苏州市2018届高三上学期期中考试数学试题
2018苏锡常镇高三三模数学试题
2018苏锡常镇高三三模数学试题2018届苏锡常镇高三年级第三次模拟考试(十五)数学满分160分,考试时间120分钟)11方差公式:s2=[(x1-x)2+(x2-x)2+…+(xn-x)2],其中x=(x1+x2+…+xn).一、填空题:本大题共14小题,每小题5分,共计70分.1.若复数z满足(1+i)z=2(i是虚数单位),则z的虚部为1.2.设集合A={2,4},B={a2,2}(其中a<0),若A=B,则实数a=-2.3.在平面直角坐标系xOy中,点P(-2,4)到抛物线y2=-8x的准线的距离为2.4.一次考试后,从高三(1)班抽取5人进行成绩统计,其茎叶图如下图所示,则这五人成绩的方差为68.8.5.上图是一个算法流程图,若输入值x∈[0,2],则输出值S的取值范围是[0.4]。
6.欧阳修在《卖油翁》中写到:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技艺之高超,若铜钱直径4厘米,中间有边长为1厘米的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是1/16.7.已知函数f(x)=sin(πx+φ)(0<φ<2π)在x=2时取得最大值,则φ=3π/2.10.已知公差为d的等差数列{an}的前n项和为Sn,若S5=4,则d=-1/2.18.在棱长为2的正四面体PABC中,M,N分别为PA,BC的中点,D是线段PN上一点,且PD=2DN,则三棱锥DMBC的体积为8/3.9.设△ABC的内角A,B,C的对边分别是a,b,c,且满足acosB-bcosA=c,则cosA+cosB=1/2.11.在平面直角坐标系xOy中,已知圆C:(x+1)2+y2=2,点A(2,0),若圆C上存在点M,满足MA2+MO2≤10,则点M的纵坐标的取值范围是[-3.3]。
12.如图,扇形AOB的圆心角为90°,半径为1,P是圆弧AB上的动点,作点P关于弦AB的对称点Q,则OP·OQ的取值范围为[0.1/2]。
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。
2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题纸上,写在本试卷上无效。
3.考试结束后,将本试卷和答题纸一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。
$(-4,-3)$B。
$[-4,-3]$C。
$(-\infty,-3)\cup(4,+\infty)$D。
$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。
$-\frac{2}{5}+\frac{1}{5}i$B。
$-\frac{2}{5}-\frac{1}{5}i$C。
$\frac{2}{5}+\frac{1}{5}i$D。
$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。
$\frac{2}{3}$B。
$\frac{1}{5}$C。
$\frac{2}{5}$D。
$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。
高2021届高2018级江苏省苏州市高三第一学期期中考试数学试题参考答案
高2021届高2018级高三年级第一学期期中考试(苏州)数学参考答案及评分标准1. C2. C3. B4. B5. A6. B7. C8. A9. BC 10. BC 11. ABD 12. ABC13. (-2,2)∪(2,+∞) 14. 1215. 40 000 16. 2 17. 解:(1) 因为函数f(x)的最小正周期为π,所以2πω=π,ω=2,(1分) 此时g(φ)=f(π6)=sin(π3-φ)=-sin (φ-π3). 因为|φ|≤π2,所以φ-π3∈[-5π6,π6],所以-1≤sin(φ-π3)≤12,(3分) 所以g(φ)=f(π6)的值域为[-12,1].(4分) (2) 因为φ=π3,所以f(α)=sin (2α-π3). 由sin α-2cos α=0,得tan α=2,(6分)f (α)=sin (2α-π3)=12sin 2α-32cos 2α(8分) =12×2 tan α1+tan 2α-32×1-tan 2α1+tan 2α=4-3×(1-4)2×(1+4)=4+3310.(10分) 18. 解:(1) 当a =3时,f(x)=-13x 3+32x 2-2x,得f′(x)=-x 2+3x -2.(1分) 因为f′(x)<0,得x <1或x >2,(3分)所以函数f(x)单调递减区间为(-∞,1)和(2,+∞).(4分)(2) 由f(x)=-13x 3+a 2x 2-2x,得f′(x)=-x 2+ax -2.(5分) 因为对于任意x ∈[1,+∞)都有f′(x)<2(a -1)成立,所以问题转化为:对于任意x ∈[1,+∞)都有f′(x)max <2(a -1).(6分)因为f′(x)=-(x -a 2)2+a 24-2,其图象开口向下,对称轴为x =a 2. ①当a 2<1时,即a <2时,f ′(x)在[1,+∞)上单调递减, 所以f′(x)max =f′(1)=a -3.由a -3<2(a -1),得a >-1,此时-1<a <2.(8分)②当a 2≥1,即a ≥2时,f ′(x)在[1,a 2]上单调递增,在(a 2,+∞)上单调递减, 所以f′(x)max =f′(a 2)=a 24-2.(10分) 由a 24-2<2(a -1),得0<a <8,此时2≤a <8.(11分) 综合①②,可得实数a 的取值范围是(-1,8).(12分)19. 解:若选①.(1) 由题设条件及正弦定理,得sin Csin B +C 2=sin Asin C.(1分)因为△ABC 中,sin C ≠0,所以sin B +C 2=sin A.(2分) 由A +B +C =π,可得sin B +C 2=sin π-A 2=cos A 2,(3分) 所以cos A 2=2sin A 2cos A 2.(4分) 因为△ABC 中,cos A 2≠0,所以sin A 2=12. 因为0<A <π,所以A =π3.(5分) 因为c =(3-1)b,所以由正弦定理得sin C =(3-1)sin B.因为A =π3,所以sin B =sin(π-A -C)=sin(A +C)=sin(C +π3),(6分) 所以sin C =(3-1)sin(C +π3),整理得sin C =cos C.(7分) 因为△ABC 中,sin C ≠0,所以cos C ≠0,所以tan C =sin C cos C=1. 因为0<C <π,所以C =π4.(9分) (2) 因为△ABC 的面积为3-3,c =(3-1)b,A =π3, 所以由S =12bcsin A 得34(3-1)b 2=3-3,(11分) 解得b =2.(12分)若选②.(1) 由题设及正弦定理得2cos A(sin Bcos C +sin Ccos B)=sin A,(1分) 即2cos Asin(B +C)=sin A.(2分)因为B +C =π-A,所以2cos Asin A =sin A.(3分)因为△ABC 中,sin A ≠0,所以cos A =12.(4分) 因为0<A <π,所以A =π3.(5分) 下同选①.若选③.由题设得(sin B -sin C)2=sin 2A -sin Bsin C,(1分)所以sin 2B +sin 2C -sin 2A =sin Bsin C.(2分)由正弦定理得b 2+c 2-a 2=bc.由余弦定理得cos A =b 2+c 2-a 22bc =12.(4分) 因为0<A <π,所以A =π3.(5分) 下同选①.20. 解:(1) 因为等差数列{a n }中,a 3+a 5+a 7=3a 5=30,所以a 5=10.设等差数列{a n }的公差是d,所以d =a 5-a 15-1=2,(1分) 所以a n =a 1+(n -1)d =2n.(2分)设等比数列{b n }的公比是q,因为b 2b 3=a 16,所以b 21q 3=4q 3=32,所以q =2,所以b n =b 1qn -1=2n .(3分) (2) ① 若存在正整数k,使得T k +1=T k +b k +32成立,则b k +1=b k +32,(4分)所以2k +1=2k +32,即2k =32,解得k =5.(5分)存在正整数k =5满足条件.(6分)② S n =n (a 1+a n )2=n(n +1), 所以n(n +1)≥2n ,即2n -n(n +1)≤0.(8分)令f(n)=2n -n(n +1),因为f(n +1)-f(n)=2n +1-(n +1)(n +2)-2n +n(n +1)=2[2n -1-(n +1)],所以当n ≥4时,{f(n)}单调递增.(9分)又f(2)-f(1)<0,f(3)-f(2)<0,f(4)-f(3)<0,所以f(1)>f(2)>f(3)=f(4)<…<f(n)<…(10分)因为f(1)=0,f(4)=-4,f(5)=2,所以n =1,2,3,4时,f(n)≤0,n ≥5时,f(n)>0,(11分)所以不等式S n ≥b n 的解集为{1,2,3,4}.(12分)21. 解:(1) 因为g(x)为定义在[-4,4]上的奇函数,所以当x ∈[-4,0)时,g(-x)=-(-x)2+4(-x)=-x 2-4x.因为g(-x)=-g(x),所以g(-x)=-g(x)=-x 2-4x,(2分)所以g(x)=x 2+4x,所以g(x)=⎩⎪⎨⎪⎧x 2+4x ,x ∈[-4,0),-x 2+4x ,x ∈[0,4].(3分) (2) 因为g(x)在[2,4]内有“8倍倒域区间”,设2≤a <b ≤4,因为g(x)在[2,4]上单调递减,所以⎩⎨⎧-a 2+4a =8a ,-b 2+4b =8b ,整理得⎩⎪⎨⎪⎧(a -2)(a 2-2a -4)=0,(b -2)(b 2-2b -4)=0,(5分) 解得a =2,b =1+5,所以g(x)在[2,4]内的“8倍倒域区间”为[2,1+5].(6分)(3) 因为g(x)在x ∈[a,b]时,函数值的取值区间恰为[k b ,k a](k ≥8), 所以0<a <b ≤4或-4≤a <b <0.当0<a <b ≤4时,因为g(x)的最大值为4,所以k a≤4.(7分) 因为k ≥8,所以a ≥2.因为g(x)在[2,4]上单调递减,所以⎩⎨⎧-a 2+4a =k a,-b 2+4b =k b ,即⎩⎪⎨⎪⎧a 3-4a 2+k =0,b 3-4b 2+k =0,(8分) 所以方程x 3-4x 2+k =0在[2,4]上有两个不同的实数解.令h(x)=x 3-4x 2+k,x ∈[2,4],则h′(x)=3x 2-8x.令h′(x)=3x 2-8x =0,得x =0(舍去)或x =83, 当x ∈(2,83)时,h ′(x)<0,所以h(x)在(2,83)上单调递减. 当x ∈(83,4)时,h ′(x)>0,所以h(x)在(83,4)上单调递增.(10分) 因为h(2)=k -8≥0,h(4)=k ≥8,所以要使得x 3-4x 2+k =0在[2,4]上有两个不同的实数解,只需h(83)<0, 解得k <25627,所以8≤k <25627.(11分) 同理可得:当-4≤a <b <0时,8≤k <25627. 综上所述,k 的取值范围是[8,25627).(12分) 22. (1) 解:因为f(x)=e x +ax·sin x,所以f′(x)=e x +a(sin x +xcos x),(1分) 所以f′(0)=1.因为f(0)=1,所以曲线f(x)在x =0处的切线方程为y -1=x,即y =x +1.(3分)(2) 证明:当a =-2时,g(x)=e x x-2sin x,其中x ∈(-π,0), 则g′(x)=e x (x -1)x 2-2cos x =e x (x -1)-2x 2cos x x 2.(4分) 令h(x)=e x (x -1)-2x 2cos x,x ∈(-π,0),则h′(x)=x(e x +2xsin x -4cos x).当x ∈(-π,-π2)时,因为e x >0,2xsin x >0,cos x <0,所以h′(x)<0, 所以h(x)在(-π,-π2)上单调递减.(5分) 因为h(-π)=2π2-e -π(1+π)>0,h(-π2)=e -π2(-π2-1)<0, 所以由零点存在性定理知,存在唯一的x 0∈(-π,-π2),使得h(x 0)=0,(7分) 所以当x ∈(-π,x 0)时,h(x)>0,即g′(x)>0;当x ∈(x 0,-π2)时,h(x)<0,即g ′(x)<0. 当x ∈(-π2,0)时,g ′(x)=e x (x -1)x 2-2cos x <0. 因为g′(x)在(-π,0)上连续,所以x ∈(x 0,0)时,g ′(x)<0,所以g(x)在(-π,x 0)上单调递增,在(x 0,0)上单调递减,所以x 0是函数g(x)在(-π,0)上的唯一极大值点.(9分)因为g(x)在(x 0,-π2)上单调递减,所以g(x 0)>g(-π2). 因为g(-π2)=-1π2e π2+2>0,所以g(x 0)>0.(10分)当x 0∈(-π,-π2)时,因为-1<ex 0x 0<0,0<-2sin x 0<2, 所以g(x 0)=ex 0x 0-2sin x 0<2,(11分) 所以0<g(x 0)<2.(12分)。
苏州市第三中学2018-2019学年上学期高三期中数学模拟题
苏州市第三中学2018-2019学年上学期高三期中数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设a ,b为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 2. 在复平面内,复数1zi+所对应的点为(2,1)-,i 是虚数单位,则z =( ) A .3i --B .3i -+C .3i -D .3i +3. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88% 4. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )A .11B .12C .13D .14 5. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .4 6. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 7. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数12z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.8. 函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'(1)()0x f x -<,设(0)a f =,b f =,2(log 8)c f =,则( )A .a b c <<B .a b c >>C .c a b <<D .a c b <<9. 复数i iiz (21+=是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.10.已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1yx x a y e -++= 成立,则实数a 的取值范围是( )A.1[,]e eB.2(,]e eC.2(,)e +∞D.21(,)e e e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.11.已知函数211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x(12x x <),那么12()x f x ∙的取值范围为( )A .3[,1)4 B.1[8 C .31[,)162 D .3[,3)812.“24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形P ACB 的周长最小时,△ABC 的面积为________. 14.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( )A .1B .±1CD .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.15.已知过双曲线22221(0,0)x y a b a b-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )A .5-BC .6- D【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.16.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆ 外接圆的标准方程为_________.三、解答题(本大共6小题,共70分。
苏州市2018届高三上学期期中考试数学试题(完整资料).doc
【最新整理,下载后即可编辑】苏州市2018届高三第一学期期中调研试卷数 学一、填空题(本大题共14小题,每小题5分,共70分,请把答案直接填写在答卷纸...相应的位置) 1.已知集合{1,2,3,4,5},{1,3},{2,3}U A B ===,则()U A B = ▲ .2.函数1ln(1)y x =-的定义域为 ▲ .3.设命题:4p x >;命题2:540q x x -+≥,那么p 是q 的 ▲ 条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”). 4.已知幂函数22*()m m y x m -=∈N 在(0,)+∞是增函数,则实数m 的值是 ▲ .5.已知曲线3()ln f x ax x =+在(1,(1))f 处的切线的斜率为2,则实数a 的值是▲ .6.已知等比数列{}n a 中,32a =,4616a a =,则7935a a a a -=- ▲ .7.函数sin(2)(0)2y x ϕϕπ=+<<图象的一条对称轴是12x π=,则ϕ的值是 ▲ .8.已知奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,则不等式()01f x x >-的解集为 ▲ .9.已知tan()24απ-=,则cos2α的值是 ▲ .10.若函数8,2()log 5,2ax x f x x x -+⎧=⎨+>⎩≤(01)a a >≠且的值域为[6,)+∞,则实数a 的取值范围是 ▲ .11.已知数列{},{}n n a b 满足1111,1,(*)21n n n n a a b b n a +=+==∈+N ,则122017b b b ⋅⋅=▲ .12.设ABC △的内角,,A B C 的对边分别是,,a b c ,D 为AB 的中点,若cos sin b a C c A=+且CD =ABC △面积的最大值是▲ .13.已知函数()sin()6f x x π=-,若对任意的实数5[,]62αππ∈--,都存在唯一的实数[0,]m β∈,使()()0f f αβ+=,则实数m 的最小值是 ▲ . 14.已知函数ln ,0()21,0x x f x x x >⎧=⎨+⎩≤,若直线y ax =与()y f x =交于三个不同的点(,()),(,()),A m f m B n f n(,())C t f t (其中m n t <<),则12n m++的取值范围是 ▲ .二、解答题(本大题共6个小题,共90分,请在答题卷区域内作答,解答时应写出文字说明、证明过程或演算步骤) 15.(本题满分14分)已知函数1())(0,0)42f x ax b a b π=+++>>的图象与x 轴相切,且图象上相邻两个最高点之间的距离为2π.(1)求,a b 的值;(2)求()f x 在[0,]4π上的最大值和最小值.16.(本题满分14分)在ABC △中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin sin sin ()B C m A m +=∈R ,且240a bc -=.(1)当52,4a m ==时,求,bc 的值;(2)若角A 为锐角,求m 的取值范围.17.(本题满分15分)已知数列{}n a 的前n 项和是n S ,且满足11a =,*131()n n S S n +=+∈N . (1)求数列{}n a 的通项公式;(2)在数列{}n b 中,13b =,*11()n n n na b b n a ++-=∈N ,若不等式2n n a b n λ+≤对*n ∈N 有解,求实数λ的取值范围.如图所示的自动通风设施.该设施的下部ABCD 是等腰梯形,其中AB 为2米,梯形的高为1米,CD 为3米,上部CmD 是个半圆,固定点E 为CD 的中点.MN 是由电脑控制可以上下滑动的伸缩横杆(横杆面积可忽略不计),且滑动过程中始终保持和CD 平行.当MN 位于CD 下方和上方时,通风窗的形状均为矩形MNGH (阴影部分均不通风). (1)设MN 与AB 之间的距离为5(02x x <≤且1)x ≠米,试将通风窗的通风面积S (平方米)表示成关于x 的函数()y S x =;(2)当MN 与AB 之间的距离为多少米时,通风窗的通风面积S 取得最大值?19.(本题满分16分)已知函数2()ln ,()f x x g x x x m ==--. (1)求过点(0,1)P -的()f x 的切线方程;(2)当0=m 时,求函数()()()F x f x g x =-在],0(a 的最大值;(3)证明:当3m ≥-时,不等式2()()(2)e x f x g x x x +<--对任意1[,1]2x ∈均成立(其中e 为自然对数的底数,e 2.718...=).已知数列{}n a 各项均为正数,11a =,22a =,且312n n n n a a a a +++=对任意*n ∈N 恒成立,记{}n a 的前n 项和为n S . (1)若33a =,求5a 的值;(2)证明:对任意正实数p ,221{}n n a pa -+成等比数列;(3)是否存在正实数t ,使得数列{}n S t +为等比数列.若存在,求出此时n a 和n S 的表达式;若不存在,说明理由.2017—2018学年第一学期高三期中调研试卷数学(附加题部分)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相..........应的答题区域内作答..........若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲)(本小题满分10分)如图,AB 为圆O 的直径,C 在圆O 上,CF AB ⊥于F ,点D 为线段CF 上任意一点,延长AD 交圆O于E ,030AEC ∠=. (1)求证:AF FO =; (2)若CF =,求AD AE ⋅的值.BB .(矩阵与变换)(本小题满分10分)已知矩阵1221⎡⎤=⎢⎥⎣⎦A ,42α⎡⎤=⎢⎥⎣⎦,求49αA 的值.C .(极坐标与参数方程)(本小题满分10分)在平面直角坐标系中,直线l 的参数方程为42525x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为cos()(0)4a ρθπ-≠.(1)求直线l 和圆C 的直角坐标方程;(2)若圆C 任意一条直径的两个端点到直线l,求a的值.D .(不等式选讲)(本小题满分10分)设,x y 均为正数,且x y >,求证:2212232x y x xy y ++-+≥.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏. (1)求甲拿到礼物的概率;(2)设ξ表示甲参加游戏的轮数..,求ξ的概率分布和数学期望()E ξ.23.(本小题满分10分)(1)若不等式(1)ln(1)x x ax ++≥对任意[0,)x ∈+∞恒成立,求实数a 的取值范围;(2)设*n ∈N ,试比较111231n ++++与ln(1)n +的大小,并证明你的结论.2017—2018学年第一学期高三期中调研试卷数 学 参 考 答 案一、填空题(本大题共14小题,每小题5分,共70分) 1.{1} 2.(1,2)(2,)+∞3.充分不必要 4.15.136.4 7.3π 8.(2,0)(1,2)-9.45-10.(1,2] 11.12018 12.113.2π14.1(1,e )e+二、解答题(本大题共6个小题,共90分) 15.(本题满分14分)解:(1)∵()f x 图象上相邻两个最高点之间的距离为2π,∴()f x 的周期为2π,∴202||2a a ππ=>且,······································································2分∴2a =,··················································································································4分此时1())42f x x b π=+++, 又∵()f x 的图象与x 轴相切,∴1||02b b +=>,·······················································6分∴122b =-;··········································································································8分(2)由(1)可得())4f x x π=+∵[0,]4x π∈,∴4[,]444x ππ5π+∈, ∴当444x π5π+=,即4x π=时,()f x 有最大值为;·················································11分当442x ππ+=,即16x π=时,()f x 有最小值为0.························································14分 16.(本题满分14分) 解:由题意得b c ma+=,240a bc -=.···············································································2分(1)当52,4a m ==时,5,12b c bc +==,解得212b c =⎧⎪⎨=⎪⎩或122b c ⎧=⎪⎨⎪=⎩;································································································6分(2)2222222222()()22cos 23222a ma abc a b c bc a A m a bc bc--+-+--====-,····························8分∵A 为锐角,∴2cos 23(0,1)A m =-∈,∴2322m <<,····················································11分又由b c ma +=可得0m >,·························································································13分∴m <<···········································································14分 17.(本题满分15分)解:(1)∵*131()n n S S n +=+∈N ,∴*131(,2)n n S S n n -=+∈N ≥,∴*13(,2)n n a a n n +=∈N ≥,·························································································2分又当1n =时,由2131S S =+得23a =符合213a a =,∴*13()n n a a n +=∈N ,······························3分∴数列{}n a 是以1为首项,3为公比的等比数列,通项公式为1*3()n n a n -=∈N ; (5)分(2)∵*113()n n n na b b n a ++-==∈N ,∴{}n b 是以3为首项,3为公差的等差数列,····················7分∴*33(1)3()n b n n n =+-=∈N ,·····················································································9分∴2n n a b nλ+≤,即1233n n nλ-⋅+≤,即2133n n n λ--≤对*n ∈N 有解,··································10分设2*13()()3n n nf n n --=∈N ,∵2221(1)3(1)32(41)(1)()333n n nn n n n n n f n f n -+-+---++-=-=, ∴当4n ≥时,(1)()f n f n +<,当4n <时,(1)()f n f n +>, ∴(1)(2)(3)(4)(5)(6)f f f f f f <<<>>>, ∴max 4[()](4)27f n f ==,···························································································14分∴427λ≤.·············································································································15分 18.(本题满分15分)解:(1)当01x <≤时,过A 作AK CD ⊥于K (如上图),则1AK =,122CD AB DK -==,1HM x =-,由2AKMH DKDH ==,得122HM xDH -==,∴322HG DH x =-=+, ∴2()(1)(2)2S x HM HG x x x x =⋅=-+=--+;·······························································4分当512x <<时,过E 作ET MN ⊥于T ,连结EN (如下图),则1ET x =-,22239(1)(1)224MN TN x x ⎛⎫==---- ⎪⎝⎭∴292(1)4MN x =--∴29()2(1)(1)4S x MN ET x x =⋅=---,······································································8分综上:222,01()952(1)(1)142x x x S x x x x ⎧--+<⎪=⎨---<<⎪⎩≤;·································································9分(2)当01x <≤时,2219()2()24S x x x x =--+=-++在[0,1)上递减,∴max ()(0)2S x S ==;································································································11分2︒当512x <<时,229(1)(1)94()2(224x x S x x -+--=-⋅=,当且仅当(1)x -=51(1,)2x +∈时取“=”, ∴max 9()4S x =,此时max 9()24S x =>,∴()S x 的最大值为94,············································14分答:当MN 与AB1+米时,通风窗的通风面积S 取得最大值.····················15分 19.(本题满分16分)解:(1)设切点坐标为00(,ln )x x ,则切线方程为0001ln ()y x x x x -=-, 将(0,1)P -代入上式,得0ln 0x =,01x =, ∴切线方程为1y x =-;·······························································································2分(2)当0m =时,2()ln ,(0,)F x x x x x =-+∈+∞, ∴(21)(1)(),(0,)x x F x x x+-'=-∈+∞,············································································3分当01x <<时,()0F x '>,当1x >时,()0F x '<, ∴()F x 在(0,1)递增,在(1,)+∞递减,·············································································5分∴当01a <≤时,()F x 的最大值为2()ln F a a a a =-+; 当1a >时,()F x 的最大值为(1)0F =;········································································7分(3)2()()(2)e x f x g x x x +<--可化为(2)e ln x m x x x >-+-,设1()(2)e ln ,[,1]2x h x x x x x =-+-∈,要证3m ≥-时()m h x >对任意1[,1]2x ∈均成立,只要证max ()3h x <-,下证此结论成立. ∵1()(1)(e )x h x x x'=--,∴当112x <<时,10x -<,·······················································8分设1()e x u x x=-,则21()e 0x u x x '=+>,∴()u x 在1(,1)2递增, 又∵()u x 在区间1[,1]2上的图象是一条不间断的曲线,且1()202u =<,(1)e 10u =->,∴01(,1)2x ∃∈使得0()0u x =,即01e xx =,00ln x x =-,····················································11分当01(,)2x x ∈时,()0u x <,()0h x '>;当0(,1)x x ∈时,()0u x >,()0h x '<;∴函数()h x 在01[,]2x 递增,在0[,1]x 递减,∴0max 00000000012()()(2)e ln (2)212x h x h x x x x x x x x x ==-+-=-⋅-=--,····························14分∵212y x x=--在1(,1)2x ∈递增,∴0002()121223h x x x =--<--=-,即max ()3h x <-, ∴当3m ≥-时,不等式2()()(2)e xf xg x x x +<--对任意1[,1]2x ∈均成立.··························16分 20.(本题满分16分) 解:(1)∵1423a a a a =,∴46a =,又∵2534a a a a =,∴54392a a ==;·······································2分(2)由3121423n n n n n n n n a a a a a a a a +++++++=⎧⎨=⎩,两式相乘得2134123n n n n n n n a a a a a a a ++++++=,∵0n a >,∴2*42()n n n a a a n ++=∈N , 从而{}n a 的奇数项和偶数项均构成等比数列,···································································4分设公比分别为12,q q ,则1122222n n n a a q q --==,1121111n n n a a q q ---==,······································5分又∵312=n n n na a a a +++,∴42231122a a q a a q ===,即12q q =,···························································6分设12q q q ==,则2212223()n n n n a pa q a pa ---+=+,且2210n n a pa -+>恒成立, 数列221{}n n a pa -+是首项为2p+,公比为q的等比数列,问题得证;····································8分(3)法一:在(2)中令1p =,则数列221{}n n a a -+是首项为3,公比为q 的等比数列,∴22212223213 ,1()()()3(1),11k k k k k k k q S a a a a a a q q q---=⎧⎪=++++++=-⎨≠⎪-⎩, 12122132 ,13(1)2,11k k k k k k k q q S S a q q q q ---⎧-=⎪=-=⎨--≠⎪-⎩,·····································································10分且12341,3,3,33S S S q S q ===+=+,∵数列{}n S t +为等比数列,∴22132324()()(),()()(),S t S t S t S t S t S t ⎧+=++⎪⎨+=++⎪⎩ 即22(3)(1)(3),(3)(3)(33),t t q t q t t q t ⎧+=+++⎪⎨++=+++⎪⎩,即26(1),3,t q t t q +=+⎧⎨=-⎩ 解得14t q =⎧⎨=⎩(3t =-舍去),·························································································13分∴224121k k k S =-=-,212121k k S --=-, 从而对任意*n ∈N 有21n n S =-, 此时2n n S t +=,12n n S tS t-+=+为常数,满足{}n S t +成等比数列, 当2n ≥时,111222n n n n n n a S S ---=-=-=,又11a =,∴1*2()n n a n -=∈N , 综上,存在1t =使数列{}n S t +为等比数列,此时1*2,21()n n n n a S n -==-∈N . (16)分法二:由(2)知,则122n n a q -=,121n n a q --=,且12341,3,3,33S S S q S q ===+=+,∵数列{}n S t +为等比数列,∴22132324()()(),()()(),S t S t S t S t S t S t ⎧+=++⎪⎨+=++⎪⎩ 即22(3)(1)(3),(3)(3)(33),t t q t q t t q t ⎧+=+++⎪⎨++=+++⎪⎩,即26(1),3,t q t t q +=+⎧⎨=-⎩ 解得14t q =⎧⎨=⎩(3t =-舍去),·······················································································11分∴121222n n n a q --==,22212n n a --=,从而对任意*n ∈N 有12n n a -=,····································13分∴01211222222112n n n n S --=++++==--, 此时2n n S t +=,12n n S tS t-+=+为常数,满足{}n S t +成等比数列, 综上,存在1t =使数列{}n S t +为等比数列,此时1*2,21()n n n n a S n -==-∈N . (16)分21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相..........应的答题区域内作答..........若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲,本小题满分10分) 解:(1)证明 :连接,OC AC ,∵030AEC ∠=,∴0260AOC AEC ∠=∠=,又OA OC =,∴AOC ∆为等边三角形, ∵CF AB ⊥,∴CF 为AOC ∆中AO 边上的中线, ∴AF FO =;····························B··········································5分(2)解:连接BE , ∵CF =,AOC ∆是等边三角形,∴可求得1AF =,4AB =,∵AB 为圆O 的直径,∴90AEB ∠=,∴AEB AFD ∠=∠, 又∵BAE DFA ∠=∠,∴AEB ∆∽AFD ∆,∴AD AF ABAE=,即414AD AE AB AF ⋅=⋅=⨯=.··················································································10分 B .(矩阵与变换,本小题满分10分) 解:矩阵A 的特征多项式为212()2321f λλλλλ--==----, 令()0f λ=,解得矩阵A 的特征值121,3λλ=-=,····························································2分当11λ=-时特征向量为111α⎡⎤=⎢⎥-⎣⎦,当23λ=时特征向量为211α⎡⎤=⎢⎥⎣⎦,·····································6分又∵12432ααα⎡⎤==+⎢⎥⎣⎦,·························································································。
苏州市2018届高三上学期期中考试数学试题
苏州市2018届高三第一学期期中调研试卷数 学一、填空题(本大题共14小题,每小题5分,共70分,请把答案直接填写在答卷纸...相应的位置) 1.已知集合{1,2,3,4,5},{1,3},{2,3}U A B ===,则()U A B =ðI ▲ . 2.函数1ln(1)y x =-的定义域为 ▲ .3.设命题:4p x >;命题2:540q x x -+≥,那么p 是q 的 ▲ 条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).4.已知幂函数22*()m m y x m -=∈N 在(0,)+∞是增函数,则实数m 的值是 ▲ . 5.已知曲线3()ln f x ax x =+在(1,(1))f 处的切线的斜率为2,则实数a 的值是 ▲ . 6.已知等比数列{}n a 中,32a =,4616a a =,则7935a a a a -=- ▲ .7.函数sin(2)(0)2y x ϕϕπ=+<<图象的一条对称轴是12x π=,则ϕ的值是 ▲ . 8.已知奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,则不等式()01f x x >-的解集为 ▲ .9.已知tan()24απ-=,则cos2α的值是 ▲ .10.若函数8,2()log 5,2ax x f x x x -+⎧=⎨+>⎩≤(01)a a >≠且的值域为[6,)+∞,则实数a 的取值范围是 ▲ . 11.已知数列{},{}n n a b 满足1111,1,(*)21n n n n a a b b n a +=+==∈+N ,则122017b b b ⋅⋅=L ▲ . 12.设ABC △的内角,,A B C 的对边分别是,,a b c ,D 为AB 的中点,若cos sin b a C c A =+且CD =,则ABC △面积的最大值是 ▲ .13.已知函数()sin()6f x x π=-,若对任意的实数5[,]62αππ∈--,都存在唯一的实数[0,]m β∈,使()()0f f αβ+=,则实数m 的最小值是 ▲ . 14.已知函数ln ,0()21,0x x f x x x >⎧=⎨+⎩≤,若直线y ax =与()y f x =交于三个不同的点(,()),(,()),A m f m B n f n(,())C t f t (其中m n t <<),则12n m++的取值范围是 ▲ . 二、解答题(本大题共6个小题,共90分,请在答题卷区域内作答,解答时应写出文字说明、证明过程或演算步骤)已知函数1())(0,0)42f x ax b a b π=+++>>的图象与x 轴相切,且图象上相邻两个最高点之间的距离为2π. (1)求,a b 的值;(2)求()f x 在[0,]4π上的最大值和最小值.16.(本题满分14分)在ABC △中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin sin sin ()B C m A m +=∈R ,且240a bc -=. (1)当52,4a m ==时,求,b c 的值; (2)若角A 为锐角,求m 的取值范围.17.(本题满分15分)已知数列{}n a 的前n 项和是n S ,且满足11a =,*131()n n S S n +=+∈N . (1)求数列{}n a 的通项公式; (2)在数列{}n b 中,13b =,*11()n n n na b b n a ++-=∈N ,若不等式2n n a b n λ+≤对*n ∈N 有解,求实数λ的取值范围.18.(本题满分15分)如图所示的自动通风设施.该设施的下部ABCD 是等腰梯形,其中AB 为2米,梯形的高为1米,CD 为3米,上部CmD 是个半圆,固定点E 为CD 的中点.MN 是由电脑控制可以上下滑动的伸缩横杆(横杆面积可忽略不计),且滑动过程中始终保持和CD 平行.当MN 位于CD 下方和上方时,通风窗的形状均为矩形MNGH (阴影部分均不通风). (1)设MN 与AB 之间的距离为5(02x x <≤且1)x ≠米,试将通风窗的通风面积S (平方米)表示成关于x 的函数()y S x =;(2)当MN 与AB 之间的距离为多少米时,通风窗的通风面积S 取得最大值?已知函数2()ln ,()f x x g x x x m ==--. (1)求过点(0,1)P -的()f x 的切线方程;(2)当0=m 时,求函数()()()F x f x g x =-在],0(a 的最大值;(3)证明:当3m ≥-时,不等式2()()(2)e x f x g x x x +<--对任意1[,1]2x ∈均成立(其中e 为自然对数的底数,e 2.718...=).20.(本题满分16分)已知数列{}n a 各项均为正数,11a =,22a =,且312n n n n a a a a +++=对任意*n ∈N 恒成立,记{}n a 的前n 项和为n S .(1)若33a =,求5a 的值;(2)证明:对任意正实数p ,221{}n n a pa -+成等比数列;(3)是否存在正实数t ,使得数列{}n S t +为等比数列.若存在,求出此时n a 和n S 的表达式;若不存在,说明理由.2017—2018学年第一学期高三期中调研试卷数学(附加题部分)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲)(本小题满分10分)如图,AB 为圆O 的直径,C 在圆O 上,CF AB ⊥于F ,点D 为线段CF 上任意一点,延长AD 交圆O 于E ,030AEC ∠=.(1)求证:AF FO =;(2)若CF =,求AD AE ⋅的值.B .(矩阵与变换)(本小题满分10分)已知矩阵1221⎡⎤=⎢⎥⎣⎦A ,42α⎡⎤=⎢⎥⎣⎦u r ,求49αu r A 的值.C .(极坐标与参数方程)(本小题满分10分)在平面直角坐标系中,直线l 的参数方程为42525x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C的极坐标方程为cos()(0)4a ρθπ-≠. (1)求直线l 和圆C 的直角坐标方程;(2)若圆C 任意一条直径的两个端点到直线la 的值.D .(不等式选讲)(本小题满分10分)设,x y 均为正数,且x y >,求证:2212232x y x xy y++-+≥.B【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏. (1)求甲拿到礼物的概率;(2)设ξ表示甲参加游戏的轮数..,求ξ的概率分布和数学期望()E ξ.23.(本小题满分10分)(1)若不等式(1)ln(1)x x ax ++≥对任意[0,)x ∈+∞恒成立,求实数a 的取值范围; (2)设*n ∈N ,试比较111231n ++++L 与ln(1)n +的大小,并证明你的结论.2017—2018学年第一学期高三期中调研试卷数 学 参 考 答 案一、填空题(本大题共14小题,每小题5分,共70分)1.{1} 2.(1,2)(2,)+∞U 3.充分不必要 4.1 5.136.4 7.3π8.(2,0)(1,2)-U 9.45- 10.(1,2]11.12018 121 13.2π14.1(1,e )e +二、解答题(本大题共6个小题,共90分) 15.(本题满分14分)解:(1)∵()f x 图象上相邻两个最高点之间的距离为2π, ∴()f x 的周期为2π,∴202||2a a ππ=>且,······································································2分 ∴2a =,··················································································································4分此时1())42f x x b π=+++, 又∵()f x 的图象与x 轴相切,∴1||022b b +=>,·······················································6分∴122b =-;··········································································································8分 (2)由(1)可得())4f x x π=+, ∵[0,]4x π∈,∴4[,]444x ππ5π+∈,∴当444x π5π+=,即4x π=时,()f x;·················································11分当442x ππ+=,即16x π=时,()f x 有最小值为0.························································14分16.(本题满分14分)解:由题意得b c ma +=,240a bc -=.···············································································2分(1)当52,4a m ==时,5,12b c bc +==, 解得212b c =⎧⎪⎨=⎪⎩或122b c ⎧=⎪⎨⎪=⎩;································································································6分(2)2222222222()()22cos 23222a ma abc a b c bc a A m a bc bc--+-+--====-,····························8分 ∵A 为锐角,∴2cos 23(0,1)A m =-∈,∴2322m <<,····················································11分 又由b c ma +=可得0m >,·························································································13分m <<·····································································································14分 17.(本题满分15分)解:(1)∵*131()n n S S n +=+∈N ,∴*131(,2)n n S S n n -=+∈N ≥,∴*13(,2)n n a a n n +=∈N ≥,·························································································2分 又当1n =时,由2131S S =+得23a =符合213a a =,∴*13()n n a a n +=∈N ,······························3分 ∴数列{}n a 是以1为首项,3为公比的等比数列,通项公式为1*3()n n a n -=∈N ;·····················5分 (2)∵*113()n n n na b b n a ++-==∈N ,∴{}n b 是以3为首项,3为公差的等差数列,····················7分 ∴*33(1)3()n b n n n =+-=∈N ,·····················································································9分 ∴2n n a b n λ+≤,即1233n n n λ-⋅+≤,即2133n n nλ--≤对*n ∈N 有解,··································10分 设2*13()()3n n n f n n --=∈N , ∵2221(1)3(1)32(41)(1)()333n n nn n n n n n f n f n -+-+---++-=-=, ∴当4n ≥时,(1)()f n f n +<,当4n <时,(1)()f n f n +>, ∴(1)(2)(3)(4)(5)(6)f f f f f f <<<>>>L , ∴max 4[()](4)27f n f ==,···························································································14分 ∴427λ≤.·············································································································15分 18.(本题满分15分)解:(1)当01x <≤时,过A 作AK CD ⊥于K (如上图),则1AK =,122CD AB DK -==,1HM x =-, 由2AK MH DK DH ==,得122HM x DH -==, ∴322HG DH x =-=+,∴2()(1)(2)2S x HM HG x x x x =⋅=-+=--+;·······························································4分当512x <<时,过E 作ET MN ⊥于T ,连结EN (如下图), 则1ET x =-,2MN TN ==∴MN =∴()(1)S x MN ET x =⋅=-,······································································8分综上:22,01()52(12x x x S x x x ⎧--+<⎪=⎨-<<⎪⎩≤;·································································9分 (2)当01x <≤时,2219()2()24S x x x x =--+=-++在[0,1)上递减, ∴max ()(0)2S x S ==;································································································11分2︒当512x <<时,229(1)(1)94()2(224x x S x x -+--=-⋅=,当且仅当(1)x -=51(1,)2x +∈时取“=”, ∴max 9()4S x =,此时max 9()24S x =>,∴()S x 的最大值为94,············································14分 答:当MN 与AB1+米时,通风窗的通风面积S 取得最大值.····················15分 19.(本题满分16分)解:(1)设切点坐标为00(,ln )x x ,则切线方程为0001ln ()y x x x x -=-, 将(0,1)P -代入上式,得0ln 0x =,01x =,∴切线方程为1y x =-;·······························································································2分 (2)当0m =时,2()ln ,(0,)F x x x x x =-+∈+∞, ∴(21)(1)(),(0,)x x F x x x+-'=-∈+∞,············································································3分 当01x <<时,()0F x '>,当1x >时,()0F x '<,∴()F x 在(0,1)递增,在(1,)+∞递减,·············································································5分 ∴当01a <≤时,()F x 的最大值为2()ln F a a a a =-+;当1a >时,()F x 的最大值为(1)0F =;········································································7分 (3)2()()(2)e x f x g x x x +<--可化为(2)e ln x m x x x >-+-,设1()(2)e ln ,[,1]2x h x x x x x =-+-∈,要证3m ≥-时()m h x >对任意1[,1]2x ∈均成立, 只要证max ()3h x <-,下证此结论成立.∵1()(1)(e )x h x x x'=--,∴当112x <<时,10x -<,·······················································8分 设1()e x u x x =-,则21()e 0x u x x '=+>,∴()u x 在1(,1)2递增,又∵()u x 在区间1[,1]2上的图象是一条不间断的曲线,且1()202u <,(1)e 10u =->,∴01(,1)2x ∃∈使得0()0u x =,即001e x x =,00ln x x =-,····················································11分 当01(,)2x x ∈时,()0u x <,()0h x '>;当0(,1)x x ∈时,()0u x >,()0h x '<; ∴函数()h x 在01[,]2x 递增,在0[,1]x 递减, ∴0max 00000000012()()(2)e ln (2)212x h x h x x x x x x x x x ==-+-=-⋅-=--,····························14分 ∵212y x x =--在1(,1)2x ∈递增,∴0002()121223h x x x =--<--=-,即max ()3h x <-,∴当3m ≥-时,不等式2()()(2)e x f x g x x x +<--对任意1[,1]2x ∈均成立.··························16分 20.(本题满分16分)解:(1)∵1423a a a a =,∴46a =,又∵2534a a a a =,∴54392a a ==;·······································2分(2)由3121423n n n n n n n n a a a a a a a a +++++++=⎧⎨=⎩,两式相乘得2134123n n n n n n n a a a a a a a ++++++=,∵0n a >,∴2*42()n n n a a a n ++=∈N ,从而{}n a 的奇数项和偶数项均构成等比数列,···································································4分 设公比分别为12,q q ,则1122222n n n a a q q --==,1121111n n n a a q q ---==,······································5分 又∵312=n n n n a a a a +++,∴42231122a a qa a q ===,即12q q =,···························································6分 设12q q q ==,则2212223()n n n n a pa q a pa ---+=+,且2210n n a pa -+>恒成立,数列221{}n n a pa -+是首项为2p +,公比为q 的等比数列,问题得证;····································8分 (3)法一:在(2)中令1p =,则数列221{}n n a a -+是首项为3,公比为q 的等比数列,∴22212223213 ,1()()()3(1),11k k k k k k k q S a a a a a a q q q---=⎧⎪=++++++=-⎨≠⎪-⎩, 12122132 ,13(1)2,11k k k k k k k q q S S a q q q q ---⎧-=⎪=-=⎨--≠⎪-⎩,·····································································10分 且12341,3,3,33S S S q S q ===+=+,∵数列{}n S t +为等比数列,∴22132324()()(),()()(),S t S t S t S t S t S t ⎧+=++⎪⎨+=++⎪⎩ 即22(3)(1)(3),(3)(3)(33),t t q t q t t q t ⎧+=+++⎪⎨++=+++⎪⎩,即26(1),3,t q t t q +=+⎧⎨=-⎩ 解得14t q =⎧⎨=⎩(3t =-舍去), (13)分∴224121k k k S =-=-,212121k k S --=-, 从而对任意*n ∈N 有21n n S =-, 此时2n n S t +=,12n n S tS t-+=+为常数,满足{}n S t +成等比数列,当2n ≥时,111222n n n n n n a S S ---=-=-=,又11a =,∴1*2()n n a n -=∈N ,综上,存在1t =使数列{}n S t +为等比数列,此时1*2,21()n n n n a S n -==-∈N .······················16分 法二:由(2)知,则122n n a q -=,121n n a q --=,且12341,3,3,33S S S q S q ===+=+,∵数列{}n S t +为等比数列,∴22132324()()(),()()(),S t S t S t S t S t S t ⎧+=++⎪⎨+=++⎪⎩ 即22(3)(1)(3),(3)(3)(33),t t q t q t t q t ⎧+=+++⎪⎨++=+++⎪⎩,即26(1),3,t q t t q +=+⎧⎨=-⎩ 解得14t q =⎧⎨=⎩(3t =-舍去), (11)∴121222n n n a q --==,22212n n a --=,从而对任意*n ∈N 有12n n a -=,····································13分 ∴01211222222112n n n n S --=++++==--, 此时2n n S t +=,12n n S t S t-+=+为常数,满足{}n S t +成等比数列, 综上,存在1t =使数列{}n S t +为等比数列,此时1*2,21()n n n n a S n -==-∈N .······················16分21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .(几何证明选讲,本小题满分10分)解:(1)证明 :连接,OC AC ,∵030AEC ∠=,∴0260AOC AEC ∠=∠=,又OA OC =,∴AOC ∆为等边三角形,∵CF AB ⊥,∴CF 为AOC ∆中AO 边上的中线,∴AF FO =;······································································5分(2)解:连接BE ,∵CF ,AOC ∆是等边三角形,∴可求得1AF =,4AB =,∵AB 为圆O 的直径,∴90AEB ∠=o ,∴AEB AFD ∠=∠,又∵BAE DFA ∠=∠,∴AEB ∆∽AFD ∆,∴AD AF AB AE=, 即414AD AE AB AF ⋅=⋅=⨯=.··················································································10分B .(矩阵与变换,本小题满分10分)解:矩阵A 的特征多项式为212()2321f λλλλλ--==----, 令()0f λ=,解得矩阵A 的特征值121,3λλ=-=,····························································2分当11λ=-时特征向量为111α⎡⎤=⎢⎥-⎣⎦u u r ,当23λ=时特征向量为211α⎡⎤=⎢⎥⎣⎦u u r ,·····································6分 又∵12432ααα⎡⎤==+⎢⎥⎣⎦u ru u r u u r ,······························································································8分 ∴5049494911225031331αλαλα⎡⎤-=+=⎢⎥+⎣⎦u r u u r u u rA .···········································································10分 C .(极坐标与参数方程,本小题满分10分)解:(1)直线l 的普通方程为220x y +-=; (3)B。
江苏省苏州市2018-2019学年高二上学期期中考试数学试卷(含精品解析)
2018-2019学年江苏省苏州市高二(上)期中数学试卷一、填空题(本大题共14小题,共70.0分)1.直线x+y+√3=0的倾斜角为______.2.在正方体ABCD-A1B1C1D1中,直线AD1与平面ABCD所成的角的大小为______.3.已知A(-1,-3),B(5,3),则以线段AB为直径的圆的方程为______.(写成标准方程)4.直线l经过点(1,1),且在两坐标轴上的截距相反,则直线l的方程是______.5.若直线l1:(m+3)x+4y+3m-5=0与l2:2x+(m+5)y-8=0平行,则m的值为______.6.经过圆x2+2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是______.7.圆(x-2)2+(y-3)2=1关于直线x+y-1=0对称的圆的方程是______.8.正三棱锥P-ABC中,若底面边长为a,侧棱长为√2a,则该正三棱锥的高为______.9.已知m,n是两条不重合的直线,α,β是两个不重合的平面,给出下列命题:①若m⊂β,α∥β,则m∥α;②若m∥β,α∥β,则m∥α;③若m⊥α,β⊥α,m∥n,则n∥β;④若m⊥α,n⊥β,α∥β,则m∥n.其中正确的结论有______.(请将所有正确结论的序号都填上)10.设点A(-2,3),B(3,2)若直线ax+y+2=0与线段AB有公共点,则a的取值范围是______.11.有一根高为3π,底面半径为1的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为______(结果用π表示).12.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x+2y+1=0的两条切线,A,B为切点,C是圆心,那么四边形PACB面积的最小值为______.13.△ABC的一个顶点是A(3,-1),∠B,∠C的平分线分别是x=0,y=x,则直线BC的方程是______.14.已知定点M(0,2),N(-2,0),直线l:kx-y-3k+2=0(k为常数),对l上任意一点P,都有∠MPN为锐角,则k的取值范围是______.二、解答题(本大题共6小题,共80.0分)15.如图:在正方体ABCD-A1B1C1D1中,E为棱DD1的中点(1)求证:BD1∥平面AEC(2)求证:AC⊥BD1.16.设△ABC顶点坐标A(0,a),B(-√3a,0),C(√3a,0),其中a>0,圆M为△ABC的外接圆.(1)求圆M的方程(2)当a变化时,圆M是否过某一定点,请说明理由.17.如图,在三棱柱ABC-A1B1C1中,AB⊥BC,BC⊥BC1,AB=BC1,E,F分别为线段AC1,A1C1的中点.(1)求证:EF∥面BCC1B1;(2)求证:BE⊥平面AB1C1.18.已知直线l过点P(1,1),并与直线l1:x-y+3=0和l2:2x+y-6=0分别交于点A、B,若线段AB被点P平分.求:(1)直线l的方程;√5的圆的方程.(2)以O为圆心且被l截得的弦长为8519.已知等腰梯形PDCB中,PB=3,DC=1,PD=BC=√2,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD.(1)求证:平面PAD⊥平面PCD.(2)在线段PB上是否存在一点M,使截面AMC把几何体分成的两部分的体积之比为V多面体PDCMA:V三棱锥M-ACB=2:1?(3)在M满足(2)的条件下,判断PD是否平行于平面AMC.20.如图,在平面直角坐标系xOy中,已知点A(0,3)和直线l:y=2x-4,设圆C的半径为1,圆心在直线l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线.①求圆C的方程;②求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.答案和解析1.【答案】135°【解析】解:直线x+y+=0的斜率为-1;所以直线的倾斜角为135°.故答案为135°.求出直线的斜率,即可得到直线的倾斜角.本题考查直线的有关概念,直线的斜率与直线的倾斜角的关系,考查计算能力.2.【答案】45°【解析】解:∵正方体ABCD-A1B1C1D1中,∴D1D⊥平面ABCD,∴直线AD是直线AD1在平面ABCD内的射影,∴∠D1AD=α,就是直线AD1平面ABCD所成角,在直角三角形AD1AD中,AD1=D1D,∴∠D1AD=45°故答案为:45°在正方体ABCD-A1B1C1D1中,证明D1D⊥平面ABCD,则∠D1AD=α,就是直线AD1平面ABCD所成角,解直角三角形D1AD即可.考查直线和平面所成的角,求直线和平面所成的角关键是找到斜线在平面内的射影,把空间角转化为平面角求解,属基础题3.【答案】(x-2)2+y2=18【解析】解:∵A(-1,-3),B(5,3),则以线段AB为直径的圆的圆心C(2,0),半径为AC==3,故圆的方程为(x-2)2+y2=18,故答案为:为(x-2)2+y2=18.先根据条件求出圆心坐标和半径,可得线段AB为直径的圆的方程.本题主要考查求圆的方程的方法,关键是求出圆心坐标和半径,属于基础题.4.【答案】x-y=0【解析】解:当直线l经过原点时,直线l在两坐标轴上截距均等于0,故直线l的斜率为1,∴所求直线方程为y=x,即x-y=0.当直线l不过原点时,设其方程+=1,又l经过点(1,1),则可得-=0≠1,此时不存在,故所求直线l的方程为x-y=0.故答案为x-y=0当直线l经过原点时,直线l在两坐标轴上截距均等于0,所求直线方程为y=x,当直线l不过原点时,此时a不存在.本题主要考查用点斜式、截距式求直线的方程,体现了分类讨论的数学思想,属于基础题.5.【答案】-7【解析】解:∵直线l1:(m+3)x+4y+3m-5=0与l2:2x+(m+5)y-8=0平行,∴,解得m=-7.∴m的值为-7.故答案为:-7.由直线l1:(m+3)x+4y+3m-5=0与l2:2x+(m+5)y-8=0平行,能求出m的值.本题考查实数值的求法,考查直线与直线平行的性质等基础知识,考查运算求解能力,是基础题.6.【答案】x-y+1=0【解析】解:易知点C为(-1,0),而直线与x+y=0垂直,我们设待求的直线的方程为y=x+b,将点C的坐标代入马上就能求出参数b的值为b=1,故待求的直线的方程为x-y+1=0.故答案为:x-y+1=0.先求圆心,再求斜率,可求直线方程.明确直线垂直的判定,会求圆心坐标,再求方程,是一般解题思路.7.【答案】(x+2)2+(y+1)2=1【解析】解:(x-2)2+(y-3)2=1的圆心为(2,3),半径为1点(2,3)关于直线x+y-1=0对称的点为(-2,-1)∴圆(x-2)2+(y-3)2=1关于直线x+y-1=0对称的圆的圆心为(-2,-1),半径为1 即圆的方程为(x+2)2+(y+1)2=1故答案为:(x+2)2+(y+1)2=1先求出圆心和半径,然后根据对称性求出圆心关于直线x+y-1=0对称的圆的圆心,而圆对称形状不变,从而半径不变,即可求得圆的方程.本题主要考查了关于直线对称的圆的方程,同时考查了对称点的求解,属于基础题.8.【答案】√15a3【解析】解:如图,取BC中点D,连接AD,并取底面中心O,则O为AD的三等分点,且OA=,PA=,在Rt△POA中,求得OP=a,即该正三棱锥的高为,故答案为:.作出底面中心O,利用直角三角形POA容易求出高.此题考查了三棱锥高的求法,属容易题.9.【答案】①④【解析】解:①是正确命题,因为两个平面平行时,一个平面中的线与另一个平面一定没有公共点,故有线面平行;②不正确,因为一条直线平行于两个平行平面中的一个平面,则它与另一个平面的位置关系是平行或者在面内,故不正确;③不正确,因为由m⊥α,m∥n可得出n⊥α,再由β⊥α,可得n∥β或n⊂β,故不正确;④是正确命题,因为两个直线分别垂直于两个互相平行的平面,一定可以得出两线平行.综上,①④是正确命题故答案为①④本题研究空间中线面平行与线线平行的问题,根据相关的定理对四个命题进行探究,得出正误,即可得到答案,①②③由线面平行的条件判断,④由线线平行的条件判断,易得答案本题考查空间中直线与平面之间的位置关系,熟练掌握线面平行的方法与线线平行的方法是准确判断正误的关键,几何的学习,要先记牢定义与定理,再对应其几何特征进行理解培养出空间形象感知能力,方便做此类题 10.【答案】(-∞,-43]∪[52,+∞)【解析】解:∵直线ax+y+2=0恒过定点(0,-2),斜率为-a , 如图,,,∴若直线ax+y+2=0与线段AB 有交点, 则-a≥或-a≤-.即a≤-或a≥. 故答案为:(-∞,-]∪[,+∞). 由题意画出图形,数形结合得答案.本题考查了直线系方程的应用,考查了数形结合的解题思想方法,是基础题. 11.【答案】5π【解析】解:∵圆柱型铁管的高为3π,底面半径为1,又∵铁丝在铁管上缠绕2圈,且铁丝的两个端点落在圆柱的同一母线的两端,则我们可以得到将圆柱面展开后得到的平面图形如下图示:其中每一个小矩形的宽为圆柱的周长2πcm,高为圆柱的高3π,则大矩形的对称线即为铁丝的长度最小值.此时铁丝的长度最小值为:=5π故答案为:5π.本题考查的知识点是圆柱的结构特征,数形结合思想、转化思想在空间问题中的应用,由圆柱型铁管的高为3π,底面半径为1,铁丝在铁管上缠绕2圈,且铁丝的两个端点落在圆柱的同一母线的两端,则我们可以得到将圆柱面展开后得到的平面图形,然后根据平面上求两点间距离最小值的办法,即可求解.解答本题的关键是要把空间问题转化为平面问题,另外使用数形结合的思想用图形将满足题目的几何体表示出来,能更加直观的分析问题,进而得到答案.12.【答案】2√65【解析】解:如图,直线3x+4y+8=0与圆x2+y2-2x+2y+1=0相离,化圆x2+y2-2x+2y+1=0为(x-1)2+(y+1)2=1,圆心坐标为C(1,-1),半径为1.连接CA,CB,则CA⊥PA,CB⊥PB,则四边形PACB的面积等于两个全等直角三角形PAC与PBC的面积和.∵AC 是半径,为定值1,要使三角形PAC 的面积最小,则PC 最小, |PC|=,∴|PA|=.∴四边形PACB 面积的最小值为2×.故答案为:.由题意画出图形,可知要使四边形PACB 面积最小,则P 为过圆心作直线3x+4y+8=0的垂线得垂足,由点到直线的距离公式求得PC ,再由勾股定理得弦长,代入三角形面积公式得答案.本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法,属于中档题.13.【答案】2x -y +5=0【解析】解:∵∠B 、∠C 的平分线分别是x=0,y=x ,∴AB 与BC 对于x=0对称,AC 与BC 对于y=x 对称. ∴A (3,-1)关于x=0的对称点A'(-3,-1)在直线BC 上, A 关于y=x 的对称点A''(-1,3)也在直线BC 上. 代入两点式方程可得,故所求直线BC 的方程:2x-y+5=0. 故答案为:2x-y+5=0分析题意,求出A 关于x=0,y=x ,的对称点的坐标,都在直线BC 上,利用两点式方程求解即可.本题考查点关于直线对称点的求法,直线方程的求法,属中档题.14.【答案】(-∞,4−√3014)∪(4+√3014,+∞) 【解析】解:由于对于l 上任意一点P ,∠MPN 恒为锐角,故以MN 为直径的圆与直线l :kx-y-3k+2=0相离.而MN的中点,即圆心为H(-1,1),则点H到直线l:kx-y-3k+2=0的距离大于半径MN=,即>,即(1-4k)2>2(1+k2),解得k<,或 k>,故答案为:(-∞,)∪(,+∞)由题意可得,以MN为直径的圆与直线l:kx-y-2k+2=0相离,故圆心H(-1,1)到直线l:kx-y-3k+2=0的距离大于半径,即>,由此解得k 的范围.本题主要考查点到直线的距离公式,直线和圆的位置关系,绝对值不等式的解法,体现了转化的数学思想,属于中档题.15.【答案】证明:(1)连接BD交AC于F,连EF.因为F为正方形ABCD对角线的交点,所长F为AC、BD的中点.在DD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.又EF⊂平面EAC,所以BD1∥平面EAC.(2)由正方形的性质可得AC⊥BD又由正方体的几何特征可得:D1D⊥平面ABCD又∵AC⊂平面ABCD∴AC⊥D1D又∵D1D∩BD=D∴AC⊥平面D1DB∵BD1⊂平面D1DB∴AC⊥BD1【解析】(1)欲证BD1∥平面EAC,只需在平面EAC内找一条直线BD1与平行,根据中位线定理可知EF∥D1B,满足线面平行的判定定理所需条件,即可得到结论;(2)根据正方形的性质及正方体的几何特征,结合线面垂直的性质,可得AC⊥BD,AC⊥D1D,由线面垂直的判定定理可得AC⊥平面D1DB,再由线面垂直的性质即可得到AC⊥BD1本题考查的知识点是直线与平面平行的判定,直线与平面垂直的判定,直线与平面垂直的性质,熟练掌握空间线线,线面垂直及平行的判定定理,性质定理及几何特征是解答此类问题的关键.16.【答案】解:(1)△ABC是等腰三角形,对称轴为x=0.外接圆的圆心肯定在x=0上.作AC的中垂线,垂足为D,交y轴于M,M即为外接圆的圆心.AC=a.因为A(0,a),C(√3a,0),故∠MAC=60°,AD=12△AMD又是一个∠MAD=60°的直角三角形.故AM=2a.所以,点M的坐标为(0,-a),圆的半径r=MA=MB=MC=2a.故圆M的方程为:x2+(y+a)2=4a2(a>0).(2)假设圆M过某一定点(x,y).那么当a变化时,圆M仍然过点(x,y),此点不会随着a的变化而变化.那么,现在令a变成了b,即a≠b.有x2+(y+b)2=4b2,两式相减化简得:(2y+a+b)(a-b)=4(a+b)(a-b).因为a≠b,即a-b≠0,所以,2y+a+b=4(a+b).得:y=3(a+b).2得出,y是一个根据a和b取值而变化的量.与我们之前假设的y是一个不随a变化而变化的定量矛盾,所以,圆M不过定点.【解析】(1)确定圆心与半径,即可求圆M的方程(2)利用反证法进行判断.本题考查圆的方程,考查反证法,考查学生分析解决问题的能力,属于中档题.17.【答案】解:(1)∵E,F分别为线段AC1,A1C1的中点.∴EF是三角形AA1C1的中位线,∴EF∥AA1,又AA1∥BB1,∴EF∥BB1,∵EF⊄面BCC1B1,BB1⊂面BCC1B1,∴EF∥面BCC1B1.(2)∵AB⊥BC,BC⊥BC1,∴BC⊥面ABC1,∴BC⊥BE,同时BC∥B1C1,∵AB=BC1,E是线段AC1的中点.∴BC⊥AC1,∵AC1∩B1C1=C1,∴BE⊥平面AB1C1【解析】(1)根据线面平行的判定定理,证明EF∥BB1;从而证明EF∥面BCC1B1;(2)根据线面垂直的判定定理证明BE⊥平面AB1C1.本题主要考查空间直线和平面平行和垂直的判定,要求熟练掌握线面平行和垂直的判定定理.并能灵活应用.18.【答案】解:(1)依题意可设A (m ,n )、B (2-m ,2-n ),则{2(2−m)+(2−n)−6=0m−n+3=0,即{2m +n =0m−n=−3,解得m =-1,n =2.即A (-1,2),又l 过点P (1,1),用两点式求得AB 方程为y−12−1=x−1−1−1,即:x +2y -3=0. (2)圆心(0,0)到直线l 的距离d =|0+0−3|√1+4=3√5,设圆的半径为R ,则由R 2=d 2+(4√55)2, 求得R 2=5,故所求圆的方程为x 2+y 2=5.【解析】(1)依题意可设A (m ,n )、B (2-m ,2-n ),分别代入直线l 1 和l 2的方程,求出m=-1,n=2,用两点式求直线的方程.(2)先求出圆心(0,0)到直线l 的距离d ,设圆的半径为R ,则由,求得R 的值,即可求出圆的方程.本题主要考查直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,用两点式求直线的方程,属于中档题.19.【答案】解:(1)因为PDCB 为等腰梯形,PB =3,DC =1,PA =1,则PA ⊥AD ,CD ⊥AD .又因为面PAD ⊥面ABCD ,面PAD ∩面ABCD =AD ,CD ⊂面ABCD ,故CD ⊥面PAD .又因为CD ⊂面PCD ,所以平面PAD ⊥平面PCD . (2)所求的点M 即为线段PB 的中点,证明如下: 设三棱锥M -ACB 的高为h 1,四棱锥P -ABCD 的高为h 2当M 为线段PB 的中点时,ℎ1ℎ2=MB PB =12.所以V M−ACBVp−ABCD=13S MCB ℎ113S ABCD ℎ2=13所以截面AMC 把几何体分成的两部分V PDCMA :V M -ACB =2:1.(3)当M 为线段PB 的中点时,直线PD 与面AMC 不平行.证明如下:(反证法)假设PD ∥面AMC ,连接DB 交AC 于点O ,连接MO . 因为PD ⊂面PDB ,且面AMC ∩面PBD =MO ,所以PD ∥MO . 因为M 为线段PB 的中点时,则O 为线段BD 的中点,即DOOB =11. 面AB ∥DC ,故DOOB =DCAB =12,故矛盾.所以假设不成立,故当M 为线段PB 的中点时,直线PD 与平面AMC 不平行. 【解析】(1)证明平面与平面垂直是要证明CD ⊥面PAD ;(2)已知V 多面体PDCMA :V 三棱锥M-ACB 体积之比为2:1,求出V M-ACB :V P-ABCD 体积之比,从而得出两多面体高之比,从而确定M 点位置.(3)利用反证法证明当M 为线段PB 的中点时,直线PD 与平面AMC 不平行. 本题主要考查面面垂直的判定定理、多面体体积、线面平行判定以及反证法的应用,属于中等难度题.20.【答案】解:(1)由{y =x −1y=2x−4得圆心C 为(3,2),∵圆C 的半径为1,∴圆C 的方程为:(x -3)2+(y -2)2=1,显然切线的斜率一定存在,设所求圆C 的切线方程为y =kx +3,即kx -y +3=0, ∴√k 2+1=1∴|3k +1|=√k 2+1,∴2k (4k +3)=0∴k =0或者k =−34,∴所求圆C 的切线方程为:y =3或者y =−34x +3.即y =3或者3x +4y -12=0.(2)∵圆C 的圆心在在直线l :y =2x -4上, 所以,设圆心C 为(a ,2a -4),则圆C 的方程为:(x -a )2+[y -(2a -4)]2=1, 又∵MA =2MO ,∴设M 为(x ,y )则√x 2+(y −3)2=2√x 2+y 2整理得:x 2+(y +1)2=4设为圆D , ∴点M 应该既在圆C 上又在圆D 上 即:圆C 和圆D 有交点,∴1≤CD ≤3,∴|2−1|≤√a 2+[(2a −4)−(−1)]2≤|2+1|, 由5a 2-12a +8≥0得a ∈R , 由5a 2-12a ≤0得0≤a ≤125,综上所述,a 的取值范围为:[0,125]. 【解析】(1)求出圆心C 为(3,2),圆C 的半径为1,得到圆的方程,切线的斜率一定存在,设所求圆C 的切线方程为y=kx+3,即kx-y+3=0,利用圆心到直线的距离等于半径,求解k 即可得到切线方程.(2)设圆心C 为(a ,2a-4),圆C 的方程为:(x-a )2+[y-(2a-4)]2=1,设M 为(x ,y )列出方程得到圆D的方程,通过圆C和圆D有交点,得到1≤CD≤3,转化求解a的取值范围.本题考查直线与圆的方程的综合应用,圆心切线方程的求法,考查转化思想以及计算能力.。
2018届高三上学期期终质量评估数学(理)试题 含答案
2018年秋期高中三年级期终质量评估数学试题(理) 第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}1,2,3,4M =,则集合{}|,2P x x M x M =∈∉的子集的个数为 A. 8 B. 4 C. 3 D.22.已知复数cos sin z i θθ=+(i 为虚数单位),则21z z+= A. cos sin i θθ+ B.2sin θ C. 2cos θ D.sin 2i θ 3.直线()12x m y m ++=-和直线280mx y ++=平行,则m 的值为 A. 1 B. -2 C. 1或-2 D. 23-4.已知公差不为0的等差数列{}n a 满足134,,a a a 成等比数列,n S 为数列{}n a 的前n 项和,则3253S S S S --的值为A. -2B. -3C. 2D. 35.甲、乙、丙、丁、戊五位同学战成一排照相留念,则在甲乙相邻的条件下,甲丙也相邻的概率为 A.110 B. 23 C. 13 D.146.若如下框图所给的程序运行结果为S=41,则图中的判断框①中应填入的是 A. 6?i > B. 6?i ≤ C. 5?i > D. 5?i ≤7.已知三棱锥的俯视图与左视图如图所示,俯视图是边长为2的正三角形,左视图是有一条直角边为2的直角三角形,则该三棱锥的主视图可能为8.将函数()sin 22f x x π⎛⎫=- ⎪⎝⎭的图象向右平移4π个单位得到函数()g x ,则()g x 具有性质A.最大值为1,图象关于直线2x π=对称 B.在0,4π⎛⎫⎪⎝⎭上单调递减,为奇函数 C. 在3,88ππ⎛⎫-⎪⎝⎭上单调递减,为偶函数 D.周期为π,图象关于3,08π⎛⎫ ⎪⎝⎭对称9.已知实数,x y 满足260,0,2,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是A. []2,1-B.[]1,3-C. []1,2-D. []2,3 10.已知函数())20162016log 20162x x f x x -=+-+,则关于x 的不等式()()311f x f x ++>的解集为A. 1,4⎛⎫-+∞ ⎪⎝⎭ B. 1,4⎛⎫-∞- ⎪⎝⎭ C. ()0,+∞ D. (),0-∞11.过双曲线22115y x -=的右支上一点P ,分别向圆()221:44C x y ++=和圆()222:44C x y -+=作切线,切点分别为M,N ,则22PM PN -的最小值为A. 10B.13C. 16D. 1912.定义在R 上的函数()f x 满足()()xf x f x x e '-=⋅,且()102f =,则()xx e f x ⋅的最大值为A. 1B. -12C. 1-D.0二、填空题:本大题共4小题,每小题5分,共20分.13.若命题“0x R ∃∈,使得200230x mx m ++-<”为假命题,则实数m 的取值范围是 为 . 14.已知0sin a xdx π=⎰,则二项式61a x ⎛⎫- ⎪⎝⎭的展开式中3x -的系数为 .15.已知ABC ∆中,8,9BC AB AC =⋅=-,D 为边BC 的中点,则AD = . 16.在正三棱锥V ABC -内,有一个半球,其底面与正三棱锥的底面重合,且与正三棱锥的三个侧面都相切,若半球的半径为2,则正三棱锥的体积的最小时,其底面边长为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分10分) 设()()0axf x a x a=>+,令()111,n n a a f a +==,又1,.n n n b a a n N *+=⋅∈ (1)证明:数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和.18.(本题满分12分)已知ABC ∆的面积为S , 3.AB AC S AC AB ⋅=-= (1)若()()()2cos 0f x x B ωω=+>的图象与直线2y =相邻两个交点间的最短距离为2,且116f ⎛⎫= ⎪⎝⎭,求ABC ∆的面积S;(2)求cos S B C +的最大值.19.(本题满分12分)某校高三学生有两部分组成,本部生与分校生共2000名学生,期末考试数学成绩换算成100分的成绩如图所示,从高三的学生中,利用分层抽样,抽取100名学生的成绩绘制成频率分布直方图:(1)若抽取的学生中,本部生与分校生的比为9:1,确定高三本部生与分校生的人数; (2)计算此次数学成绩的平均分;(3)若抽取的[)[)80,90,90,100的学生中,本部生与分校生的比例关系也是9:1,从抽取的[)[)80,90,90,100两段的分校生中,选两人进行座谈,设抽取的[)80,90的人数为随机变量ξ,求ξ的分布列和数学期望.20.(本题满分12分)已知四棱锥P ABCD -中,底面ABCD 为直角梯形,AD//BC,90,BCD PA ∠=⊥PA 底面ABCD,ABM ∆是边长为2的等边三角形,PA DM ==. (1)求证:平面PAM ⊥平面PDM ;(2)若点E 为PC 的中点,求二面角P MD E --的余弦值.21.(本题满分12分)已知椭圆()2222:10x y C a b a b +=>>,过椭圆的上顶点与右顶点的直线l ,与圆22127x y +=相切,且椭圆C 的右焦点与抛物线24y x =的焦点重合. (1)求椭圆C 的方程;(2)过点O 作两条相互垂直的射线与椭圆C 分别交于A,B 两点,求OAB ∆面积的最小值.22.(本题满分12分)已知()ln f x x x mx =+,且曲线()y f x =在点()()1,1f 处的切线斜率为1. (1)求实数m 的值; (2)设()()()22a g x f x x x a a R =--+∈在定义域内有两个不同的极值点12,x x ,求a 的取值范围;(3)已知0λ>,在(2)的条件下,若不等式()11212e x x x x λλ+<⋅<恒成立,求λ的取值范围.2018年秋期高三年级期终质量评估试题理科数学参考答案一、选择题:BCACD CCBCA BA 二、填空题:13. 14.15.16.三、解答题:17 解:(1)证明:a n +1=f (a n )=an +a a ·an =an 1,∴an +11=a 1+an 1,即an +11-an 1=a 1. ∴是首项为1,公差为a 1的等差数列.........3分∴an 1=1+(n -1)a 1.整理得a n =+n a........5分 (2)b n =a n ·a n +1=+n a ·+n +1a=.........7分设数列{b n }的前n 项和为T n ,则==.∴数列{b n }的前n 项和为n +a na. ......10分18.解:∵,设△ABC 的三个内角的对边分别为,,,由得,, ………4分 (1)∵的图象与直线相邻两个交点间的最短距离为T ,,即:,解得,,,即:,∵B 是△ABC 的内角,, 又,从而△ABC 是直角三角形,,. ………8分(2)∵,设△ABC的外接圆半径为R,则,解得,,故的最大值为.………12分19.解:(1)因为抽取的本部生与分校生的比为9﹕1,所以本部生抽取90人,分校生抽取10人,本部生的人数为,分校生的人数为.………2分(2),平均分为………5分(3)根据频率分布直方图可知,抽取的,的学生分别为,抽取的分校生的人数分别为人抽取的的人数为随机变量,可知可知;;,………10分可知. ………12分20.解:(1)是边长为的等边三角形, 底面是直角梯形,又又………6分(2)以为原点,所在直线为轴,所在直线为轴,过且与平行的直线为轴,建立空间直角坐标系,则设平面的法向量为,则取………8分为中点,则,设平面的法向量为,则取………10分由.二面角的余弦值为.………12分21.解(1)过椭圆的上顶点与右顶点的直线为,直线与相切,满足,且,整理可得,(舍去),故,所求的椭圆C的方程为………4分(2)(方法一)①当两线分别与坐标轴重合时,………5分②当两线不与坐标轴重合时,由于,设直线为,则直线为,设,直线的方程为与椭圆联立消去得,用代换得………8分,当且仅当时取“=”又,综合①②可得三角形的最小面积为. ………12分(2)(方法二)设,直线的方程为与椭圆联立消去得即,把代入得,整理得,所以到直线的距离………8分,当且仅当时取“=”号.由即弦的长度的最小值是所以三角形的最小面积. ………12分22.解(1)由题意知,,即:解得. ………2分(2)因为在其定义域内有两个不同的极值点,,所以有两个不同的根,,设,则显然当时,单调递增,不符合题意,所以,由得,当时,,单调递增,当时,,单调递减,所以,从而得,………5分又当时,,所以在上有一根;设,则,在上单调递增,,所以在上有一根.(利用罗比塔法则可酌情给分)综上可知,当时,有两个不同的根所以的取值范围为……7分(也可孤立参量,利用图像解决法,请酌情给分)(3)因为等价于.由题意可知分别是方程,即:的两个根,即,所以原式等价于,因为,,所以原式等价于.又由,作差得,,即.所以原式等价于,………9分因为,原式恒成立,即恒成立.令,,则不等式在上恒成立.令,又,当时,可见时,,所以在上单调增,又,在恒成立,符合题意.当时,可见时,,时,所以在时单调增,在时单调减,又,所以在上不能恒小于0,不符合题意,舍去.综上所述,若不等式恒成立,只须,又,所以 (12)分。
江苏省连云港市2018级高三上学期期中调研适应性考试数学试题
AM AN 29,则 =
()
1
1
A.
B.
8
7
1
1
C.
D.
6
5
8. 已知函数f (x) =xlnx x + 2a+2,若函数y=f(x)与y=f(f(x))有相同的值域, 则实数a的取值
范围是
()
A. (,0]
B. [0,+)
C. [0,32)
D. (12,0]
二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题
17.(本小题10分).
已知函数 f (x) Asin(x ) ,其中 A 0, 0, π π , x R , 其部分图象如
2
2
图所示.
(1)求函数y =f (x) 的解析式;
(2) 已知函数g (x) = f(x)cosx,求函数g(x)的单调递增区间.
18.( 本小题12分)
在①A=
象
来描述数学对象,狄利克雷在182 Q 0, x QC
(其中Q
为有理数集,QC为无理数集),狄利克雷函数的出现表示数学家们对数学的理解发生 了深刻的变化,数学的一些 “人造” 特征开始展现出来,这种思想也标志着数学从研
究“算”转变到了研究“概念、性质、结构”.一般地,广义的狄利克雷函数可定义为:
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项
是符合题目要求的。
1. 已知集合 A x x(x 2) 0 ,集合 B {x | x 1} , 则 A B
()
A. (, 2)
B. (,1)
2. “0<a<2”是“xR,x2+ax+1>0”成立的
江苏苏州市2018届高三上学期数学期中试卷含解析
江苏苏州市2018届高三上学期数学期中试卷(含解析)2017-2018学年江苏省苏州市高三上学期期中调研一、填空题:共14题1.已知集合,则_____.【答案】【解析】由题意,得2.函数的定义域为_____.【答案】【解析】x应该满足:,解得:∴函数的定义域为故答案为:3.设命题;命题,那么p是q的____条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).【答案】充分不必要【解析】命题q:x2﹣5x+4≥0⇔x≤1,或x≥4,∵命题p:x>4;故p是q的:充分不必要条件,故答案为:充分不必要4.已知幂函数在是增函数,则实数m的值是_____.【答案】1【解析】∵幂函数在是增函数∴,解得:故答案为:15.已知曲线在处的切线的斜率为2,则实数a的值是_____.【答案】【解析】f′(x)=3ax2+,则f′(1)=3a+1=2,解得:a=,故答案为:.点睛:与导数几何意义有关问题的常见类型及解题策略(1)已知切点求切线方程.解决此类问题的步骤为:①求出函数在点处的导数,即曲线在点处切线的斜率;②由点斜式求得切线方程为.(2)已知斜率求切点.已知斜率,求切点,即解方程.(3)求切线倾斜角的取值范围.先求导数的范围,即确定切线斜率的范围,然后利用正切函数的单调性解决.6.已知等比数列中,,则_____.【答案】4【解析】设等比数列的公比是q,由a3=2,a4a6=16得,a1q2=2,a1q3a1q5=16,则a1=1,q2=2,∴,故答案为:4.7.函数图象的一条对称轴是,则的值是_____.【答案】【解析】因为函数图象的一条对称轴是,所以,又因为,则,即,解得8.已知奇函数在上单调递减,且,则不等式的解集为_____.【答案】【解析】∵函数f(x)为奇函数且在(﹣∞,0)上单调递减,∴f(x)在(0,+∞)上也单调递减,又∵函数f(x)为奇函数且f(2)=0,∴f(﹣2)=﹣f (2)=0∴不等式等价于①或②解得:x∈(﹣2,0)∪(1,2),故答案为:(﹣2,0)∪(1,2).9.已知,则的值是_____.【答案】【解析】因为,所以====10.若函数的值域为,则实数a的取值范围是_____.【答案】【解析】当时,,则由题意,得当时,成立,则为增函数,且,即11.已知数列满足,则_____.【答案】【解析】∵,,∴,,∴,,归纳猜想:∴故答案为:12.设的内角的对边分别是,D为的中点,若且,则面积的最大值是_____.【答案】【解析】因为,所以,即,即,即,又因为D为的中点,且,所以,即,即,则,则面积的最大值是点睛:三角形中最值问题,一般转化为条件最值问题:先根据正、余弦定理及三角形面积公式结合已知条件灵活转化边和角之间的关系,利用基本不等式或函数方法求最值.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.13.已知函数,若对任意的实数,都存在唯一的实数,使,则实数的最小值是___.【答案】【解析】因为,所以,则,因为对任意的实数,都存在唯一的实数,使,所以在上单调,且,则,则,所以,即实数的最小值是点睛:对于方程任意或存在性问题,一般转化为对应函数值域包含关系,即的值域包含于的值域;的值域与的值域交集非空。
2021届江苏省苏州市2018级高三上学期期中考试数学试卷参考答案
提示: ,利用完美区间法代入验证.
10.答案:BC
提示:A错: ;B对: 对称轴为7;
C对: ;D错:由CLeabharlann 知不一定.11.答案:ABD
提示:由题意知 ,故 .
12.答案:ABC
提示:
13.答案:
提示:
14.答案:
提示:
15.答案:40000
提示:
利润为40000.
16.答案:2
提示:根据题意构造 , 为奇函数且单调增,故
2021届江苏省苏州市2018级高三上学期期中考试
数学参考答案
1.答案:C
提示:
2.答案:C
提示:
3.答案:B
提示:
4.答案:B
提示: 定义域为R 故必要不充分.
5.答案:A
提示:① 为奇函数,② ,③
6.答案:B
提示:
7.答案:C
提示: 两式相比得
8.答案:A
提示: 代入验证选A最合适.
9.答案:BC
吴中区高级中学2018-2019学年上学期高三数学10月月考试题
吴中区高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若f ′(x 0)=﹣3,则=( )A .﹣3B .﹣12C .﹣9D .﹣62. 如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为( )A .B .2C .D .33. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( ) A .M=P B .P ⊊M C .M ⊊P D .M ∪P=R4. 已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :04422222=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).A .),3[]1,2(+∞--B .),3()1,35(+∞--C .),3[]1,35[+∞-- D .),3()1,2(+∞--5. 若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( )A .若,m βαβ⊂⊥,则m α⊥B .若,//m m n αγ=,则//αβC .若,//m m βα⊥,则αβ⊥D .若,αγαβ⊥⊥,则βγ⊥6. 已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I (A ∩B )等于( ) A .{3,4} B .{1,2,5,6} C .{1,2,3,4,5,6} D .∅7. 函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .48. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用. 9. 命题:“若a 2+b 2=0(a ,b ∈R ),则a=b=0”的逆否命题是( )A .若a ≠b ≠0(a ,b ∈R ),则a 2+b 2≠0B .若a=b ≠0(a ,b ∈R ),则a 2+b 2≠0C .若a ≠0且b ≠0(a ,b ∈R ),则a 2+b 2≠0D .若a ≠0或b ≠0(a ,b ∈R ),则a 2+b 2≠010.设f (x )=(e -x -e x )(12x +1-12),则不等式f (x )<f (1+x )的解集为( )A .(0,+∞)B .(-∞,-12)C .(-12,+∞)D .(-12,0)11.数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )A .﹣16B .14C .28D .3012.定义运算:,,a a ba b b a b≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )A .⎡⎢⎣⎦B .[]1,1-C .⎤⎥⎣⎦D .⎡-⎢⎣⎦ 二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知角α终边上一点为P (﹣1,2),则值等于 .14.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一 个红球的概率为 .15在这段时间内,该车每100千米平均耗油量为 升.16.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .三、解答题(本大共6小题,共70分。
苏州实验中学2018-2019学年上学期高三期中数学模拟题
苏州实验中学2018-2019学年上学期高三期中数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知命题:()(0x p f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin cos x x >.则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 2. 已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是( ) ABC D3. 已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.4. 已知函数(5)2()e22()2xf x x f x a x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩,若(2016)e f -=,则a =( ) A .2 B .1 C .-1 D .-2 【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力. 5. 已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{>--=x x x B ,则=)(B C A R ( ) A .)1,1(- B .]1,1(- C .]2,1( D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.6. 一个几何体的三视图如图所示,则该几何体的体积是( )A .64B .72C .80D .112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力. 7. 函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3y x π=+B .22sin(2)3y x π=+C .2sin()23x y π=-D .2sin(2)3y x π=-8. 已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2π D .23π9. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.10.拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8D .1011.已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则实数m 的取值范围是( )A .1-<mB .10<<mC .1>mD .1≥m【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.12.在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.设平面向量()1,2,3,i a i =,满足1ia =且120a a ⋅=,则12a a += ,123a a a ++的最大值为 .【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.14.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则OAB ∆面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.15.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想. 16.已知n S 是数列1{}2n n -的前n 项和,若不等式1|12n n n S λ-+<+|对一切n N *∈恒成立,则λ的取值范围是___________.【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.三、解答题(本大共6小题,共70分。
2018届高三上学期期初考试数学(理)试题(附答案)
苏州五中2017-2018学年第一学期期初调研测试高三数学(理科)一、填空题:本大题共14小题,每小题5分,共70分。
不需要写出解答过程,请把答案直接填空在答题卡相应位置上......... 1.命题:“,sin cos 2x R x x ∃∈+>”的否定是 ▲ . 2.已知,R x y ∈,i 为虚数单位,2(2)1x y i i+-=+,则x y += ▲ . 3.已知向量(1,1),(,2)a m b m =+=,则“//a b ”是“m=1”的 ▲ 条件.4.已知平行直线0142:,022:21=+-=--y x l y x l ,则1l 与2l 之间的距离为 ▲ . 5.已知向量(,)(,),(1,2)a x y x y R b =∈=,若221x y +=,则a b -的最小值为 ▲ .6.若2()n x x+的二项展开式的各项系数之和为729,则该展开式中常数项的值为 ▲ .7.从集合{}1,2,3,4,5中随机选取一个数a ,从集合{}2,3,4中随机选取一个数b ,则b a >的概率是 ▲ .8.设正三棱锥BC D A -的底面边长和侧棱长均为4,点E ,F ,G ,H 分别为棱AB ,BC ,CD ,BD 的中点,则三棱锥FGH E -的体积为 ▲ .9.用数学归纳法证明“)12...(312))...(2)(1(-⋅⋅⋅=+++n n n n n n”从n k =到1n k =+左端需增乘的代数式为 ▲ . 10.集合{1,2,3,,}(3)n n ≥中,每两个相异数作乘积,将所有这些乘积的和记为n T ,如:222231121323[6(123)]112T =⨯+⨯+⨯=-++=;2222241121314232434[10(1234)]352T =⨯+⨯+⨯+⨯+⨯+⨯=-+++=;22222251121314153545[15(12345)]852T =⨯+⨯+⨯+⨯++⨯+⨯=-++++= 则8T = ▲ .(写出计算结果)11. 设椭圆2212x y +=的左、右焦点分别为F 1、F 2,点P 在该椭圆上,则使得△F 1F 2P 是等腰三角形的点P 的个数是 ▲ .12.在平面直角坐标xOy 中,已知A (1,0),B (4,0),直线x y +m=0上存在唯一的点P 满足P A PB =12,则实数m 的取值集合是 ▲ . 13.已知圆2224250x y x y a +-++-=与圆222(210)2210160x y b x by b b +---+-+= 相交于()()1122,,,A x y B x y 两点,且满足22221122x y x y +=+ ,则b = ▲ .14. 已知函数ax x x x f +-=ln )(在(0,e)上是增函数,函数)(x g =|a e x-|+22a 在[0,ln3]上的最大值M 与最小值m 的差为23,则a= ▲ .二、解答题:本大题共6小题;共90分.解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在斜三棱柱111ABC A B C -中,AB AC =,平面11BB C C ⊥底面ABC ,点M 、D 分别是线段1AA 、BC 的中点.(1)求证:1AD CC ⊥; (2)求证:AD//平面1MBC .16.(本小题满分14分)如图所示,在直三棱柱ABC -A 1B 1C 1中,CA =4,CB =4,CC 1=22,∠ACB =90°,点M 在线段A 1B 1上.(1)若A 1M =3MB 1,求异面直线AM 和A 1C 所成角的余弦值; (2)若直线AM 与平面ABC 1所成角为30°,试确定点M 的位置.A (第15题图)B 1A 1C 1MBCD17.(本小题满分15分)已知圆O :224x y +=与x 轴负半轴的交点为A ,点P 在直线l 0y a +-=上,过点P 作圆O 的切线,切点为T .(1)若a =8,切点1)T -,求直线AP 的方程; (2)若P A =2PT ,求实数a 的取值范围.18.(本小题满分15分)某篮球运动员每次在罚球线投篮投进的概率是0.8,且各次投篮的结果互不影响. (1)假设这名运动员投篮3次,求恰有2次投进的概率(结果用分数表示);(2)假设这名运动员投篮3次,每次投进得1分,未投进得0分;在3次投篮中,若有2次连续投进,而另外一次未投进,则额外加1分;若3次全投进,则额外加3分,记ξ为该篮球运动员投篮3次后的总分数,求ξ的分布列及数学期望)(ξE (结果用分数表示).19.(本小题满分16分)已知离心率为12的椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,,F F A 是椭圆C 的左顶点,且满足124AF AF +=. (1)求椭圆C 的标准方程;(2)若,M N 是椭圆C 上异于A 点的两个动点,且满足AM AN ⊥,问直线MN 是否恒过定点?说明理由.20.(本小题满分16分)已知函数x xae x f x+=)(. (1)若函数)(x f 的图象在))1(,1(f 处的切线经过点)1,0(-,求a 的值;(2)是否存在负整数a ,使函数)(x f 的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由.苏州五中2017-2018学年第一学期期初调研测试高三数学附加题(理科)2017.821.【选做题】解答时应写出文字说明、证明过程或演算步骤. 1. [选修4-2:矩阵与变换](本小题满分10分)已知矩阵302a ⎡⎤=⎢⎥⎣⎦A ,A 的逆矩阵11031b -⎡⎤⎢⎥=⎢⎥⎣⎦A ,求A 的特征值.2.[选修4-2:矩阵与变换](本小题满分10分) 已知,点A 在变换T :2x x x y y y y '+⎡⎤⎡⎤⎡⎤→=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦作用后,再绕原点逆时针旋转90,得到点B .若点B 的坐标为(3,4)-,求点A 的坐标.[3.[选修4-4:坐标系与参数方程](本小题满分10分)已知点P 在曲线C :⎩⎪⎨⎪⎧x =4cos θy =3sin θ(为参数)上,直线l :⎩⎨⎧x =3+22t ,y =-3+22t(t 为参数),求P 到直线l 距离的最小值.4.[选修4-4:坐标系与参数方程](本小题满分10分)若以直角坐标系xOy 的O 为极点,Ox 为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程是2sin 6cos ρθθ=.(1)将曲线C 的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(2)若直线l的参数方程为31,22x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),当直线l 与曲线C 相交于,A B 两点,求线段AB 的长.出卷人:田林 审卷人:黄骁键苏州五中2017-2018学年第一学期期初调研测试高三数学(理科)答案1.,sin cos 2x R x x ∀∈+≤ 2.2 3.必要非充分 451 6.160 7.25 8.322 9.42k +10.546 11.6 12.{- 13.5314.5215.证明:(1)∵AB =AC ,点D 是线段BC 的中点,∴AD ⊥BC .………………………2分又∵平面11BB C C ⊥底面ABC ,AD ⊂平面ABC ,平面11BB C C ⋂底面ABC BC =, ∴AD ⊥平面11BB C C .又CC 1⊂平面11BB C C ,∴AD ⊥CC 1.………………7分 (2)连结B 1C 与BC 1交于点E ,连结EM ,DE . 在斜三棱柱111ABC A B C -中,四边形BCC 1B 1是平行四边∴点E 为B 1C 的中点.∵点D 是BC 的中点,∴DE//B 1B ,DE 12=B 1B . (10)分又∵点M 是平行四边形BCC 1B 1边AA 1的中点, ∴AM//B 1B ,AM 12=B 1B .∴AM// DE ,AM =DE . ∴四边形ADEM 是平行四边形.∴EM // AD .…………………………………………12分 又EM ⊂平面MBC 1,AD ⊄平面MBC 1,∴AD //平面MBC 1.…………………………………14分16.解 方法一 (坐标法)BAE(第15(2)题图)B 1A 1C 1M CD以C 为坐标原点,分别以CA ,CB ,CC 1所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则C (0,0,0), A (4,0,0),A 1(4,0,22),B 1(0,4,22). (1)因为A 1M =3MB 1,所以M (1,3,22). 所以CA 1→=(4,0,22), AM →=(-3,3,22).所以cos 〈CA 1→,AM →〉=CA 1→·AM →|CA 1→||AM →|=-424·26=-3939.所以异面直线AM 和A 1C 所成角的余弦值为3939.-------------------------8分(2)由A (4,0,0),B (0,4,0),C 1(0,0,22),知AB →=(-4,4,0),AC 1→=(-4,0,22). 设平面ABC 1的法向量为n =(a ,b ,c ),由⎩⎪⎨⎪⎧n ·AB →=0,n ·AC 1→=0,得⎩⎨⎧-4a +4b =0,-4a +22c =0,令a =1,则b =1,c =2,所以平面ABC 1的一个法向量为n =(1,1,2). 因为点M 在线段A 1B 1上,所以可设M (x,4-x,22),所以AM →=(x -4,4-x,22). 因为直线AM 与平面ABC 1所成角为30°,所以|cos 〈n ,AM →〉|=sin 30°=12.由|n ·AM →|=|n ||AM →||cos 〈n ,AM →〉|,得|1·(x -4)+1·(4-x )+2·22| =2·x -2+-x2+8·12, 解得x =2或x =6.因为点M 在线段A 1B 1上,所以x =2,即点M (2,2,22)是线段A 1B 1的中点. -------------------------14分 [17.(1)由题意,直线PT 切于点T ,则OT ⊥PT ,又切点T 的坐标为(4,3)-,所以OT k =,1PT OT k k =-=,故直线PT 的方程为1y x +=-40y --=.联立直线l 和PT ,40,80,y y --=+-=解得,2,x y ⎧=⎪⎨=⎪⎩即P ,所以直线AP 的斜率为k===,故直线AP的方程为2)y x=+,即1)2(31x y-+=,即1)20x y-+=.(2)设(,)P x y,由P A=2PT,可得2222(2)4(4)x y x y++=+-,即22334200x y x++-=,即满足P A=2PT的点P的轨迹是一个圆22264()39x y-+=,所以问题可转化为直线0y a+-=与圆22264()39x y-+=有公共点,所以83d=,即16||3a-≤,解得a..18.解:(1)设X为该运动员在3次投篮中投进的次数,则)8.0,3(~X.在3次投篮中,恰有2次投进的概率384.0)8.01(8.0)2(223=-⋅⋅==CXP;(2)由题意可知,ξ的所有可能取值为0,1,2,3,6.008.02.0)0(3===ξP,096.0)8.01(8.0)1(213=-⋅⋅==CPξ;128.0)8.01(8.0)2(2=-⋅==ξP;256.02)8.01(8.0)3(2=⋅-⋅==ξP;512.08.0)3(3===ξP.所以ξ的分布列是192.46512.03256.02128.01096.0008.0)(=⨯+⨯+⨯+⨯+⨯=ξE.[19.20.解:(1)∵22(1)'()x ae x x f x x -+= ∴'(1)1f =, (1)1f ae =+∴函数()f x 在(1,(1))f 处的切线方程为:(1)1y ae x -+=-,又直线过点(0,1)-∴1(1)1ae --+=-,解得:1a e=- ………6分(2)若0a <,22(1)'()x ae x x f x x-+=, 当(,0)x ∈-∞时,'()0f x >恒成立,函数在(,0)-∞上无极值;当(0,1)x ∈时,'()0f x >恒成立,函数在(0,1)上无极值; 方法(一)在(1,)+∞上,若()f x 在0x 处取得符合条件的极大值0()f x ,则0001()0'()0x f x f x >⎧⎪>⎨⎪=⎩,5分则00000200201102(1)03x x x ae x x ae x x x ⎧⎪>⎪⎪⎪+>⎨⎪⎪-+⎪=⎪⎩()()(),由(3)得:02001x x ae x =--,代入(2)得: 00001x x x -+>-,结合(1)可解得:02x >,再由0000()0x ae f x x x =+>得:020x x a e >-,设2()x x h x e=-,则(2)'()xx x h x e -=,当2x >时,'()0h x >,即()h x 是增函数, 所以024()(2)a h x h e>>=-,又0a <,故当极大值为正数时,24(,0)a e∈-,从而不存在负整数a 满足条件. ………16分方法(二)在(1,+)x ∈∞时,令2()(1)x H x ae x x =-+,则'()(2)x H x ae x =+ ∵(1,+)x ∈∞ ∴(,+)x e e ∈∞ ∵a 为负整数 ∴1a ≤- ∴x ae ae e ≤≤- ∴20x ae +< ∴'()0H x < ∴()H x 在(1,)+∞上单调减又(1)10H =>,22(2)440H ae e =+≤-+< ∴0(1,2)x ∃∈,使得0()0H x = 且01x x <<时,()0H x >,即'()0f x >;0x x >时,()0H x <,即'()0f x <; ∴()f x 在0x 处取得极大值0000()x ae f x x x =+ (*) 又02000()(1)0x H x ae x x =-+=∴00001x x ae x x =--代入(*)得:0000000(2)()011x x x f x x x x -=-+=<-- ∴不存在负整数a 满足条件. ………16分苏州五中2017-2018学年第一学期期初调研测试高三数学附加题 (理科)答案2017.81.解:11001AA -⎡⎤=⎢⎥⎣⎦ 130********a b ⎡⎤⎡⎤⎡⎤⎢⎥∴=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则2031ab a ⎧+=⎪⎨⎪=⎩ 解之得123a b =⎧⎪⎨=-⎪⎩ 3021A ⎡⎤∴=⎢⎥⎣⎦A 的特征多项式30()(3)(1)21f λλλλλ-==---- 令()0f λ=,解之得=31λ或A ∴的特征值为3和1………………………………………10分2.解:011201100112--⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. …………………………………4分 设(,)A a b ,则由013124a b --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得324b a b -=-⎧⎨+=⎩.…………………………8分 所以23a b =-⎧⎨=⎩,即(2,3)A -. …………………………………………10分 3.解:将直线l 化为普通方程为:x -y -6=0.则P (4cos θ,3sin θ) 到直线l 的距离d =|4cos θ-3sin θ-6|2=|5cos(θ+φ)-6|2, 其中tan φ=34. 所以当cos(θ+φ)=1时,d min =22, 即点P 到直线l 的距离的最小值为22.…10分4.解(1)2222sin 6cos sin 6cos 6y xρθθρθρθ===曲线是以原点为顶点,3(,0)2为焦点的抛物线 (2)23226t x y y x ⎧=+⎪⎪⎪=⎨⎪=⎪⎪⎩,化简得24120t t --=,则12124,12t t t t +==-所以12||8AB t t =-==………………………………………10分。
人教版数学高三期中测试精选(含答案)8
【答案】A
9.设 a, b, c 是互不相等的整数,则下列不等式中不恒成立的是( )
A.| a b || a c | | b c |
C.
|
a
b
|
a
1
b
2
B. a2
1 a2
a
1 a
D. a 3 a 1 a 2 a
【来源】上海市上海中学 2018-2019 学年高三上学期期中数学试题
x [2, 4] ,不等式 f (x) t 2 恒成立,则 t 的取值范围为__________.
【来源】山东省菏泽一中、单县一中 2016-2017 学年高二下学期期末考试数学(文)试
题 【答案】 (,10]
2x y 1 0,
12.设关于
x
,
y
的不等式组
x m 0,
表示的平面区域为 D ,若存在点
【答案】(1)见解析;(2) 2- n 2 n n2
2n
2
7x 5y 23 0
30.已知
x,y
满足条件:
x
7
y
11
0
,求:
4x y 10 0
(1) 4x 3y 的最小值; x y 1
(2) x 5 的取值范围.
【来源】上海市上海中学 2015-2016 学年高二上学期期中数学试卷
an
2n
的前
n
项和
Sn
.
【来源】江西省抚州市临川一中 2019-2020 届高三上学期第一次联合考试数学(文科)
试题
【答案】(1) an
1 2
n
;(2)
Sn
2n1
n2
n
2
.
34.已知等差数列an 的前 n 项和为 Sn , a2 a8 82 , S41 S9 .
2018年江苏省苏州市中考数学试题及参考答案案
2018年苏州市初中毕业暨升学考试数学试卷本试卷由选择题、填空题和解答题三大题组成.共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.(2018江苏苏州中考,1,3分,★☆☆)在下列四个实数中,最大的数是()A.-3 B.0 C.32D.342.(2018江苏苏州中考,2,3分,★☆☆)地球与月球之间的平均距离大约为384 000km,384 000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1063.(2018江苏苏州中考,3,3分,★☆☆)下列四个图案中,不是轴对称图案的是()A.B.C.D.4.(2018江苏苏州中考,4,3分,★☆☆)若2x 在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A BC D 5.(2018江苏苏州中考,5,3分,★☆☆)计算2121(1)x x x x+++÷的结果是( ) A .x +1 B .11x + C .1x x + D .1x x+ 6.(2018江苏苏州中考,6,3分,★☆☆)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )A .12B .13C .49D .59第 6题图7.(2018江苏苏州中考,7,3分,★★☆)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是C A 上的点.若∠BOC =40°,则∠D 的度数为( )A .100°B .110°C .120°D .130°第7题图8.(2018江苏苏州中考,8,3分,★★☆)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏两30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之问的距离(即PC 的长)为( )A .40海里B .60海里C .3D .3第8题图9.(2018江苏苏州中考,9,3分,★★☆)如图,在△ABC中,延长BC至D,使得CD=12BC.过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD.连接DF,若AB=8,则DF的长为()A.3 B.4 C.23D.32第9题图10.(2018江苏苏州中考,10,3分,★★☆)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=kx在第一象限内的图像经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=34,则k的值为()A.3 B.23C.6 D.12第10题图二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应位置上.11.(2018江苏苏州中考,11,3分,★☆☆)计算:a4÷a=.12.(2018江苏苏州中考,12,3分,★☆☆)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.13.(2018江苏苏州中考,13,3分,★☆☆)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m +n = .14.(2018江苏苏州中考,14,3分,★☆☆)若a +b =4,a -b =1,则(a +1)2-(b -1)2的值为 .15.(2018江苏苏州中考,15,3分,★☆☆)如图,△ABC 是一块直角三角板,∠BAC =90°,∠B =30°.现将三角板叠放在一把直尺上,使得点A 落在直尺的一边上,AB 与直尺的另一边交于点D ,BC 与直尺的两边分别交于点E ,F .若∠CAF =20°,则∠BED 的度数为 °.第15题图16.(2018江苏苏州中考,16,3分,★★☆)如图,8×8的正方形网格纸上有扇形OAB 和扇形OCD ,点O ,A ,B ,C ,D 均在格点上.若用扇形OAB 围成一个圆锥的侧面,记这个圆锥的底面半径为r 1;若用扇形OCD 围成另一个圆锥的侧面,记这个圆锥的底面半径为r 2,则12r r 的值为 .第16题图17.(2018江苏苏州中考,17,3分,★★☆)如图,在Rt △ABC 中,∠B =90°,AB =5BC 5将△ABC 绕点A 按逆时针方向旋转90°得到△AB C '',连接B C ',则sin ∠ACB '= .第17题图18.(2018江苏苏州中考,18,3分,★★☆)如图,已知AB =8,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE ,点P ,C ,E 在一条直线上,∠DAP =60°.M ,N 分别是对角线AC ,BE 的中点.当点P 在线段AB 上移动时,点M ,N 之问的距离最短为 (结果保留根号).第18题图三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(2018江苏苏州中考,19,5分,★☆☆)(本题5分)计算:2129(2-.20.(2018江苏苏州中考,20,5分,★☆☆)解不等式组:3242(21)x x x x ≥+⎧⎨+<-⎩.21.(2018江苏苏州中考,21,6分,★☆☆)如图,点A,F,C,D在一条直线上,AB ∥DE,AB=DE,AF=DC.求证:BC∥EF.第21题图22.(2018江苏苏州中考,22,6分,★★☆)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为__________;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字.求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).第22题图23.(2018·江苏苏州中考,23,8分★★☆)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择,为了估计全校学生对这四个活动项日的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24.(2018江苏苏州中考,24,8分,★★☆)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多l台,那么该学校至多能购买多少台B型打印机?25.(2018江苏苏州中考,25,8分,★★☆)如图,已知抛物线y=x2-4与x轴交于点A,B(点A位于点B的左侧),C为顶点.直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C'.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC'平行于直线AD,求新抛物线对应的函数表达式.第25题图26.(2018江苏苏州中考,26,10分,★★☆)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.第26题图27.(2018江苏苏州中考,27,10分,★★★)问题1:如图①,在△ABC中,AB=4,D 是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S'.(1)当AD=3时,SS'=_______;(2)设AD=m,请你用含字母m的代数式表示SS'.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=12BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S'.请你利用问题1的解法或结论,用含字母n的代数式表示SS'.第27题图28.(2018江苏苏州中考,28,10分,★★★)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上.小明从点A出发,沿公路l向两走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE =x米(其中x>0),GA=y米.已知y与x之间的函数关系如图②所示.(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.第28题图苏州市2018年初中毕业生学业考试数学试题答案全解全析1.答案:C解析:将各数按照从小到大顺序排列,找出最大的数即可.得::-3<0<34<32,则最大的数是32.故选C.考查内容:有理数大小比较命题意图:此题考查了有理数大小比较,将各数按照从小到大顺序排列是解本题的关键.难度较小2.答案:C解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于384 000有6位,所以可以确定n=6﹣1=5.384 000=3.84×105.故选C.考查内容:科学记数法表示较大的数的方法命题意图:此题考查科学记数法表示较大的数的方法,确定n的值是易错点.难度较小3.答案:B解析:根据轴对称的概念对各选项分析判断利用排除法求解.A是轴对称图形,故本选项错误;B不是轴对称图形,故本选项正确;C是轴对称图形,故本选项错误;D是轴对称图形,故本选项错误.故选B.考查内容:轴对称图形命题意图:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.难度较小4.答案:D解析:根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.得x+2≥0,解得x≥﹣2.故选D.考查内容:二次根式有意义的条件、用数轴表示解集命题意图:本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.难度较小5.答案:B解析:先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.(1+1x)÷221x xx++=(xx+1x)÷2(1)xx+=1xx+•2(1)xx+=11x+,,故选B.考查内容:分式的混合运算命题意图:本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.难度中等6.答案:C解析:根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,飞镖落在阴影部分的概率是49,故选C.考查内容:几何概率命题意图:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.难度较小7.答案:B解析:根据互补得出∠AOC的度数,再利用圆周角定理解答即可.∠BOC=40°,∠AOC=180°﹣40°=140°,∠D=12×(360°-140°)=110°,故选B.考查内容:圆周角定理命题意图:本题考查圆周角定理,关键是根据互补得出∠AOC的度数.难度适中8.答案:D解析:首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题;在Rt△PAB 中,∠APB=30°,PB=2AB,BC=2AB,PB=BC,∠C=∠CPB,∠ABP=∠C+∠CPB=60°,∠C=30°,PC=2PA,PA=AB•tan60°,PC=2×20×3=403(海里),故选D.考查内容:解直角三角形的应用命题意图:本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.难度适中9.答案:B解析:取BC的中点G,连接EG,根据三角形的中位线定理得:EG=4,设CD=x,则EF=BC=2x,证明四边形EGDF是平行四边形,可得DF=EG=4.故选B.第9题答图考查内容:平行四边形的判定和性质、三角形中位线定理命题意图:本题考查了平行四边形的判定和性质、三角形中位线定理,作辅助线构建三角形的中位线是本题的关键.难度适中10.答案:A解析:∵tan∠AOD=34ADOA,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=13BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=kx经过点D、E,∴k=12a2=(4+4a)a,解得:a=12或a=0(舍),则k=12×14=3.故选A.考查内容:反比例函数图象上点的坐标特征命题意图:本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.难度适中11.答案:a3解析:根据同底数幂的除法解答即可.a4÷a=a3,故答案为:a3考查内容:同底数幂的除法命题意图:此题主要考查了同底数幂的除法,对于相关的同底数幂的除法的法则要求学生很熟练,才能正确求出结果.难度较小12.答案:8解析:根据众数的概念解答.在5,8,6,8,5,10,8,这组数据中,8出现了3次,出现的次数最多,这组数据的众数是8.考查内容:众数命题意图:本题考查的是众数的确定,一组数据中出现次数最多的数据叫做众数.难度较小13.答案:-2解析:根据一元二次方程的解的定义把x=2代入x2+mx+2n=0得到4+2m+2n=0得n+m=﹣2,然后利用整体代入的方法进行计算.考查内容:一元二次方程的解(根)命题意图:本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.难度适中14.答案:12解析:对所求代数式运用平方差公式进行因式分解,然后整体代入求值.a+b=4,a﹣b=1,(a+1)2﹣(b ﹣1)2=(a+1+b ﹣1)(a+1﹣b+1)=(a+b )(a ﹣b+2)=4×(1+2)=12. 考查内容:分解因式命题意图:本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构即可解答.难度适中知识归纳: 因式分解常用的方法有“提公因式法”和“公式法”.如果所给的多项式是三项,有公因式时,那么应先提取公因式,那么一般应考虑直接用公式a 2±2ab+b 2=(a±b)2来分解 15.答案:80解析:依据DE ∥AF ,可得∠BED=∠BFA ,再根据三角形外角性质,即可得到∠BFA=20°+60°=80°,进而得出∠BED=80°. 考查内容:平行线的性质命题意图:本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.难度适中 16.答案:23解析:∵2πr 1=180AOB OA π⋅⋅∠、2πr 2=180AOB OCπ⋅⋅∠,∴r 1=360AOB OA ⋅∠,r 2=360AOB OC ⋅∠,∴12r r =OA OC =22222436++=2535=23. 考查内容:圆锥的计算、勾股定理命题意图:本题主要考查圆锥的计算,解题的关键是掌握圆锥体底面周长与母线长间的关系式及勾股定理.难度中等偏上 17.答案:45解析:在Rt △ABC 中,由勾股定理得:AC =22(25)(5)+=5,过C 作CM ⊥AB ′于M ,过A 作AN ⊥CB ′于N , ∵根据旋转得出AB ′=AB =25,∠B ′AB =90°, 即∠CMA =∠MAB =∠B =90°. ∴CM =AB =25,AM =BC =5. ∴B ′M =25-5=5.在Rt △B ′MC 中,由勾股定理得B ′C =22'CM B M +=22(25)(5)+=5. ∴S △AB ′C =12×CB ’×AN =12×CM ×AB ’, ∴5×AN =25×25, 解得AN =4. ∴sin ∠ACB ′=AN AC =45. 考查内容:解直角三角形、勾股定理、矩形的性质和判定命题意图:本题考查了解直角三角形、勾股定理、矩形的性质和判定,能正确作出辅助线是解此题的关键.难度中等偏上 18.答案:23 解析:连接PM 、PN .第18题答图∵四边形APCD ,四边形PBFE 是菱形,∠DAP =60°, ∴∠APC =120°,∠EPB =60°.∵M ,N 分别是对角线AC ,BE 的中点, ∴∠CPM =12∠APC =60°,∠EPN =12∠EPB =30°. ∴∠MPN =60°+30°=90°.设PA =2a ,则PB =8-2a ,PM =a ,PN 34-a ), ∴MN 22[3(4a)]a +-242448a a -+24(a 3)12-+.∴a=3时,MN有最小值,最小值为考查内容:菱形的性质、勾股定理命题意图:本题考查菱形的性质、勾股定理二次函数的性质等知识,解题的关键是学会添加常用辅助线,构建二次函数解决最值问题.难度中等偏上.19.解析:原式=12+3-12=3.考查内容:实数的运算命题意图:本题考查实数的运算,解题的关键是熟练运用运算法则,本题属于基础题型.难度较小20.解析:南3x>x+2,解得x≥1,由x+4<2(2x-1),解得x>2,∴不等式组的解集是x>2.考查内容:解一元一次不等式组命题意图:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.难度中等方法技巧:求不等式组的解集,通常采用“分开解”、“集中判”的方法,“分开解”就是分别求不等式组中各个不等式的解集;“集中判”就是利用数轴求出各个不等式的解集的公共部分. 21.解析:证明:∵AB∥DE,∴∠A=∠D.∵AF=DC,∴AC=DF.在△ABC和△DEF中,AB=DE,∠A=∠D,AC=DF,∴△ABC≌△DEF(SAS).∴∠ACB=∠DFE,∴BC∥EF.考查内容:全等三角形的判定和性质命题意图:本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.难度适中22.解析:(1)23;(2)用“树状图”或利用表格列出所有可能的结果∴P(两个数字之和是3的倍数)=39=13.考查内容:列表法或树状图法求概率命题意图:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.难度中等偏上23.解析:(1)1428%=50,答:参加这次调查的学生人数为50人,补全条形统计图如图所示:(2)1050×360°=72°.答:扇形统计图中“篮球”项目所对应扇形的圆心角度数为72°.(3)600×850=96.答:估计该校选择“足球”项目的学生有96人.考查内容:条形统计图和扇形统计图命题意图:本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.难度适中24.解析:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元.根据题意得:25900229400x y x y +=⎧⎨+=⎩,解这个方程组,得x =3500,y =1200.答:每台A 型电脑的价格为3500元,每台B 型打印机的价格为1200元. (2)设学校购买胛台B 型打印机,则购买A 型电脑为(n -l )台, 根据题意得:3500(n -1)+1200n ≤20000, 解这个不等式,得n ≤5.答:该学校至多能购买5台B 型打印机. 考查内容:一元一次不等式与二元一次方程组的应用命题意图:本题主要考查一元一次不等式与二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程组与不等式.难度中等偏上 25.解析:(1)由x 2-4=0解得x 1=2,x 2=-2.∵点A 位于点B 的左侧,∴A (-2,0). ∵直线y =x +m 经过点A ,∴-2+m =0,∴m =2,∴D (0,2).∴AD .(2)解法一:设新抛物线对应的函数表达式为y =x 2+bx +2,∴y =x 2+bx +2=(x +2b )2+2-24b . ∵直线CC '平行于直线AD ,并且经过点C (0,-4),∴直线CC '的函数表达式为y =x -4.∴2-24b =-2b -4,整理得b 2-2b -24=0,解得b 1=-4,b 2=6.∴新抛物线对应的函数表达式为y =x 2-4x +2或y =x 2+6x +2. 解法二:∵直线CC '平行于直线AD ,并且经过点C (0,-4), ∴直线CC '的函数表达式为y =x -4.∵新抛物线的顶点C '在直线y =x -4上,∴设顶点C '的坐标为(n ,n -4), ∴新抛物线对应的函数表达式为y =(x -n )2+n -4. ∵新抛物线经过点D (0,2),∴n 2+n -4=2,解得n 1=-3,n 2=2.∴新抛物线对应的函数表达式为y =(x +3)2-7或y =(x -2)2-2. 考查内容:抛物线与x 轴的交点、待定系数法求函数解析式命题意图:本题考查的是抛物线与x 轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.难度中等偏上26.解析:(1)连接AC.∵CD为OO的切线,∴OC⊥CD.又∵AD⊥CD,∴∠DCO=∠D=90°.∴AD∥OC,∴∠DAC=∠ACO.又∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO.又∵CE⊥AB,∴∠CEA=90°.在△CDA和△CEA中,∵∠D=∠CEA,∠DAC=∠EAC,AC=AC,∴△CDA≌△CEA(AAS),∴CD=CE.(2)证法一:连接BC.∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG.∴∠ECA=∠ECG.∵AB是⊙O直径,∴∠ACB=90°.又∵CE⊥AB,∴∠ACE=∠B.又∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG.又∵∠D=90°.∴∠DCF+∠F=90°.∴∠F=∠DCA=∠ACE=∠ECG=22.5.∴∠AOC=2∠F=45°.∴△CEO是等腰直角三角形,证法二:设∠F=x°.则∠AOC=2∠F=2x°.∵AD∥OC,∴∠OAF=∠AOC=2x°.∴∠CGA=∠ECA+∠F=3x°.∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x°.义∵∠DAC +∠EAC +∠OAF =180°. ∴3x °+3x °+2x °=180°. ∴x =22.5,∴∠AOC =2x °=45°. ∴△CEO 是等腰直角三角形. 考查内容:圆的有个性质命题意图:本题考查了切线的性质、全等三角形的判定与性质、圆周角定理、勾股定理、三角形内角和定理以及等腰三角形和等腰直角三角形的判定与性质等知识.此题难度适中,本题相等的角较多,注意各角之间的关系,注意掌握数形结合思想的应用.难度中等偏上 27.解析:问题1:(1)316; (2)解法一:∵AB =4,AD =m .∴BD =4-m . 又∵CE ∥BC ,∴4CE BD mEA DA m-==,∴4DEC ADES mS m-=. 又∵CE ∥BC ,∴△ADE ∽△ABC ,∴216ADE ABCSm S=. ∴22441616DEC DEC ADE ABCADEABCSS S m m m m SSSm --+=⨯=⨯=.即2416S m m S -+=′.解法二:过点B 作BH ⊥AC ,垂足为H ,过点D 作DF ⊥AC ,垂足为F . 则DF ∥BH ,∴△ADF ∽△ABH .∴4DF AD mBH AB ==. ∵DE ∥BC ,∴44CE BD mCA BA -==, ∴21442144162DEC ABCCE DFSm m m m SCA BH ⋅--+==⨯=⋅.即2416S m m S -+=′.问题2:解法一:分别延长BA ,CD ,相交于点D . ∵AD ∥BC ,∴△OAD ∽△OBC ,∴12OA AD OB BC ==. ∴OA =AB =4,∴OB =8.∵AE =n ,∴OE =4+n .∵EF ∥BC .由问题1的解法可知24416()4864CEFCEF OEFOBC OEF OBC S S S n n n S S S n -+-=⨯=⨯=+,∵21()4OADABCD S OAS OB ==.∴23()4ABCD OBC S OA S OB ==.∴22416163364484CEF CEF ABCD OBCS S n n S S --==⨯=△△△,即S S =′21648n -.解法二:连接AC 交EF 于M .∵AD ∥BC ,且AD =12BC ,∴12ADCABCS S =△△.∴S △ADC =13S ,S △ABC =23S .由问题1的结论可知,EMC ABC S S =2416n n-+.∴S △EMC =2416n n -+×23S =2424n nS -+.∵MF ∥AD ,∴△CFM ∽△CDA ,∴243()143CFM CFM CFM CDA S S S n S S S-==⨯=△△△△,∴S△CFM=2 (4)48nS -.∴S△EFC=S△EMC+S△CFM=2424n nS-++2(4)48nS-=21648nS-,∴SS=′21648n-.考查内容:相似三角形的性质和判定命题意图:本题考查了相似三角形的性质和判定、平行线分线段成比例定理,熟练掌握相似三角形的性质:相似三角形面积比等于相似比的平方是关键,并运用了类比的思想解决问题,难度较大28.解析:(1)设线段MN所在直线的函数表达式为y=kx+b.∵M,N两点的坐标分别为(30,230),(100,300),∴30230100300k bk b+=⎧⎨+=⎩,解这个方程组,得1200kb=⎧⎨=⎩.∴线段MN所在直线的函数表达式为y=x+200.(2)①第一种情况:考虑FE=FG是否成立,连接EC.∵AE=x,AD=100,GA=x+200,∴ED=GD=x+100.又∵CD⊥EG,∴CE=CG,∴∠CGE=∠CEG,∴∠FEG>∠CGE.∴FE≠FG.②第二种情况:考虑FG=EG是否成立,∵四边形ABCD是正方形,∴BC∥EG,∴△FBC≌△FEG.假设FG=EG成立,则FC=BC亦成立.∴FC=BC=100.∵AE=x,GA=x+200,∴FG=EG=AE+GA=2x+200,∴CG=FG-FC=2x+200-100=2x+100.在Rt△CDG中,CD=100,GD=x+100,CG=2x+100,∴1002+(x+100)2=(2x+100)2,解这个方程,得x1=-100,x2=1003.∵x>0,∴x=1003.③第三种情况:考虑EF=EG是否成立.与②同理,假设EF=EG成立,则FB=BC亦成立.∴BE=EF-FB=2x+200-100=2x+100.在Rt△ABE中,AE=x,AB=100,BE=2x+100,∴1002+x2=(2x+100)2,解这个方程,得x1=0,x2=-4003(不合题意,均舍去).综上所述,当x=1003时,△EFG是一个等腰三角形.考查内容:待定系数法求一次函数解析式、等腰三角形的判定与性质、相似三角形的判定与性质、正方形的性质以及勾股定理命题意图:本题考查了待定系数法求一次函数解析式、等腰三角形的判定与性质、相似三角形的判定与性质、正方形的性质以及勾股定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数关系式;(2)分FE=FG、FG=EG及EF=EG三种情况求出x的值.难度较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏州市2018届高三第一学期期中调研试卷数 学一、填空题(本大题共14小题,每小题5分,共70分,请把答案直接填写在答卷纸...相应的位置) 1.已知集合{1,2,3,4,5},{1,3},{2,3}U A B ===,则()U A B = ▲ . 2.函数1ln(1)y x =-的定义域为 ▲ .3.设命题:4p x >;命题2:540q x x -+≥,那么p 是q 的 ▲ 条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).4.已知幂函数22*()m m y x m -=∈N 在(0,)+∞是增函数,则实数m 的值是 ▲ . 5.已知曲线3()ln f x ax x =+在(1,(1))f 处的切线的斜率为2,则实数a 的值是 ▲ . 6.已知等比数列{}n a 中,32a =,4616a a =,则7935a a a a -=- ▲ .7.函数sin(2)(0)2y x ϕϕπ=+<<图象的一条对称轴是12x π=,则ϕ的值是 ▲ . 8.已知奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,则不等式()01f x x >-的解集为 ▲ .9.已知tan()24απ-=,则cos2α的值是 ▲ .10.若函数8,2()log 5,2ax x f x x x -+⎧=⎨+>⎩≤(01)a a >≠且的值域为[6,)+∞,则实数a 的取值范围是 ▲ . 11.已知数列{},{}n n a b 满足1111,1,(*)21n n n n a a b b n a +=+==∈+N ,则122017b b b ⋅⋅= ▲ .12.设ABC △的内角,,A B C 的对边分别是,,a b c ,D 为AB 的中点,若cos sin b a C c A =+且2CD =则ABC △面积的最大值是 ▲ .13.已知函数()sin()6f x x π=-,若对任意的实数5[,]62αππ∈--,都存在唯一的实数[0,]m β∈,使()()0f f αβ+=,则实数m 的最小值是 ▲ .14.已知函数ln ,0()21,0x x f x x x >⎧=⎨+⎩≤,若直线y ax =与()y f x =交于三个不同的点(,()),(,()),A m f m B n f n(,())C t f t (其中m n t <<),则12n m++的取值范围是 ▲ . 二、解答题(本大题共6个小题,共90分,请在答题卷区域内作答,解答时应写出文字说明、证明过程或演算步骤) 15.(本题满分14分)已知函数21()sin(2)(0,0)242f x ax b a b π=-+++>>的图象与x 轴相切,且图象上相邻两个最高点之间的距离为2π. (1)求,a b 的值;(2)求()f x 在[0,]4π上的最大值和最小值.16.(本题满分14分)在中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin sin sin ()B C m A m +=∈R ,且240a bc -=.(1)当52,4a m ==时,求,b c 的值; (2)若角A 为锐角,求m 的取值范围.17.(本题满分15分)已知数列{}n a 的前n 项和是n S ,且满足11a =,*131()n n S S n +=+∈N . (1)求数列{}n a 的通项公式; (2)在数列{}n b 中,13b =,*11()n n n na b b n a ++-=∈N ,若不等式2n n a b n λ+≤对*n ∈N 有解,求实数λ的取值范围.18.(本题满分15分)如图所示的自动通风设施.该设施的下部ABCD 是等腰梯形,其中AB 为2米,梯形的高为1米,CD 为3米,上部CmD 是个半圆,固定点E 为CD 的中点.MN 是由电脑控制可以上下滑动的伸缩横杆(横杆面积可忽略不计),且滑动过程中始终保持和CD 平行.当MN 位于CD 下方和上方时,通风窗的形状均为矩形MNGH (阴影部分均不通风). (1)设MN 与AB 之间的距离为5(02x x <≤且1)x ≠米,试将通风窗的通风面积S (平方米)表示成关于x 的函数()y S x =;(2)当MN 与AB 之间的距离为多少米时,通风窗的通风面积S 取得最大值?19.(本题满分16分)已知函数2()ln ,()f x x g x x x m ==--. (1)求过点(0,1)P -的()f x 的切线方程;(2)当0=m 时,求函数()()()F x f x g x =-在],0(a 的最大值;(3)证明:当3m ≥-时,不等式2()()(2)e x f x g x x x +<--对任意1[,1]2x ∈均成立(其中e 为自然对数的底数,e 2.718...=).20.(本题满分16分)已知数列{}n a 各项均为正数,11a =,22a =,且312n n n n a a a a +++=对任意*n ∈N 恒成立,记{}n a 的前n 项和为n S .(1)若33a =,求5a 的值;(2)证明:对任意正实数p ,221{}n n a pa -+成等比数列;(3)是否存在正实数t ,使得数列{}n S t +为等比数列.若存在,求出此时n a 和n S 的表达式;若不存在,说明理由.2017—2018学年第一学期高三期中调研试卷数学(附加题部分)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲)(本小题满分10分)如图,AB 为圆O 的直径,C 在圆O 上,CF AB ⊥于F ,点D 为线段CF 上任意一点,延长AD 交圆O 于E ,030AEC ∠=.(1)求证:AF FO =;(2)若3CF =AD AE ⋅的值.B .(矩阵与变换)(本小题满分10分)已知矩阵1221⎡⎤=⎢⎥⎣⎦A ,42α⎡⎤=⎢⎥⎣⎦,求49αA 的值.C .(极坐标与参数方程)(本小题满分10分)在平面直角坐标系中,直线l 的参数方程为42525x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为2cos()(0)4a a ρθπ-≠. (1)求直线l 和圆C 的直角坐标方程;(2)若圆C 任意一条直径的两个端点到直线l 5a 的值.D .(不等式选讲)(本小题满分10分)设,x y 均为正数,且x y >,求证:2212232x y x xy y ++-+≥.D EFOBC【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏. (1)求甲拿到礼物的概率;(2)设ξ表示甲参加游戏的轮数..,求ξ的概率分布和数学期望()E ξ.23.(本小题满分10分)(1)若不等式(1)ln(1)x x ax ++≥对任意[0,)x ∈+∞恒成立,求实数a 的取值范围; (2)设*n ∈N ,试比较111231n ++++与ln(1)n +的大小,并证明你的结论.2017—2018学年第一学期高三期中调研试卷数 学 参 考 答 案一、填空题(本大题共14小题,每小题5分,共70分)1.{1} 2.(1,2)(2,)+∞ 3.充分不必要 4.1 5.136.4 7.3π 8.(2,0)(1,2)- 9.45- 10.(1,2]11.120181221 13.2π 14.1(1,e )e +二、解答题(本大题共6个小题,共90分) 15.(本题满分14分)解:(1)∵()f x 图象上相邻两个最高点之间的距离为2π, ∴()f x 的周期为2π,∴202||2a a ππ=>且,······································································2分 ∴2a =,··················································································································4分此时21())242f x x b π=+++, 又∵()f x 的图象与x 轴相切,∴12||022b b +=>,·······················································6分 ∴212b =-;··········································································································8分 (2)由(1)可得22())4f x x π=+, ∵[0,]4x π∈,∴4[,]444x ππ5π+∈,∴当444x π5π+=,即4x π=时,()f x 有最大值为212;·················································11分当442x ππ+=,即16x π=时,()f x 有最小值为0.························································14分 16.(本题满分14分)解:由题意得b c ma +=,240a bc -=.···············································································2分(1)当时,,解得212b c =⎧⎪⎨=⎪⎩或122b c ⎧=⎪⎨⎪=⎩;································································································6分 (2)2222222222()()22cos 23222a ma abc a b c bc a A m a bc bc--+-+--====-,····························8分 ∵A 为锐角,∴2cos 23(0,1)A m =-∈,∴2322m <<,····················································11分又由b c ma +=可得0m >,·························································································13分62m <·····································································································14分 17.(本题满分15分)解:(1)∵*131()n n S S n +=+∈N ,∴*131(,2)n n S S n n -=+∈N ≥,∴*13(,2)n n a a n n +=∈N ≥,·························································································2分 又当1n =时,由2131S S =+得23a =符合213a a =,∴*13()n n a a n +=∈N ,······························3分 ∴数列{}n a 是以1为首项,3为公比的等比数列,通项公式为1*3()n n a n -=∈N ;·····················5分 (2)∵*113()n n n na b b n a ++-==∈N ,∴{}n b 是以3为首项,3为公差的等差数列,····················7分 ∴*33(1)3()n b n n n =+-=∈N ,·····················································································9分 ∴2n n a b n λ+≤,即1233n n n λ-⋅+≤,即2133n n nλ--≤对*n ∈N 有解,··································10分 设2*13()()3n n nf n n --=∈N , ∵2221(1)3(1)32(41)(1)()333n n nn n n n n n f n f n -+-+---++-=-=, ∴当4n ≥时,(1)()f n f n +<,当4n <时,(1)()f n f n +>,∴(1)(2)(3)(4)(5)(6)f f f f f f <<<>>>,∴max 4[()](4)27f n f ==,···························································································14分 ∴427λ≤.·············································································································15分 18.(本题满分15分)解:(1)当01x <≤时,过A 作AK CD ⊥于K (如上图),则1AK =,122CD AB DK -==,1HM x =-, 由2AK MH DK DH ==,得122HM x DH -==, ∴322HG DH x =-=+,∴2()(1)(2)2S x HM HG x x x x =⋅=-+=--+;·······························································4分 当512x <<时,过E 作ET MN ⊥于T ,连结EN (如下图), 则1ET x =-,22239(1)(1)224MN TN x x ⎛⎫==---- ⎪⎝⎭∴292(1)4MN x =-- ∴29()2(1)(1)4S x MN ET x x =⋅=---,······································································8分 综上:222,01()952(1)(1)142x x x S x x x x ⎧--+<⎪=⎨---<<⎪⎩≤;·································································9分 (2)当01x <≤时,2219()2()24S x x x x =--+=-++在[0,1)上递减, ∴max ()(0)2S x S ==;································································································11分2︒当512x <<时,2229(1)(1)994()2(1)(1)2424x x S x x x -+--=---⋅=≤,当且仅当29(1)(1)4x x -=--3251(1,)42x =+∈时取“=”, ∴max 9()4S x =,此时max 9()24S x =>,∴()S x 的最大值为94,············································14分 答:当MN 与AB 之间的距离为3214+米时,通风窗的通风面积S 取得最大值.····················15分解:(1)设切点坐标为00(,ln )x x ,则切线方程为0001ln ()y x x x x -=-, 将(0,1)P -代入上式,得0ln 0x =,01x =,∴切线方程为1y x =-;·······························································································2分 (2)当0m =时,2()ln ,(0,)F x x x x x =-+∈+∞, ∴(21)(1)(),(0,)x x F x x x+-'=-∈+∞,············································································3分 当01x <<时,()0F x '>,当1x >时,()0F x '<,∴()F x 在(0,1)递增,在(1,)+∞递减,·············································································5分 ∴当01a <≤时,()F x 的最大值为2()ln F a a a a =-+;当1a >时,()F x 的最大值为(1)0F =;········································································7分 (3)2()()(2)e x f x g x x x +<--可化为(2)e ln x m x x x >-+-,设1()(2)e ln ,[,1]2x h x x x x x =-+-∈,要证3m ≥-时()m h x >对任意1[,1]2x ∈均成立, 只要证max ()3h x <-,下证此结论成立.∵1()(1)(e )x h x x x'=--,∴当112x <<时,10x -<,·······················································8分 设1()e x u x x =-,则21()e 0x u x x '=+>,∴()u x 在1(,1)2递增,又∵()u x 在区间1[,1]2上的图象是一条不间断的曲线,且1()e 202u <,(1)e 10u =->,∴01(,1)2x ∃∈使得0()0u x =,即001e x x =,00ln x x =-,····················································11分 当01(,)2x x ∈时,()0u x <,()0h x '>;当0(,1)x x ∈时,()0u x >,()0h x '<; ∴函数()h x 在01[,]2x 递增,在0[,1]x 递减, ∴0max 00000000012()()(2)e ln (2)212x h x h x x x x x x x x x ==-+-=-⋅-=--,····························14分 ∵212y x x =--在1(,1)2x ∈递增,∴0002()121223h x x x =--<--=-,即max ()3h x <-,∴当3m ≥-时,不等式2()()(2)e x f x g x x x +<--对任意1[,1]2x ∈均成立.··························16分解:(1)∵1423a a a a =,∴46a =,又∵2534a a a a =,∴54392a a ==;·······································2分(2)由3121423n n n n n n n n a a a a a a a a +++++++=⎧⎨=⎩,两式相乘得2134123n n n n n n n a a a a a a a ++++++=,∵0n a >,∴2*42()n n n a a a n ++=∈N ,从而{}n a 的奇数项和偶数项均构成等比数列,···································································4分 设公比分别为12,q q ,则1122222n n n a a q q --==,1121111n n n a a q q ---==,······································5分 又∵312=n n n n a a a a +++,∴42231122a a qa a q ===,即12q q =,···························································6分 设12q q q ==,则2212223()n n n n a pa q a pa ---+=+,且2210n n a pa -+>恒成立,数列221{}n n a pa -+是首项为2p +,公比为q 的等比数列,问题得证;····································8分 (3)法一:在(2)中令1p =,则数列221{}n n a a -+是首项为3,公比为q 的等比数列,∴22212223213 ,1()()()3(1),11k k k k k k k q S a a a a a a q q q---=⎧⎪=++++++=-⎨≠⎪-⎩, 12122132 ,13(1)2,11k k k k k k k q q S S a q q q q ---⎧-=⎪=-=⎨--≠⎪-⎩,·····································································10分 且12341,3,3,33S S S q S q ===+=+,∵数列{}n S t +为等比数列,∴22132324()()(),()()(),S t S t S t S t S t S t ⎧+=++⎪⎨+=++⎪⎩ 即22(3)(1)(3),(3)(3)(33),t t q t q t t q t ⎧+=+++⎪⎨++=+++⎪⎩,即26(1),3,t q t t q +=+⎧⎨=-⎩ 解得14t q =⎧⎨=⎩(3t =-舍去), (13)分∴224121k k k S =-=-,212121k k S --=-,从而对任意*n ∈N 有21n n S =-,此时2n n S t +=,12n n S t S t-+=+为常数,满足{}n S t +成等比数列, 当2n ≥时,111222n n n n n n a S S ---=-=-=,又11a =,∴1*2()n n a n -=∈N ,综上,存在1t =使数列{}n S t +为等比数列,此时1*2,21()n n n n a S n -==-∈N .······················16分 法二:由(2)知,则122n n a q -=,121n n a q --=,且12341,3,3,33S S S q S q ===+=+,∵数列{}n S t +为等比数列,∴22132324()()(),()()(),S t S t S t S t S t S t ⎧+=++⎪⎨+=++⎪⎩ 即22(3)(1)(3),(3)(3)(33),t t q t q t t q t ⎧+=+++⎪⎨++=+++⎪⎩,即26(1),3,t q t t q +=+⎧⎨=-⎩ 解得14t q =⎧⎨=⎩(3t =-舍去),·······················································································11分∴121222n n n a q --==,22212n n a --=,从而对任意*n ∈N 有12n n a -=,····································13分 ∴01211222222112n n n n S --=++++==--, 此时2n n S t +=,12n n S t S t-+=+为常数,满足{}n S t +成等比数列, 综上,存在1t =使数列{}n S t +为等比数列,此时1*2,21()n n n n a S n -==-∈N .······················16分21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .(几何证明选讲,本小题满分10分)解:(1)证明 :连接,OC AC ,∵030AEC ∠=,∴0260AOC AEC ∠=∠=,又OA OC =,∴AOC ∆为等边三角形,∵CF AB ⊥,∴CF 为AOC ∆中AO 边上的中线,∴AF FO =;······································································5分(2)解:连接BE ,∵3CF =AOC ∆是等边三角形,∴可求得1AF =,4AB =, D F E O BC∵AB 为圆O 的直径,∴90AEB ∠=,∴AEB AFD ∠=∠,又∵BAE DFA ∠=∠,∴AEB ∆∽AFD ∆,∴AD AF AB AE=, 即414AD AE AB AF ⋅=⋅=⨯=.··················································································10分B .(矩阵与变换,本小题满分10分)解:矩阵A 的特征多项式为212()2321f λλλλλ--==----, 令()0f λ=,解得矩阵A 的特征值121,3λλ=-=,····························································2分当11λ=-时特征向量为111α⎡⎤=⎢⎥-⎣⎦,当23λ=时特征向量为211α⎡⎤=⎢⎥⎣⎦,·····································6分 又∵12432ααα⎡⎤==+⎢⎥⎣⎦,······························································································8分 ∴5049494911225031331αλαλα⎡⎤-=+=⎢⎥+⎣⎦A .···········································································10分C .(极坐标与参数方程,本小题满分10分)解:(1)直线l 的普通方程为220x y +-=;··········································································3分圆C 的直角坐标方程为222()()222a a a x y -+-=;·······························································6分 (2)∵圆C 任意一条直径的两个端点到直线l 5∴圆心C 到直线l 5|2|525a a +-,·······················································8分 解得3a =或13a =-.·······························································································10分D .(不等式选讲,本小题满分10分)证:∵0,0,0x y x y >>->,∴22211222()2()x y x y x xy y x y +-=-+-+- 232211()()3()3()()x y x y x y x y x y =-+-+-=--≥, ∴2212232x y x xy y ++-+≥.····················································································10分。