成本。
3. 可塑性强:液态金属成型可以加工各种复杂形状的零件,具有较强的可塑性和可变性。
液态金属成型工艺在多个领域得到广泛应用:1. 航空航天领域:液态金属成型工艺可以用于制造飞机的发动机部件、燃烧室等关键零件,提高飞行器的性能和安全性。
2. 汽车制造领域:液态金属成型可以用于制造汽车发动机、车身结构和底盘等部件,提高汽车的性能和安全性。
3. 电子设备领域:液态金属成型工艺可以用于制造电子产品的外壳、散热器和连接器等零件,提高产品的可靠性和美观度。
三、液态金属成型的研究进展液态金属成型工艺的研究一直是材料科学与工程领域的热点。
液态金属成型
gx −
1 ∂P +ν ρ ∂x
∂ 2u ∂ 2u ∂ 2u ∂ u ∂u ∂u ∂u ∂ x2 + ∂ y2 + ∂ z2 = ∂t + u ∂x + v ∂y + w∂z
∂ 2v ∂ 2v ∂ 2v ∂ v 1 ∂P ∂v ∂v ∂v gy − +ν + + 2 = + u + v + w 2 2 ρ ∂y ∂x ∂y ∂z ∂y ∂z ∂t ∂x gz − 1 ∂P +ν ρ ∂z ∂ 2w ∂ 2w ∂ 2w ∂ w ∂w ∂w ∂w ∂ x2 + ∂ y2 + ∂ z2 = ∂t + u ∂x + v ∂y + w ∂z
五、实验报告 分析总结铝合金的熔炼处理工艺流程,比较精炼处理、 变质处理、 振动以及冷却条件对 铝合金组织及性能的影响。
实验二、液态成型过程 CAE 实验 一、基础理论 计算机辅助工程( Computer Aided Engineering,简称 CAE)技术是一门以 CAD/CAM 技术水平的提高为发展动力,以高性能计算机及图形显示设备的推出为发展条件,以计算 力学和传热学、 流体力学等的有限元、 有限差分、 边界元、 结构优化设计及模态分析等方法为 理论基础的新技术。目前液态成型 CAE 主要以铸件的温度场模拟和流动场模拟为主,软件 水平已经达到实用化,国内外均有商品化软件出现。国外主要有德国的 MagmaSoft、美国的 ProCAST、 Flow3D、 韩国的 AnyCAST 等,国内主要有华中科技大学的华铸 CAE、 清华的 FTStar、华北工学院的 CastSoft 等。 1)温度场模拟 温度场模拟主要是利用传热学原理,分析铸件的传热过程,模拟铸件的冷却凝固进程 ,
液态金属成型
液态金属成型金属液态成型论文作者:刘永星摘要:金属液态成型又称为铸造,是将液态金属在重力或外力作用下充填到型腔中,待其冷却凝固后,获得所需形状和尺寸的毛坯或零件,即铸件的方法,它是成形毛坯或机器零件的重要方法之一。
工程材料除切削加工以外有各种成型方法,包括金属液态成型、金属塑性成形、材料连接成型、粉末冶金成型以及塑料、橡胶、陶瓷等非金属材料成型及复合材料成型等。
材料成型技术主要讲述金属材料成型和非金属材料成型,现对金属液态成型进行详细论述。
关键词:金属液态成型、成型方法、生产流程、成型原理、选择成型依据一、金属液态成形金属材料在液态下成形,具有很多优点:(1)最适合铸造形状复杂、特别是复杂内腔的铸件。
(2)适应性广,工艺灵活性大。
(3)成本较低。
但液态成形也有很多不足,如铸态组织疏松、晶粒粗大,铸件内部常有缩孔、缩松、气孔等缺陷产生,导致铸件力学性能、特别是冲击性能低于塑形成行件;铸件涉及的工序很多,不易精确控制,铸件质量不稳定;由于目前仍以砂型铸造为主,自动化程度还不够高,工作环境较差;大多数铸件只是毛坯件,需经过切削加工才能成为零件。
砂型铸造是将熔融金属浇入砂质铸型中,待凝固冷却后,将铸型破坏,取出铸件的铸造方法,是应用最为广泛的传统铸造方法,它适用于各种形状、大小及各种常用合金铸件的生产。
砂型铸造的工艺过程称为造型。
造型是砂型铸造最基本的工序,通常分为手工造型和机器造型两大类。
手工造型时,填砂、紧实和起模都用手工和手动完成。
其优点是操作灵活、适应性强、工艺装备简单、生产准备时间短。
但生产效率低、劳动强度大、铸件质量不易保证。
故手工造型只适用于单件、小批量生产。
机器造型生产率很高,是手工造型的数十倍,制造出的铸件尺寸精度高、表面粗糙度小、加工余量小,同时工人劳动条件大为改善。
但机器造型需要造型机、模板以及特质砂箱等专用机器设备,一次性投资大,生产准备时间长,故适用于成批大量生产,且以中、小型铸件为主。
第一节 金属的液态成形原理
决定凝固方式的因素: (1)结晶温度范围 (2)铸件断面温度场分布变化
二 液态合金的充型能力
充型: 液态合金填充铸型的过程. 充型能力 : 液态合金充满铸型型腔 , 获得形状完整 , 轮廓清晰的铸件的能力
若充型能力不足,易产生:
1)浇不足: 不能得到完整隙或凹坑 , 机械性能下 降.
2) 共晶成分流动性好:恒温凝固,固体层表面光滑,且熔点 低,过热度大;
3) 非共晶成分流动性差: 结晶在一定温度范围内进行,初 生树枝状晶阻碍液流 。 常用铸造合金中,铸铁的流动性最好,铸钢的流动性最差。
逐层凝固(好)
糊状凝固(差)
不同成分合金流动性
(过热度)
碳钢
铸铁
碳钢随着结晶温 度范围的增加而 流动性变差;亚 共晶铸铁随含碳 量的增加流动性 提高。
纵向温度分布曲线
冷铁
同时凝固— 整个铸件几乎同时凝固。
同时凝固特点:不需冒口,节约金属且工艺简单;铸件均 匀冷却,减小热应力,不易形成内应力、变形和裂纹等缺 陷,但心部缩松有时难以避免,故用于收缩小的合金和各 种合金的薄壁铸件。如灰铸铁,锡青铜,铝硅合金等。 (1)这是由于薄壁铸件的铸型冷却作用强,薄壁断面温 度梯度大,倾向于逐层凝固。因此收缩小的灰铸铁可消除 缩孔,获得致密铸件;而收缩较大的薄壁铸钢、有色合金 铸件会出现轴线缩松,但其表层组织致密。
温度
固
液
表层
中心
铸件的凝固方式
2)糊状凝固
• 结晶温度范围很宽 的合金,从铸件的 表面至心部都是固 液两相混存。 • 铸件断面上布满小 晶体,将金属液分 割开,致充型和补 缩能力变差。
温度
固
液
表层
中心
铸件的凝固方式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合金凝固温度区间的影响
窄
逐层凝固
中间凝固
宽
糊状凝固
陡
平
温度梯度的影响
4、铸件的收缩
定义:收缩是指合金从浇注、凝固到冷却至室温的过
程中,其体积或尺寸缩减的现象。
分类:分为三类,液态收缩、凝固收缩和固态收缩。
浇注温度
铸 液态收缩
件
开始凝固温度
温
度 凝固收缩
体 积 收
降
缩
低
凝固终止温度
固态收缩
线收缩
室温
共晶成分从液态 变为固态需要一
定的时间
收缩率:
体积收缩是指单位体积的收缩量(表示由液态到常温的收缩)。 线收缩是指单位长度上的收缩量(可以表示固态时的收缩)。
体积收缩率:
V
V0 V1 100% V1
线收缩率:
L
L0 L1 L1
100%
其中 V0,L0表示铸件在高温T0时的体积和一维方向的长度; V1,L1表示铸件在高温T1时的体积和一维方向的长度。
A0.77---------
F +Fe C 0.0218
3 6.69
ES线是碳在γ-Fe中的溶解度曲 线,又称Acm线。
GS线,又称A3线。是冷却时由 奥氏体中析出铁素体的开始线。
L+ +
L+ Fe3C + Fe3C
F+ Fe3C
1、铸件的凝固过程:
在铸件的凝固过程中,其截面一般存在三个区域, 即液相区、凝固区、固相区。对铸件质量影响较大 的主要是液相和固相并存的凝固区的宽窄。铸件的 凝固方式就是依据凝固区的宽窄来划分的。
第一讲 液态金属成形的工艺 基础
1.1 液态金属的充型能力 1.2 液态金属的凝固与收缩 1.3 铸造缺陷和控制措施
的 铸造性能
通常是指合金的流动性、收缩性 吸气性及偏析等性能
合金铸造性能是选择铸造金属材料,确定铸件 的铸造工艺方案及进行铸件结构设计的依据
若浇铸速度太快, 则型腔中的气体压力增大,
充型能力减弱。
铸件结构
折算厚度:
折算厚度也 叫当量厚度或模 数,是铸件体积 与铸件表面积之 比。折算厚度越 大,热量散失越 慢,充型能力就 越好。
复杂程度:
铸件结构越复 杂,流动阻力就 越大,铸型的充 填就越困难。
1.2 液态金属的凝固与收缩
铁-碳合金状态图
(1)缩孔的形成:
纯金属、共晶成分和凝固温度范围窄的合金, 浇注后在型腔内是由表及里的逐层凝固。在凝固 过程中,如得不到合金液的补充,在铸件最后凝 固的地方就会产生缩孔.
中间凝固
大多数合金的凝固是介于逐 层凝固和糊状凝固之间,称为中 间凝固。
3、影响凝固方式的主要因素
合金的结晶温度范围: 合金的结晶温度范围越小,凝固区域越
窄,越趋向于逐层凝固。在铁碳合金中普通 灰铸铁为逐层凝固,高碳钢为糊状凝固。 铸件的温度梯度:
在合金结晶温度范围已定的前提下,凝 固区的宽窄取决于铸件内外层之间的温度差。 若铸件内外层之间的温度差由小变大,则其 凝固区相应由宽变窄。
合金 种类
表 典型合金的收缩率ε V
碳含量 浇注温度 液态收缩 凝固收缩 固态收缩 (%) ( ℃) (%) (%) (%)
碳钢
0.35 1610
1.6
3.0
7.86
白口铸铁 3.00 1400
2.4
4.2
5.4~6.3
灰口铸铁 3.50 1400
3.6
0.1
3.3~4.2
小结:合金的收缩是多数铸造缺陷产生的根源,其中液态
相图中的主要特性线
ACD线为液相线,在
ACD线以上合金为液态, L+δ
用符号L表示。液态合金
冷却到此线时开始结晶, δ+
L+
在AC线以下结晶出奥氏
体,在CD线以下结晶出
+
渗碳体,称为一次渗碳
体,用符号Fe3C表示。
L+ Fe3C + Fe3C
AECF线为固相线,在此
F+ Fe3C
线以下合金为固态。液
充型压力 浇注系统
液态金属在流动方向上所受的 压力称为充型压力。充型压力 越大, 充型能力越强。
浇注系统的结构越复杂,则 流动阻力越大,充型能力越 差。
铸型性质
铸型蓄热系数: 即从金属中吸取热量
并储存的能力
铸型温度(不能过高)
铸型的发气和 透气能力:
浇铸时产生气体 能在金属液与铸型间形成气膜,
减小摩擦阻力,有利于充型。 但发气能力过强,透气能力又差时,
1.1 液态金属的充型能力
充型能力的概念:
液态金属通过浇注系统充满铸型型腔,获得尺寸精 确、轮廓清晰的成型件的能力
充型能力不足
浇不足
冷隔
夹砂
气孔
夹渣
充型能力的决定因素
合金的流动性 铸型性质 浇注条件 铸件结构等
冒口
浇口杯 直浇道
内浇道
浇注系统
横浇道
金属的流动性:
改善金属 有利于 的流动性
形成薄壁复杂的铸件 排除内部夹杂物和气体 加快凝固中液体的补缩
测试合金充型 能力的方法:
将合金液浇入铸型 中,冷凝后测出充 满型腔的式样长度。 浇出的试样越长, 合金的流动性越好, 合金充型能力越好.
金属流动性测试实验
实验如下图所示:
不同合金流动性的比较
*铸钢的流动性
*铸铁的流动性
实验证明铸铁的流动性好,铸钢的流动性差。
浇注 条件
浇注温度
浇注温度越高,液态金属的粘度越小, 过热度高,金属液内含热 量多,保 持液态的时间长,充型 能力强。
2、铸件的 凝固方式:
逐层凝固 中间凝固 糊状凝固
铸件的“凝固方式”就是依据凝固区的宽窄来划分的 。
逐层凝固
纯金属和共晶成分的合 金在凝固中因为不存在固液 两相并存的凝固区,所以固 体与液体分界面清晰可见, 一直向铸件中心移动。
糊状凝固
铸件在结晶过程中,当结 晶温度范围很宽,且铸件截面 上的温度梯度较小,则不存在 固相层,固液两相共存的凝固 区贯穿整个区域。
收缩和凝固收缩是铸件产生缩孔和缩松的基本原因,固态收 缩是铸件中产生铸造应力、变形、裂纹的基本原因。
液态合金冷却 合金收缩
液态收缩 凝固收缩
固态合金冷却 固态收缩
缩孔
缩松 应力 变形 裂纹
5、影响收缩的因素
化学成分(c含量)
铸型条件 铸件结构
浇注温度
合金收缩
1.3 铸造缺陷和控制措施
1、缩孔与缩松的形成
相线与固相线之间为合
金的结晶区域,这个区 域内液体和固体共存。
相图中的主要特性线
L+δ
ECF线为共晶线,温度为
1148℃。液态合金冷却到该线
温度时发生共晶转变:
δ+
L4.3--------- A2.11+Fe3C6.69
PSK 线为共析线,又称A1线, 温度为727℃。铁碳合金冷却到 该温度时发生共析转变: