用空间向量求解二面角(一)(人教A版)(含答案)

合集下载

专题03 利用向量法求线线角、线面角、二面角及距离问题(知识梳理+专题过关)(解析版)

专题03 利用向量法求线线角、线面角、二面角及距离问题(知识梳理+专题过关)(解析版)

专题03利用向量法求线线角、线面角、二面角及距离问题【知识梳理】(1)异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅==a b a b a bθ.(2)线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅==a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,=n n θ或12,-n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅=n n n n θ.(4)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为n ,这时分别在,a b 上任取,A B 两点,则向量在n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅=n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(5)点到平面的距离A 为平面α外一点(如图),n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||nn⋅⋅=⋅=⋅<>=⋅AB AB AH AB AB AB n AB AB θ||||⋅=AB n d n (6)点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.(7)在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为PA n d PA cos PA,n n⋅=〈〉=.【专题过关】【考点目录】考点1:异面直线所成角考点2:线面角考点3:二面角考点4:点到直线的距离考点5:点到平面的距离、直线到平面的距离、平面到平面的距离考点6:异面直线的距离【典型例题】考点1:异面直线所成角1.(2022·贵州·遵义市第五中学高二期中(理))在三棱锥P —ABC 中,PA 、PB 、PC 两两垂直,且PA =PB =PC ,M 、N 分别为AC 、AB 的中点,则异面直线PN 和BM 所成角的余弦值为()A 33B .36C .63D .66【答案】B【解析】以点P 为坐标原点,以PA ,PB ,PC 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,令2PA =,则()0,0,0P ,()0,2,0B ,()1,0,0M ,()1,1,0N ,则(1,1,0)PN =,(1,2,1)BM =-,设异面直线PN 和BM 所成角为θ,则||3cos 6||||PN BM PN BM θ⋅==.故选:B.2.(2022·四川省成都市新都一中高二期中(理))将正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,则异面直线AB 与CD 所成角的余弦值为()A .12B 2C .12-D .2【答案】A【解析】取BD 中点为O ,连接,AO CO ,所以,AO BD CO BD ⊥⊥,又面ABD ⊥面CBD 且交线为BD ,AO ⊂面ABD ,所以AO ⊥面CBD ,OC ⊂面CBD ,则AO CO ⊥.设正方形的对角线长度为2,如图所示,建立空间直角坐标系,()()()(0,0,1),1,0,0,0,1,0,1,0,0A B C D -,所以()()=1,0,1,=1,1,0AB CD ---,1cos ,222AB CD AB CD AB CD⋅==-⨯.所以异面直线AB 与CD 所成角的余弦值为12.故选:A3.(2022·新疆·乌苏市第一中学高二期中(理))如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,13CC =,90ACB ∠=︒,则1BC 与1AC 所成角的余弦值为()A .3210B .3210-C .24D 5【答案】A【解析】因为111ABC A B C -为直三棱柱,且90ACB ∠=︒,所以建立如图所示的空间直角坐标系,()()()()110,4,0,0,0,0,0,0,3,3,0,3B C C A ,所以()()110,4,3,3,0,3BC AC =-=--,115,992BC A C ==+设1BC 与1AC 所成角为θ,所以11932cos cos ,532BC A Cθ-===⨯.则1BC 与1AC 32故选:A.4.(2022·福建宁德·高二期中)若异面直线1l ,2l 的方向向量分别是()1,0,2a =-,()0,2,1b =,则异面直线1l 与2l 的夹角的余弦值等于()A .25-B .25C .255-D 255【答案】B【解析】由题,()22125a =+-=,22215b =+=,则22cos 555a b a bθ⋅-==⋅⋅,故选:B5.(2022·河南·焦作市第一中学高二期中(理))已知四棱锥S ABCD -的底面ABCD 是边长为1的正方形,SD ⊥平面ABCD ,线段,AB SC 的中点分别为E ,F ,若异面直线EC 与BF 5SD =()A .1B .32C .2D .3【答案】C【解析】如图示,以D 为原点,,,DA DC DS 分别为x 、y 、z 轴正方向联立空间直角坐标系.不妨设(),0SD t t =>.则()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,S t ,11,,02E ⎛⎫⎪⎝⎭,10,,22t F ⎛⎫ ⎪⎝⎭.所以11,,02EC ⎛⎫=- ⎪⎝⎭,11,,22t BF ⎛⎫=-- ⎪⎝⎭.因为异面直线EC 与BF 55211054cos ,1111444EC BF EC BF EC BFt -+==⨯+⨯++,解得:t =2.即SD =2.故选:C6.(2021·广东·深圳市龙岗区德琳学校高二期中)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2DC SD ==,点M 是侧棱SC 的中点,2AD =则异面直线CD 与BM 所成角的大小为___________.【答案】3π【解析】由题知,底面ABCD 为矩形,SD ⊥底面ABCD 所以DA 、DC 、DS 两两垂直故以D 为原点,建立如图所示的空间直角坐标系因为2DC SD ==,2AD =,点M 是侧棱SC 的中点,则()0,0,0D ,()0,2,0C ,)2,2,0B ,()0,0,2S ,()0,1,1M 所以()0,2,0DC =,()2,1,1BM =--设异面直线CD 与BM 所成角为θ则21cos 22211DC BM DC BMθ⋅-===⨯++⋅因为异面直线的夹角为0,2π⎛⎤⎥⎝⎦所以3πθ=故答案为:3π.7.(2021·广东·江门市广雅中学高二期中)如图,在正三棱柱111ABC A B C -中,1 2.AB AA ==E 、F 分别是BC 、11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所10BD 的长为_______.【答案】【解析】如图以E为坐标原点建立空间直角坐标系:则()()10,0,0,,2,0,1,0,22E F B ⎛⎫- ⎪ ⎪⎝⎭设(0,,2)(11)D t t -≤≤,则()1,2,0,1,22EF BD t ⎫==+⎪⎪⎝⎭,设直线BD 与EF 所成角为θ所以cos ||||EF BD EF BD θ⋅==22314370t t +-=,解得1t =或3723t =-(舍去),所以BD ==故答案为:8.(2021·福建省厦门集美中学高二期中)如图,在正四棱锥V ABCD -中, E 为BC 的中点,2AB AV ==.已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为余弦值为216,则VF VA =________.【答案】23【解析】连接AC 、BD 交于点O ,则AC BD ⊥,因为四棱锥V ABCD -为正四棱锥,故VO ⊥底面ABCD ,以点O 为坐标原点,OA 、OB 、OV 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则)A、E ⎛⎫ ⎪ ⎪⎝⎭、(V、()B ,设),0,VF VA λλ===-,其中01λ≤≤,(0,BV =,则)),1BF BV VF λ=+=-,22,22VE ⎛=- ⎝,由已知可得21cos ,6BF VE BF VE BF VE ⋅<>==⋅,整理可得2620λλ--=,因为01λ≤≤,解得23λ=,即23VF VA =.故答案为:23考点2:线面角9.(2022·山东·东营市第一中学高二期中)如图,在正方体1111ABCD A B C D -中,棱长为2,M 、N 分别为1A B 、AC 的中点.(1)证明://MN 平面11BCC B ;(2)求1A B 与平面11A B CD 所成角的大小.【解析】(1)如图,以点D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系.则()2,0,0A ,()0,2,0C ,()12,0,2A ,(2,2,0)B ,()12,2,2B ,()2,1,1M ,()1,1,0N .所以()1,0,1MN =--,因为DC ⊥平面11BCC B ,所以平面11BCC B 的一个法向量为(0,2,0)DC =,因为0MN DC ⋅=,所以MN DC ⊥,因为MN ⊂平面11BCC B ,所以//MN 平面11BCC B (2)()0,2,0DC =,()12,0,2DA =,()10,2,2A B =-.设平面11A B CD 的一个法向量为(),,n x y z =则122020DA n x z DC n y ⎧⋅=+=⎨⋅==⎩,令1z =,则1x =-,0y =,所以()1,0,1n =-设1A B 与平面11A B CD 所成角为θ,则1111sin cos ,2A B n A B n A B nθ⋅===⋅.因为0180θ︒≤<︒,所以1A B 与平面11A B CD 所成角为30°.10.(2021·黑龙江·哈尔滨七十三中高二期中(理))如图,已知正四棱柱1111ABCD A B C D -中,底面边长2AB =,侧棱1BB 的长为4,过点B 作1B C 的垂线交侧棱1CC 于点E ,交1B C 于点F.(1)求证:1A C ⊥平面BED ;(2)求1A B 与平面BDE 所成的角的正弦值.【解析】(1)连接AC ,因为1111ABCD AB C D -是正四棱柱,即底面为正方形,则BD AC ⊥,又1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1BD AA ⊥,又1AC AA A =∩,1,AC AA ⊂平面1A AC ,故BD ⊥平面1A AC ,而1AC ⊂平面1A AC ,则1BD AC ⊥,同理得1BE AC ⊥,又BD BE B ⋂=,,BD BE ⊂平面BDE ,所以1A C ⊥平面BDE ;(2)以DA 、DC 、1DD 分别为,,x y z 轴,建立直角坐标系,则()2,2,0B ,()()12,0,4,0,2,0A C ,∴()10,2,4A B =-,()12,2,4AC =--,由题可知()12,2,4AC =--为平面BDE 的一个法向量,设1A B 与平面BDE 所成的角为α,则1130sin cos 62024,C A B A α==⋅,即1A B 与平面BDE 所成的角的正弦值为306.11.(2021·河北唐山·高二期中)如图(1),△BCD 中,AD 是BC 边上的高,且∠ACD =45°,AB =2AD ,E 是BD 的中点,将△BCD 沿AD 翻折,使得平面ACD ⊥平面ABD ,得到的图形如图(2).(1)求证:AB⊥CD;(2)求直线AE与平面BCE所成角的正弦值.【解析】(1)证明:由图(1)知,在图(2)中AC⊥AD,AB⊥AD,∵平面ACD⊥平面ABD,平面ACD∩平面ABD=AD,AB⊂平面ABD,∴AB⊥平面ACD,又CD⊂平面ACD,∴AB⊥CD;(2)由(1)可知AB⊥平面ACD,又AC⊂平面ACD,∴AB⊥AC.以A为原点,AC,AB,AD所在直线分别为x,y,z轴建立空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),E(0,1,12),∴A E=10,1,2⎛⎫,⎪⎝⎭BC=(120),BE,-,=10,1,2⎛⎫-,⎪⎝⎭设平面BCE的法向量为n=(x,y,z),由20102BC n x yn BE y z⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令y=1,得x=2,z=2,则n=(2,1,2),……设直线AE与平面BCE所成角为θ,则245 sin|cos,|15532AE nθ==⨯故直线AE与平面BCE4512.(2022·贵州·遵义市第五中学高二期中(理))如图,在四棱锥P-ABCD中,AD⊥平面ABP,BC//AD,∠PAB=90°,PA=AB=2,AD=3,BC=1,E是PB的中点.(1)证明:PB ⊥平面ADE ;(2)求直线AP 与平面AEC 所成角的正弦值.【解析】(1)因AD ⊥平面ABP ,PB ⊂平面ABP ,则AD ⊥PB ,又PA =AB =2,E 是PB 的中点,则有AE ⊥PB ,而AE AD A =,,AE AD ⊂平面ADE ,所以PB ⊥平面ADE .(2)因AD ⊥平面ABP ,∠PAB =90°,则直线,,AB AD AP 两两垂直,以点A 为原点,射线,,AB AD AP 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图,则(0,0,0),(1,0,1),(0,0,2),(2,1,0)A E P C ,(1,0,1),(2,1,0),(0,0,2)AE AC AP ===,令平面AEC 的一个法向量为(,,)n x y z =,则020n AE x z n AC x y ⎧⋅=+=⎨⋅=+=⎩,令1x =-,得(121)n ,,=-,令直线AP 与平面AEC 所成角的大小为θ,则||26sin |cos ,|||||62n AP n AP n AP θ⋅=〈〉==⨯所以直线AP 与平面AEC 613.(2022·四川省成都市新都一中高二期中(理))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD BC ∥,90ABC ∠=︒,2PA AB BC ===,1AD =,点M ,N 分别为棱PB ,DC 的中点.(1)求证:AM ∥平面PCD ;(2)求直线MN 与平面PCD 所成角的正弦值.【解析】(1)证明:以A 为坐标原点建立如图所示的空间直角坐标系,则()()()0,0,0,0,2,0,2,2,0A B C ,()()()1,0,0,0,0,2,0,1,1D P M ,则()()0,1,1,1,0,2AM PD ==-,()1,2,0CD =--,设平面PCD 的一个法向量为(),,n x y z =r,则2020n PD x z n CD x y ⎧⋅=-=⎨⋅=--=⎩,令1z =,则2,1x y ==-,则平面PCD 的一个法向量为()2,1,1n =-,0110,n AM n AM∴⋅=-+=∴⊥//AM ∴平面PCD(2)由(1)得3,1,02N ⎛⎫ ⎪⎝⎭,3,0,12MN ⎛⎫=- ⎪⎝⎭设直线MN 与平面PCD 所成角为θ.sin cos ,n MN MN n n MNθ⋅∴==⋅39=∴直线MN 与平面PCD 所成角的正弦值为27839.14.(2021·福建·厦门大学附属科技中学高二期中)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,,//AB AD BC AD ⊥,点M 是棱PD 上一点,且满足2,4AB BC AD PA ====.(1)求二面角A CD P --的正弦值;(2)若直线AM 与平面PCD所成角的正弦值为3,求MD 的长.【解析】(1)如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,4,0)D ,(0,0,4)P ,(2,2,0)CD =-,(0,4,4)PD =-,设平面PCD 法向量(,,)n x y z =,则00n CD n PD ⎧⋅=⎨⋅=⎩,即220440x y y z -+=⎧⎨-=⎩,令1x =,111x y z =⎧⎪=⎨⎪=⎩,即(1,1,1)n =,又平面ACD 的法向量(0,0,1)m =,cos ,3m n m n m n⋅〈〉=,故二面角A CD P --3=.(2)设MD PD λ=(01λ≤≤),(0,4,4)MD λλ=-,点(0,4,44)M λλ-,∴(0,4,44)AM λλ=-,由(1)得平面PCD 法向量(1,1,1)n =,且直线AM 与平面PCD∴6cos ,3AM n AM n AM n⋅〈〉==,解得12λ=,即12=MD PD ,又PD 12==MD PD 15.(2022·北京市第十二中学高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,PD ⊥平面ABCD ,E 是棱PC 的中点.(1)证明://PA 平面BDE ;(2)若1,90PD AD BD ADB ===∠=︒,F 为棱PB 上一点,DF 与平面BDE 所成角的大小为30°,求PFPB的值.【解析】(1)如图,连接AC 交BD 于点M ,连接EM ,因为M 是AC 的中点,E 是PC 的中点,所以//PA EM 又ME ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE(2)因为1,90PD AD BD ADB ===∠=︒,所以AD BD ⊥,故以D 为坐标原点,DA 为x 轴,DB 为y 轴,DP 为z轴建立空间直角坐标系,则()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,1,0,,,222D A B P C E ⎛⎫-- ⎪⎝⎭,()111,,,0,1,0222DE DB ⎛⎫=-= ⎪⎝⎭,设平面BDE 的法向量为(),,n x y z =r ,则00n DE n DB ⎧⋅=⎨⋅=⎩,即11102220x y z y ⎧-++=⎪⎨⎪=⎩,故取()1,0,1n =,设(01)PF PB λλ=<<,则()()0,,1,0,,1F DF λλλλ-=-因为直线DF 与平面BDE 所成角的大小为30,所以1sin302DF n DF n⋅==12=解得12λ=,故此时12PF PB =.16.(2022·江苏·东海县教育局教研室高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,2PD AD ==,AD PC ⊥,点E 在线段PC 上(不与端点重合),30PCD ∠=︒.(1)求证:AD ⊥平面PCD ;(2)是否存在点E 使得直线PB 与平面ADE 所成角为30°?若存在,求出PEEC的值;若不存在,说明理由.【解析】(1)证明:在正方形ABCD 中,可得AD CD ⊥,又由AD PC ⊥,且CDPC C =,CD ⊂平面PCD ,PC ⊂平面PCD ,根据线面垂直的判定定理,可得AD ⊥平面PCD .(2)在平面PCD 中,过点D 作DF CD ⊥交PC 于点F .由(1)知AD ⊥平面PCD ,所以AD DF ⊥,又由AD DC ⊥,以{},,DA DC DF 为正交基底建立空间直角坐标系D xyz -,如图所示,则()(0,0,0),2,0,0D A ,()2,2,0B ,()0,2,0C,(0,P -,设PEEC λ=,则PE EC λ=,所以212,,11AE AP PE λλλ⎛⎫-=+=- ++⎝⎭,()2,0,0AD =-,(2,3,PB =uu r设平面ADE 的一个法向量为(),,n x y z =,则2120120AE n x y AD n x λλ⎧-⋅=-++=⎪⎨+⎪⋅=-=⎩,取y =0,12x z λ==-,所以平面ADE的一个法向量()2n λ=-,因为直线PB 与平面ADE 所成角为30,所以1sin 30cos ,2PB n ︒==,解得5λ=±综上可得,存在点E 使得直线PB 与平面ADE 所成角为30,且5PEEC=±考点3:二面角17.(2022·云南·罗平县第一中学高二期中)如图,在直三棱柱111ABC A B C -中,D 为1AB 的中点,1B C 交1BC 于点E ,AC BC ⊥,1CA CB CC ==.(1)求证:DE ∥平面11AAC C ;(2)求平面1AB C 与平面11A B C 的夹角的余弦值.【解析】(1)证明:因为111ABC A B C -为三棱柱,所以平面11BCC B 是平行四边形,又1B C 交1BC 于点E ,所以E 是1B C 的中点.又D 为1AB 的中点,所以//DE AC ,又AC ⊂平面11AAC C ,DE ⊂/平面11AAC C ,所以//DE 平面11AAC C ;(2)在直三棱柱111ABC A B C -中,1CC ⊥平面111A B C ,又AC BC ⊥,所以11C A 、11C B 、1C C 两两互相垂直,所以以1C 为坐标原点,分别以11C A 、11C B 、1C C 为x 、y 、z 轴建立空间直角坐标系1C xyz -,如图所示.设11CA CB CC ===,则1(0,0,0)C ,1(1,0,0)A ,1(0,1,0)B ,(1,0,1)A ,(0,0,1)C ,所以1(1,1,1)AB =--,(1,0,0)=-AC ,11(1,1,0)=-A B ,1(1,0,1)AC =-.设平面1AB C 的一个法向量为(,,)n x y z =,则100n AB n AC ⎧⋅=⎨⋅=⎩,所以00x y z x -+-=⎧⎨-=⎩,不妨令1y =,则(0,1,1)n =,设平面11A B C 的一个法向量为(,,)m x y z =,则11100m A B m A C ⎧⋅=⎪⎨⋅=⎪⎩,所以00x y x z -+=⎧⎨-+=⎩,不妨令1y =,则(1,1,1)m =.所以cos ||||m n m n m n ⋅〈⋅〉===⋅所以平面1AB C 与平面11A B C18.(2022·江苏·宝应县教育局教研室高二期中)如图,已知三棱锥O ABC -的侧棱,,OA OB OC 两两垂直,且1,2OA OB OC ===,E 是OC的中点.(1)求异面直线BE 与AC 所成角的余弦值;(2)求二面角A BE C --的正弦值.【解析】(1)以O 为原点,OB ,OC ,OA 分别为,,x y z 轴建立如图所示空间直角坐标系,则有()0,0,1A ,()2,0,0B ,()0,2,0C ,()0,1,0E .()()()2,0,00,1,02,1,0EB =-=-,()0,2,1AC =-.2cos 5EB AC =-,.由于异面直线BE 与AC 所成的角是锐角,故其余弦值是25.(2)()()2,0,10,1,1AB AE =-=-,.设平面ABE 的法向量为()1,,n x y z =,则由11n AB n AE ⊥⊥,,得200x z y z -=⎧⎨-=⎩,取()11,2,2n =.由题意可得,平面BEC 为xOy 平面,则其一个法向量为()20,0,1n =u u r,1212122cos 3n n n n n n ⋅===⋅,,则12sin 3n n =,,即二面角A BE C --的正弦值为3.19.(2021·福建·厦门一中高二期中)如图,在平行四边形ABCD中,AB =,2BC =,4ABC π∠=,四边形ACEF 为矩形,平面ACEF ⊥平面ABCD ,1AF =,点M 在线段EF 上运动.(1)当AE DM ⊥时,求点M 的位置;(2)在(1)的条件下,求平面MBC 与平面ECD 所成锐二面角的余弦值.【解析】(1)2AB =2AD BC ==,4ABC π∠=,∴222cos 2AC AB BC AB BC ABC +-⋅∠∴222AB AC BC +=,∴90BAC ∠=︒,AB AC ∴⊥,又AF AC ⊥,又平面ACEF ⊥平面ABCD ,平面ACEF 平面ABCD AC =,AF ⊂平面ACEF ,AF ∴⊥平面ABCD ,所以以AB ,AC ,AF 为x ,y ,z 轴建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(2,2,0),(0,2,1),(0,0,1)A B C D E F-,设(0,,1),02M y y 则2,1)AE =,(2,2,1)DM y =-AE DM ⊥,∴2(2)10AE DM y ⋅=-+=,解得22y =,∴12FM FE =.∴当AE DM ⊥时,点M 为EF 的中点.(2)由(1)可得(2,,1)2BM =,(BC =设平面MBC 的一个法向量为111(,,)m x y z =,则111112020m BM y z m BC ⎧⋅=+=⎪⎨⎪⋅==⎩,取12y =,则m =,易知平面ECD 的一个法向量为(0,1,0)n =,∴cos |cos ,|||||m n m n m n θ⋅=<>=⋅∴平面MBC 与平面ECD 所成锐二面角的余弦值为105.20.(2022·四川省内江市第六中学高二期中(理))如图,直角三角形ABC 中,60BAC ∠=,点F 在斜边AB 上,且4AB AF =,AD ⊥平面ABC ,BE ⊥平面ABC ,3AD =,4AC BE ==.(1)求证:DF ⊥平面CEF ;(2)点M 在线段BC 上,且二面角F DM C --的余弦值为25,求CM 的长度.【解析】(1)90ACB ∠=,60BAC ∠=,4AC =,8AB ∴=,又4AB AF =,2AF ∴=;2222cos 2016cos6012CF AC AF AC AF BAC ∴=+-⋅∠=-=,解得:CF =,222AF CF AC ∴+=,则AF CF ⊥;DA ⊥平面ABC ,CF ⊂平面ABC ,CF AD ∴⊥;又,AF AD ⊂平面ADF ,AFA AD =,CF ∴⊥平面ADF ,DF ⊂平面ADF ,DF CF ∴⊥;连接ED ,在四边形ABED 中,作DH BE ⊥,垂足为H,如下图所示,DF ==EF ==,DE =222DF EF DE ∴+=,则DF EF ^;,CF EF ⊂平面CEF ,CF EF F ⋂=,DF ⊥∴平面CEF .(2)以C 为坐标原点,,CA CB 正方向为,x y 轴,以BE 的平行线为z 轴,可建立如图所示空间直角坐标系,设CM m =,则()0,,0M m ,()0,0,0C ,()4,0,3D,()F ,()4,,3MD m ∴=-,()4,0,3CD =,()1,FD =,设平面DMF 的法向量(),,n x y z =,则43030MD n x my z FD n x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令9y =,解得:3x m =-z m =,()3n m m ∴=--;设平面CDM 的法向量(),,m a b c =,则430430CD m a c MD m a mb c ⎧⋅=+=⎨⋅=-+=⎩,令3a =,解得:0b =,4c =-,()3,0,4m ∴=-;二面角F DM C --的余弦值为25,2cos ,5m n m n m n ⋅∴<>==⋅,25=,((()222134381m m m ⎡⎤∴-=-++⎢⎥⎣⎦,解得:m;当m F DM C --为钝二面角,不合题意;则二面角F DM C --的余弦值为25时,CM =21.(2022·江苏徐州·高二期中)如图所示,在四棱锥中P ABCD -,2AB DC=,0AB BC ⋅=,AP BD ⊥,且AP DP DC BC ====(1)求证:平面ADP ⊥平面ABCD ;(2)已知点E 是线段BP 上的动点(不与点P 、B 重合),若使二面角E AD P --的大小为4π,试确定点E 的位置.【解析】(1)连接BD ,由2AB DC =,0AB BC ⋅=知242,//,AB DC AB DC CD BC ==⊥,在Rt BCD 中,22216,4BD CD BC BD =+==,设AB 的中点为Q ,连接DQ ,则//,CD QB QB CD =,所以四边形BCDQ 为平行四边形,又,CD BC DC BC ⊥=,所以四边形BCDQ 为正方形,所以,22DQ AB DQ AQ ⊥==Rt AQD 中,22216AD AQ DQ =+=,在Rt ABD 中,222161632AD BD AB +=+==,所以AD BD ⊥,又,AP BD AP AD A ⊥⋂=,,AP AD ⊂平面ADP ,所以BD ⊥平面ADP ,又BD ⊂平面ABCD ,所以平面ADP ⊥平面ABCD ;(2)在APD △中,2228816AP PD AD +=+==,所以AP PD ⊥,在Rt APD 中,过点P 作PF AD ⊥,垂足为F ,因为PA PD =,所以F 为AD 中点,所以2PF DF ==,由(1)得BD ⊥平面ADP ,PF ⊂平面ADP ,则BD PF ⊥,,AD BD ⊂平面ABCD ,ADBD D =,则PF ⊥平面ABCD .以D 为原点,分别以,DA DB 所在直线为,x y 轴,以过点D 与平面ABCD 垂直的直线为z 轴,建立如图所示空间坐标系,则(0,0,0),(4,0,0),(0,4,0),(2,0,2),(4,0,0),(2,4,2)D A B P DA PB ==--,设()(2,4,2),0,1PE PB λλλλλ==--∈,则(22,4,22)DE DP PE λλλ=+=--,易知平面PAD 的一个法向量为(0,1,0)m =,设平面EAD 的法向量为(,,)n x y z =,则()()40224220n DA x n DE x y z λλλ⎧⋅==⎪⎨⋅=-++-=⎪⎩,令1z =,则1(0,,1)2n λλ-=,所以221cos ,cos 4211m n m n m nλπλλλ⋅-===⎛⎫+ ⎪-⎝⎭,即2122521λλλ-=-+,即23210λλ+-=,解得1λ=-(舍)或13λ=,所以,当点E 在线段BP 上满足13PE PB =时,使二面角E AD P --的大小为4π.22.(2021·湖北十堰·高二期中)如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,//,2,4,23AN BM AB AN BM CN ====(1)证明:BM ⊥平面ABCD ;(2)在线段CM 上是否存在一点E ,使得二面角E BN M --的余弦值为33,若存在求出CE EM 的值,若不存在,请说明理由.【解析】(1)正方形ABCD 中,BC AB ⊥,因为平面ABCD ⊥平面ABMN ,平面ABCD平面,ABMN AB BC =⊂平面ABCD ,所以BC ⊥平面ABMN ,所以BC BM ⊥,且BC BN ⊥,2,23BC CN ==所以2222BN CN BC -,又因为2AB AN ==,所以222BN AB AN =+,所以AN AB ⊥,又因为AN //BM ,所以BM AB ⊥,BC BA B =,所以BM ⊥平面ABCD .(2)由(1)知,BM ⊥平面,ABCD BM AB ⊥,以B 为坐标原点,,,BA BM BC 所在直线分别为,,x y z 轴建立空间直角坐标系.()()()()0,0,0,0,0,2,2,2,0,0,4,0B C N M 设点(),,,,E x y z CE CM λ=[0,λ∈1],则()(),,20,4,2x y z λ-=-,所以0422x y z λλ=⎧⎪=⎨⎪=-⎩,所以()0,4,22E λλ-,所以()()2,2,0,0,4,22BN BE λλ==-,设平面BEN 的法向量为(),,m x y z =,()2204220m x y m y z λλ⋅=+=⎧∴⎨⋅=+-=⎩令1x =,所以21,1y z λλ=-=-,所以2(1,1,)1m λλ=--,显然,平面BMN 的法向量为()0,0,2BC =,所以cos ,BC m BC m BC m⋅=⋅3==即2642λλ=-+,即23210λλ+-=,解得13λ=或1-(舍),则存在一点E ,且12CE EM =.考点4:点到直线的距离23.(2021·云南大理·高二期中)鳖臑是指四个面都是直角三角形的三棱锥.如图,在鳖臑P ABC -中,PA ⊥平面ABC ,2AB BC PA ===,D ,E 分别是棱AB ,PC 的中点,点F是线段DE 的中点,则点F 到直线AC 的距离是()A .38B 6C .118D .224【答案】B 【解析】因为AB BC =,且ABC 是直角三角形,所以AB BC ⊥.以B 为原点,分别以BC ,BA 的方向为x ,y 轴的正方向,建立如图所示的空间直角坐标系B xyz -.因为2AB BC PA ===,所以()0,2,0A ,()2,0,0C ,()0,1,0D ,()1,1,1E ,则()2,2,0AC =-,11,1,22AF ⎛⎫=- ⎪⎝⎭.故点F到直线AC 的距离2221136144422AF AF AC AC d ⎛⎫⋅⎛⎫⎪=-++-= ⎪ ⎪⎝⎭⎝⎭.故点F 到直线AC 的距离是6424.(2021·河北·石家庄市第十二中学高二期中)已知直线l 的方向向量为(1,0,2)n =,点()0,1,1A 在直线l 上,则点()1,2,2P 到直线l 的距离为()A .230B 30C 3010D 305【答案】D【解析】由已知得(1,1,1)PA =---,因为直线l 的方向向量为(1,0,2)n =,所以点()1,2,2P 到直线l 的距离为2222212930335512PA n PA n ⎛⎫⎛⎫⋅-----= ⎪ ⎪ ⎪+⎝⎭⎝⎭故选:D25.(2021·北京·牛栏山一中高二期中)在空间直角坐标系中,已知长方体1111ABCD A B C D -的项点()0,0,0D ,()2,0,0A ,()2,4,0B ,()10,4,2C =,则点1A 与直线1BC 之间的距离为()A .B .2C .125D .52【答案】A【解析】如图,由题意知,建立空间直角坐标系D xyz -,1(000)(200)(240)(042)D A B C ,,,,,,,,,,,,则1422AB BC CC ===,,,连接111A B AC ,,所以1111A B A C BC ===得11A BC V 是等腰三角形,取1BC 的中点O ,连接1OA ,则1OA ⊥1BC ,即点1A 到直线1BC 的距离为1OA ,在1Rt A OB 中,有1OA ==故选:A26.(2021·北京市昌平区第二中学高二期中)已知空间中三点(1,0,0)A -,(0,1,1)B -,(2,1,2)C --,则点C 到直线AB 的距离为()A B C D 【答案】A【解析】依题意得()()1,1,2,1,1,1AC AB =--=-则点C 到直线AB 的距离为63d =故选:A27.(2022·江西南昌·高二期中(理))如图,在棱长为4的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点Р到直线1CC 的距离的最小值为_______.【答案】5【解析】在正方体1111ABCD A B C D -中,建立如图所示的空间直角坐标系,则11(0,4,0),(0,0,4),(2,4,0),(0,4,4)C D E C ,11(2,0,0),(0,0,4),(2,4,4)CE CC ED ===--,因点P 在线段1D E 上,则[0,1]λ∈,1(2,4,4)EP ED λλλλ==--,(22,4,4)CP CE EP λλλ=+=--,向量CP 在向量1CC 上投影长为11||4||CP CC d CC λ⋅==,而||CP =,则点Р到直线1CC的距离4525h =,当且仅当15λ=时取“=”,所以点Р到直线1CC的距离的最小值为5.28.(2022·福建龙岩·高二期中)直线l 的方向向量为()1,1,1m =-,且l 过点()1,1,1A -,则点()0,1,1P -到l 的距离为___________.【解析】(1,0,2)AP =-,直线l 的方向向量为()1,1,1m =-,由题意得点P 到l的距离d =29.(2021·山东·嘉祥县第一中学高二期中)在棱长为2的正方体1111ABCD A B C D -中,O 为平面11A ABB 的中心,E 为BC 的中点,则点O 到直线1A E 的距离为________.【答案】3【解析】如图,以D 为原点建系,则()()()12,0,2,2,1,1,1,2,0A O E ,则()()110,1,1,1,2,2AO A E =-=--,则111111cos ,3A O A E A O A E A O A E⋅==,又[]11,0,A O A E π∈,所以111sin ,3A O A E =,所以点O 到直线1A E的距离为1111sin ,33A O A O A E ==.故答案为:23.考点5:点到平面的距离、直线到平面的距离、平面到平面的距离30.(2020·山东省商河县第一中学高二期中)如图,在正四棱柱1111ABCD A B C D -中,已知2AB AD ==,15AA =,E ,F 分别为1DD ,1BB 上的点,且11DE B F ==.(1)求证:BE ⊥平面ACF :(2)求点B 到平面ACF 的距离.【解析】(1)以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系,如下图所示:则()()()()()2,0,0,2,2,0,0,2,0,0,0,1,2,2,4A B C E F ,设面ACF 的一个法向量为()=,,n x y z ,()()=2,2,0,0,2,4AC AF -=,可得00n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩,即220240x y y z -+=⎧⎨+=⎩,不妨令1z =则()=2,2,1n BE --=,BE ∴⊥平面ACF .(2)()=0,2,0AB ,则点B 到平面ACF 的距离为43AB nn⋅=.31.(2022·江苏·2的正方形ABCD 沿对角线BD 折成直二面角,则点D 到平面ABC 的距离为______.【答案】33【解析】记AC 与BD 的交点为O ,图1中,由正方形性质可知AC BD ⊥,所以在图2中,,OB AC OD AC ⊥⊥,所以2BOD π∠=,即OB OD⊥如图建立空间直角坐标系,易知1OA OB OC OD ====则(0,0,1),(0,1,0),(1,0,0),(0,1,0)A B C D -则(0,1,1),(1,0,1),(0,2,0)AB AC BD =--=-=设(,,)n x y z =为平面ABC 的法向量,则00AB n y z AC n x z ⎧⋅=--=⎨⋅=-=⎩,取1x =,得(1,1,1)n =-所以点D 到平面ABC 的距离22333BD n d n⋅===故答案为:23332.(2022·河南·濮阳一高高二期中(理))如图,在棱长为1的正方体1111ABCD A B C D -中,若E ,F 分别是上底棱的中点,则点A 到平面11B D EF 的距离为______.【答案】1【解析】以1D 为坐标原点,11111,,D A D C D D 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()1,0,1A ,()11,1,0B ,10,,12E ⎛⎫⎪⎝⎭,()10,0,0D ,设平面11B D EF 的法向量(),,m x y z =,则有1111020m D E y z m D B x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令2y =得:2,1x z =-=-,故()2,2,1m =--,其中()10,1,1AB =-,则点A 到平面11B D EF 的距离为11AB m d m⋅===故答案为:133.(2022·山东·济南外国语学校高二期中)在棱长为1的正方体1111ABCD A B C D -中,平面1AB C 与平面11AC D 间的距离是________.【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()11,0,1B 、()1,1,0C 、()0,1,0D 、()10,0,1A 、()11,1,1C ,设平面1AB C 的法向量为()111,,m x y z =,()11,0,1AB =,()1,1,0AC =,由1111100m AB x z m AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取11x =,可得()1,1,1m =--,设平面11AC D 的法向量为()222,,n x y z =,()10,1,1DA =-,()11,0,1DC =,由12212200n DA y z n DC x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取21x =,可得()1,1,1n =--r ,因为m n =,平面1AB C 与平面11AC D 不重合,故平面1//AB C 平面11AC D ,()0,1,0AD =uuu r ,所以,平面1AB C 与平面11AC D 间的距离为1333AD m d m⋅==故答案为:33.34.(多选题)(2020·辽宁·大连八中高二期中)已知正方体1111ABCD A B C D -的棱长为1,点,E O 分别是11A B ,11AC 的中点,P 在正方体内部且满足1132243AP AB AD AA =++,则下列说法正确的是()A .点A 到直线BE 255B .点O 到平面11ABCD 的距离是24C .平面1A BD 与平面11B CD 3D .点P 到直线AD 的距离为56【答案】ABCD【解析】如图,建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,1(0,0,1)A ,1(1,1,1)C ,()10,1,1D ,1,0,12E ⎛⎫⎪⎝⎭,所以1(1,0,0),,0,12BA BE ⎛⎫=-=- ⎪⎝⎭.设ABE θ∠=,则||5cos 5||||BA BE BA BE θ⋅==,25sin 5θ==.故A 到直线BE的距离1||sin 1d BA θ===,故选项A 正确.易知111111,,0222C O C A ⎛⎫==-- ⎪⎝⎭,平面11ABC D 的一个法向量1(0,1,1)DA =-,则点O 到平面11ABC D 的距离11211||224||DA C O d DA ⋅===,故选项B 正确.1111(1,0,1),(0,1,1),(0,1,0)A B A D A D =-=-=.设平面1A BD 的法向量为(,,)n x y z =,则110,0,n A B n A D ⎧⋅=⎪⎨⋅=⎪⎩所以0,0,x z y z -=⎧⎨-=⎩令1z =,得1,1y x ==,所以(1,1,1)n =.所以点1D 到平面1A BD的距离113||||A D n d n ⋅===因为平面1//A BD 平面11B CD ,所以平面1A BD 与平面11B CD 间的距离等于点1D 到平面1A BD 的距离,所以平面1A BD 与平面11B CD 间的距离为3.故选项C 正确.因为1312423AP AB AD AA =++,所以312,,423AP ⎛⎫= ⎪⎝⎭,又(1,0,0)AB =,则34||AP AB AB ⋅=,所以点P 到AB 的距离56d ==.故选项D 正确.故选:ABCD.考点6:异面直线的距离35.(2021·安徽·合肥市第六中学高二期中)如图正四棱柱1111ABCD A B C D -中,1AB BC ==,12AA =.动点P ,Q 分别在线段1C D ,AC 上,则线段PQ 长度的最小值是()A .13B .23C .1D .43【答案】B【解析】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D ,所以,()1,1,0AC =-,()10,1,2=DC ,()1,0,0DA =,设向量(),,n x y z =满足n AC ⊥,1⊥n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,解得2x yy z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-,可得()2,2,1n =-,因此,min 23DA n PQ n⋅==.故选:B .36.(2021·辽宁沈阳·高二期中)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在长方体1111ABCD A B C D -中,1AB =,2BC =,13AA =,则异面直线AC 与1BC 之间的距离是()A 5B 7C 6D .67【答案】D【解析】如图,以D 为坐标原点建立空间直角坐标系,则()()()()12,0,0,0,1,0,2,1,0,0,1,3A C B C ,则()2,1,0AC =-,()12,0,3BC =-,设AC 和1BC 的公垂线的方向向量(),,n x y z =,则100n AC n BC ⎧⋅=⎪⎨⋅=⎪⎩,即20230x y x z -+=⎧⎨-+=⎩,令3x =,则()3,6,2n =,()0,1,0AB =,67AB n d n⋅∴==.故选:D.37.(2021·上海交大附中高二期中)在正方体1111ABCD A B C D -中,4AB =,则异面直线AB 和1AC 的距离为___________.【答案】【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,由1(4,0,0),(4,4,0),(0,4,0),(4,0,4)A B C A ,则1(0,4,0),(4,4,4)AB CA ==-,1(0,0,4)AA =设(,,)m x y z =是异面直线AB 和1AC 的公垂线的一个方向向量,则1404440m AB y m CA x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,则(1,0,1)m =-,所以异面直线AB 和1AC的距离为1AA m m ⋅==故答案为:38.(2021·广东·广州市第二中学高二期中)如图,在三棱锥P ABC -中,三条侧棱PA ,PB ,PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为BC ,PB 上的点,且::1:2BE EC PF FB ==.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 是直线PG 与BC 的公垂线;(3)求异面直线PG 与BC 的距离.【解析】(1)建立如图所示空间直角坐标系,()()()()()()3,0,0,0,3,0,0,0,3,0,1,0,0,2,1,1,1,0A B C F E G ,()1,0,0GF =-,0,0GF PC GF PB ⋅=⋅=,所以,,GF PC GF PB PC PB P ⊥⊥⋂=,所以GF ⊥平面PBC ,由于GF ⊂平面GEF ,所以平面GEF ⊥平面PBC .(2)()()1,1,1,0,3,3EG BC =--=-,0,0EG PG EG BC ⋅=⋅=,所以EG 是直线PG 与BC 的公垂线.(3)2221113EG =++=所以异面直线PG 与BC39.(2021·全国·高二期中)如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,,2,12ABC BAD PA AD AB BC π∠=∠=====.(1)求平面PAB 与平面PCD 所成夹角的余弦值;(2)求异面直线PB 与CD 之间的距离.【解析】以A 为原点,,,AB AD AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz -,则()()()()()0,0,0,1,0,0,1,1,0,0,2,0,0,0,2A B C D P .(1)因为PA ⊥平面ABCD ,且AD ⊂平面ABCD ,所以PA AD ⊥,又AB AD ⊥,且PAAB A =,所以AD ⊥平面PAB ,所以()0,2,0AD =是平面PAB 的一个法向量.易知()()1,1,2,0,2,2PC PD =-=-uu u r uu u r ,设平面PCD 的法向量为(),,m x y z =,则0,0,m PC m PD ⎧⋅=⎨⋅=⎩即20,220,x y y z +-=⎧⎨-=⎩,令1y =解得1,1z x ==.所以()1,1,1m =是平面PCD 的一个法向量,从而3cos ,AD m AD m AD m⋅==uuu r u r uuu r u r uuu r u r PAB 与平面PCD 所成夹角为锐角所以平面PAB 与平面PCD 所成夹角的余弦值为33.(2)()1,0,2BP =-,设Q 为直线PB 上一点,且(),0,2BQ BP λλλ==-,因为()0,1,0CB =-,所以(),1,2CQ CB BQ λλ=+=--,又()1,1,0CD =-,所以点Q 到直线CD 的距离()22cos d CQ CQ CQ CD =-⋅uu u r uu u r uu u r uu u r===,因为22919144222999λλλ⎛⎫++=++≥⎪⎝⎭,所以23d≥,所以异面直线PB与CD之间的距离为2 3.。

人教A版高中数学选择性必修一1.4.2用空间向量研究距离、夹角问题课件

人教A版高中数学选择性必修一1.4.2用空间向量研究距离、夹角问题课件

FE
则(1,1, 1) (k, k,1 k) k k 1 k 3k 1 0,
D
所以k
1 3
,
点F的坐标为
1 3
,
1 3
,
2 3
.
A
G
C y
B
x
典型例题
又点E的坐标为
0,
1 2
,
1 2
,
所以FE
1 3
,
1 6
,

1 6
.
所以cos EFD
FE FD
1 3
,
1 6
,
1 6
cos cos n1, n2
n1 n2 n1 n2 n1 n2 n1 n2
典型例题
例 8 如图 1.4-22,在直棱柱 ABC A1B1C1 中,AC CB 2 , AA1 3 ,ACB 900 , P 为 BC 中点,Q,R 分别在棱 AA1 ,BB1 上,A1Q 2AQ ,BR 2RB1 .求平面 PQR 与 平面 A1B1C1 夹角的余弦值.
分析:因为降落伞匀速下落,所以降落伞8根绳子拉力的协 力的大小等于礼物重力的大小.8根绳子的拉力在水平面的 法向量方向上的投影向量的和向量与礼物的重力是一对相 反向量.
图1.4-24
典型例题
解:如图1.4 24, 设水平面的单位法向量为n, 其中每一根绳子的拉力
均为F .因为n, F 30,所以F在n上的投影向量为
A
G
B
x
(2) 求证:PB 平面EFD;
依题意得B(1,1, 0),
PB
(1,1,
1),
又 DE
0,
1 2
,
1 2
,

人教A版高中数学选修2-1课件【28】用向量方法求空间角(一)

人教A版高中数学选修2-1课件【28】用向量方法求空间角(一)

y=0, 得 x+z=0,
取 x=1,则 z=-1,
→ -2 BD · n 1 → ∵cos〈BD,n〉= = =-2, → 8· 2 |BD|· |n| 1 → ∴sinθ=|cos〈BD,n〉|=2. 又 0° ≤θ≤90° , ∴θ=30° .
12. 如图,矩形 ABCD 和梯形 BEFC 所在平面互相垂直,BE∥ CF,∠BCF=∠CEF=90° ,AD= 3,EF=2. (1)求证:AE∥平面 DCF; (2)当 AB 的长为何值时,二面角 AEFC 的大小为 60° ?
解析:∵l 的方向向量与平面的法向量的夹角为 120° .∴它们 所在直线的夹角为 60° , 则直线 l 与平面 α 所成的角为 90° -60° =30° .
答案:C
2.若平面 α 的法向量为 μ,直线 l 的方向向量为 v,直线 l 与平面 α 的夹角为 θ,则下列关系式成立的是( μ·v A.cosθ= |μ|· |v| μ·v C.sinθ=|μ|· |v| |μ·v| B.cosθ= |μ|· |v| |μ·v| D.sinθ=|μ|· |v| )
答案:D
二、填空题:每小题 5 分,共 15 分. 7.如图,在正方体 ABCDA1B1C1D1 中,M 是 C1C 的中点, O 是底面 ABCD 的中点,P 是 A1B1 上的任意点,则直线 BM 与 OP 所成的角为__________.
解析: 建立如图所示的空间直角坐标系, 设正方体棱长为 2, 则 O(1,1,0),P(2,x,2),B(2,2,0),M(0,2,1), → OP=(1,x-1,2), → BM=(-2,0,1). → → 所以OP· BM=0, π 所以直线 BM 与 OP 所成角为2.
第三章

1.4.2 用空间向量研究距离、夹角问题(分层练习)(人教A版2019选择性必修第一册)

1.4.2 用空间向量研究距离、夹角问题(分层练习)(人教A版2019选择性必修第一册)

1.4.2用空间向量研究距离、夹角问题基础练巩固新知夯实基础1.已知经过点(1,2,3)A 的平面α的法向量为(1,1,1)n =-,则点(2,3,1)-P 到平面α的距离为()A.3B.2C.22D.232.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为()A.1010B.15C.31010D.353.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为()A.12B.23C.33D.224.已知正方体1111ABCD A B C D -的棱长为2,E ,F 分别为上底面1111D C B A 和侧面11CDD C 的中心,则点C 到平面AEF 的距离为()A .41111B .114C .1111D .211115.在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为__________.6.在空间直角坐标系O -xyz 中,向量()()1,1,2,1,1,3a b =--=分别为异面直线12,l l 方向向量,则异面直线12,l l 所成角的余弦值为___________.7.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是__________.8.如图所示,在多面体A 1B 1D 1-DCBA ,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F .(1)证明:EF ∥B 1C .(2)求二面角E -A 1D -B 1的余弦值.能力练综合应用核心素养9.正△ABC 与正△BCD 所在平面垂直,则二面角A -BD -C 的正弦值为()A.55B.33C.255D.6310.在四面体P -ABC 中,PA ,PB ,PC 两两垂直,设PA =PB =PC =a ,则点P 到平面ABC的距离为()A.63B.33a C.a 3D.6a11.在正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面PAC 所成的角是()A .30°B .45°C .60°D .90°12.已知四棱锥S ABCD -的底面ABCD 是边长为1的正方形,SD ⊥平面ABCD ,线段,AB SC的中点分别为E ,F ,若异面直线EC 与BF SD =()A .1B .32C .2D .313.如图,已知正方体1111ABCD A B C D -的棱长为1,则线段1AD 上的动点P 到直线11A C 的距离的最小值为()A .1B .22C D 14.(多选)如图,在边长为2的正方体1111ABCD A B C D -中,点E ,F 分别是棱1BB ,11B C 的中点,G 是棱1CC 上的动点,则下列说法正确的是()A .当G 为中点时,直线AG平面1A EFB .当G 为中点时,直线AG 与EF 所成的角为30︒C .若H 是棱1AA 上的动点,且1C G AH =,则平面1ACD ⊥平面1B HG D .当G 在1CC 上运动时,直线AG 与平面11AA D D 所成的角的最大值为45︒15.如图所示,二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为__________.16.如图,在四棱锥P−ABCD中,平面PAD⊥平面ABCD,点E为PC的中点,AB∥CD,CD⊥AD,CD=2AB=2,PA=AD=1,PA⊥AD.(1)证明:BE⊥平面PCD;(2)求二面角P−BD−E的余弦值.【参考答案】1.D 解析:依题意,(3,1,2)AP =--,所以点P 到平面α的距离为222|||311(1)(2)1|23||1(1)1AP n d n ⋅-⨯+⨯-+-⨯===+-+.故选:D2.C 解析:以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),E (1,0,1),D 1(0,0,2).所以BE →=(0,-1,1),CD 1→=(0,-1,2),所以cos 〈BE →,CD 1→〉=BE →·CD 1→|BE →|·|CD 1→|=32×5=31010.3.B 解析:以A 为原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1,则A 1(0,0,1),E 1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),所以有A 1D →·n 1=0,A 1E →·n 1=0,即y -z =0,1-12z =0,解得y =2,z =2.∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23.4.A 解析:如图,以A 为原点,1,,AB AD AA 所在直线为,,x y z 轴建立空间直角坐标系,易知(0,0,0),(1,1,2),(1,2,1),(2,2,0)A E F C ,设平面AEF 的法向量(,,)n x y z =,则2020n AE x y z n AF x y z ⎧⋅=++=⎨⋅=++=⎩,令1y =-,解得(3,1,1)n =--,故点C 到平面AEF 的距离为6241111911n AC n⋅-==++.故选:A.5.13解析:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设n =(x ,y ,z )为平面A 1BC 1的法向量.则n ·A 1B →=0,n ·A 1C 1→=0,即y -z =0,x +2y =0,令z =2,则y =1,x =2,于是n =(2,1,2),D 1C 1→=(0,2,0)设所求线面角为α,则sinα=|cos 〈n ,D 1C 1→〉|=13.解析:因为()()1,1,2,1,1,3a b =--=,所以cos ,a b =-.因为异面直线12,l l 所成角的范围为0,2π⎛⎤ ⎥⎝⎦,所以异面直线12,l l7.60°解析以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),则EF →=(0,-1,1),BC 1→=(2,0,2),∴EF →·BC 1→=2,∴cos 〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°.8.(1)证明:由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE .又B 1C ⊂面B 1CD 1.面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C .(2)解:因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的,12,设面A 1DE 的法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →,12,A 1D →=(0,1,-1),由n 1⊥A 1E →.n 1⊥A 1D →得r 1,s 1,t 11+12s 1=0,-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E -A 1D -B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.9.C 解析取BC 中点O ,连接AO ,DO .建立如图所示坐标系,设BC =1,则,0,-12,0,∴OA →=,0BA →=,12,BD →,12,由于OA →=,0BCD 的一个法向量,可进一步求出平面ABD 的一个法向量n =(1,-3,1),∴cos 〈n ,OA →〉=55,∴sin 〈n ,OA →〉=255.10.B 解析:根据题意,可建立如图所示的空间直角坐标系P -xyz ,则P (0,0,,0),A (a ,0,0),B (0,a ,0),C (0,0,a ).过点P 作PH ⊥平面ABC ,交平面ABC 于点H ,则PH 的长即为点P 到平面ABC 的距离.∵PA =PB =PC ,∴H 为△ABC 的外心.又∵△ABC 为正三角形,∴H 为△ABC 的重心,可得H ,a 3,∴PH =33a .∴点P 到平面ABC 的距离为33a .11.A 解析:如图,以O 为原点建立空间直角坐标系O -xyz .设OD =SO =OA =OB =OC =a .则A (a ,0,0),B (0,a ,0),C (-a ,0,0),,-a 2,则CA →=(2a ,0,0),AP →a ,-a 2,CB →=(a ,a ,0),设平面PAC 的一个法向量为n ,设n =(x ,y ,z )·CA →=0,·AP →=0,=0,=z ,可取n =(0,1,1),则cos 〈CB →,n 〉=CB →·n |CB →|·|n |=a 2a 2·2=12,∴〈CB →,n 〉=60°,∴直线BC 与平面PAC 所成的角为90°-60°=30°.12.C 解析:如图示,以D 为原点,,,DA DC DS 分别为x 、y 、z 轴正方向联立空间直角坐标系.不妨设(),0SD t t =>.则()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,S t ,11,,02E ⎛⎫⎪⎝⎭,10,,22t F ⎛⎫ ⎪⎝⎭.所以11,,02EC ⎛⎫=- ⎪⎝⎭,11,,22t BF ⎛⎫=-- ⎪⎝⎭.因为异面直线EC 与BF 所成角的余弦值为55,所以211054cos ,51111444EC BF EC BF EC BFt -+===⨯+⨯++,解得:t =2.即SD =2.故选:C 13.D 解析:如图建立空间直角坐标系,则()()111,0,1,0,1,1A C ,设(),0,1,01P x x x -≤≤,则()()1111,0,,1,1,0A P x x AC =--=-,∴动点P 到直线11A C 的距离为()()22222111111112A P A C x d A P x x A C ⋅-=-=-+--22313113222333x x x ⎛⎫=-+=-+≥ ⎪⎝⎭,当13x =时取等号,即线段1AD 上的动点P 到直线11A C 的距离的最小值为33.故选:D.14.ACD 解析:图,以D 为原点建立空间直角坐标系,设1,02C G t t =≤≤,当G 为中点时,()()()()()10,2,1,2,0,0,2,0,2,2,2,1,1,2,2G A A E F ,所以()()()()112,2,1,0,2,1,1,2,0,1,0,1AG A E A F EF =--=-=-=-,设平面1A EF 的一个法向量为(),,n x y z =,则1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x y -=⎧⎨-+=⎩,令1y =,则可得()2,1,2n =,因为0AG n ⋅=,所以AG n ⊥,因为AG ⊄平面1A EF ,所以AG 平面1A EF ,故A 正确;因为cos ,2AG EF AG EF AG EF⋅<>===-⋅,所以当G 为中点时,直线AG 与EF 所成的角为45︒,故B 错误;若1C G AH =,则()()0,2,2,2,0,G t H t -,又()()()()112,0,0,0,2,0,0,0,2,2,2,2A C D B ,则()()()()1112,2,0,2,0,2,2,0,,0,2,2AC AD B G t B H t =-=-=--=--,设平面1ACD 的一个法向量为()1111,,x n y z =,则11100n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即1111220220x y x z -+=⎧⎨-+=⎩,令1x =,可得()11,1,1n =,设平面1B HG 的一个法向量为()2222,,n x y z =,则21210n B G n B H ⎧⋅=⎪⎨⋅=⎪⎩,即()222220220x tz y t z --=⎧⎨-+-=⎩,令22z =,可得()2,2,2n t t =--,因为()()12112120n n t t ⋅=⨯-+⨯-+⨯=,所以平面1ACD ⊥平面1B HG ,故C 正确;因为()2,2,2AG t =--,易得平面11AA D D 的一个法向量为()0,1,0m =u r,设直线AG 与平面11AA D D 所成的角为θ,则sin cos ,AG m AG m AG mθ⋅=<>==⋅则当2t =时,sin θ取得最大值为2,所以直线AG 与平面11AA D D 所成的角的最大值为45︒,故D 正确.故选:ACD.15.60°解析:∵CD →=CA →+AB →+BD →,∴|CD →|=(CA →+AB →+BD →)2=36+16+64+2CA →·BD →=116+2CA →·BD →=17.∴CA →·BD →=|CA →|·|BD →|·cos 〈CA →,BD →〉=-24.∴cos 〈CA →,BD →〉=-12.又所求二面角与〈CA →,BD →〉互补,∴所求的二面角为60°.16.(1)证明:取PD 的中点F ,连接AF ,EF ,则//EF CD ,12EF CD =.又//AB CD ,12AB CD =,所以//EF AB ,EF AB =,所以四边形ABEF 为平行四边形,所以//AF BE .因为1PA AD ==,PF FD =,所以AF PD ⊥.所以BE PD ⊥.因为平面PAD ⊥平面ABCD ,PA AD ⊥,所以PA ⊥平面ABCD ,所以PA AB ⊥,所以2PB BC ==.又点E 为PC 的中点,所以BE PC ⊥.又PC PD D ⋂=,所以BE ⊥平面PCD .(2)以A为原点建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,1),B (1,0,0),D (0,1,0),C (2,1,0),E (1,12,12).于是()()111,0,1,1,1,0,0,,22PB BD BE ⎛⎫=-=-= ⎪⎝⎭设平面PBD 的法向量为()1111,,n x y z =,则1100n PB n BD ⎧⋅=⎪⎨⋅=⎪⎩得11110x z x y -=⎧⎨-+=⎩.取11x =.得()11,1,1n =设平面EBD 的法向量为()2222,n x y z =,则2200n BE n BD ⎧⋅=⎪⎨⋅=⎪⎩,得2222110220y z x y ⎧+=⎪⎨⎪-+=⎩取21x =.得()21,1,1n =-.所以1212121cos ,3n n n n n n ⋅〈==〉,所以二面角P −BD −E 的余弦值为13。

最新人教版高中数学选修一第一单元《空间向量与立体几何》检测题(有答案解析)(1)

最新人教版高中数学选修一第一单元《空间向量与立体几何》检测题(有答案解析)(1)

一、选择题1.在棱长为1的正方体1111ABCD A B C D -中,,M N 分别为111,BD B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥,则下列说法正确的是( )A .点P 可以是棱1BB 的中点 B .线段MP 的最大值为32C .点P 的轨迹是正方形D .点P 轨迹的长度为2+52.若(),,0OA m n =,40,,OB p n ⎛⎫= ⎪⎝⎭,()0,4,0F ,1AF m =+,1BF p =+,则m p +的最小值为( )A .1B .2C .3D .63.设O ABC -是正三棱锥,1G 是ABC 的重心,G 是1OG 上的一点,且13OG GG =,若OG xOA yOB zOC =++,则x y z ++=( ).A .14B .12C .34D .14.如图所示,在三棱锥P –ABC 中,PA ⊥平面ABC ,D 是棱PB 的中点,已知PA =BC =2,AB =4,CB ⊥AB ,则异面直线PC ,AD 所成角的余弦值为A .3010-B .305-C .305D .30105.如图,在四面体A BCD -中,已知AD a →→=,AB b →→=,AC c →→=,12BE EC →→=,则DE →等于( )A .2133a b c →→→-++B .2133a b c →→→++C .2133a b c →→→-+D .2133a b c →→→-+6.如图,三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=︒,则异面直线1AB 与1BC 所成角的余弦值为( )A 30B 6C 3D 67.在三棱锥P ABC -中,PA ,AB ,AC 两两垂直,D 为棱PC 上一动点,2PA AC ==,3AB =.当BD 与平面PAC 所成角最大时,AD 与平面PBC 所成角的正弦值为( )A .1111B .21111C .31111D .11118.在正三棱柱(底面是正三角形的直三棱柱)111ABC A B C -中,2AB =,E ,F 分别为11A C 和11A B 的中点,当AE 和BF 所成角的余弦值为14时,AE 与平面11BCC B 所成角的正弦值为( ) A .62B .64C .104D .1029.正四面体ABCD 的棱长为2,动点P 在以BC 为直径的球面上,则AP AD ⋅的最大值为( ) A .2B .3C .4D .4310.我国古代数学名著《九章算术》中记载的“刍甍”(chumeng )是底面为矩形,顶部只有一条棱的五面体.如下图五面体ABCDEF 是一个刍甍,其中四边形ABCD 为矩形,其中8AB =,23AD =ADE 与BCF △都是等边三角形,且二面角E AD B --与F BC A --相等,则EF 长度的取值范围为( )A .(2,14)B .(2,8)C .(0,12)D .(2,12)11.有下列四个命题:①已知1e 和2e 是两个互相垂直的单位向量,a =21e +32e ,1b ke =-42e ,且a ⊥b ,则实数k =6;②已知正四面体O ﹣ABC 的棱长为1,则(OA OB +)•(CA CB +)=1;③已知A (1,1,0),B (0,3,0),C (2,2,3),则向量AC 在AB 上正投影的数量是5; ④已知1a e =-223e e +,1b e =-+32e +23e ,c =-31e +72e ({1e ,2e ,3e }为空间向量的一个基底),则向量a ,b ,c 不可能共面. 其中正确命题的个数为( ) A .1个B .2个C .3个D .4个12.如图,在60︒二面角的棱上有两点A 、B ,线段AC 、BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,若4AB AC BD ===,则线段CD 的长为( )A .3B .16C .8D .4213.在正方体1111ABCD A B C D -中,点E ,F 分别是AB ,1CC 的中点,则直线1A E 与平面11B D F 所成角的正弦值是( ) A .155B .1510C 5D .3010第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题14.a ,b 为空间两条互相垂直的直线,直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,30ABC ∠=︒,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成45°角; ⑤直线AB 与a 所成角的最大值为60°; ④直线AB 与a 所成角的最小值为30°;其中正确的是___________.(填写所有正确结论的编号)15.已知正三棱柱111ABC A B C -的所有棱长都相等,则1AC 与平面11BB C C 所成角的余弦值为_________.16.平行六面体1111ABCD A B C D -中,已知底面四边形ABCD 为正方形,且113A AB A AD π∠=∠=,其中,设1AB AD ==,1AA c =,体对角线12AC=,则c 的值是______.17.如图所示,在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心,E 、F 分别是1CC 、AD 的中点,那么异面直线OE 和1FD 所成角的余弦值等于______.18.设a =(1,1,0),b =(﹣1,1,0),c =(1,0,1),d =(0,0,1),,,,a b c d 存在正交基底,则四个向量中除正交基底外的向量用正交基底表示出来并写在填空处;否则在填空处写上“无正交基底”.你的答案是_____. 19.在长方体1111ABCD A B C D -中,13,3,4AB BC AA ===,则点D 到平面11A D C 的距离是______.20.在直三棱柱111ABC A B C -中,90BAC ∠=︒,14AA AB AC ===,点E 为棱1CC上一点,且异面直线1A B 与AE 所成角的余弦值为130130,则CE 的长为______. 21.在棱长为9的正方体ABCD A B C D ''''-中,点E ,F 分别在棱AB ,DD '上,满足2AE D E DFB F '==,点P 是DD '上一点,且//PB 平面CEF ,则四棱锥P ABCD -外接球的表面积为______.22.已知向量()2,1,3a =-,31,,2b k ⎛⎫=-- ⎪⎝⎭,若向量a 、b 的夹角为钝角,则实数k 的取值范围是__________.23.若平面α,β的法向量分别为(4,0,3)u =,(1,1,0)v =-,则这两个平面所成的锐角的二面角的余弦值为________.24.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为顶点的三条棱的长均为2,且两两所成角均为60°,则1||AC =__________.25.在平行六面体1111ABCD A B C D -中,已知1160BAD A AB A AD ∠=∠=∠=︒,14,3,5AD AB AA ===,1AC =__.26.点(1,A 2,1),(3,B 3,2),(1,C λ+4,3),若,AB AC 的夹角为锐角,则λ的取值范围为______.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,根据MP CN ⊥,确定点P 的轨迹,在逐项判断,即可得出结果. 【详解】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系, 因为该正方体的棱长为1,,M N 分别为111,BD B C 的中点, 则()0,0,0D ,111,,222M ⎛⎫ ⎪⎝⎭,1,1,12N ⎛⎫⎪⎝⎭,()0,1,0C , 所以1,0,12CN ⎛⎫= ⎪⎝⎭,设(),,P x y z ,则111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,因为MP CN ⊥, 所以1110222x z ⎛⎫-+-= ⎪⎝⎭,2430x z +-=,当1x =时,14z =;当0x =时,34z =; 取11,0,4E ⎛⎫ ⎪⎝⎭,11,1,4F ⎛⎫ ⎪⎝⎭,30,1,4G ⎛⎫ ⎪⎝⎭,30,0,4H ⎛⎫ ⎪⎝⎭,连接EF ,FG ,GH ,HE ,则()0,1,0EF GH ==,11,0,2EH FG ⎛⎫==- ⎪⎝⎭, 所以四边形EFGH 为矩形,则0EF CN ⋅=,0EH CN ⋅=,即EF CN ⊥,EH CN ⊥, 又EFEH E =,且EF ⊂平面EFGH ,EH ⊂平面EFGH ,所以CN ⊥平面EFGH , 又111,,224EM ⎛⎫=-⎪⎝⎭,111,,224MG ⎛⎫=- ⎪⎝⎭,所以M 为EG 中点,则M ∈平面EFGH ,所以,为使MP CN ⊥,必有点P ∈平面EFGH ,又点P 在正方体的表面上运动, 所以点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点,即A 错; 又1EF GH ==,5EH FG ==,所以EF EH ≠,则点P 的轨迹不是正方形;且矩形EFGH的周长为2222+⨯=+C 错,D 正确; 因为点M 为EG 中点,则点M 为矩形EFGH 的对角线交点,所以点M 到点E 和点G 的距离相等,且最大,所以线段MP,故B 错. 故选:D. 【点睛】关键点点睛:求解本题的关键在于建立适当的空间直角坐标系,利用空间向量的方法,由MP CN ⊥,求出动点轨迹图形,即可求解.2.C解析:C 【分析】根据空间向量模的坐标表示,由题中条件,得到11m p =+=+,推出22163282230m p n n n n-+-++=,配方整理,即可求出最小值. 【详解】因为(),,0OA m n =,40,,OB p n ⎛⎫= ⎪⎝⎭,()0,4,0F ,1AF m =+,1BF p =+,所以11m p =+=+,则()2222224214421m n m m p p p n ⎧+-=++⎪⎨⎛⎫-+=++⎪ ⎪⎝⎭⎩,即()224214421n m p n⎧-=+⎪⎨⎛⎫-=+⎪ ⎪⎝⎭⎩, 所以22221632164812261628822n n n m p n n n n n ⎛⎫⎛⎫-++-+-=++-++ ⎪ ⎪⎝⎭⎝⎭+=22444822466n n n n n n ⎛⎫⎛⎫⎛⎫=+-++=+-+≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当44n n+=,即2n =时,22m p +取得最小值3,则m p +的最小值为3. 故选:C. 【点睛】 关键点点睛:求解本题的关键在于利用空间向量模的坐标表示,用n 表示出22m p +,即22164882222n n n m n p ⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭+=,配方整理,即可求解.3.C解析:C 【分析】利用空间向量的基本定理可计算得出1111333OG OA OB OC =++,由已知条件可得出134OG OG =,进而可求得x 、y 、z 的值,由此可求得结果.【详解】如下图所示,连接1AG 并延长交BC 于点D ,则点D 为BC 的中点,1G 为ABC 的重心,可得123AG AD =, 而()()111222OD OB BD OB BC OB OC OB OB OC =+=+=+-=+, ()1122123333OG OA AG OA AD OA OD OA OA OD =+=+=+-=+ ()()12113323OA OB OC OA OB OC =+⋅+=++,所以,13311111144333444OG OG OA OB OC OA OB OC ⎛⎫==++=++ ⎪⎝⎭, 所以,14x y z ===,因此,34x y z ++=. 故选:C. 【点睛】方法点睛:对于空间向量的基底分解的问题,一般需要利用向量的加减法法则进行处理,也可以借助一些相应的结论对运算进行简化.4.D解析:D 【解析】因为PA ⊥平面ABC ,所以PA ⊥AB ,PA ⊥BC .过点A 作AE ∥CB ,又CB ⊥AB ,则AP ,AB ,AE 两两垂直.如图,以A 为坐标原点,分别以AB ,AE ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),P (0,0,2),B (4,0,0),C (4,−2,0).因为D 为PB 的中点,所以D (2,0,1).故CP =(−4,2,2),AD =(2,0,1).所以cos 〈AD ,CP 〉=AD CP AD CP⋅⋅==−.设异面直线PC ,AD 所成的角为θ,则cos θ=|cos 〈AD ,CP 〉|=.5.A解析:A 【分析】利用向量三角形法则与向量共线定理可得:DE BE BD →→→=-,13BE BC →→=,BC AC AB →→→=-,BD AD AB →→→=-,代入即可得出.【详解】解:已知AD a →→=,AB b →→=,AC c →→=,12BE EC →→=,利用向量三角形法则和向量共线定理得出:DE BE BD →→→=-,13BE BC →→=,BC AC AB →→→=-,BD AD AB →→→=-, ∴112()()333DE AC AB AD AB c a b →→→→→→→→=---=-+,即:2133DE a b c →→→→=-++.故选:A. 【点睛】本题考查向量的三角形法则和向量基本定理的应用,考查了推理能力.6.D解析:D 【分析】根据三棱柱的边长和角度关系,设棱长为1,分别求得AB AC ⋅、1AB AA ⋅、1AC AA ⋅的数量积,并用1,,AA AC AB 表示出1AB 和1BC ,结合空间向量数量积的定义求得11AB BC ⋅,再求得1AB 和1BC ,即可由向量的夹角公式求得异面直线1AB 与1BC 所成角的余弦值. 【详解】三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=︒,设棱长为1,则111cos602AB AC ⋅=⨯⨯︒=,1111cos602AB AA ⋅=⨯⨯︒=,1111cos602AC AA ⋅=⨯⨯︒=. 11AB AB AA =+,11BC AA AC AB =+-,所以()()1111AB BC AB AA AA AC AB ⋅=+⋅+-221111AB AA AB AC AB AA AA AC AA AB =⋅+⋅-++⋅-⋅11111112222=+-++-= 而()222111123AB AB AA AB AB AA AA =+=+⋅+=,()2111BC AA AC AB=+-==,所以111111cos 2AB BC AB BC AB BC ⋅<⋅>===⋅, 故选:D. 【点睛】本题考查了空间向量的线性运算,空间向量数量积的定义与运算,异面直线夹角的向量求法,属于中档题.7.C解析:C 【分析】首先利用线面角的定义,可知当D 为PC 的中点时,AD 取得最小值,此时BD 与平面PAC 所成角最大,再以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,利用向量坐标法求线面角的正弦值. 【详解】,AB AC AB PA ⊥⊥,且PA AC A =, AB ∴⊥平面PAC ,易证AB ⊥平面PAC ,则BD 与平面PAC 所成角为ADB ∠,3tan AB ADB AD AD∠==, 当AD 取得最小值时,ADB ∠取得最大值 在等腰Rt PAC ∆中,当D 为PC 的中点时,AD 取得最小值.以A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,则(0,0,0)A ,(3,0,0)B ,(0,2,0)C ,(0,0,2)P ,(0,1,1)D , 则(0,1,1)AD =,(0,2,2)PC=-,(3,2,0)BC =-设平面PBC 的法向量为(,,)n x y z =,则0n PC n BC ⋅=⋅=,即220320y z x y -=⎧⎨-+=⎩令3y =,得(2,3,3)n =.因为311cos ,11222n AD 〈〉==⨯,所以AD 与平面PBC 311. 故选:C 【点睛】关键点点睛:本题重点考查线面角,既考查了几何法求线面角,又考查向量法求线面角,本题关键是确定点D 的位置,首先利用线面角的定义确定点D 的位置,再利用向量法求线面角.8.B解析:B 【分析】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,由AE 和BF 所成角的余弦值为14,求出t 的值,由此能求出AE 与平面11BCC B 所成角的正弦值.【详解】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,则)3,1,0A,()0,0,0B , ()0,2,0C ,33,22E t ⎛⎫⎪ ⎪⎝⎭,31,22F t ⎛⎫ ⎪ ⎪⎝⎭ , 31,22AE t ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BF t ⎛⎫= ⎪ ⎪⎝⎭,因为AE 和BF BF 所成角的余弦值为14, 所以222112cos ,411t AE BF AE BF AE BFt t -⋅===++, 解得:1t =所以31,12AE ⎛⎫=- ⎪ ⎪⎝⎭,平面11BCC B 的法向量()1,0,0n =,所以AE 与平面11BCC B 所成角的正弦值为362sin 421AE nAE nα⋅===⨯ 故选:B 【点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面的位置关系等基础知识,属于中档题.9.C解析:C 【分析】建立空间坐标系,设(),,P x y z ,求出AP AD ⋅关于,,x y z 的表达式,根据球的半径得出,,x y z 的取值范围,利用简单的线性规划得出答案.【详解】设BC 的中点为M ,以M 为原点建立如图所示的空间坐标系,则()326,0,,3,0,0A D ⎛⎫ ⎪ ⎪⎝⎭,设(),,P x y z ,则326,,33AP x y z ⎛⎫=-- ⎪ ⎪⎝⎭,2326,0,33AD ⎛⎫=- ⎪ ⎪⎝⎭,23262AP AD x z ∴⋅=-+, P 在以M 为球心,以1为半径的球面上, 2221x y z ∴++=,01y ≤≤,2201x z ≤+≤,令2326233x z m -+=, 则直线23262033x z m -+-=与单位圆221x z +=相切时,截距取得最小值, 2221232633m-=⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,解得0m =或4m =∴AP AD ⋅的最大值为4. 故选:C【点睛】本题考查了空间向量的数量积以及简单的线性规划,解题的关键是建立恰当的空间直角坐标系,属于难题.10.A解析:A 【分析】求得EF 长度的两个临界位置的长度,由此求得EF 的取值范围. 【详解】由于ADE ∆与BCF ∆都是等边三角形,且边长为23,故高为3.当E AD B --和F BC A --趋向于0时,8332EF →--=,如下图所示.当E AD B --和F BC A --趋向于π时,83314EF →++=,如下图所示.所以EF 的取值范围是()2,14. 故选:A 【点睛】本小题主要考查空间线段长度范围的判断,考查空间想象能力,属于基础题.11.C解析:C 【分析】利用向量的基本概念逐一进行判断,即可得出结论. 【详解】 解:①a =21e +32e ,1b ke =-42e ,且a b ⊥,2212121122(23)(4)2()(38)12()2120a b e e ke e k e k e e e k ∴=+-=+--=-=,解得6k =,所以①正确.②()()OA OB CA CB OA CA OA CB OB CA OB CB ++=+++11cos6011cos9011cos9011cos60001=⨯⨯︒+⨯⨯︒+⨯⨯︒+⨯⨯︒++=,所以②正确.③(1,1,3)AC =,(1,2,0)AB =-,向量AC 在AB 上正投影22215||(1)20AC AB AB ⨯===-++,所以③正确. ④假设向量a ,b ,c 共面,则a xb yc =+, 所以123123122(32)(37)e e e x e e e y e e -+=-+++-+, 1231232(3)(37)2e e e x y e x y e xe -+=--+++,所以13x y =--,237x y -=+,12x =, 得12x =,12y , 所以向量a ,b ,c 共面,所以④不正确. 即正确的有3个, 故选:C . 【点睛】本题考查向量的基本概念,向量垂直,共面,正投影等,属于中档题.12.D解析:D 【分析】分别过点A 、点D 作BD 、AB 的平行线相交于点E ,连接CE ,则由题意可知ACE ∆为等边三角形,CDE ∆为直角三角形,求解CD 即可. 【详解】分别过点A 、点D 作BD 、AB 的平行线相交于点E ,连接CE , 则四边形ABDE 为平行四边形.线段AC 、BD 分别在这个二面角的两个面内,并且都垂直于棱AB .AC AB ∴⊥,AE AB ⊥则CAE ∠为二面角的平面角,即60CAE ∠=4AB AC BD ===4AC BD AE AB DE ∴=====,如图所示.ACE ∴∆为等边三角形,4CE =AC DE ⊥,AE DE ⊥,AC AE A ⋂=,AC ⊂平面ACE ,AE ⊂平面ACE DE ∴⊥平面ACE又CE ⊂平面ACE∴DE CE ⊥在Rt CDE ∆中22224442CD CE DE =+=+=故选:D【点睛】本题考查空间的距离问题,属于中档题.13.D解析:D 【分析】设正方体棱长为2,以1,,AD AB AA 为,,x y z 轴建立空间直角坐标系,求得1(0,1,2)A E =-和平面11B D F 的一个法向量为(1,1,2)n =,利用向量的夹角公式,即可求解. 【详解】设正方体棱长为2,分别以1,,AD AB AA 为,,x y z 轴建立空间直角坐标系, 则111(0,0,2),(0,1,0),(0,2,2),(2,0,2),(2,2,1)A E B D F , 所以1111(0,1,2),(2,2,0),(2,0,1)A E B D B F =-=-=-.设平面11B D F 的法向量为(,,)n x y z =, 则1110,0,n B D n B F ⎧⋅=⎪⎨⋅=⎪⎩即220,20,x y x z -=⎧⎨-=⎩令1x =,则1,2y z ==,即平面11B D F 的一个法向量为(1,1,2)n =. 设直线1A E 与平面11B D F 所成角为θ, 则1130sin 30n A E n A Eθ⋅===⋅ 故选D. 【点睛】本题主要考查了利用空间向量求解直线与平面所成的角,根据几何体的结构特征,建立适当的空间直角坐标系,求得直线的方向向量和平面的一个法向量,利用向量的夹角公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题14.②④【分析】由题意知abAC 三条直线两两相互垂直构建如图所示的长方体|AC|=1|AB|=2斜边AB 以直线AC 为旋转轴则A 点保持不变B 点的运动轨迹是以C 为圆心为半径的圆以C 坐标原点以CD 为x 轴CB 为解析:②④ 【分析】由题意知,a 、b 、AC 三条直线两两相互垂直,构建如图所示的长方体,|AC |=1,|AB |=2,斜边AB 以直线AC 为旋转轴,则A 点保持不变,B 点的运动轨迹是以C 为圆心,3为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系,利用向量法求出结果. 【详解】由题意知,a 、b 、AC 三条直线两两相互垂直,画出图形如图,不妨设图中所示的长方体高为13 故|AC |=1,|AB |=2,斜边AB 以直线AC 为旋转轴,则A 点保持不变, B 点的运动轨迹是以C 3为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系,则D 3,0,0),A (0,0,1),直线a 的方向单位向量a =(0,1,0),|a |=1, 直线b 的方向单位向量b =(1,0,0),|b |=1,设B 点在运动过程中的坐标中的坐标B ′3θ3θ,0),其中θ为B ′C 与CD 的夹角,[02θπ∈,),∴AB ′在运动过程中的向量,'AB =3θ3θ,﹣1),|'AB |=2, 设'AB 与a 所成夹角为α∈[0,2π],则)(10cos 3,,θα-⋅=='⋅sin a AB θ|∈[0, ∴α∈[6π,2π],∴③错误,④正确. 设'AB 与b 所成夹角为β∈[0,2π], ()(1100c 33os ,-,,,θθβ-⋅'⋅===''⋅⋅cos sin AB b AB bb AB θ|, 当'AB 与a 夹角为60°时,即α3π=,|sin θ|3πα===, ∵cos 2θ+sin 2θ=1,∴cos 2β=|cos θ|2=,∵β∈[0,2π],∴4πβ=,此时'AB 与b 的夹角为45°,∴②正确,①错误. 故答案为:②④. 【点睛】本题考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,涉及空间向量的知识点,属于中档题.15.【分析】取BC 的中点E 连接AE 证明面可得就是与平面所成的角解直角三角形即可【详解】如上图取BC 的中点E 连接AE 则∵正三棱柱中面面面面∴面∴就是与平面所成的角不妨设正三棱柱的所有棱长都为2则在中故答案 解析:4【分析】取BC 的中点E ,连接1C E ,AE ,证明AE ⊥面11BB C C ,可得1E AC ∠就是1AC 与平面11BB C C 所成的角,解直角三角形1AC E 即可.【详解】如上图,取BC 的中点E ,连接1C E ,AE ,则AE BC ⊥, ∵正三棱柱111ABC A B C -中,面ABC ⊥面11BB C C ,面ABC 面11BB C C BC =,∴AE ⊥面11BB C C ,∴1E AC ∠就是1AC 与平面11BB C C 所成的角,不妨设正三棱柱111ABC A B C -的所有棱长都为2,则15C E =122AC = 在1Rt AC E ∆中,111510cos 422C E AC E AC ∠===. 故答案为:104. 【点睛】本题考查直线与平面所成的角,考查空间想象能力和计算能力,属于常考题.16.【分析】根据平方得到计算得到答案【详解】故解得故答案为:【点睛】本题考查了平行六面体的棱长意在考查学生的计算能力和空间想象能力 解析:13【分析】根据11AC AB AD AA =+-,平方得到2224c c +-=,计算得到答案. 【详解】11AC AB AD AA =+-, 故2222211111222AC AB AD AA AB AD AA AB AD AA AB AD AA =+-=+++⋅-⋅-⋅ 2224c c =+-=,解得31c =.31. 【点睛】本题考查了平行六面体的棱长,意在考查学生的计算能力和空间想象能力.17.【分析】建立空间直角坐标系写出的坐标写出向量的坐标用两向量的夹角公式求出余弦值【详解】建立空间直角坐标系如图所示则所以异面直线和所成角的余弦值等于故答案为:【点睛】本题考查异面直线所成的角属于基础题 15【分析】建立空间直角坐标系,写出1,,,D F O E 的坐标,写出向量1,FD OE 的坐标,用两向量的夹角公式求出余弦值. 【详解】建立空间直角坐标系,如图所示则()()()()10,0,2,1,0,0,1,1,0,0,2,1D F O E ,()()111,0,2,1,1,1,5,3FD OE FD OE ∴=-=-==, 11115cos ,535OE FD OE FD OE FD ∴〈〉===⨯, 所以异面直线OE 和1FD 所成角的余弦值等于155. 15. 【点睛】本题考查异面直线所成的角,属于基础题.18.【分析】四个向量中找出三个不共面的非零向量可以作为基底除正交基底外的向量用正交基底表示出来【详解】1100若共面则存在使得化简得:无解故不共面则为正交基底设则解得:故答案为:【点睛】本题考察了空间向 解析:1122c a bd =-+【分析】四个向量中找出三个不共面的非零向量可以作为基底,除正交基底外的向量用正交基底表示出来. 【详解】(1a =,1,0),(1b =-,1,0),(1c =,0,1),(0d =,0,1),∴0a b =,0a d =,0b d =,若,,a b d 共面,则存在,x y使得a xb yd=+,化简得:11xxy=-⎧⎪=⎨⎪=⎩,无解,故,,a b d不共面,则a,b,d为正交基底,设c xa yb zd=++,则11x yx yz=-⎧⎪=+⎨⎪=⎩,解得:11,,1 22x y z==-=,∴1122c a b d=-+.故答案为:1122c a b d=-+.【点睛】本题考察了空间向量的基本定理,正交分解坐标表示,属于基础题.19.【分析】以为原点为轴为轴为轴建立空间直角坐标系利用向量法能求出点到平面的距离【详解】以为原点为轴为轴为轴建立空间直角坐标系设平面的法向量则即取得∴点到平面的距离:故答案为【点睛】空间中点到平面的距离解析:125【分析】以D为原点,DA为x轴,DC为y轴,1DD为z轴,建立空间直角坐标系,利用向量法能求出点D到平面11A D C的距离.【详解】以D为原点,DA为x轴,DC为y轴,1DD为z轴,建立空间直角坐标系,(0,0,0)D,1(3,0,4)A,1(0,0,4)D,(0,3,0)C,1(0,0,4)D D =-,11(3,0,0)D A =,1(0,3,4)DC =-, 设平面11A D C 的法向量(,,)n x y z =,则11100n D A n D C ⎧⋅=⎪⎨⋅=⎪⎩即30340x y z =⎧⎨-=⎩,取4y =,得(0,4,3)n =, ∴点D 到平面11A D C 的距离: 112||5D D nd n ⋅==. 故答案为125. 【点睛】 空间中点到平面的距离的计算,应该通过作出垂足把距离放置在可解的平面图形中计算,注意在平面图形中利用解三角形的方法(如正弦定理、余弦定理等)来求线段的长度、面积等.我们也可以利用空间向量来求,把点到平面的距离问题转化为直线的方向向量在平面的法向量上的投影问题.20.【分析】利用基向量表示出结合异面直线所成角确定点E 的位置从而可求的长也可以建立空间坐标系利用空间向量坐标求解【详解】设则因为异面直线与所成角的余弦值为所以解得所以故答案为:【点睛】关键点睛:利用空间 解析:12【分析】利用基向量表示出1,A B AE,结合异面直线所成角,确定点E 的位置,从而可求1C E 的长,也可以建立空间坐标系,利用空间向量坐标求解.【详解】设1CE C C λ= ,则11A B AB AA =-,11AE AC CE AC CC AC AA λλ=+=+=+, 142A B =16AE =111()()16A B AE ABAA AC AA λλ⋅=-⋅+=-.111cos ,2A B AEA B AE A B AE ⋅==,因为异面直线1A B 与AE 所成角的余弦值为130013=. 解得18λ=,所以12CE =. 故答案为:12.【点睛】关键点睛:利用空间向量解决异面直线所成角的问题,注意向量夹角与异面直线所成角的范围的不同.21.【分析】以为原点分别为轴建立空间直角坐标系设由平面可得P 点的坐标根据四棱锥的特点可得外接球的直径可得答案【详解】以为原点分别为轴建立空间直角坐标系由则设设平面的法向量为则即不妨令则得因为平面所以即解 解析:178π【分析】以D 为原点,DA ,DC ,DD '分别为,,x y z 轴建立空间直角坐标系,设(0,0,)P t ,由//PB 平面CEF 可得P 点的坐标,根据四棱锥P ABCD -的特点可得外接球的直径可得答案.【详解】以D 为原点,DA ,DC ,DD '分别为,,x y z 轴建立空间直角坐标系,(0,0,0)D ,由2AE D E DF B F '==, 则(9,6,0),(0,9,0)E C ,(0,0,3)F ,(9,9,0)B ,设(0,0,)P t ,∴()9,3,0EC =-, ()0,9,3CF =-,()9,9,PB t =-设平面FEC 的法向量为(),,n x y z =,则·0·0n EC n CF ⎧=⎨=⎩,即930930x y y z -+=⎧⎨-+=⎩,不妨令3z =,则11,3y x ==, 得1,1,33n ⎛⎫= ⎪⎝⎭,因为//PB 平面CEF , 所以0PB n ⋅=,即1919303t ⨯+⨯-=,解得4t =, 所以(0,0,4)P ,由PD ⊥平面ABCD ,且底面是正方形,所以四棱锥P ABCD -外接球的直径就是PB ,由()9,9,4PB =-,得229916178PB =++=, 所以外接球的表面积241782PB S ππ⎛⎫ ⎪== ⎪⎝⎭. 故答案为:178π.【点睛】 本题考查了四棱锥外接球的表面积的求法,关键点是建立空间直角坐标系,确定球的半径,考查了学生的空间想象力和计算能力.22.【分析】根据向量夹角为钝角可知且解不等式可求得结果【详解】由题意可知:且解得:且即本题正确结果:【点睛】本题考查向量夹角的相关问题的求解易错点是忽略夹角为的情况造成出现增根 解析:1311,,222⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭【分析】根据向量夹角为钝角,可知cos ,0a b <><且cos ,1a b <>≠-,解不等式可求得结果. 【详解】 由题意可知:2132cos ,013144k a b a b a b k --⋅<>==<⋅+且2132cos ,113144k a b k --<>=≠-⋅+ 解得:132k >-且12k ≠,即1311,,222k ⎛⎫⎛⎫∈-+∞ ⎪ ⎪⎝⎭⎝⎭本题正确结果:1311,,222⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭ 【点睛】本题考查向量夹角的相关问题的求解,易错点是忽略夹角为π的情况,造成出现增根. 23.【分析】直接利用空间向量的数量积求解两个平面的二面角的大小即可【详解】解:两个平面的法向量分别为则这两个平面所成的锐二面角的大小是这两个平面所成的锐二面角的余弦值为故答案为:【点睛】本题考查空间二面【分析】直接利用空间向量的数量积求解两个平面的二面角的大小即可.【详解】解:两个平面α,β的法向量分别为(4,0,3)u →=,(1,1,0)v →=-,则这两个平面所成的锐二面角的大小是θ,2cos a ba b θ→→→→===这两个平面所成的锐二面角的余弦值为5.故答案为:5. 【点睛】 本题考查空间二面角的求法,空间向量的数量积的应用,考查计算能力.24.【分析】设且利用数量积运算即得解【详解】设故答案为:【点睛】本题考查了空间向量的模长数量积运算考查了学生空间想象数学运算能力属于中档题 解析:【分析】设1,,AB a AD b AA c===,且1|||++|AC a b c =,利用数量积运算即得解. 【详解】设1,,||||||2,,,60o AB a AD b AA c a b c a b a c c b ===∴===<>=<>=<>=, 222221|||++|||||||22224AC a b c a b c a b a c c b ==+++⋅+⋅+⋅=||26AC ∴=故答案为:【点睛】本题考查了空间向量的模长,数量积运算,考查了学生空间想象,数学运算能力,属于中档题.25.【分析】先由空间向量的基本定理将向量用一组基底表示再利用向量数量积的性质计算即可【详解】∵六面体ABCD ﹣A1B1C1D1是平行六面体∵=++∴=(++)2=+++2+2+2又∵∠BAD=∠A1AB【分析】先由空间向量的基本定理,将向量1AC 用一组基底1AA AD AB ,,表示,再利用向量数量积的性质22a a =,计算1AC 即可【详解】∵六面体ABCD ﹣A 1B 1C 1D 1是平行六面体,∵1AC =1AA +AD +AB ∴21AC =(1AA +AD +AB )2=21AA +2AB +2AD +21AA AD ⋅+21AA AB ⋅+2AB AD ⋅ 又∵∠BAD=∠A 1AB=∠A 1AD=60°,AD=4,AB=3,AA 1=5, ∴21AC =16+9+25+2×5×4×cos60°+2×5×3×cos60°+2×3×4×cos60°=97 ∴197AC =【点睛】本题考察了空间向量的基本定理,向量数量积运算的意义即运算性质,解题时要特别注意空间向量与平面向量的异同 26.【分析】根据的夹角为锐角可得且不能同向共线解出即可得出【详解】12的夹角为锐角且不能同向共线解得则的取值范围为故答案为【点睛】本题主要考查了向量夹角公式向量共线定理考查了推理能力与计算能力属于中档题 解析:()()2,44,∞-⋃+【分析】 根据,AB AC 的夹角为锐角,可得0AB AC ⋅>,且不能同向共线.解出即可得出.【详解】(2,AB =1,1),(,AC λ=2,2),,AB AC 的夹角为锐角,2220AB AC λ∴⋅=++>,且不能同向共线.解得2λ>-,4λ≠.则λ的取值范围为()()2,44,∞-⋃+.故答案为()()2,44,∞-⋃+.【点睛】本题主要考查了向量夹角公式、向量共线定理,考查了推理能力与计算能力,属于中档题.。

高二数学人教A版选修2-1(第3.2 立体几何中的向量方法) Word版含解析

高二数学人教A版选修2-1(第3.2 立体几何中的向量方法) Word版含解析

绝密★启用前人教版选修2-1 课时3.2立体几何中的向量方法一、选择题1.【题文】已知三条直线l 1,l 2,l 3的一个方向向量分别为a =(4,-1,0),b =(1,4,5),c =(-3,12,-9),则 ( )A .l 1⊥l 2,但l 1与l 3不垂直B .l 1⊥l 3,但l 1与l 2不垂直C .l 2⊥l 3,但l 2与l 1不垂直D .l 1,l 2,l 3两两互相垂直2.【题文】已知直线l 1的方向向量为a =(2,4,x ),直线l 2的方向向量为b =(2,y,2),若|a |=6,且a ⊥b ,则x +y 的值是( ) A .-3或1 B .3或-1 C .-3 D .13.【题文】已知(2,2,5)u =-,(6,4,4)v =-,u ,分别是平面α,β的法向量,则平面α,β的位置关系式( )A .平行B .垂直C .所成的二面角为锐角D .所成的二面角为钝角4.【题文】在空间直角坐标系中,点B 是()1,2,3A 在yOz 坐标平面内的射影,O 为坐标原点,则OB 等于( )A .14B .13C .23D .115.【题文】长方体1111ABCD A BC D -中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为 ( ) A. 1010B.3010 C. 21510D.310106.【题文】在棱长为的正方体1111ABCD A B C D -中,平面1AB C 与平面11A C D 间的 距离为( )A .63B .33 C .332 D .237.【题文】如图,在四面体OABC 中,G 是底面△ABC 的重心,则OG 等于()GCABOA.OC OB OA ++B.111222OA OB OC ++C.111236OA OB OC ++ D.111333OA OB OC ++8.【题文】在直三棱柱111C B A ABC -中,底面是等腰直角三角形, 90=∠ACB ,侧棱21=AA ,D ,E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是ABD ∆的重心G .则B A 1与平面AB D 所成角的余弦值 ()A .32 B .37C .23D .73二、填空题9.【题文】如图,在直三棱柱111ABC A B C -中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是________.10.【题文】已知正四棱锥P ABCD -的侧棱与底面所成角为60°,M 为PA 的中点,连接DM ,则DM 与平面PAC 所成角的大小是________.11.【题文】如图所示,正方体1111ABCD A BC D -的棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是______.三、解答题12.【题文】如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上异于A 、B 的点.(1)求证:平面PAC ⊥平面PBC ;(2)若AB =2,AC =1,PA =1,求二面角C PB A --的余弦值.13.【题文】如图,直三棱柱111ABC A B C -中,△ABC 是等边三角形,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1;(2)若AB =BB 1=2,求A 1D 与平面AC 1D 所成角的正弦值.14.【题文】直四棱柱1111ABCD A BC D -中,底面A B C D为菱形,且160,,BAD A A AB E ∠==为1BB 延长线上的一点,1D E ⊥面1D AC .设2AB =. (1)求二面角1E AC D --的大小;(2)在1D E 上是否存在一点P ,使1//A P 面EAC ?若存在,求1:D P PE 的值;若不存在,说明理由.人教版选修2-1 课时3.2立体几何中的向量方法参考答案与解析一、选择题 1. 【答案】A【解析】∵a ·b =(4,-1,0)·(1,4,5)=4-4+0=0,a ·c =(4,-1,0)·( -3,12,-9)=-12-12+0=-24≠0.b ·c =(1,4,5)·(-3,12,-9)=-3+48-45=0,∴a ⊥b ,a 与c 不垂直,b ⊥c . ∴l 1⊥l 2,l 2⊥l 3,但l 1不垂直于l 3. 考点:直线的方向向量. 【题型】选择题 【难度】较易 2. 【答案】A【解析】|a |=2222+4+6x =,∴x =±4,又∵a ⊥b ,∴a ·b =2×2+4y +2x =0, ∴y =-1-12x ,∴当x =4时,y =-3,当x =-4时,y =1,∴x +y =1或-3. 考点:直线的方向向量. 【题型】选择题 【难度】较易 3. 【答案】B【解析】由(2,2,5)u =-,(6,4,4)v =-,可得262(4)540u v ⋅=-⨯+⨯-+⨯=,所以u v ⊥,又u ,分别是平面α,β的法向量,所以αβ⊥,故选B. 考点:空间向量在解决空间垂直中的应用. 【题型】选择题【难度】较易 4. 【答案】B【解析】因为点B 是()1,2,3A 在yOz 坐标平面内的射影,所以(0,2,3)B ,22202313∴=++=OB .故选B . 考点:空间中两点间的距离. 【题型】选择题 【难度】较易 5. 【答案】B【解析】建立坐标系如图所示,则A (1, 0, 0),E (0, 2, 1),B (1, 2, 0),C 1(0, 2, 2),则1BC =(-1, 0, 2),AE =(-1,2, 1).cos 〈1BC ,AE 〉=11AE BC AE BC ⋅⋅=3010. 所以异面直线BC 1与AE所成角的余弦值为3010.故选B.考点:异面直线所成角的向量求法. 【题型】选择题 【难度】较易 6.【答案】B【解析】建立如图所示的直角坐标系,设平面11A C D 的法向量(,,1)n x y =,则1100n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩,即()()()(),,11,0,10,,,10,1,10x y x y ⋅-=⎧⎪⎨⋅-=⎪⎩()1,1,1,1,1,x n y =⎧⇒∴=⎨=⎩又(1,0,0)AD =-,∴平面1AB C 与平面11A C D 间的距离()()2221,0,01,1,133111AD n d n⋅-⋅===++,故选B.考点:面与面间的距离的向量求法. 【题型】选择题 【难度】一般 7. 【答案】D【解析】由题意知,()()11=+=+=33OG OA AG OA AC AB OA OC OA OB OA ++-+- =111333OA OB OC ++,故选D. 考点:空间向量的运算. 【题型】选择题 【难度】一般 8. 【答案】B【解析】以C 为坐标原点,CA 所在直线为轴,CB 所在直线为y 轴,1CC 所在直线为轴,建立直角坐标系,设a CB CA ==,则(),0,0A a ,()0,,0B a ,)(2,0,1a A ,)(1,0,0D ,则)(1,2,2a a E ,)(31,3,3a a G ,则)(32,6,6a a GE =,)(1,,0a BD -=, ∵点E 在平面ABD 上的射影是ABD ∆的重心G , ∴⊥GE 平面ABD ,∴0=⋅BD GE ,解得2=a .∴)(32,31,31=GE ,)(2,2,21-=BA , ∵⊥GE 平面ABD ,∴GE 为平面ABD 的一个法向量.32323634||||,cos 111=⋅=⋅⋅>=<BA GE BA GE BA GE , ∴B A 1与平面ABD 所成的角的余弦值为37,故选B.考点:线面角的空间向量求法. 【题型】选择题 【难度】较难二、填空题 9. 【答案】66【解析】以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A 1(1, 0, 2),B (0, 1, 0),A (1, 0, 0),C (0, 0, 0),则1A B =(-1, 1,-2),AC =(-1, 0, 0),cos 〈1A B ,AC 〉=11A B AC A B AC⋅⋅=1114++=66. 考点:异面直线夹角的向量求法. 【题型】填空题 【难度】较易 10. 【答案】45°【解析】设底面正方形的边长为a ,由已知可得正四棱锥的高为62a ,建立如图所示的空间直角坐标系,则平面PAC 的一个法向量为n =(1,0,0),D 2,0,02a ⎛⎫- ⎪ ⎪⎝⎭,P 60,0,2a ⎛⎫ ⎪ ⎪⎝⎭,M 260,,44a a ⎛⎫- ⎪ ⎪⎝⎭,则DM =226,,244a a a ⎛⎫- ⎪ ⎪⎝⎭,所以cos 〈DM ,n 〉=n DM n DM⋅⋅=22,所以DM 与平面PAC 所成的角为45°.考点:线面角的空间向量求法. 【题型】填空题 【难度】一般 11. 【答案】平行【解析】分别以C 1B 1、C 1D 1、C 1C 所在直线为x ,y ,z 轴,建立空间直角坐标系, 如图所示.∵A 1M =AN =23a ,∴M 2(,,)33a a a ,N 22(,,)33a a a ,∴MN =2(,0,)33a a .又C 1(0,0,0),D 1(0,a,0),∴11C D =(0,a,0),∴MN ·11C D =0,∴MN ⊥11C D .∵11C D 是平面BB 1C 1C 的一个法向量,且MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .考点:向量法求线面关系. 【题型】填空题 【难度】一般三、解答题 12.【答案】(1)见解析(2)64【解析】(1)证明:由AB 是圆的直径,得AC ⊥BC ,由PA ⊥平面ABC ,BC ⊂平面ABC ,得PA ⊥BC .又PA ∩AC =A ,PA ⊂平面PAC ,AC ⊂平面PAC , 所以BC ⊥平面PAC .又BC ⊂平面PBC ,所以平面PBC ⊥平面PAC . (2)过C 作CM ∥AP ,则CM ⊥平面ABC .如图,以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴、y 轴、z 轴建立空间直角坐标系.在Rt △ABC 中,因为AB =2,AC =1,所以BC =3.又因为PA =1,所以A (0,1,0),B (3,0,0),P (0,1,1),故CB =(3,0,0),CP =(0,1,1),设平面BCP 的法向量为1n =(x 1,y 1,z 1),则110,0,n CB n CP ⎧⋅=⎪⎨⋅=⎪⎩所以111300x y z ⎧⎪⎨⎪⎩=,+=,令y 1=1,则1n =(0,1,-1).AP =(0,0,1),AB =(3,-1,0),设平面ABP 的法向量为2n =(x 2,y 2,z 2),则220,0,n AP n AB ⎧⋅=⎪⎨⋅=⎪⎩所以222300x y z ⎧⎪⎨⎪⎩-=,=,令x 2=1,则2n =(1,3,0).于是cos 〈1n ,2n 〉=322=64.由题意可知二面角C PB A --的余弦值为64. 考点:空间二面角的向量求法. 【题型】解答题 【难度】一般 13.【答案】(1)见解析(2)23535【解析】(1)证明:因为三棱柱111ABC A B C -是直三棱柱,所以四边形A 1ACC 1是矩形.连接A 1C 交AC 1于O ,连接OD ,则O 是A 1C 的中点,又D 是BC 的中点,所以在△A 1BC 中,OD ∥A 1B ,因为A 1B ⊄平面ADC 1,OD ⊂平面ADC 1,所以A 1B ∥平面ADC 1. (2)因为△ABC 是等边三角形,D 是BC 的中点,所以AD ⊥BC .以D 为原点,建立如图所示空间坐标系D xyz -.由已知AB =BB 1=2,得D (0,0,0),A (3,0, 0),A 1(3,0, 2),C 1(0,-1, 2),则DA =(3,0, 0),1DC =(0,-1,2),设平面AC 1D 的法向量为=(x ,y ,z ),则10,0,n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩即30,20,x y z ⎧=⎪⎨-+=⎪⎩取z =1,则x =0,y =2,∴=(0,2,1), 又1DA =(3,0,2),∴cos 〈1DA ,〉=257⋅=23535,设A 1D 与平面ADC 1所成角为θ,则sin θ=|cos 〈1DA ,〉|=23535, 故A 1D 与平面ADC 1所成角的正弦值为23535.考点:线面角的向量求法. 【题型】解答题 【难度】一般 14.【答案】(1)45︒(2)存在点P 使1//A P 面,EAC 此时1:3:2D P PE = 【解析】(1)设AC 与BD 交于O ,设1B E h =,如图所示建立空间直角坐标系O xyz -,则1(3,0,0),(0,1,0),(3,0,0),(0,1,0),(0,1,2),A B C D D --- (0,1,2),E h +则11(0,2,),(23,0,0),(3,1,2),D E h CA D A ===-1D E ⊥平面1D AC ,111,D E AC D E D A ∴⊥⊥,220,1,h h ∴-=∴=即(0,1,3)E .1(0,2,1),(3,1,3)D E AE ∴==-,设平面EAC 的法向量为(,,)m x y z =, 则,,m CA m AE ⎧⊥⎪⎨⊥⎪⎩即230,330,x x y z ⎧=⎪⎨-++=⎪⎩令1z =-,则0,3x y ==,()0,3,1m ∴=-. 又平面1D AC 的一个法向量为()10,2,1D E =,1112cos ,==2m D E m D E m D E⋅∴⋅, ∴二面角1E AC D --大小为45.(2)设111(),D P PE D E D P λλ==-得112(0,,),111D P D E λλλλλλ==+++ 111121(3,1,0)(0,,)(3,,)1111A P A D D P λλλλλλλλ-∴=+==--+=-++++,1//A P 面113,,303(1)0,,112EAC A P m λλλλλ-∴⊥∴-⨯+⨯+-⨯=∴=++ ∴存在点P 使1//A P 面,EAC 此时1:3:2D P PE =考点:空间向量法求二面角. 【题型】解答题 【难度】一般。

2021人教A版高考数学总复习《利用空间向量求空间角》

2021人教A版高考数学总复习《利用空间向量求空间角》

1
2
A.10 B.5
30 C. 10
2 D. 2
解析 以点C为坐标原点,CA,CB,CC1所在直线分别为x 轴,y轴,z轴,建立如图所示的空间直角坐标系,设BC= CA=CC1=2,则可得A(2,0,0),B(0,2,0),M(1,1, 2),N(1,0,2),
∴B→M=(1,-1,2),A→N=(-1,0,2).
解析 (1)两直线的方向向量所成的角是两条直线所成的角或其补角;(2)直线的 方向向量a,平面的法向量n,直线与平面所成的角为θ,则sin θ=|cos a,n | ;(3)两个平面的法向量所成的角是这两个平面所成的角或其补角. 答案 (1)× (2)× (3)× (4)√
2.(老教材选修2-1P104练习2改编)已知两平面的法向量分别为m=(0,
∴cos〈B→M,A→N〉=
→→ BM·AN →→
|BM||AN|

1×(-1)+(-1)×0+2×2 12+(-1)2+22× (-1)2+02+22

3 6×
= 5
30 10 .
答案 C
5.(2019·南阳调研)在正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的正弦 值为( )
AO2+OC2,故 AO⊥OC,又知 BD∩OC=O,因此 AO⊥平面 BCD,以 OB,
OC,OA 所在直线分别为 x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,
则 A(0,0,1),B(1,0,0),C(0, 3,0),D(-1,0,0),∴A→B=(1,0,
-1),C→D=(-1,- 3,0),设异面直线 AB 与 CD 所成角为 θ,则 cos θ
【训练 2】 (2020·安徽江南十校联考)斜三棱柱 ABC-A1B1C1 中,底面是边长为 2 的正三角形,A1B= 7,∠A1AB=∠A1AC=60°.

1.4空间向量的应用-【新教材】人教A版(2019)高中数学选择性必修第一册同步讲义

1.4空间向量的应用-【新教材】人教A版(2019)高中数学选择性必修第一册同步讲义

2.4 空间向量的应用 1、如图,直线α⊥l ,取直线l 的方向向量a ,则称向量a 为平面α为平面α的法向量给定一个点A 和一个向量a ,那么过点A ,且以向量a 为法向量的平面完全确定,可以表示为集合}|{0=⋅AP a P2、求直线与平面所成的角(1)设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |. (2)线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|3、求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).(3)二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.4、设a AP =,则向量AP 在直线l 上的投影向量u u a AQ)(⋅=,在APQ Rt ∆中,由勾股定理,得 2222)(||||u a a AQ AP PQ ⋅-=-=5、点P 到平面α的距离是AP 在直线l 上的投影向量QP 的长度:||||||||||||n n AP n n AP n n AP PQ ⋅=⋅=⋅= 知识梳理题型一 法向量例 1 已知平面α的一个法向量是(2,1,1)-,//αβ,则下列向量可作为平面β的一个法向量的是( )A .()4,22-,B .()2,0,4C .()215--,,D .()42,2-,【答案】D【分析】 两个平面平行,其法向量也平行,即可判断各选项.【详解】平面α的一个法向量是(2,1,1)-,//αβ,设平面β的法向量为(),,x y z ,则()(2,1,1),,,0x y z λλ=≠-,对比四个选项可知,只有D 符合要求,故选:D.1、如图,在正方体ABCD­1111A B C D 中,以D 为原点建立空间直角坐标系,E 为B 1B 的中点,F 为11A D 的中点,则下列向量中,能作为平面AEF 的法向量的是( )A .(1,-2,4)B .(-4,1,-2)C .(2,-2,1)D .(1,2,-2)【答案】B 巩固练习 知识典例【分析】由A 、E 、F 的坐标算出AE =(0,2,1),AF =(﹣1,0,2).设n =(x ,y ,z )是平面ABC 的一个法向量,利用垂直向量数量积为零的方法建立关于x 、y 、z 的方程组,再取y=1即可得到向量n 的坐标,从而可得答案.【详解】设正方体棱长为2,则A (2,0,0),E (2,2,1),F (1,0,2),∴AE =(0,2,1),AF =(﹣1,0,2)设向量n =(x ,y ,z )是平面A EF 的一个法向量则2020n AE y z n AF x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取y=1,得x=﹣4,z=﹣2∴n =(﹣4,1,﹣2)是平面AEF 的一个法向量因此可得:只有B 选项的向量是平面AEF 的法向量故选B .2、在空间直角坐标系中,已知三点(1,2,1)A --,(0,3,1)B -,(2,2,1)C -,若向量n 与平面ABC 垂直,且21n =,则n 的坐标为________.【答案】(2,4,1)--或()2,4,1-【分析】先求得,AB AC ,设(),,n x y z =,利用0,0,21n AB n AC n ⋅=⋅==列方程组,解方程组求得n 的坐标.【详解】由A ()1,2,1--,()0,3,1B -,()2,2,1C -,可得()()1,1,2,1,0,2AB AC =--=, 设(),,n x y z =,根据题意可得0021n AB n AC n ⎧⋅=⎪⋅=⎨⎪=⎩,可得222202021x y z x z x y z --+=⎧⎪+=⎨⎪++=⎩,解得241x y z =⎧⎪=-⎨⎪=-⎩或241x y z =-⎧⎪=⎨⎪=⎩.所以()2,4,1n =--或2,4,1)n =-(.故答案为:()2,4,1--或2,4,1)(-. 题型二 线面角例 2 在棱长为1的正方体1111ABCD A BC D -中,点M 为棱1CC 的中点,则直线1B M 与平面11A D M 所成角的正弦值是( )A .215B .25C .35D .45【答案】B【分析】通过建立空间直角坐标系,求出平面的法向量,进而求出线面角的正弦值.【详解】建立如图所示的空间直角坐标系,则1111(1,0,1),(0,0,1),(0,1,),(1,1,1)2A D MB 11(1,0,0)=-A D ,11(0,1,)2=-D M ,11(1,0,)2=MB设平面11A D M 的法向量为(,,)m x y z = 则1110=01002x A D m y z D M m -=⎧⎧⋅⎪⎪⇒⎨⎨-=⋅=⎪⎩⎪⎩令1y =可得2z =,所以(0,1,2)=m 设直线1B M 与平面11A D M 所成角为θ,1112sin 5552θ⋅===⋅⨯m MB m MB故选:B巩固练习1、如图,在直三棱柱111ABC A B C -中,90ACB ∠=︒,6AC BC ==,D 、E 分别为棱AB 、BC 的中点,M 是棱1AA 上的点,满足6tan 6MDA ∠=.(1)证明:DE ⊥平面11B BCC ;(2)求直线CD 与平面MDE 所成角的正弦值.【答案】(1)证明见解析;(2)24. 【分析】(1)由已知证得1BB ⊥DE ,DE BC ⊥,由线面垂直的判定定理可得证;(2)以点C 为坐标原点建立空间直角坐标系C xyz -如下图所示,根据线面角的向量求解方法可得答案.【详解】(1)三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥平面 ABC ,又DE ⊂平面ABC ,所以1BB ⊥DE , 又90ACB ∠=︒,6AC BC ==, D 、E 分别为棱AB 、BC 的中点,所以 //DE AC ,所以DE BC ⊥, 又1BB BC B =,BC ⊂平面11B BCC ,1BB ⊂平面11B BCC ,所以DE ⊥平面11B BCC ;(2)以点C 为坐标原点建立空间直角坐标系C xyz -如下图所示, 由(1)得1322AD AB ==,又6tan MDA ∠=,所以3AM = 所以()()()(0,0,0,3,3,0,0,3,0,3C D E M ,所以()()()3,3,3,6,3,3,3,3,0DM EM CD =-=-=, 设面MDE 的法向量为(),,n x y z =,则00n DM n EM ⎧⋅=⎪⎨⋅=⎪⎩,所以33+3063+30x y z x y z ⎧-=⎪⎨-=⎪⎩,令1y =,得0,3z =x ,所以(0,1,3n =,设直线CD 与平面MDE 所成角为θ,则32sin 4322θ==⨯,所以直线CD 与平面MDE 所成角的正弦值为24.题型三 点到面的距离 例 3 如图,棱长为1的正方体1111ABCD A BC D -,O 是底面1111D C B A 的中心,则O 到平面11ABC D 的距离是( )A .12B .24C .22D .32【答案】B【分析】如图建立空间直角坐标系,可证明1A D ⊥平面11ABC D ,故平面11ABC D 的一个法向量为:1DA ,利用点到平面距离的向量公式即得解.【详解】如图建立空间直角坐标系,则:1111(,,1),(0,0,1),(1,0,0),(1,1,0),(0,1,1)22O D A B C111(,,0)22OD ∴=-- 由于AB ⊥平面111,ADD A AD ⊂平面11ADD A1AB A D ∴⊥,又11AD A D ⊥,1AB AD1A D ∴⊥平面11ABC D故平面11ABC D 的一个法向量为:1(1,0,1)DA = O ∴到平面11ABC D 的距离为:1111||224||2OD DA d DA ⋅=== 故选:B1、已知A (0,0,2),B (1,0,2),C (0,2,0),则点A 到直线BC 的距离为( )A .223B .1C .2D .22【答案】A【分析】利用向量的模,向量的夹角及三角函数即可求出点到直线的距离.【详解】∵A (0,0,2),B (1,0,2),C (0,2,0),AB →∴=(1,0,0),BC →=(﹣1,2,﹣2),∴点A 到直线BC 的距离为:d =22AB BC AB 1(cos AB,BC )AB 1()AB BC →→→→→→→→⋅-<>=-⋅=1×21113-⎛⎫- ⎪⨯⎝⎭=223. 故选:A题型四 二面角例 4 如图,在三棱柱111-ABC A B C 中,AC BC ⊥,12AC BC CC ===,D 是棱11A B 的中点,侧棱1CC ⊥底面ABC . 巩固练习求平面1ADC 与平面ABC 所成二面角的正弦值.【答案】(Ⅰ)o 60;(Ⅱ)63. 【分析】(Ⅰ)以C 为坐标原点建立空间直角坐标系,写出1CB 和1AC 的坐标,然后计算即可(Ⅱ)先求出平面1ADC 的法向量,1CC 是平面ABC 的法向量,然后计算出平面1ADC 与平面ABC 所成二面角的正弦值即可【详解】 (Ⅱ)∵D 是棱11A B 的中点,∴(1,2,1)D .由(Ⅰ),知(0,0,0)C ,(0,0,2)A ,1(0,2,0)C .∴1(0,2,0)CC =,1(0,2,2)AC =-,(1,2,1)AD =-.∵侧棱1CC ⊥底面ABC ,∴1(0,2,0)CC =是平面ABC 的法向量.设平面1ADC 的法向量为(,,)n x y z =,则1·0,·0.n AC n AD ⎧=⎨=⎩即220,20.y z x y z -=⎧⎨+-=⎩解之,得,.x z y z =-⎧⎨=⎩ 故可取(1,1,1)n =-. ∴112222221·(0,2,0)?(1,1,1)3cos ,3020(1)11CC nCC n CC n-===++⨯-++. ∴16sin ,3CC n <>=. 故平面1ADC 与平面ABC 所成二面角的正弦值为63.1、如图,已知正方形ABCD 和矩形ACEF 中,AB =2,CE =1,CE ⊥平面ABCD .(1)求异面直线DF 与BE 所成角的余弦值;(2)求二面角A -DF -B 的大小.【答案】(1)13;(2)3π. 【解析】分析:(1)建立空间直角坐标系,利用向量法求异面直线DF 与BE 所成角的余弦值.(2)利用向量法求二面角A -DF -B 的大小.详解:⑴以{,,CD CB CE }为正交基底,建立如图空间直角坐标系C -xyz ,则D (2,0,0),F (2,2,1),E (0,0,1),B (0,2,0),C (0,0,0),所以DF =(0,2,1),BE =(0,–2,1),从而cos<DF ,BE >=11333-=-⋅. 所以直线DF 与BE 所成角的余弦值为13. (2)平面ADF 的法向量为m CD == (2,0,0).设面BDF 的法向量为n = (x ,y ,z ).又BF =(2,0,1).巩固练习由n DF ⋅=0,n BF ⋅=0, 得2y +z =0,2 x +z =0取x =1,则y =1,z =–2,所以n = (1,1,-2),所以cos<,m n >=21242=⋅. 又因为<,m n >∈[0,π],所以<,m n >=3π. 所以二面角A – DF – B 的大小为3π. 题型五 动点问题 例 5 如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(1)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由(2)当二面角D-FC-B 的余弦值为42时,求直线PB 与平面ABCD 所成的角1、如图,在四棱锥E ABCD -中,平面ABE ⊥底面ABCD ,侧面AEB 为等腰直角三角形,2AEB π=∠,底面ABCD为直角梯形,//,,22AB CD AB BC AB CD BC ⊥===2,EA ⊥EB(1)求直线EC 与平面ABE 所成角的正弦值;(2)线段EA 上是否存在点F ,使//EC 平面FBD ?若存在,求出EF EA;若不存在,说明理由. 【答案】(1)33(2)点F 满足13EF EA =时,有//EC 平面FBD . 巩固练习1、如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,13AA =,2AB AC BC ===,则1AA 与平面11AB C 所成角的大小为巩固提升A .30B .45︒C .60︒D .90︒【答案】A 取AB 的中点D ,连接CD ,以AD 为x 轴,以CD 为y 轴,以1BB 为z 轴,建立空间直角坐标系,可得()1,0,0A ,()11,0,3A ,故()()()11,0,31,0,00,0,3AA =-=,而 ()()111,0,3,3,3B C -,设平面11AB C 的法向量为()=,,m a b c ,根据 110,0m AB m AC ⋅=⋅=,解得()3,3,2m =-, 111 1,?2|?|m AA cos m AA m AA ==. 故1AA 与平面11AB C 所成角的大小为030,故选A .2、两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,且两平面的一个法向量 ()1,0,1n =-,则两平面间的距离是 ( )A .32B .22C 3D .32【答案】B【解析】两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,()2,1,1OA =,且两平面的一个法向量()1,0,1,n =-∴两平面间的距离201222n OA n ⋅-++===,故选B.3、长方体1111ABCD A BC D -中,6AB =,14A D A A ==.(1)求异面直线1AD 与BD 所成角的余弦值(2)求点1B 到平面1ACD 的距离(3)求二面角11A CD B --的余弦值【答案】(1)1326(212223)112 解:以D 为原点,以1,,DA DC DD 所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -, 则(0,0,0),(4,0,0),(4,6,0),(0,6,0)D A B C ,1111(0,0,4),(4,0,4),(4,6,4),(0,6,4)D A B C , (1)设异面直线1AD 与BD 所成角为θ, 因为1(4,0,4),(4,6,0)AD DB =-=, 所以11626cos cos ,161616364221326AD DB θ-=====+⋅+⋅ (2)设平面1ACD 的法向量为(,,)m x y z =,(4,6,0)AC =-,1(4,0,4)AD =-, 则100m AC m AD ⎧⋅=⎪⎨⋅=⎪⎩,即460440x y x z -+=⎧⎨-+=⎩,令1z =,则21,3x y ==,所以2(1,,1)3m =, 因为1(0,6,4)AB =,所以点1B 到平面1ACD 的距离1441222114119AB md m ⋅+===++, (3)设平面11CB D 的法向量为(,,)n a b c =,11(4,0,4),(0,6,4)CB CD ==-,则1100n CB n CD ⎧⋅=⎪⎨⋅=⎪⎩,即440640a c b c +=⎧⎨-+=⎩,令1c =,则21,3a b =-=, 所以2(1,,1)3n =-, 设二面角11A CD B --的大小为α,则 4411299cos cos ,2211441111999m nm n m n α-++⋅=====++⋅++,4、在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,14A A =,点D 是BC 的中点.(1)求异面直线1A B ,1AC 所成角的余弦值; (2)求直线1AB 与平面1C AD 所成角的正弦值; (3)求异面直线1A B 与AD 的距离.【答案】(1)45.(2453)43 【详解】解:以AB ,AC ,1AA 为x ,y ,z 轴建立按直角坐标系A xyz -,则各点的坐标为()2,0,0B ,()10,0,4A ,()10,2,4C ,()1,1,0D .如图:(1)所以()12,0,4A B =-,()10,2,4AC =, 所以114cos 52020A B AC <>==-⨯,. 故异面直线1A B 和1AC 所成角的余弦值为45. (2)()12,0,4AB =,()1,1,0AD =,设平面1C AD 的法向量为(),,n x y z =. 则100n AC n AD ⎧⋅=⎨⋅=⎩即2400y z x y +=⎧⎨+=⎩,取1x =,得11,1,2n ⎛⎫=- ⎪⎝⎭. 设直线1AB 与平面1C AD 所成角为θ,则11145sin cos ,15AB nAB n AB n θ<⋅=>== 所以直线1AB 与平面1C AD 45 (3)连接1AC 交1AC 于点M ,连接DM ,易得1//DM A B , 所以1//A B 平面1C AD ,故点1A 到平面1C AD 的距离即为所求异面直线距离. 记点1A 到平面1C AD 的距离为d ,则()()12222101014432231112AA nd n ⨯+⨯-+⨯⋅====⎛⎫+-+ ⎪⎝⎭. 所以异面直线1A B 与AD 的距离为43.。

高中数学 3.2.3用向量方法求空间中的角课后习题 新人教A版高二选修2-1数学试题

高中数学 3.2.3用向量方法求空间中的角课后习题 新人教A版高二选修2-1数学试题

第三课时用向量方法求空间中的角课时演练·促提升A组1.已知A(0,1,1),B(2,-1,0),C(3,5,7),D(1,2,4),则直线AB和直线CD所成角的余弦值为()A. B.-C. D.-解析:=(2,-2,-1),=(-2,-3,-3),而cos =,故直线AB和CD所成角的余弦值为.答案:A2.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于()A.120°B.60°C.30°D.以上均错解析:∵l的方向向量与平面α的法向量的夹角为120°,∴它们所在直线的夹角为60°.则直线l与平面α所成的角为90°-60°=30°.答案:C3.若二面角α-l-β的大小为120°,那么平面α与平面β的法向量的夹角为()A.120°B.60°C.120°或60°D.30°或150°解析:二面角为120°时,其法向量的夹角可能是60°,也可能是120°.答案:C4.在正方体ABCD-A1B1C1D1中,M是AB的中点,则sin<>的值为()A. B. C. D.解析:如图,以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系.设正方体的棱长为1,则D(0,0,0),B1(1,1,1),C(0,1,0),M,∴=(1,1,1),,∴cos<>==,∴sin<>=.答案:B5.如图,过边长为1的正方形ABCD的顶点A作线段EA⊥平面ABCD,若EA=1,则平面ADE与平面BCE所成的二面角的大小是()A.120°B.45°C.135°D.60°解析:以A为原点,分别以AB,AD,AE所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则E(0,0,1),B(1,0,0),C(1,1,0),则=(1,0,-1),=(1,1,-1).设平面BCE的法向量为n=(x,y,z).则有可取n=(1,0,1),又平面EAD的法向量为=(1,0,0),所以cos n, =,故平面ADE与平面BCE所成的二面角为45°.答案:B6.在正四棱锥P-ABCD中,高为1,底面边长为2,E为BC的中点,则异面直线PE与DB所成的角为. 解析:建立空间直角坐标系如图,则B(1,1,0),D(-1,-1,0),E(0,1,0),P(0,0,1), 故=(2,2,0),=(0,1,-1).从而cos<>=,即<>=.于是PE与DB所成的角为.答案:7.若空间直线l的方向向量为t,平面α的法向量为n,t与n的夹角θ>,则l与α所成角为. 解析:如图可知,l与α所成角为θ-.答案:θ-8.如图,已知ABC-A1B1C1是直三棱柱,∠ACB=90°,点D1,F1分别是A1B1,A1C1的中点,BC=CA=CC1,求BD1与AF1所成角的余弦值.解:如图,以C为原点,CA,CB,CC1所在直线分别为x轴、y轴、z轴建立空间直角坐标系, 设CB=CA=CC1=1,则A(1,0,0),B(0,1,0),D1,F1,则.故||=,||=,则cos<>=.于是BD1与AF1所成角的余弦值为.9.在正方体ABCD-A1B1C1D1中,E,F分别为AA1,AB的中点,求EF和平面ACC1A1夹角的大小.解:建立如图的空间直角坐标系,设正方体棱长为2,则由E,F分别是AA1,AB的中点,得E(2,0,1),F(2,1,0).过F作FG⊥AC于G,则由正方体性质知FG⊥平面ACC1A1.连接EG,则的夹角即为所求,又因为F是AB的中点,所以AG=AC,所以G=(0,1,-1).cos<>=.∴<>=,即EF与平面ACC1A1的夹角为.10.在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(1)求证:BD⊥平面AED;(2)求二面角F-BD-C的余弦值.(1)证明:∵四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,∴∠ADC=∠BCD=120°.又∵CB=CD,∴∠CDB=30°.∴∠ADB=90°,即AD⊥BD.又∵AE⊥BD,且AE∩AD=A,AE⊂平面AED,AD⊂平面AED,∴BD⊥平面AED.(2)解:由(1)知AD⊥BD,∴AC⊥BC.又FC⊥平面ABCD,因此CA,CB,CF两两垂直.以C为坐标原点,分别以CA,CB,CF所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系.不妨设CB=1,则C(0,0,0),B(0,1,0),D,F(0,0,1),因此=(0,-1,1).设平面BDF的一个法向量为m=(x,y,z),则m·=0,m·=0,即x-y=0,-y+z=0,所以x=y=z.令z=1,得m=(,1,1).由于=(0,0,1)是平面BDC的一个法向量,则cos<m,>=,故二面角F-BD-C的余弦值为.B组1.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.则直线AE与平面A1ED1所成角的大小为()A.60°B.90°C.45°D.以上都不正确解析:以点D为原点,分别以DA,DC,DD1所在直线为x轴,y轴,z轴,建立空间直角坐标系,如图.由题意知,A1(1,0,2),E(1,1,1),D1(0,0,2),A(1,0,0),所以=(0,1,-1),=(1,1,-1),=(0,-1,-1).设平面A1ED1的一个法向量为n=(x,y,z),则令z=1,得y=1,x=0,所以n=(0,1,1),cos<n,>==-1.所以<n,>=180°.所以直线AE与平面A1ED1所成的角为90°.答案:B2.在空间中,已知平面α过点(3,0,0)和(0,4,0)及z轴上一点(0,0,a)(a>0),如果平面α与平面xOy的夹角为45°,则a=.解析:平面xOy的法向量为n=(0,0,1),设平面α的法向量为u=(x,y,z),则则3x=4y=az,取z=1,则u=,而cos<n,u>=.又a>0,故a=.答案:3.在四面体ABCD中,O是BD的中点,|CA|=|CB|=|CD|=|BD|=2,|AB|=|AD|=,则异面直线AB与CD所成的角的余弦值是.解析:以O为原点,建立如图所示的空间直角坐标系,则点B(1,0,0),D(-1,0,0),C(0,,0),A(0,0,1),=(-1,0,1),=(-1,-,0).所以cos<>=.故异面直线AB与CD所成的角的余弦值为.答案:4.在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,E是PD的中点,求二面角E-AC-D的大小.解:如图,以A为原点,分别以AC,AB,AP所在直线为x轴、y轴、z轴建立空间直角坐标系.设PA=AB=a,AC=b.连接BD与AC交于O,取AD中点F,连接OE,OF,EF,则C(b,0,0),B(0,a,0),.∴D(b,-a,0),P(0,0,a).∴E,O=(b,0,0),∵=0,∴=0.∴.∴∠EOF为二面角E-AC-D的平面角.cos =.∴二面角E-AC-D的大小为45°.5.如图,已知点P在正方体ABCD-A'B'C'D'的对角线BD'上,∠PDA=60°.(1)求DP与CC'所成角的大小;(2)求DP与平面AA'D'D所成角的大小.解:如图,以D为原点,DA为单位长度建立空间直角坐标系Dxyz.则=(1,0,0),=(0,0,1).连接BD,B'D'.在平面BB'D'D中,延长DP交B'D'于点H.设=(m,m,1)(m>0),由已知<>=60°,由=||||cos<>,可得2m=,解得m=,所以.(1)因为cos<>=,所以<>=45°,即DP与CC'所成的角为45°.(2)平面AA'D'D的一个法向量是=(0,1,0).因为cos<>=,所以<>=60°.故DP与平面AA'D'D所成的角为30°.6.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)求证:PC⊥AD;(2)求二面角A-PC-D的正弦值;(3)若E为棱PA上的点,且异面直线BE与CD所成的角为30°,求AE的长.解:如图,以点A为原点,AD,AC,AP所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,由题意得A(0,0,0),D(2,0,0),C(0,1,0),B,P(0,0,2).(1)证明:易得=(0,1,-2),=(2,0,0),于是=0,所以PC⊥AD.(2)=(0,1,-2),=(2,-1,0).设平面PCD的法向量n=(x,y,z),则不妨令z=1,可得n=(1,2,1).可取平面PAC的法向量m=(1,0,0).于是cos<m,n>=,从而sin<m,n>=.所以二面角A-PC-D的正弦值为.(3)设点E的坐标为(0,0,h),其中h∈[0,2].由此得=(2,-1,0),故cos<>==.所以=cos 30°=,解得h=,即AE的长为.。

新人教版高中数学选修一第一单元《空间向量与立体几何》检测(包含答案解析)(1)

新人教版高中数学选修一第一单元《空间向量与立体几何》检测(包含答案解析)(1)

一、选择题1.在棱长为1的正方体1111ABCD A B C D -中,,M N 分别为111,BD B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥,则下列说法正确的是( )A .点P 可以是棱1BB 的中点 B .线段MP 的最大值为32C .点P 的轨迹是正方形D .点P 轨迹的长度为2+52.设,,,A B C D 是空间不共面的四点,且满足AB AC 0⋅=,AB AD 0⋅=,AC AD 0⋅=,则BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .等边三角形3.在棱长为2的正四面体ABCD 中,点M 满足()1AM xAB yAC x y AD =+-+-,点N 满足()1BN BA BC λλ=+-,当AM 、BN 最短时,AM MN ⋅=( ) A .43-B .43C .13-D .134.如图所示,在三棱锥P –ABC 中,PA ⊥平面ABC ,D 是棱PB 的中点,已知PA =BC =2,AB =4,CB ⊥AB ,则异面直线PC ,AD 所成角的余弦值为A .3010-B .305-C .305D .30105.如图,平面ABCD ⊥平面ABEF ,四边形ABCD 是正方形,四边形ABEF 是矩形,且AF =12AD =a ,G 是EF 的中点,则GB 与平面AGC 所成角的正弦值为( )A .6 B .3 C .6 D .236.如图,在四面体O ABC -中,1G 是ABC 的重心,G 是1OG 上的一点,且12OG GG =,若OG xOA yOB zOC =++,则(,,)x y z 为( )A .111(,, )222B .222(, , )333C .111(, , )333D .222(,, )9997.在三棱锥P ABC -中,2AB BC ==,22AC =PB ⊥平面ABC ,点M ,N 分别AC ,PB 的中点,6MN =,Q 为线段AB 上的点,使得异面直线PM 与CQ 所成的角的余弦值为3434,则BQ BA为( )A .14B .13C .12D .348.在正三棱柱(底面是正三角形的直三棱柱)111ABC A B C -中,2AB =,E ,F 分别为11A C 和11A B 的中点,当AE 和BF 所成角的余弦值为14时,AE 与平面11BCC B 所成角的正弦值为( ) A .62B .64C 10D 10 9.在空间直角坐标系O xyz -中,(0,0,0),(22,0,0),(0,22,0)OEF ,B 为EF 的中点,C 为空间一点且满足||||3CO CB ==,若1cos ,6EF BC <>=,,则OC OF ⋅=( ) A .9B .7C .5D .310.如图,在四面体OABC 中,D 是BC 的中点,G 是AD 的中点,则OG 等于( )A .111333OA OB OC ++ B .111234OA OB OC ++C .111244OA OB OC ++ D .111446OA OB OC ++11.在正方体1111ABCD A B C D -中,在正方形11DD C C 中有一动点P ,满足1PD PD ⊥,则直线PB 与平面11DD C C 所成角中最大角的正切值为( ) A .1B .2C .31+ D .51+ 12.在棱长为1的正方体1111ABCD A B C D -中,M ,N ,H 分别在棱1BB ,BC ,BA 上,且满足134BM BB =,12BN BC =,12BH BA =,O 是平面1B HN ,平面ACM 与平面11B BDD 的一个公共点,设BO xBH yBN zBM =++,则3x y z ++=( ) A .105B .125C .145D .16513.如图四边形ABCD 中,2AB BD DA ===,2BC CD ==,现将ABD △沿BD折起,当二面角A BD C --的大小为56π时,直线AB 与CD 所成角的余弦值是( )A 52B 32C 32D 2 二、填空题14.已知向量()()0,1,1,4,1,0,29a b a b λ=-=+=,且0λ>,则λ=____________.15.如图,四棱锥P ABCD -中,ABCD 是矩形,PA ⊥平面ABCD ,1==PA AB ,2BC =,四棱锥外接球的球心为O ,点E 是棱AD 上的一个动点,给出如下命题:①直线PB 与直线CE 所成的角中最小的角为45︒;②BE 与PC 一定不垂直;③三棱锥E BCO -的体积为定值;④CE PE +的最小值为22,其中正确命题的序号是__________.(将你认为正确的命题序号都填上)16.已知正三棱锥P ABC -的侧棱长为2020,过其底面中心O 作动平面α交线段PC 于点S ,交,PA PB 的延长线于,M N 两点,则111PS PM PN++的取值范围为__________17.如图所示,在正方体1111ABCD A B C D -中,M 为棱1CC 的中点,则异面线1BD 与AM 所成角的余弦值为________.18.一个结晶体的形状为平行六面体,以同一个顶点为端点的三条棱长均为6,且它们彼此的夹角均为60︒,则以这个顶点为端点的晶体的对角线长为_________. 19.写出直线210x y ++=的一个法向量n =______.20.设平面α的法向量为(1,2,2)-,平面β的法向量为(2,,4)λ,若α∥β,则λ的值为______21.如图,在长方体1111ABCD A B C D -中,1AB =,3BC =,点M 在棱1CC 上,且1MD MA ⊥,则当1MAD 的面积取得最小值时其棱1AA =________.22.若平面α,β的法向量分别为(4,0,3)u =,(1,1,0)v =-,则这两个平面所成的锐角的二面角的余弦值为________.23.在正方体1111ABCD A B C D -中,M ,N 分别为1B B ,CD 的中点,有以下命题: ①//MN 平面1A BD ;②1MN CD ⊥;③平面1A MN ⊥平面1A AC , 则正确命题的序号为______.24.已知直线l 的一个方向向量为()2,8,1m =--,平面α的一个法向量为1,,22n t ⎛⎫= ⎪⎝⎭,且//l α,则实数t =______.25.已知三棱锥 A BCD -每条棱长都为1,点E ,G 分别是AB ,DC 的中点,则GE AC ⋅=__________.26.已知向量a =(4,﹣5,12),b =(3,t ,23),若a 与b 的夹角为锐角,则实数t 的取值范围为_____.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,根据MP CN ⊥,确定点P 的轨迹,在逐项判断,即可得出结果. 【详解】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系, 因为该正方体的棱长为1,,M N 分别为111,BD B C 的中点, 则()0,0,0D ,111,,222M ⎛⎫ ⎪⎝⎭,1,1,12N ⎛⎫⎪⎝⎭,()0,1,0C , 所以1,0,12CN ⎛⎫= ⎪⎝⎭,设(),,P x y z ,则111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,因为MP CN ⊥, 所以1110222x z ⎛⎫-+-= ⎪⎝⎭,2430x z +-=,当1x =时,14z =;当0x =时,34z =; 取11,0,4E ⎛⎫ ⎪⎝⎭,11,1,4F ⎛⎫ ⎪⎝⎭,30,1,4G ⎛⎫ ⎪⎝⎭,30,0,4H ⎛⎫ ⎪⎝⎭,连接EF ,FG ,GH ,HE ,则()0,1,0EF GH ==,11,0,2EH FG ⎛⎫==- ⎪⎝⎭, 所以四边形EFGH 为矩形,则0EF CN ⋅=,0EH CN ⋅=,即EF CN ⊥,EH CN ⊥, 又EFEH E =,且EF ⊂平面EFGH ,EH ⊂平面EFGH ,所以CN ⊥平面EFGH , 又111,,224EM ⎛⎫=-⎪⎝⎭,111,,224MG ⎛⎫=- ⎪⎝⎭,所以M 为EG 中点,则M ∈平面EFGH ,所以,为使MP CN ⊥,必有点P ∈平面EFGH ,又点P 在正方体的表面上运动, 所以点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点,即A 错; 又1EF GH ==,5EH FG ==,所以EF EH ≠,则点P 的轨迹不是正方形;且矩形EFGH 的周长为2222+⨯=+C 错,D 正确; 因为点M 为EG 中点,则点M 为矩形EFGH 的对角线交点,所以点M 到点E 和点G的距离相等,且最大,所以线段MP ,故B 错. 故选:D. 【点睛】关键点点睛:求解本题的关键在于建立适当的空间直角坐标系,利用空间向量的方法,由MP CN ⊥,求出动点轨迹图形,即可求解.2.B解析:B 【分析】由0AB AC ⋅=,0AB AD ⋅=,0AC AD ⋅=,可得()()20BC BD AC AB AD AB AB ⋅=--=>,B ∠是锐角,同理可得D ∠,C ∠都是锐角,从而可得结果. 【详解】因为0AB AC ⋅=,0AB AD ⋅=,0AC AD ⋅=, 所以()()220BC BD AC AB AD AB AC AD AC AB AB AD AB AB ⋅=--=⋅-⋅-⋅+=>,cos 0BC BD B BC BD⋅∴=>⋅,故B ∠是锐角,同理0CB CD ⋅>,0DC DB ⋅>,可得D ∠,C ∠都是锐角, 故BCD 是锐角三角形,故选B . 【点睛】本题主要考查向量的数量积的运算以及向量运算的三角形法则,属于中档题.判断三角形的形状有两种基本的方法:①看三角形的角;②看三角形的边.3.A解析:A 【分析】根据题意可知M ∈平面BCD ,N ∈直线AC ,根据题意知,当M 为BCD ∆的中心、N 为线段AC 的中点时,AM 、BN 最短,然后利用MC 、MA 表示MN ,利用空间向量数量积的运算律和定义可求出AM MN ⋅的值. 【详解】由共面向量基本定理和共线向量基本定理可知,M ∈平面BCD ,N ∈直线AC , 当AM 、BN 最短时,AM ⊥平面BCD ,BN AC ⊥,所以,M 为BCD ∆的中心,N 为AC 的中点, 此时,2432sin 603MC ==,233MC ∴=, AM ⊥平面BCD ,MC ⊂平面BCD ,AM MC ∴⊥,22222326233MA AC MC ⎛⎫∴=-=-= ⎪ ⎪⎝⎭. 又()12MN MC MA =+,()2114223AM MN AM MC AM MA MA ∴⋅=⋅+⋅=-=-. 故选:A. 【点睛】本题考查空间向量数量积的计算,同时也涉及了利用共面向量和共线向量来判断四点共面和三点共线,确定动点的位置是解题的关键,考查计算能力,属于中等题.4.D解析:D 【解析】因为PA ⊥平面ABC ,所以PA ⊥AB ,PA ⊥BC .过点A 作AE ∥CB ,又CB ⊥AB ,则AP ,AB ,AE 两两垂直.如图,以A 为坐标原点,分别以AB ,AE ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),P (0,0,2),B (4,0,0),C (4,−2,0).因为D 为PB 的中点,所以D (2,0,1).故CP =(−4,2,2),AD =(2,0,1).所以cos 〈AD ,CP 〉=AD CP AD CP⋅⋅==−.设异面直线PC ,AD 所成的角为θ,则cos θ=|cos 〈AD ,CP 〉|=.5.C解析:C 【解析】如图,以A 为原点建立空间直角坐标系,则A(0,0,0),B(0,2a,0),C(0,2a,2a),G(a ,a,0),F(a,0,0),AG =(a ,a,0),AC =(0,2a,2a),BG =(a ,-a ,0),BC =(0,0,2a),设平面AGC 的法向量为n 1=(x 1,y 1,1), 由110{AG n AC n ⋅=⋅=⇒⇒111{1x y ==-⇒n 1=(1,-1,1).sinθ=11BG n BG n ⋅⋅=23a ⨯63. 6.D解析:D 【分析】根据空间向量线性运算进行计算,用,,OA OB OC 表示出OG . 【详解】因为E 是BC 中点,所以1()2OE OB OC =+, 1G 是ABC 的重心,则123AG AE =, 所以122()33AG AE OE OA ==-, 因为12OG GG = 所以112224()()3339OG OG OA AG OA OE OA ==+=+-2422222()9999999OA OE OA OB OC OA OB OC =+=++=++, 若OG xOA yOB zOC =++,则29x y z ===.故选:D.【点睛】本题考查空间的向量的线性运算,掌握向量线性运算的运算法则是解题关键.7.A解析:A【分析】以B为原点,,,BA BC BP坐标轴建立空间直角坐标系,设BQBAλ=,由异面直线PM与CQ所成的角的余弦值为34可列式22234343244PM CQPM CQ,求出λ即可.【详解】如图,在三棱锥P ABC-中,2AB BC==,22AC=,BA BC∴⊥, PB⊥平面ABC ,以B 为原点,,,BA BC BP坐标轴建立空间直角坐标系,可知()0,0,0B,()0,2,0C,()1,1,0M,2,6BM MN,222BN MN BM,4PB∴=,则()0,0,4P,设BQBAλ=,且01λ<<,则2,0,0Q,可知1,1,4,2,2,0PM CQ,12124022PM CQ,22211432PM,244CQ,异面直线PM与CQ 所成的角的余弦值为34 34,222343244PM CQPM CQ,解得14λ=或4λ=(舍去),14BQBA∴=.故选:A.【点睛】本题考查向量法求空间线段的比例分点,属于中档题.8.B解析:B【分析】设1AA t=,以B为原点,过B作BC的垂线为x轴,BC 为y轴,1BB为z轴,建立空间直角坐标系,由AE和BF所成角的余弦值为14,求出t的值,由此能求出AE与平面11BCC B所成角的正弦值.【详解】设1AA t=,以B为原点,过B作BC的垂线为x轴,BC为y轴,1BB为z轴,建立空间直角坐标系,则)3,1,0A,()0,0,0B,()0,2,0C,33,22E t⎛⎫⎪⎪⎝⎭,31,22F t⎛⎫⎪⎪⎝⎭,31,2AE t⎛⎫=-⎪⎪⎝⎭,31,2BF t⎛⎫= ⎪⎪⎝⎭,因为AE和BF BF所成角的余弦值为14,所以1cos ,41AE BF AE BF AE BF⋅===, 解得:1t =所以1,122AE ⎛⎫=- ⎪ ⎪⎝⎭,平面11BCC B 的法向量()1,0,0n =,所以AE 与平面11BCC B所成角的正弦值为32sin 2AE nAE nα⋅===故选:B 【点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面的位置关系等基础知识,属于中档题.9.D解析:D 【分析】利用中点坐标公式可得点B 的坐标,设(,,)C x y z ,利用||||3CO CB ==,1cos ,6EF BC <>=可解出点C 的纵坐标,最后利用数量积的坐标运算可得OC OF ⋅的值. 【详解】设(,,)C x y z ,(2,2,0)B ,(,,)OC xy z =,(2,)BC x y z =--,(EF =-,由(()1cos ,436EF BC x y z EF BC EF BC⋅-⋅-===⋅⋅,整理可得:2x y -=-,由||||3CO CB == 化简得x y +=以上方程组联立得x y =, 则()(,,)3OC OF x y z =⋅==. 故选:D. 【点睛】本题主要考查了空间直角坐标系下向量数量积的运算,解题关键是掌握向量数量积运算的基础知识,考查了分析能力和计算能力,属于中档题.10.C解析:C 【分析】因为在四面体OABC 中,D 是BC 的中点,G 是AD 的中点,12OE OA AD =+,即可求得答案. 【详解】在四面体OABC 中,D 是BC 的中点,G 是AD 的中点∴12OG OA AD =+11()22OA AB AC =+⨯+1()4OA OB OA OC OA =+⨯-+-111244OA OB OC =++ 故选:C. 【点睛】本题主要考查了向量的线性运算,解题关键是掌握向量基础知识和数形结合,考查了分析能力和空间想象能力,属于基础题.11.D解析:D 【分析】根据题意,可知P 是平面11DD C C 内,以1DD 为直径的半圆上一点.由BPC ∠即为直线PB 与平面11DD C C 所成的角可知当PC 取得最小值时,PB 与平面11DD C C 所成的角最大.而连接圆心E 与C 时,与半圆的交点为P ,此时PC 取得最小值.设出正方体的棱长,即可求得PC ,进而求得tan BPC ∠. 【详解】正方体1111ABCD A B C D -中,正方形11DD C C 内的点P 满足1PD PD ⊥ 可知P 是平面11DD C C 内,以1DD 为直径的半圆上一点,设圆心为E,如下图所示:当直线PB 与平面11DD C C 所成最大角时,点P 位于圆心E 与C 点连线上此时PC 取得最小值.则BPC ∠即为直线PB 与平面11DD C C 所成的角 设正方体的边长为2,则51PC EC EP =-=-,2BC = 所以51tan 51BC BPC PC +∠===- 故选:D 【点睛】本题考查了空间中动点的轨迹问题,直线与平面夹角的求法,对空间想象能力要求较高,属于中档题.12.C解析:C 【分析】根据条件确定O 点位置,再根据向量表示确定,,x y z 的值,即得结果. 【详解】如图,Q 为AC 与BD 交点,P 为BQ 中点,O 为MQ 与1B P 的交点.过P 作PT 平行MQ 交1BB 于T .如图,则T 为BM 中点,所以1111131334224242MT BM BB MB MB ==⨯=⨯⨯=. 所以123B O OP =,因此1323421411()555352555BO BB BP BM BH BN BM BH BN =+=⋅+⋅+=++, 因为BO xBH yBN zBM =++,所以411,,555z x y ===,1435x y z ∴++=. 故选:C 【点睛】本题考查平面向量基底表示,考查综合分析求解能力,属中档题.13.A解析:A 【分析】取BD 中点O ,连结AO ,CO ,以O 为原点,OC 为x 轴,OD 为y 轴,过点O 作平面BCD 的垂线为z 轴,建立空间直角坐标系,利用向量法能求出直线AB 与CD 所成角的余弦值. 【详解】解:取BD 中点O ,连结AO ,CO ,2AB BD DA ===.BC CD ==CO BD ∴⊥,AO BD ⊥,且1CO =,AO =AOC ∴∠是二面角A BD C --的平面角,因为二面角A BD C --的平面角为56π, 56AOC π∴∠=以O 为原点,OC 为x 轴,OD 为y 轴,过点O 作平面BCD 的垂线为z 轴,建立空间直角坐标系,则(0B ,1-,0),(1C ,0,0),(0D ,1,0),3(2A -,∴3(2BA =-,(1,1,0)CD =-,设AB 、CD 的夹角为α,则3|1|||cos ||||2AB CD AB CD α+===, 故选:A .【点睛】本题考查异面直线所成角的取值范围的求法,是中档题,解题时要认真审题,注意向量法的合理运用.二、填空题14.3【分析】利用向量的坐标运算求得求出根据空间向量模的公式列方程求解即可【详解】因为所以可得因为解得故答案为3解析:3 【分析】利用向量的坐标运算求得求出()4,1,a b λλλ+=-,根据空间向量模的公式列方程求解即可. 【详解】因为()()0,1,1,4,1,0,29a b a b λ=-=+=, 所以()4,1,a b λλλ+=-, 可得()2216129λλ+-+=, 因为0λ>,解得3λ=,故答案为3.15.①③④【分析】由三垂直可采用以为轴建立空间直角坐标系①中通过异面直线的夹角公式和不等式性质即可判断正确;②中结合向量数量积公式可判断错误;③采用补形法将四棱锥还原为长方体再结合等体积法即可求解三棱锥解析:①③④ 【分析】由,,AB AD AP 三垂直,可采用以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,①中通过异面直线的夹角公式和不等式性质即可判断正确;②中结合向量数量积公式可判断错误;③采用补形法将四棱锥还原为长方体,再结合等体积法即可求解三棱锥E BCO -的体积为定值;④中将平面ABCD 以AD 为轴旋转到平面PAD 内形成平面''AB C D ,结合两点间直线最短即可判断正确 【详解】如图所示:以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,则(0,0,1)P ,()1,0,0B ,(1,2,0)C ,设(0,,0)E y ,[]0,2y ∈,则(1,0,1)BP =-,(1,2,0)CE y =--, 2||2cos ,2||||21(2)BP CE BP CE BP CE y ⋅〈〉==≤⋅⋅+-,当2y =时等号成立, 此时,4BP CE π〈〉=,故直线PB 与直线CE 所成的角中最小的角为45︒,①正确;(1,,0)(1,2,1)21BE PC y y ⋅=-⋅-=-,当12y =时,BE PC ⊥,②错误; 将四棱锥放入对应的长方体中,则球心为体对角线交点, 1111112323226BCE E BCO O BCE AP V V S --==⨯⨯=⨯⨯⨯⨯=△,③正确;如图所示:将平面ABCD 以AD 为轴旋转到平面PAD 内形成平面''AB C D , 则22''2222CE PE C E PE PC +=+≥=+=,当'PEC 共线时等号成立,④正确.故答案为:①③④.【点睛】本题考查向量法在立体几何中的实际应用,合理建系,学会将所求问题有效转化是解决问题的关键,如本题求线线角的最小值转化为求线线夹角的余弦值,求两直线垂直转化为数量积为0,求三棱锥体积的补形法和等体积法,利用旋转将异面直线的距离转化为共面直线的距离,属于中档题16.【分析】设则根据空间四点共面的条件又四点共面则即得出答案【详解】设则由为底面中心又因为四点共面所以且所以即即故答案为:【点睛】本题考查空间四点共面的条件的应用属于中档题解析:32020⎧⎫⎨⎬⎩⎭【分析】设,,PM x PN y PS z ===,则111333zPAPB PCPO PM PN PS x y =⨯⋅+⨯⋅+⨯⋅,根据空间四点共面的条件,又,,,S M N O 四点共面,则202020202020+1333zx y +=,即得出答案.设,,PM x PN y PS z ===. 则PA PA PM x=⋅,PB PB PN y=⋅,PC PC PS z=⋅.由O 为底面ABC 中心, ()2132PO PA AO PA AB AC =+=+⨯+ ()()133PA PB PCPA PB PA PC PA ++⎡⎤=+-+-=⎣⎦ 111333z PA PB PCPM PN PS x y =⨯⋅+⨯⋅+⨯⋅ 333zPA PB PC PM PN PS x y=⋅+⋅+⋅ 又因为,,,S M N O 四点共面,所以+1333zPA PB PC xy+=且2020PA PB PC ===.所以202020202020+1333z x y +=,即1113+z 2020x y += 即11132020PS PM PN ++=. 故答案为:32020⎧⎫⎨⎬⎩⎭.【点睛】本题考查空间四点共面的条件的应用,属于中档题.17.【分析】建立空间直角坐标系以的方向为x 轴y 轴z 轴的正方向不妨设正方体的棱长为1则异面线与AM 所成角的余弦值转化为求向量的夹角的余弦值利用向量夹角公式即得【详解】分别以的方向为x 轴y 轴z 轴的正方向建立 3建立空间直角坐标系,以1,,DA DC DD 的方向为x 轴,y 轴,z 轴的正方向,不妨设正方体的棱长为1,则异面线1BD 与AM 所成角的余弦值,转化为求向量1,BD AM 的夹角的余弦值,利用向量夹角公式即得. 【详解】分别以1,,DA DC DD 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,不妨设正方体的棱长为1,则11(1,0,0),(1,1,0),(0,1,),(0,0,1)2A BM D ,可得11(1,1,1),(1,1,)2BD AM =--=-,则11111132cos ,||||13114BD AMBD AM BD AM -+⋅<>===⋅++,即异面直线1BD 与AM 所成角的余弦值为3. 故答案为:39【点睛】本题考查利用空间向量求异面直线的夹角,运用了向量夹角公式.18.【分析】设根据平行四边形法则对角线再结合条件利用向量的模即可求出对角线长【详解】解:设因为所以所以对角线故答案为:【点睛】本题考查的知识点是点线面间的距离计算考查空间两点之间的距离运算根据已知条件构 解析:66【分析】设AB a =,AD b =,1AA c =,根据平行四边形法则,对角线1AC a b c =++,再结合条件,利用向量的模即可求出对角线长. 【详解】解:设AB a =,AD b =,1AA c =,因为11AC AB AD AA a b c =++=++, 所以()222221222363636666cos60216AC a b ca b c a b a c b c =++=+++++=+++⨯⨯⨯︒=,所以对角线166AC =. 故答案为:66.【点睛】本题考查的知识点是点、线、面间的距离计算,考查空间两点之间的距离运算,根据已知条件,构造向量,将空间两点之间的距离转化为向量模的运算,是解答本题的关键.19.【分析】化直线方程为斜截式求出直线的斜率得到直线的一个方向向量进而可求得直线的一个法向量得到答案【详解】由题意化直线的方程为斜截式可得直线的斜率为-2所以直线的一个方向向量为所以直线的一个法向量为故解析:()21, 【分析】化直线方程为斜截式,求出直线的斜率,得到直线的一个方向向量,进而可求得直线的一个法向量,得到答案. 【详解】由题意,化直线210x y ++=的方程为斜截式21y x =--,可得直线的斜率为-2,所以直线的一个方向向量为12-(,),所以直线的一个法向量为21(,). 故答案为21(,) 【点睛】本题主要考查了直线的方向向量和法向量的意义、数量积的运算是解题的关键,是基础题.20.-4【解析】分析:设平面的法向量平面的法向量由∥可得因此存在实数使得再利用向量共线定理的坐标运算即可求得结果详解:设平面的法向量平面的法向量因为∥所以所以存在实数使得所以有解得故答案为点睛:该题考查解析:-4 【解析】分析:设平面α的法向量m ,平面β的法向量n ,由α∥β,可得m n ∥,因此存在实数k ,使得m kn =,再利用向量共线定理的坐标运算即可求得结果. 详解:设平面α的法向量(1,2,2)m =-,平面β的法向量(2,,4)n λ=, 因为α∥β,所以m n ∥,所以存在实数k ,使得m kn =,所以有12224k k k λ=⎧⎪-=⎨⎪=⎩,解得4λ=-,故答案为4-. 点睛:该题考查的是向量平行的条件,以及向量平行时坐标所满足的关系,在解题的过程中,首先需要利用两个平面平行的条件,得到其法向量共线的结论,之后根据坐标的关系求得结果.21.【分析】设建立空间直角坐标系由向量的垂直可得进而可得由基本不等式即可得解【详解】设如图建立空间直角坐标系则所以又所以所以所以当且仅当时等号成立所以当的面积取得最小值时其棱故答案为:【点睛】本题考查了 解析:322【分析】设()10AA m m =>,()0M n n C m =≤≤,建立空间直角坐标系,由向量的垂直可得1m n n -=,进而可得1221452MAD S n n =++△,由基本不等式即可得解. 【详解】设()10AA m m =>,()0M n n C m =≤≤,如图建立空间直角坐标系,则()10,0,D m ,()0,1,M n ,()3,0,0A , 所以()10,1,M n m D =-,()3,1,AM n =-,又1MD MA ⊥,所以()110M A D M n n m ⋅=+-=,所以1m n n -=, 所以()122122111113114222MAD S M AM m n n n nD =⋅=+-++=++△32==≥=,当且仅当n =2m =时,等号成立,所以当1MAD 的面积取得最小值时其棱1AA =.. 【点睛】 本题考查了空间向量及基本不等式的应用,考查了运算求解能力,合理转化、细心计算是解题关键,属于中档题.22.【分析】直接利用空间向量的数量积求解两个平面的二面角的大小即可【详解】解:两个平面的法向量分别为则这两个平面所成的锐二面角的大小是这两个平面所成的锐二面角的余弦值为故答案为:【点睛】本题考查空间二面解析:5【分析】直接利用空间向量的数量积求解两个平面的二面角的大小即可.【详解】解:两个平面α,β的法向量分别为(4,0,3)u →=,(1,1,0)v →=-,则这两个平面所成的锐二面角的大小是θ,2cos a ba b θ→→→→===这两个平面所成的锐二面角的余弦值为5.. 【点睛】 本题考查空间二面角的求法,空间向量的数量积的应用,考查计算能力.23.①②【分析】建立如图所示的空间直角坐标系把空间中的平行垂直关系归结为方向向量法向量之间的关系后可得正确的选项【详解】建立如图所示的空间直角坐标系设正方体的棱长为2则故所以故所以故②正确又设平面的法向 解析:①②【分析】建立如图所示的空间直角坐标系,把空间中的平行、垂直关系归结为方向向量、法向量之间的关系后可得正确的选项.【详解】建立如图所示的空间直角坐标系,设正方体的棱长为2,则()()()()2,0,0,0,0,0,0,2,0,2,2,0A D C B ,()()()()11112,0,2,0,0,2,0,2,2,2,2,2A D C B ,故()()2,2,1,0,1,0M N ,所以()2,1,1MN =---,()10,2,2CD =-,故10MN CD ⋅=,所以1MN CD ⊥,故②正确.又()2,2,0DB =,()12,0,2DA =,设平面1A BD 的法向量为(),,n x y z =, 由100n DB n DA ⎧⋅=⎪⎨⋅=⎪⎩得00x y x z +=⎧⎨+=⎩,取1z =-,则()1,1,1n =--, 因为0MN n ⋅=且MN ⊄平面1A BD ,故//MN 平面1A BD ,故①正确.又()10,2,1A M =-,设平面1A MN 的法向量为(),,m x y z =, 由100m MN m A M ⎧⋅=⎪⎨⋅=⎪⎩得2020x y z y z ---=⎧⎨-=⎩,取1y =,则3,1,22m ⎛⎫=- ⎪⎝⎭, 平面1A AC 的法向量为()2,2,0a =,则0m a ⋅≠故平面1A MN ⊥平面1A AC 不成立,故③错,故答案为:①②.【点睛】本题考查空间中平行关系、垂直关系的判断,注意根据几何体的特征建立合适的空间直角坐标系后再利用空间向量来处理,本题属于中档题.24.-1【解析】【分析】由直线的一个方向向量为平面的一个法向量为得到由此能求出的值【详解】∵直线的一个方向向量为平面的一个法向量为∴解得故答案为:【点睛】本题考查实数值的求法考查直线的方向向量平面的法向 解析:-1【解析】【分析】由直线l 的一个方向向量为m ,平面α的一个法向量为n ,//l α,得到 0m n ⋅=,由此能求出t 的值.【详解】∵直线l 的一个方向向量为()2,8,1m =--,平面α的一个法向量为1,,22n t ⎛⎫= ⎪⎝⎭,//l α,∴2420m n t ⋅=--+=,解得1t =-,故答案为:1-.【点睛】本题考查实数值的求法,考查直线的方向向量、平面的法向量等基础知识,考查运算与求解能力,考查化归与转化思想,是基础题.25.【分析】构造一个正方体三棱锥放入正方体中建立坐标系利用数量积公式求解即可【详解】将三棱锥放入如下图所示的正方体中且棱长为分别以为轴故答案为:【点睛】本题主要考查了求空间向量的数量积属于中档题 解析:12- 【分析】构造一个正方体,三棱锥A BCD -放入正方体中,建立坐标系利用数量积公式求解即可.【详解】将三棱锥A BCD -放入如下图所示的正方体中,且棱长为2分别以,,OC OD OB 为,,x y z 轴A C G E(0,022,),(20,,2GE AC ==--1222(=2GE AC ∴⋅=-- 故答案为:12-【点睛】本题主要考查了求空间向量的数量积,属于中档题.26.(﹣∞4)【分析】由题意利用两个向量的夹角的定义两个向量共线的性质求得实数的取值范围【详解】解:向量若与的夹角为锐角且与不共线即且不成立解得则实数的取值范为故答案为:【点睛】本题主要考查两个向量的夹 解析:(﹣∞,4)【分析】由题意利用两个向量的夹角的定义,两个向量共线的性质,求得实数t 的取值范围.【详解】 解:向量(4a =,5-,12),(3b =,t ,2)3,若a 与b 的夹角为锐角, ∴·0a b >,且a 与b 不共线, 即24351203t ⨯-+⨯>,且2334512t ==- 不成立,解得4t <, 则实数t 的取值范为(,4)-∞,故答案为:(,4)-∞.【点睛】本题主要考查两个向量的夹角,两个向量共线的性质,属于基础题.。

立体几何中的向量方法测试(人教A版)(含答案)

立体几何中的向量方法测试(人教A版)(含答案)

立体几何中的向量方法测试(人教A版)一、单选题(共8道,每道12分)1.如图,四边形ABCD为正方形,PD⊥平面ABCD,,,则直线与平面所成角的正弦值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:用空间向量求直线与平面所成的角2.如图,正四棱柱ABCD-A1B1C1D1的体积为,高为,则点到平面的距离为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:用空间向量求点到平面的距离3.如图,平面平面,△是边长为的等边三角形,△为直角三角形,,,则二面角的正弦值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:用空间向量求二面角4.如图,直三棱柱ABC-A1B1C1,∠BAC=90°,,点M,N分别为和的中点.(1)直线与平面所成的角为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:用空间向量求直线与平面所成的角5.(上接第4题)(2)点到平面的距离为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:用空间向量求点到平面的距离6.如图,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ=2,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD.(1)直线EF与平面PCD的距离为( )A. B. C. D.答案:A解题思路:试题难度:三颗星知识点:用空间向量求点到平面的距离7.(上接第6题)(2)直线与平面QEF所成角的正弦值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:用空间向量求直线与平面所成的角8.(上接第7题)(3)二面角的余弦值为( )A. B. C. D.答案:D解题思路:试题难度:三颗星知识点:用空间向量求平面间的夹角。

【课件】第二课时 用空间向量研究夹角问题 课件人教A版选择性必修第一册

【课件】第二课时 用空间向量研究夹角问题 课件人教A版选择性必修第一册

C .-2 5 5
D.2 5 5
答案:B
知识点2 直线与平面所成的角
直线与平面所成的角,可以转化为直线的方向向量与平面的法向量的夹角 。
直线AB与平面α相交于点B,设直线AB与平面α所成的角为θ,直线AB的方向向
u n 量 ,平面α的法向量为 ,如图可得
问题4:方向向量与平面法向量所成的角与线面角是什么关系?
B.30°
C.60° 答案:B
D.30°或 150°
题型分析
两异面直线所成的角
[例 1] (链接教科书第 36 页例 7)已知四面体 OABC 的各棱长均为 1,D 是棱
OA 的中点,则异面直线 BD 与 AC 所成角的余弦值为
()
A.
3 3
B.14
C.
3 6
D.
2 8
[解析] ―BD→=―O→D -―O→B =12―O→A -―O→B ,―A→C =―O→C -―O→A ,于是|―BD→|=
(2)因为四棱柱的所有棱长都相等,所以四边形 ABCD 为
菱形,AC⊥BD.又 O1O⊥底面 ABCD,所以 OB,OC,OO1
两两垂直.如图,以 O 为原点,OB,OC,OO1 所在直线分 别为 x,y,z 轴,建立空间直角坐标系.
设棱长为 2,因为∠CBA=60°,所以 OB= 3,OC=1,
23,|―A→C |=1,且―BD→·―A→C =
1―O→A -―O→B 2
·(―O→C -―O→A )=-14,于是
―→ cos〈 BD ,
―A→C 〉=―B―D→→·――A→→C = | BD || AC |
-1 4 =-
3×1
3,故异面直线 BD 与 AC 所成角的余弦值为 6

用空间向量研究距离、夹角问题(一)(人教A版2019选修一)高二数学

用空间向量研究距离、夹角问题(一)(人教A版2019选修一)高二数学

解析:建立如图所示的空间直角坐标系,
则O(0,0,0),O1(0,1, 3 ),A( B(0,2,0),
∴A→1B=(- 3,1,- 3), O→1A=( 3,-1,- 3).
3 ,0,0),A1(
3 ,1,
3 ),
∴|cos〈A→1B,O→1A〉|=||AA→→11BB|··|OO→→11AA||
系?
条件
平面α,β的法向量分别为 u,v,α,β所构成的二面 角的大小为θ,〈u,v〉=φ
图形
关系 计算
θ=φ cos θ=cos φ
θ=π-φ cos θ=-cos φ
[基础自测]
1.判断正误(正确的画“√”,错误的画“×”) (1)两异面直线所成的角与两直线的方向向量所成的角相 等.( × ) (2)若向量n1,n2分别为二面角的两半平面的法向量,则二面 角的平面角的余弦值为cos〈n1,n2〉=|nn11|·|nn22|.( × ) (3)平面α外一点A到平面α的距离,就是点A与平面内一点B所 成向量A→B的长度.( × ) (4)二面角α-l-β的大小为θ,平面α,β的法向量分别为n1, n2,则θ=〈n1,n2〉.( × )
则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0), A→E =(0,1,1), A→D1 =(-1,0,2),D→E=(1,1,1)
设平面AD1E的法向量为n=(x,y,z),则- y+x+ z=20z=0
令z=1,则n=(2,-1,1)
∴cos〈n,D→E〉=2-31·+61=
(2)如图,以A为坐标原点,建立空间直角坐标系A-xyz,则 C(2,2,0),D(0,4,0),F(2,0,4) ∴A→D=(0,4,0),C→D=(-2,2,0),C→F=(0,-2,4) 设n=(x,y,z)是平面CDF的一个法向量,则

高考数学专题:向量求二面角(含答案)

高考数学专题:向量求二面角(含答案)

高考数学专题:向量求二面角向量法求二面角大小的两种方法(1)分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.1、如图,四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=π3,M为BC上一点,且BM=12,MP⊥AP.(1)求PO的长;(2)求二面角A-PM-C的正弦值.2、如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F 分别为AC,DC的中点.(1)求证:EF⊥BC;(2)求二面角E-BF-C的正弦值.3、如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB=2A1B1=2DD1=2a.(1)求异面直线AB1与DD1所成角的余弦值;(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1;(3)在(2)的条件下,求二面角F-CC1-B的余弦值.4、如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.5、如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=23HF,求直线BH和平面CEF所成角的正弦值6、如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=π2,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.7、如图所示,在多面体A1B1D1-DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C;(2)求二面角E-A1D-B1的余弦值.8、如图,三棱锥P-ABC中,PC⊥平面ABC,PC=3,∠ACB=π2,D,E分别为线段AB,BC上的点,且CD=DE=2,CE=2EB=2.(1)证明:DE⊥平面PCD;(2)求二面角A-PD-C的余弦值.答案:1、解:(1)如图,连接AC,BD,因为ABCD为菱形,则AC∩BD=O,且AC⊥BD.以O为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .因为∠BAD =π3,所以OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),OB →=(0,1,0),BC →=(-3,-1,0).由BM =12,BC =2知, BM→=14BC →=⎝ ⎛⎭⎪⎫-34,-14,0, 从而OM→=OB →+BM →=⎝ ⎛⎭⎪⎫-34,34,0, 即M ⎝ ⎛⎭⎪⎫-34,34,0.设P (0,0,a ),a >0,则AP→=(-3,0,a ),MP →=⎝ ⎛⎭⎪⎫34,-34,a . 因为MP ⊥AP ,故MP →·AP→=0,即-34+a 2=0,所以a =32或a =-32(舍去), 即PO =32.(2)由(1)知,AP →=⎝ ⎛⎭⎪⎫-3,0,32,MP →=⎝ ⎛⎭⎪⎫34,-34,32,CP →=⎝ ⎛⎭⎪⎫3,0,32. 设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2),由n 1·AP →=0,n 1·MP →=0, 得⎩⎪⎨⎪⎧-3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝ ⎛⎭⎪⎫1,533,2. 由n 2·MP →=0,n 2·CP →=0, 得⎩⎪⎨⎪⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2). 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-155, sin 〈n 1,n 2〉=1-⎝⎛⎭⎪⎫-1552=105, 故所求二面角A -PM -C 的正弦值为105.2、(1)证明:由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系.易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0),因而E ⎝ ⎛⎭⎪⎫0,12,32,F ⎝ ⎛⎭⎪⎫32,12,0,所以EF →=⎝ ⎛⎭⎪⎫32,0,-32,BC →=(0,2,0),因此EF →·BC→=0. 从而EF →⊥BC →,所以EF ⊥BC .(2)平面BFC 的一个法向量为n 1=(0,0,1). 设平面BEF 的法向量为n 2=(x ,y ,z ). 又BF →=⎝ ⎛⎭⎪⎫32,12,0,BE →=⎝ ⎛⎭⎪⎫0,12,32,由⎩⎪⎨⎪⎧n 2·BF →=0,n 2·BE →=0得其中一个n 2=(1,-3,1).设二面角E -BF -C 大小为θ,且由题意知θ为锐角, 则cos θ=|cos 〈n 1,n 2〉| =⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=15. 因此sin θ=25=255,即所求二面角的正弦值为255.3、.解:以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (2a ,0,0),B (2a ,2a ,0),C (0,2a ,0),D 1(0,0,a ),F (a ,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)因为AB 1→=(-a ,a ,a ),DD 1→=(0,0,a ), 所以|cos 〈AB 1→,DD 1→〉|=⎪⎪⎪⎪⎪⎪⎪⎪AB 1→·DD 1→|AB 1→||DD 1→|=33,所以异面直线AB 1与DD 1所成角的余弦值为33. (2)证明:因为BB 1→=(-a ,-a ,a ),BC →=(-2a ,0,0),FB 1→=(0,a ,a ), 所以⎩⎪⎨⎪⎧FB 1→·BB 1→=0,FB 1→·BC →=0,所以FB 1⊥BB 1,FB 1⊥BC . 因为BB 1∩BC =B , 所以FB 1⊥平面BCC 1B 1.(3)由(2)知,FB 1→为平面BCC 1B 1的一个法向量. 设n =(x 1,y 1,z 1)为平面FCC 1的法向量, 因为CC 1→=(0,-a ,a ),FC →=(-a ,2a ,0), 所以⎩⎪⎨⎪⎧n ·CC 1→=0,n ·FC →=0,即⎩⎨⎧-ay 1+az 1=0,-ax 1+2ay 1=0.令y 1=1,则n =(2,1,1),所以||cos 〈FB 1→,n 〉=⎪⎪⎪⎪⎪⎪⎪⎪FB 1→·n |FB 1→||n |=33,因为二面角F -CC 1-B 为锐角, 所以二面角F -CC 1-B 的余弦值为33.4、解:(1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC . (2)如图,过D 作DG ⊥EF ,垂足为G , 由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz . 由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°, 则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3). 由已知,AB ∥EF , 所以AB ∥平面EFDC .又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°,从而可得C (-2,0,3).所以EC→=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0. 所以可取n =(3,0,-3). 设m 是平面ABCD 的法向量, 则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4), 则cos 〈n ,m 〉=n·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.5、解:依题意,OF ⊥平面ABCD ,如图,以O 为原点,分别以AD →,BA →,OF →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,依题意可得O (0,0,0),A (-1,1,0),B (-1,-1,0),C (1,-1,0),D (1,1,0),E (-1,-1,2),F (0,0,2),G (-1,0,0).(1)证明:依题意,AD→=(2,0,0),AF →=(1,-1,2). 设n 1=(x ,y ,z )为平面ADF 的法向量,则⎩⎪⎨⎪⎧n 1·AD →=0,n 1·AF →=0,即⎩⎨⎧2x =0,x -y +2z =0.不妨设z =1,可得n 1=(0,2,1).又EG →=(0,1,-2),所以EG →·n 1=0, 又因为直线EG ⊄平面ADF , 所以EG ∥平面ADF .(2)易证,OA→=(-1,1,0)为平面OEF 的一个法向量. 依题意,EF→=(1,1,0),CF →=(-1,1,2).设n 2=(x ,y ,z )为平面CEF 的法向量,则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·CF →=0,即⎩⎨⎧x +y =0,-x +y +2z =0.不妨设x =1,可得n 2=(1,-1,1).因此cos 〈OA →,n 2〉=OA →·n 2|OA →||n 2|=-63,于是sin 〈OA →,n 2〉=33.所以,二面角O -EF -C 的正弦值为33.(3)由AH =23HF ,得AH =25AF .因为AF→=(1,-1,2),所以AH →=25AF →=⎝ ⎛⎭⎪⎫25,-25,45,进而有H ⎝ ⎛⎭⎪⎫-35,35,45,从而BH →=⎝ ⎛⎭⎪⎫25,85,45,因此cos 〈BH →,n 2〉=BH →·n 2|BH →||n 2|=-721.所以,直线BH 和平面CEF 所成角的正弦值为721.6、解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2). (1)因为AD ⊥平面PAB ,所以AD→是平面PAB 的一个法向量,AD →=(0,2,0).因为PC→=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC →=0,m ·PD →=0, 即⎩⎨⎧x +y -2z =0,2y -2z =0. 令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量. 从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33, 所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP→=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB→=(0,-1,0),则CQ →=CB →+BQ →= (-λ,-1,2λ),又DP→=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2.设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时, |cos 〈CQ→,DP →〉|的最大值为31010. 因为y =cos x 在⎝ ⎛⎭⎪⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5, 所以BQ =25BP =255.7、解:(1)证明:由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D .又A 1D ⊂平面A 1DE ,B 1C ⊄平面A 1DE ,于是B 1C ∥平面A 1DE . 又B 1C ⊂平面B 1CD 1,平面A 1DE ∩平面B 1CD 1=EF ,所以EF ∥B 1C .(2)因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD ,以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为(0.5,0.5,1).设面A 1DE 的法向量为n 1=(r 1,s 1,t 1),而该面上向量A 1E →=(0.5,0.5,0),A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足方程组⎩⎨⎧0.5r 1+0.5s 1=0,s 1-t 1=0,因为(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量为n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1),所以结合图形知二面角E -A 1D -B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63. 8、解:(1)证明:由PC ⊥平面ABC ,DE ⊂平面ABC ,得PC ⊥DE .由CE =2,CD =DE =2得△CDE 为等腰直角三角形,故CD ⊥DE .又PC ∩CD =C ,所以DE ⊥平面PCD .(2)由(1)知,△CDE 为等腰直角三角形,∠DCE =π4.如图,过D 作DF 垂直CE 于F ,易知DF =FC =FE =1.又EB =1,故FB =2.由∠ACB =π2得DF ∥AC ,DF AC =FB BC =23,故AC =32DF =32.如图,以C 为坐标原点,分别以CA→,CB →,CP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,0,3),A ⎝ ⎛⎭⎪⎫32,0,0,E (0,2,0),D (1,1,0),ED →=(1,-1,0),DP →=(-1,-1,3),DA →=⎝ ⎛⎭⎪⎫12,-1,0. 设平面PAD 的法向量为n 1=(x 1,y 1,z 1),由n 1·DP →=0,n 1·DA →=0,得⎩⎪⎨⎪⎧-x 1-y 1+3z 1=0,12x 1-y 1=0, 故可取n 1=(2,1,1).由(1)可知,DE ⊥平面PCD ,故平面PCD 的法向量n 2可取为ED→, 即n 2=(1,-1,0).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=36, 故二面角A -PD -C 的余弦值为36.。

人教A版(2019)高中数学选择性必修第一册同步讲义 1.1空间向量及其运算(含解析)

人教A版(2019)高中数学选择性必修第一册同步讲义 1.1空间向量及其运算(含解析)

1.1 空间向量及其运算1、空间向量的有关概念名称定义 空间向量在空间中,具有大小和方向的量 相等向量方向相同且模相等的向量 相反向量方向相反且模相等的向量 共线向量(或平行向量)表示空间向量的有向线段所在的直线互相平行或重合的向量 共面向量平行于同一个平面的向量2、空间向量的有关定理〔1〕共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .在平面中A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点〔2〕共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .在空间中P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间任意一点3、空间向量的数量积及运算律〔1〕数量积及相关概念①两向量的夹角:两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,那么∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是[0,π],假设〈a ,b 〉=π2,那么称a 与b 互相垂直,记作a ⊥b . ②非零向量a ,b 的数量积a·b =|a ||b |cos 〈a ,b 〉.〔2〕空间向量数量积的运算律:①结合律:(λa )·b =λ(a·b );②交换律:a·b =b·a ;③分配律:a·(b +c )=a·b +a·c .知识梳理题型一 空间向量根本关系例1 向量,a b 互为相反向量,b =3,那么以下结论正确的选项是〔 〕A .a b =B .a b +为实数0C .a 与b 方向相同D .||a=3 【答案】D【详解】向量,a b 互为相反向量,那么,a b 模相等、方向相反. 0a b +=.应选:D.1、以下说法正确的选项是〔 〕A .任何三个不共线的向量可构成空间向量的一个基底B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .基底{}a b c ,,中基向量与基底{}e f g ,,基向量对应相等【答案】C【解析】【分析】根据空间向量根本定理判断选项可解.【详解】A 项中应是不共面的三个向量构成空间向量的基底, 所以A 错.B 项,空间基底有无数个, 所以B 错.D 项中因为基底不唯一,所以D 错.稳固练习 知识典例2、在以下命题中:①假设a 、b 共线,那么a 、b 所在的直线平行;②假设a 、b 所在的直线是异面直线,那么a 、b 一定不共面;③假设a 、b 、c 三向量两两共面,那么a 、b 、c 三向量一定也共面;④三向量a 、b 、c ,那么空间任意一个向量p 总可以唯一表示为p xa yb zc =++.其中正确命题的个数为〔 〕A .0B .1C .2D .3【答案】A【详解】①假设a 、b 共线,那么a 、b 所在的直线平行或重合;所以①错;②因为向量是可以自由移动的量,因此即使a 、b 所在的直线是异面直线,a 、b 也可以共面;所以②错; ③假设a 、b 、c 三向量两两共面,因为两平面的关系不确定,因此a 、b 、c 三向量不一定共面;所以③错; ④假设三向量a 、b 、c 共面,假设向量p 不在该平面内,那么向量p 不能表示为p xa yb zc =++,所以④错. 应选:A.题型二 空间向量的表示例 2 如图,在平行六面体ABCD A B C D ''''-中,AC 与BD 的交点为O ,点M 在BC '上,且2BM MC '=,那么以下向量中与OM 相等的向量是〔 〕A .172263AB AD AA '-++ B .151263AB AD AA '-++ C .112263AB AD AA '++ D .111263AB AD AA '-+解:因为2BM MC '=,所以23BM BC '=, 在平行六面体ABCD A B C D ''''-中,OM OB BM =+'23OB BC =+'12()23DB AD AA =++'12()()23AB AD AD AA =-++112263AB AD AA '=++,应选:C【点睛】1、在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,那么EF 等于〔〕A .1223EF AC AB AD →→→→=+- B .112223EF AC AB AD →→→→=--+C .112223EF AC AB AD →→→→=-+ D .112223EF AC AB AD →→→→=-+-【答案】B解:在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,所以EF EB BA AF →→→→=++稳固练习1223AB AC AB AD →→→→⎛⎫=--+ ⎪⎝⎭ 112223AC AB AD →→→=--+, 即112223EF AC AB AD →→→→=--+. 应选:B.2、在四面体ABCD 中,E 、G 分别是CD 、BE 的中点,假设记→→=AB a ,AD b →→=,AC c →→=,那么AG →=______.【答案】111244a b c →→→++解:在四面体ABCD 中,E 、G 分别是CD 、BE 的中点,那么AG AB BG →→→=+12AB BE →→=+ 11()22AB BC BD →→→=+⨯+ 1()4AB AC AB AD AB →→→→→=+-+- 111442AB AC AD AB →→→→=++- 111244AB AD AC →→→=++. 故答案为:111244a b c →→→++.题型三 基底问题例 3 〔多项选择〕设a ,b ,c 是空间一个基底,那么( )A .假设a ⊥b ,b ⊥c ,那么a ⊥cB .那么a ,b ,c 两两共面,但a ,b ,c 不可能共面C .对空间任一向量p ,总存在有序实数组(x ,y ,z ),使p xa yb zc =++D .那么a +b ,b +c ,c +a 一定能构成空间的一个基底【答案】BCD【解析】【分析】根据基底的概念,对选项逐一分析,由此确定正确选项.【详解】对于A 选项,b 与,a c 都垂直,,a c 夹角不一定是π2,所以A 选项错误. 对于B 选项,根据基底的概念可知a ,b ,c 两两共面,但a ,b ,c 不可能共面.对于C 选项,根据空间向量的根本定理可知,C 选项正确.对于D 选项,由于a ,b ,c 是空间一个基底,所以a ,b ,c 不共面.假设a +b ,b +c ,c +a 共面,设()()()1a b x b c x c a +=++-+,化简得()1x a x b c ⋅=-+,即()1c x a x b =⋅+-,所以a ,b ,c 共面,这与矛盾,所以a +b ,b +c ,c +a 不共面,可以作为基底.所以D 选项正确.应选:BCD1、有以下命题: ①如果向量,a b 与任何向量不能构成空间向量的一组基底,那么,a b 的关系是不共线;②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面;③向量,,a b c 是空间的一个基底,那么向量,,a b a b c +-也是空间的一个基底.其中正确的命题是〔 〕A .①②B .①③C .②③D .①②③【答案】C①如果向量,a b 与任何向量不能构成空间向量的一组基底,那么,a b 的关系是不共线;所以不正确.反例:如果,a b 有一个向量为零向量,共线但不能构成空间向量的一组基底,所以不正确.②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底, 稳固练习那么点,,,O A B C 一定共面;这是正确的.③向量,,a b c 是空间的一个基底,那么向量,,a b a b c +-不共面,也是空间的一个基底;所以正确.应选:C .2、以下关于空间向量的命题中,正确的有______.①假设向量a ,b 与空间任意向量都不能构成基底,那么b a //;②假设非零向量a ,b ,c 满足a b ⊥,b c ⊥,那么有//a c ;③假设OA ,OB ,OC 是空间的一组基底,且111333OD OA OB OC =++,那么A ,B ,C ,D 四点共面; ④假设向量a b +,b c +,c a +,是空间一组基底,那么a ,b ,c 也是空间的一组基底.【答案】①③④【解析】【分析】根据空间向量根本定理,能作为基底的向量一定是不共面的向量,由此分别分析选择. 【详解】对于①:假设向量a ,b 与空间任意向量都不能构成基底,只能两个向量为共线向量,即//a b ,故①正确; 对于②:假设非零向量a ,b ,c 满足a b ⊥,b c ⊥,那么a 与c 不一定共线,故②错误;对于③:假设OA ,OB ,OC 是空间的一组基底,且111333OD OA OB OC =++,那么()()1133OD OA OB OA OC OA -=-+-,即1133AD AB AC =+,可得到A ,B ,C ,D 四点共面,故③正确; 对于④:假设向量a b +,b c +,c a +,是空间一组基底,那么空间任意一个向量d ,存在唯一实数组(),,x y z ,使得()()()()()()d x a b y b c z x z a x c y b y a z c +=++++=+++++,那么a ,b ,c 也是空间的一组基底,故④正确.故答案为:①③④题型四 共面问题例 4 点M 在平面ABC 内,并且对空间任意一点O ,都有1133OM xOA OB OC =++,那么x 的值是( )A .1B .0C .3D .13【答案】D【解析】 试题分析:因1133OM xOA OB OC =++,那么M 、A 、B 、C 四点共面,必有13131=++x ,解得31=x ,应选D . 考点:空间向量的共面问题.1、正方体ABCD -A 1B 1C 1D 1中,假设点F 是侧面CD 1的中心,且1AF AD mAB nAA =+-那么m ,n 的值分别为( ) A .12,-12 B .-12,-12 C .-12,12 D .12,12【答案】A由于11111()222AF AD DF AD DC DD AD AB AA =+=++=++, 所以11,22m n ==-. 应选:A 【点睛】2、设12,e e 是平面内不共线的向量,1212122,3,2AB e ke CB e e CD e e =+=+=-假设A ,B ,D 三点共线,那么k =____.【答案】8-【解析】【分析】由A 、B 、D 三点共线、共线向量定理得关于k 的方程,即可得答案;【详解】12124,2BD CD CB e e AB e ke =-=-=+,又A 、B 、D 三点共线,由共线向量定理得AB BD λ=,∴2,84,k k λλ=⎧⇒=-⎨=-⎩, 故答案为:8-.题型四 数量积例 4 a 、b 是异面直线,且a ⊥b ,12,e e 分别为取自直线a 、b 上的单位向量,且121223,4,a e e b ke e a b =+=-⊥,稳固练习那么实数k 的值为___.【答案】6【解析】【分析】根据向量垂直数量积为0,可得关于k 的方程,解方程即可得答案;【详解】由a b ⊥,得0a b ⋅=,∴1212(23)(4)0e e e e +⋅-=,∴2120k -=,∴6k =.故答案为:6.如下图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,类比平面向量有关运算,如何求向量OA 与BC 的数量积?并总结求两个向量数量积的方法.【答案】答案见解析【解析】【分析】运用向量的减法表示向量BC =AC -AB ,再由向量数量积的定义分别求OA ·AC 和OA ·AB 可得答案.【详解】∵BC =AC -AB ,∴OA ·BC =OA ·AC -OA ·AB=OA AC ⋅|cos 〈OA AC ,〉-OA AB ⋅|cos 〈OA BA ⋅〉=8×4×cos 135°-8×6×cos 120°=24-162.稳固练习题型五 异面直线夹角例 5 1BB ⊥平面ABC ,且△ABC 是∠B =90°的等腰直角三角形,▱A 11B A B 、▱B 11B C C 的对角线都分别相互垂直且相等,假设AB =a ,求异面直线1BA 与AC 所成的角.【答案】60°【解析】【分析】根据几何体的特点,利用向量法求得1BA AC ⋅,以及对应的模长,那么问题得解. 【详解】如下图.因为11,BA BA BB AC AB BC=+=+ 故()()1111BA AC BA BB AB BC BA AB BA BC BB AB BB BC ⋅=+⋅+=⋅+⋅+⋅+⋅ 因为AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC ,故2110,0,0,AB BC BB AB BB BC BA AB a ⋅=⋅=⋅=⋅=-故21BA AC a ⋅=- 又111,BA AC BA AC cos BA AC ⋅=⋅⋅ 故211,222cos BA AC a a==-⨯. 而[]1,0,BA AC π∈,故可得1,120BA AC =︒<>, 又∵异面直线所成的角是锐角或直角,∴异面直线BA 1与AC 成60°角.如图,三棱柱111ABC A B C -中,底面边长和侧棱长都等于1,1160BAA CAA ︒∠=∠=,12BC =,31=||AB求异面直线1AB 与1BC 所成角的余弦值.【答案】66. 【分析】根据空间向量的夹角公式计算可得结果.【详解】因为1AB a b =+,因为2211()1111111222)2(AB BC a b a c b a a c a b b a c b b ⋅=+⋅+-=+⋅+-⋅+⋅+⋅=+-+=--, 所以11111116cos ,623AB BC AB BC AB BC ⋅<>===⨯. 所以异面直线1AB 与1BC 所成角的余弦值为66.题型六 线段长度求解例 6 :如图,在60︒的二面角的棱上有A B 、两点,直线AC BD 、分别在这个二面用的两个半平面内,且都垂直AB ,4,6,8AB AC BD ===,那么CD =__________.【答案】217【解析】CD CA AB BD =++,所以()()222222CD CA AB BD CA AB BD CA AB CA BD AB BD =++=+++⋅+⋅+⋅ 稳固练习21636642068cos 011648683π⎛⎫=++++⨯⨯+=-= ⎪⎝⎭ ,所以217CD =,故填:217.平行六面体1111ABCD A B C D -,11AD AA AB ===,1160A AB DAB DAA ∠=∠=∠=︒,1113AC NC =,14D B MB =,设AB a =,AD b =,1AA c =;〔1〕试用a 、b 、c 表示MN ;〔2〕求MN 的长度;【答案】〔1〕15312124MN a b c =-++;〔2〕138||12MN =. 【分析】 〔1〕1111MN MD D A A N =++根据空间向量的线性运算法那么,由此能求出结果.〔2〕由15312124MN a b c =-++.11AD AA AB ===,1160A AB DAB DAA ∠=∠=∠=︒,由此能求出MN 的长度. 【详解】解:〔1〕1111MN MD D A A N =++1113243D B AD AC =--+ 132()()43D D DB AD AB AD =-+-++ 332()()443c a b b a b =---++ 15312124a b c =-++. 〔2〕15312124MN a b c =-++. 11AD AA AB ===,1160A AB DAB DAA ∠=∠=∠=︒,1113AC NC =,14D B MB =,设AB a =,AD b =,1AA c=; ∴22222153125915133()121241441441612122152212424MN a b c a b c a b a c b c =-+⨯+++⨯-⨯+=⨯⨯⨯- 稳固练习12591513532cos602cos602cos60144144161212124124=++-⨯⨯⨯︒-⨯⨯⨯︒+⨯⨯⨯︒ 413814=, MN ∴的长度为138||12MN =.题型七 共面证明例 7 如图,、、、、、、、、为空间的个点,且,,,,,,. 求证:〔1〕、、、四点共面,、、、四点共面; 〔2〕; 〔3〕.证明:〔1〕∵,,∴A 、B 、C 、D 四点共面. ∵,,∴E 、F 、G 、H 四点共面.〔2〕,∴. 〔3〕.如图,点M ,N 分别在对角线,BD AE 上,且11,33BM BD AN AE ==.求证:向量,,MN CD DE 共面.【答案】证明见解析.【分析】由题意,在AD 上取点G ,使13AG AD =,从而可证//GM CD ,//GN DE ,从而可证向量MN ,CD ,DE 共面. 【详解】证明:如图,在AD 上取点G ,使13AG AD =, 又13BM BD =, //GM AB ∴,又//AB CD ,//GM CD ∴, 同理,//GN DE ,故由GN 、GM 、MN 共面可知,向量MN ,CD ,DE 共面.稳固练习1、以下命题中,假命题是〔 〕A .同平面向量一样,任意两个空间向量都不能比拟大小B .两个相等的向量,假设起点相同,那么终点也相同C .只有零向量的模等于0D .共线的单位向量都相等【答案】D【详解】A.向量是有向线段,不能比拟大小.真命题.B.两向量相等:方向相同,模长相等.起点相同,那么终点也相同.真命题.C.零向量:模长为0的向量.真命题.D .共线的单位向量是相等向量或相反向量. 假命题.应选:D.2、对于空间任意一点O 和不共线的三点A ,B ,C ,有如下关系:623OP OA OB OC =++,那么〔〕A .四点O ,A ,B ,C 必共面 B .四点P ,A ,B ,C 必共面C .四点O ,P ,B ,C 必共面D .五点O ,P ,A ,B ,C 必共面【答案】B【解析】【分析】根据题意,得到23AP PB PC =+,判定AP ,PB ,PC 共面,进而可得出结果.【详解】因为623OP OA OB OC =++,所以()()23OP OA OB OP OC OP -=-+-,即23AP PB PC =+,根据共面向量根本定理,可得AP ,PB ,PC 共面,所以,P ,A ,B ,C 四点共面.应选:B .3、在以下命题中:稳固提升①假设向量,a b 共线,那么,a b 所在的直线平行;②假设向量,a b 所在的直线是异面直线,那么,a b 一定不共面;③假设三个向量,a b c ,两两共面,那么,a b c ,三个向量一定也共面;④三个向量,a b c ,,那么空间任意一个向量p 总可以唯一表示为p xa yb zc =++.其中正确命题的个数为〔 〕A .0B .1C .2D .3【答案】A【解析】此题考查向量的知识点;对于①:根据两向量共线定义知道,两向量共线有可能两向量所在的直线重合,所以此命题错误;对于②:两个向量可以平移到一个平面内,所以此命题错误;对于③:假设三个向量,,a b c 两两共面,这三个向量有可能不共面,所以此命题错误;对于④:根据空间向量的根本定理知道,这三个向量要不共面才可以,所以此命题错误,所以选A4、设向量,,a b c 不共面,那么以下可作为空间的一个基底的是( )A .{,,}a b b a a +-B .{,,}a b b a b +-C .{,,}a b b a c +-D .{,,}a b c a b c +++ 【答案】C选项A,B 中的三个向量都是共面向量,所以不能作为空间的一个基底.选项D 中,()a b c a b c ++=++,根据空间向量共面定理得这三个向量共面,所以不能作为空间的一个基底.选项C 中,,a b b a c +-不共面,故可作为空间的一个基底.应选:C .5、如图,在空间四边形ABCD 中,AB CD AC DB AD BC ⋅+⋅+⋅=〔 〕A .1-B .1C .0D .不确定【答案】C【详解】 ()AB CD AC DB AD BC AD DB CD AC DB AD BC ⋅+⋅+⋅=+⋅+⋅+⋅AD CD DB CD AC DB AD BC =⋅+⋅+⋅+⋅()AD CD DB CD AC AD BC =⋅+⋅++⋅AD CD DB AD AD BC =⋅+⋅+⋅()00AD CD DB BC AD =⋅++=⋅=.应选:C.6、在正方体ABCD-A 1B 1C 1D 1中,设AB a =,AD b =,1AA c =,A 1C 1与B 1D 1的交点为E ,那么BE =_____. 【答案】-12a+12b+c 【详解】 如图,11111111(2BE BB B E AA B C B A =+=++) =11(2AA AD AB +-)= 1122-++a b c故答案为 1122-++a b c7、在四棱锥P ABCD -中,底面ABCD 是正方形,E 为PD 中点,假设PA =a ,PB =b ,PC =c ,那么BE =_____.【答案】131222a b c -+ 【详解】 解:)1(2BE BP BD =+=12(b -+BA BC +)=12b - +1(2PA PB PC PB -+-)=12b - +12(2)a c b +-=131222a b c -+. 故答案为:131222a b c -+.8、假设12a e e =+,23b e e =+,31e c e =+,12323d e e e ++=,假设123,,e e e 不共面,当d a b c αβγ=++时,α+β+γ=____.【答案】3【解析】【分析】由123()()()d e e e αγαβγβ=+++++,所以1,2,3,αγαβγβ+=⎧⎪+=⎨⎪+=⎩故有α+β+γ=3.【详解】由123()()()d e e e αγαβγβ=+++++,所以1,2,3,αγαβγβ+=⎧⎪+=⎨⎪+=⎩故有α+β+γ=3.故答案为39、如下图,M ,N 分别是四面体OABC 的边OA ,BC 的中点,P ,Q 是MN 的三等分点,用向量OA ,OB ,OC 表示OP 和OQ【答案】111633OP OA OB OC =++;111366OQ OA OB OC =++ 【解析】【分析】 根据向量的加法、减法法那么及条件,先求出12OM OA =,1122ON OB OC =+,13MQ MN =,23MP MN =,再结合图形,运用向量加法,用空间向量根本定理表示出待求向量.【详解】因为M ,N 分别是四面体OABC 的边OA ,BC 的中点,P ,Q 是MN 的三等分点,所以12OM OA =,1122ON OB OC =+,13MQ MN =,23MP MN = 所以OP OM MP =+=1223OA MN +=12()23OA ON OM +-=121()232OA ON OA +- =121233OA ON OA +-=1211()6322OA OB OC ++=111633OA OB OC ++; OQ OM MQ =+=1123OA MN +=11()23OA ON OM +-=111()232OA ON OA +- =1133OA ON +=1111()3322OA OB OC ++=111366OA OB OC ++10、如下图,在平行六面体ABCD A B C D -''''中,,,AB a AD b AA c '===,P 是CA '的中点,M 是CD '的中点,N 是C D ''的中点,点Q 在CA '上,且:4:1CQ QA '=用基底{}a b c ,,表示以下向量.〔1〕AP ;〔2〕AM ;〔3〕AN ;〔4〕AQ .【答案】〔1〕1()2AP a b c =++;〔2〕1122AM a b c =++;〔3〕12AN a b c =++;〔4〕114555AQ a b c =++.. 连接.AC AD ',〔1〕P 是CA '的中点111()()()222AP AC AA AB AD AA a b c ''=+=++=++ 〔2〕M 是CD '的中点1111()(2)2222AM AC AD AB AD AA a b c ''=+=++=++ 〔3〕N 是C D ''的中点1111()()(2)2222AN AC AD AA AC AD AA AA AB AD AA a b c ''''''=+=+++=+++=++〔4〕点Q 在CA '上,且:4:1CQ QA '=44141114()()55555555AQ AC CQ AC CA AC AA AC AC AA AB AD a b c '''=+=+=+-=+=+=++【点睛】 此题考查空间向量根本定理,属于根底题11、如图,三棱柱111ABC A B C -中,底面边长和侧棱长都等于1,1160BAA CAA ∠=∠=︒.〔1〕设1AA a=,AB b =,AC c =,用向量a ,b ,c 表示1BC ,并求出1BC 的长度; 〔2〕求异面直线1AB 与1BC 所成角的余弦值.【答案】〔1〕1BC a c b =+-;2;〔2〕66. 解:〔1〕111111111BC BB BC BB AC A B a c b=+=+-=+-, 又11cos 11cos602a b a b BAA ⋅=∠=⨯⨯︒=, 同理可得12a cbc ⋅=⋅=, 那么221||()2222BC a c b a c b a c a b c b =+-=+++⋅-⋅-⋅=. 〔2〕因为1AB a b =+,所以221||()23AB a b a b a b =+=++⋅=,因为211()()1AB BC a b a c b a a c a b b a c b b ⋅=+⋅+-=+⋅-⋅+⋅+⋅-=,所以11111116cos ,6||||23AB BC AB BC AB BC ⋅<>===⨯. 那么异面直线1AB 与1BC 所成角的余弦值为66.12、平行六面体ABCD ﹣A ′B ′C ′D ′中,AB =4,AD =3,AA ′=5,∠BAD =90°,∠BAA ′=∠DAA ′=60°.〔1〕求AC ′的长;〔如下图〕〔2〕求AC '与AC 的夹角的余弦值.【答案】〔12【解析】【分析】〔1〕AC '=AC CC '+=AB AD AA '++,再利用向量模的运算即可求解. 〔2〕利用向量数量积的即可求出夹角的余弦值.【详解】〔1〕可得AC '='AC CC +='AB AD AA ++, 2AC '=2AB AD AA '++=22AB AD AA '+++2〔AB AD AB AA AD AA ''⋅+⋅+⋅〕 =42+32+52+2〔4×3×0+4×1153522⨯+⨯⨯〕=85 故AC ′的长等于AC'= 〔2〕由〔1〕可知AC '=AB AD AA '++,AC'=故AC AC '⋅=〔AB AD AA '++〕⋅〔AB AD +〕 =222AB AB AD AD AA AB AA AD ''+⋅++⋅+⋅ =2211424303545322+⨯⨯⨯++⨯⨯+⨯⨯=852 又AC =()AB AD +=222AB AB ADAD +⋅+= 5故AC '与AC 的夹角的余弦值=AC AC AC AC '⋅'⋅=85=10。

(常考题)人教版高中数学选修一第一单元《空间向量与立体几何》检测题(含答案解析)(2)

(常考题)人教版高中数学选修一第一单元《空间向量与立体几何》检测题(含答案解析)(2)

一、选择题1.若(),,0OA m n =,40,,OB p n ⎛⎫= ⎪⎝⎭,()0,4,0F ,1AF m =+,1BF p =+,则m p +的最小值为( )A .1B .2C .3D .62.如图所示,在直三棱柱111ABC A B C -中,AC BC ⊥,且3BC =,4AC =,13CC =,点P 在棱1AA 上,且三棱锥A PBC -的体积为4,则直线1BC 与平面PBC 所成角的正弦值等于( )A .10 B .6 C .10 D .15 3.三棱锥O ABC -中,M ,N 分别是AB ,OC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示NM ,则NM 等于( )A .1()2a b c -++ B .1()2a b c +- C .1()2a b c -+D .1()2a b c --+4.如图,正四棱锥P ABCD -中,已知PA a =,PB b =,PC c =,12PE PD =,则BE =( )A .131222a b c -+ B .111222a b c --- C .131222a b c --+ D .113222a b c --+ 5.设a ,b 是两条不同的直线,α,β是两个不同的平面,则下列四个命题:①若a b ⊥,a α⊥,b α⊄,则//b α;②若//a α,a β⊥,则αβ⊥;③若a β⊥,αβ⊥,则//a α或a α⊂;④若a b ⊥,a α⊥,b β⊥,则αβ⊥.其中正确命题的个数为( ) A .1B .2C .3D .46.ABC 中,90ACB ∠=︒,22AB BC ==,将ABC 绕BC 旋转得PBC ,当直线PC 与平面PAB 所成角正弦值为66时,P 、A 两点间的距离为( )A 2B .2C .42D .47.以下四个命题中,正确的是( ) A .若1123OP OA OB =+,则P 、A 、B 三点共线 B .若{,,}a b c 为空间的一个基底,则{,,}a b b c c a +++构成空间的另一个基底 C .()a b c a b c ⋅=⋅⋅D .ABC 为直角三角形的充要条件是·0AB AC =8.在如图所示的几何体ABCDEF 中,四边形EDCF 是正方形,ABCD 是等腰梯形,AD DE =,90ADE ∠=,//AB CD ,120ADC ∠=.给出下列三个命题:1:p 平面ABCD ⊥平面EDCF ;2:p 异面直线AF 与BD 所成角的余弦值为34;3:p 直线AF 与平面BDF 所成角的正弦值为5.那么,下列命题为真命题的是( ) A .12p p ∧B .13p p ⌝∧C .23p p ∧D .13p p ∧9.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E ,F 分别是AB 、AD 的中点,则EF DC ⋅=( ) A .14B .14-C .3 D .3-10.已知A (1,0,0),B (0,﹣1,1),OA OB λ+与OB (O 为坐标原点)的夹角为30°,则λ的值为( ) A .66B .66±C .62D .62±11.如图,在棱长均相等的四面体O ABC -中,点D 为AB 的中点,12CE ED =,设OA a =,OB b =,OC c =,则OE =( )A .111663a b c ++ B .111333a b b ++C .111663a b c +- D .112663a b c ++ 12.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,则()1,2,,8i AB AP i ⋅=⋅⋅⋅的不同值的个数为( )A .8B .4C .2D .113.在正方体1111ABCD A B C D -中,点E ,F 分别是AB ,1CC 的中点,则直线1A E 与平面11B D F 所成角的正弦值是( ) A .15 B .15 C .5 D .30第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题14.在长方体1111ABCD A B C D -中,1AB =,1AD AA =,且1C D 与底面1111D C B A 所成角为60°,则直线1C D 与平面11CB D 所成的角的正弦值为______.15.三棱锥O ABC -中,OA 、OB 、OC 两两垂直,且OA OB OC ==.给出下列四个命题:①()()223OA OB OCOA ++=;②()0BC CA CO ⋅-=;③()OA OB +和CA 的夹角为60;④三棱锥O ABC -的体积为()16AB AC BC ⋅. 其中所有正确命题的序号为______________.16.a ,b 为空间两条互相垂直的直线,直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,30ABC ∠=︒,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成45°角; ⑤直线AB 与a 所成角的最大值为60°; ④直线AB 与a 所成角的最小值为30°;其中正确的是___________.(填写所有正确结论的编号)17.在长方体1111ABCD A B C D -中,2AB =,11BC AA ==,则11D C 与平面11A BC 所成角的正弦值为______________.18.设空间任意一点O 和不共线三点A B C ,,,且点P 满足向量关系OP xOA yOB zOC =++,若,,,P A B C 四点共面,则x y z ++=______.19.设E ,F 是正方体1AC 的棱AB 和11D C 的中点,在正方体的12条面对角线中,与截面1A ECF 成60︒角的对角线的数目是______.20.正四面体ABCD 的棱长为2,半径为2的球O 过点D ,MN 为球O 的一条直径,则AM AN ⋅的最小值是__________.21.如图,长方体1111ABCD A B C D -中,2AB AD ==,122AA =,若M 是1AA 的中点,则BM 与平面11B D M 所成角的正弦值是___________.22.如图,在三棱柱111ABC A B C -中,1AC CC ⊥,AC BC ⊥,2AC BC ==,160C CB ∠=︒,13CC =,点D ,E 分别在棱1AA 和棱1CC 上,且1AD =,2CE =,则二面角1B B E D --的正切值_______23.如图,在棱长为2的正方体中,点P 在正方体的对角线AB 上,点Q 在正方体的棱CD 上,若P 为动点,Q 为动点,则PQ 的最小值为_____.24.已知(2,1,3),(1,4,2),(3,5,)a b c λ=-=-=-,若,,a b c 三向量共面,则实数λ=_____.25.若平面α,β的法向量分别为(4,0,3)u =,(1,1,0)v =-,则这两个平面所成的锐角的二面角的余弦值为________.26.已知三棱锥 A BCD -每条棱长都为1,点E ,G 分别是AB ,DC 的中点,则GE AC ⋅=__________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据空间向量模的坐标表示,由题中条件,得到11m p =+=+,推出22163282230m p n n n n-+-++=,配方整理,即可求出最小值. 【详解】因为(),,0OA m n =,40,,OB p n ⎛⎫= ⎪⎝⎭,()0,4,0F ,1AF m =+,1BF p =+, 所以11m p =+=+,则()2222224214421m n m m p p p n ⎧+-=++⎪⎨⎛⎫-+=++⎪ ⎪⎝⎭⎩,即()224214421n m p n⎧-=+⎪⎨⎛⎫-=+⎪ ⎪⎝⎭⎩, 所以22221632164812261628822n n n m p n n n n n ⎛⎫⎛⎫-++-+-=++-++ ⎪ ⎪⎝⎭⎝⎭+=22444822466n n n n n n ⎛⎫⎛⎫⎛⎫=+-++=+-+≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当44n n+=,即2n =时,22m p +取得最小值3,则m p +的最小值为3. 故选:C. 【点睛】 关键点点睛:求解本题的关键在于利用空间向量模的坐标表示,用n 表示出22m p +,即22164882222n n n m n p ⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭+=,配方整理,即可求解.2.C解析:C 【分析】利用锥体的体积公式可求得2PA =,然后以点C 为坐标原点,CB 、CA 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1BC 与平面PBC 所成角的正弦值. 【详解】由已知得1AA ⊥底面ABC ,且AC BC ⊥,所以111344332A PBC P ABC ABC V V S PA PA --==⨯⨯=⨯⨯⨯⨯=△,解得2PA =. 如图所示,以点C 为坐标原点,CB 、CA 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()0,0,0C 、()0,4,2P 、()3,0,0B 、()10,0,3C , 则()3,0,0CB =,()0,4,2CP =,()13,0,3BC =-. 设平面BCP 的法向量为(),,n x y z =,则由00n CB n CP ⎧⋅=⎨⋅=⎩可得30420x y z =⎧⎨+=⎩,即020x y z =⎧⎨+=⎩,得0x =,令1y =,得2z =-,所以()0,1,2n =-为平面BCP 的一个法向量. 设直线1BC 与平面PBC 所成的角为θ, 则()()1122221610sin cos ,3312n BC n BC n BC θ⋅-=<>===⋅-+⨯+- 故选:C. 【点睛】方法点睛:求直线与平面所成角的方法:(1)定义法,①作,在直线上选取恰当的点向平面引垂线,确定垂足的位置是关键; ②证,证明所作的角为直线与平面所成的角,证明的主要依据是直线与平面所成角的概念;③求,利用解三角形的知识求角; (2)向量法,sin cos ,AB n AB n AB nθ⋅=<>=⋅(其中AB 为平面α的斜线,n 为平面α的法向量,θ为斜线AB 与平面α所成的角).3.B解析:B【分析】利用向量的平行四边形法则、三角形法则可得:1()2NM NA NB =+,1()2AN AO AC =+,1()2BN BO BC =+,AC OC OA =-,BC OC OB =-,代入化简即可得出.【详解】 解:1()2NM NA NB =+,1()2AN AO AC =+,1()2BN BO BC =+,AC OC OA =-,BC OC OB =-,∴1111()2222MN AN BN OA OB OC =+=--+111222a b c =--+, ∴111222NM a b c =+-,故选:B . 【点睛】本题考查了向量的平行四边形法则、三角形法则,考查了数形结合方法、推理能力与计算能力,属于中档题.4.A解析:A 【分析】连接AC BD 、交点为O ,根据根据向量加法运算法则1122PO PA PC =+,1122PO PD PB =+,求得PD ,然后由BE BP PE =+求解. 【详解】 如图所示:连接AC BD 、交点为O ,则1122PO a c =+,又1122PO PD PB =+, 所以PD a c b =+-, 又11112222PE PD a c b ==+-, 所以131222BE BP PE a b c =+=-+. 故选:A. 【点睛】本题主要考查空间向量基本定理,还考查了数形结合的思想和运算求解的能力,属于中档题.5.D解析:D 【分析】设直线a ,b 的方向向量分别为11,a b ,α,β的法向量分别为11,n m ,将各选项中的题设条件转化为向量的关系后可得相应的结论是否成立. 【详解】对于①,因为a b ⊥,a α⊥,故11a b ⊥,11a n λ=,故11n b ⊥,因b α⊄,故//b α, 故①正确.对于②,因为//a α,a β⊥,故11a n ⊥,11a m λ=,故11n m ⊥即αβ⊥,故②正确. 对于③,因为a β⊥,αβ⊥,故11a m λ=,11n m ⊥,故11n a ⊥即//a α或a α⊂, 故③正确.对于④, 因为a b ⊥,a α⊥,b β⊥,故11a b ⊥,11a n λ=,11b m μ=, 故11n m ⊥即αβ⊥,故④正确. 故选:D. 【点睛】本题考查空间中与点、线、面位置关系有关的命题的真假判断,此类问题一般是根据位置关系的判定定理和性质定理来考虑,也可以利用直线的方向向量和法向量的关系来判断位置关系,本题属于中档题.6.B解析:B 【分析】取PA 的中点D ,连接CD ,因为CA =CP ,则CD ⊥PA ,连接BD ,过C 作CE ⊥BD ,E 为垂足,由题意得到∠CPE 就是直线PC 与平面PAB 所成角,利用直线PC 与平面PAB 所成角的PC CE ,再求出CD ,可得PD ,即可得出结论.【详解】取PA 的中点D ,连接CD ,因为CA =CP ,则CD ⊥PA ,连接BD ,过C 作CE ⊥BD ,E 为垂足,由已知得BC ⊥CA , BC ⊥CP , CA CP C =,则BC ⊥平面PAC , 得到BC ⊥PA ,CD BC C ⋂=,可得PA ⊥平面BCD ,又PA ⊂平面PAC ∴平面BCD ⊥平面PBA ,平面BCD 平面PBA =BD ,由两个平面互相垂直的性质可知:CE ⊥平面PBA , ∴∠CPE 就是直线PC 与平面PAB 所成角, ∵直线PC 与平面PAB 所成角的正弦值为6,PC =AC =3, ∴CE =62PC =, 设CD =x ,则BD =21x +,21121122x x ∴⋅⋅=⋅+⋅, ∴x =1,∵PC =3,∴PD =2,∴PA =2PD =22. 故选:B .【点睛】本题考查直线与平面所成角的求法,考查空间想象能力和分析推理能力以及计算能力,属于中档题.7.B解析:B 【分析】对于A ,P ,A , B 三点共线时,(1)OP OA OB λμλμ=++=,故A 不正确;对于B , ,,a b b c c a +++不共线,所以 {,,}a b b c c a +++构成空间的另一个基底,故B 正确;对于C ,设,a b θ<>=,则|()||||||||cos |a b c a b c θ=,故C 不正确;对于D ,·0AB AC =时,A ∠为直角,反之也可以是B ,C ∠为直角,故D 不正确. 【详解】对于A ,P ,A , B 三点共线时,(1)OP OA OB λμλμ=++=,1123OP OA OB =+,P ∴,A ,B 三点共线不成立,故A 不正确;对于B ,若{,,}a b c 为空间的一个基底,则,,a b c 不共线,∴,,a b b c c a +++不共线,∴{,,}a b b c c a +++构成空间的另一个基底,故B 正确;对于C ,设,a b θ<>=,则|()||||||||cos |a b c a b c θ=,故C 不正确;对于D ,·0AB AC =时,A ∠为直角,故ABC ∆为直角三角形,反之也可以是B ,C ∠为直角,故D 不正确. 故选:B 【点睛】本题主要考查命题真假的判断,考查向量共线的条件,考查向量的数量积的计算,考查充要条件的判定,意在考查学生对这些知识的理解掌握水平.8.D解析:D 【分析】利用面面垂直的判定定理可判断命题1p 的真假,利用空间向量法可得判断命题2p 、3p 的真假,再利用复合命题的真假可得出结论. 【详解】90ADE ∠=,AD DE ∴⊥,四边形EDCF 是正方形,则DC DE ⊥,AD DC D ⋂=,DE ∴⊥平面ABCD ,又DE ⊂平面EDCF ,故平面ABCD ⊥平面EDCF ,故1p 为真命题;由已知//DC EF ,DC ⊄平面ABFE ,EF ⊂平面ABFE ,所以//DC 平面ABFE . 又DC ⊂平面ABCD ,平面ABCD 平面ABFE AB =,故//AB CD ,又AD DE =,所以AD CD =,令1AD =,则2AB =,60BAD ∠=, 由余弦定理可得2222cos 3BD AB AD AB AD BAD =+-⋅∠=,222AD BD AB ∴+=,AD BD ∴⊥,如图,以D 为原点,以DA 的方向为x 轴正方向,建立空间直角坐标系D xyz -,则()0,0,0D ,()1,0,0A ,132F ⎛⎫- ⎪ ⎪⎝⎭,()3,0B ,所以3,12FA ⎛⎫=- ⎪ ⎪⎝⎭,()0,=DB,12DF ⎛⎫=- ⎪ ⎪⎝⎭, 所以异面直线AF 与BD所成角的余弦值为cos ,42FA DB FA DB FA DB-⋅<>===⨯⋅2p 为假命题; 设平面BDF 的法向量为(),,n x y z=,由00n DBn DF ⎧⋅=⎨⋅=⎩,所以0102x y z =⎨-+=⎪⎩, 取2x =,则0y =,1z =,得()2,0,1n =,cos ,2F FA n FA A n n⋅<>===⨯⋅ 设直线AF与平面BDF 所成的角为θ,则sin θ=. 所以直线AF 与平面BDF ,故3p 为真命题. 所以13p p ∧为真命题,12p p ∧、13p p ⌝∧、23p p ∧均为假命题. 故选:D. 【点睛】本题考查复合命题的真假的判断,涉及面面垂直的判断、异面直线所成角以及线面角的计算,涉及空间向量法的应用,考查推理能力与计算能力,属于中等题.9.B解析:B 【分析】由题意作图,可得所求数量积为12BD DC ,由已知易得其模长和夹角,由数量积的定义可得答案. 【详解】解:如图连接空间四边形ABCD 的对角线AC ,BD , 由空间四边形ABCD 的每条边和对角线的长都等于1, 可知底面BCD 为等边三角形,故60BDC ∠=︒, 又点E 、F 分别是AB 、AD 的中点,所以12EF BD =, 故11||||cos()22EF DC BD DC BD DC BDC π==-∠ 11111224⎛⎫=⨯⨯⨯-=- ⎪⎝⎭, 故选:B .【点睛】本题考查向量的数量积的运算,涉及向量的基本运算,属于基础题.10.C解析:C 【分析】运用向量的坐标运算及夹角公式直接求解即可. 【详解】解:(1,0,0)(0,,)(1,,)OA OB λλλλλ+=+-=-,∴2||12,||2OA OB OB λλ+=+=,()2OA OB OB λλ+=,∴2122cos302λλ+︒=, ∴21264λλ+=,则0λ>, ∴62λ=. 故选:C . 【点睛】本题考查空间向量的坐标运算,考查运算求解能力,属于基础题.11.D解析:D 【分析】利用空间向量的加法和减法法则可将OE 用a 、b 、c 表示. 【详解】12CE ED =,()111111=333236CE CD CA AD CA AB CA AB ⎛⎫∴==+=++ ⎪⎝⎭,()()11113636OE OC CE OC CA AB OC OA OC OB OA∴=+=++=+-+-112112663663OA OB OC a b c =++=++. 故选:D. 【点睛】本题考查空间向量的基底分解,解题时要灵活利用空间向量加法和减法法则,考查计算能力,属于中等题.12.D解析:D 【分析】根据平面向量运算法则可知2i i AB AP AB AB BP ⋅=+⋅,由线面垂直性质可知0i AB BP ⋅=,从而得到21i AB AP AB ⋅==,进而得到结果. 【详解】()2i i i AB AP AB AB BP AB AB BP ⋅=⋅+=+⋅AB ⊥平面286BP P P i AB BP ∴⊥ 0i AB BP ∴⋅= 21i AB AP AB ∴⋅== 则()1,2,,8i AB AP i ⋅=⋅⋅⋅的不同值的个数为1个 故选:D 【点睛】本题考查向量数量积的求解问题,关键是能够利用平面向量线性运算将所求向量数量积转化为已知模长的向量和有垂直关系向量的数量积的运算问题,考查了转化与化归的思想.13.D解析:D 【分析】设正方体棱长为2,以1,,AD AB AA 为,,x y z 轴建立空间直角坐标系,求得1(0,1,2)A E =-和平面11B D F 的一个法向量为(1,1,2)n =,利用向量的夹角公式,即可求解. 【详解】设正方体棱长为2,分别以1,,AD AB AA 为,,x y z 轴建立空间直角坐标系, 则111(0,0,2),(0,1,0),(0,2,2),(2,0,2),(2,2,1)A E B D F , 所以1111(0,1,2),(2,2,0),(2,0,1)A E B D B F =-=-=-.设平面11B D F 的法向量为(,,)n x y z =,则1110,0,n B D n B F ⎧⋅=⎪⎨⋅=⎪⎩即220,20,x y x z -=⎧⎨-=⎩令1x =,则1,2y z ==,即平面11B D F 的一个法向量为(1,1,2)n =. 设直线1A E 与平面11B D F 所成角为θ, 则1130sin 1030n A E n A Eθ⋅===⋅. 故选D. 【点睛】本题主要考查了利用空间向量求解直线与平面所成的角,根据几何体的结构特征,建立适当的空间直角坐标系,求得直线的方向向量和平面的一个法向量,利用向量的夹角公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题14.【分析】先得出以D 为原点建立如图所示空间直角坐标系利用向量法可求出【详解】长方体中平面面即为与底面所成角以D 为原点建立如图所示空间直角坐标系则则设平面的一个法向量为则即令则即设直线与平面所成的角为则 15【分析】先得出1160DC D ∠=,以D 为原点,建立如图所示空间直角坐标系,利用向量法可求出. 【详解】长方体1111ABCD A B C D -中,1DD ⊥平面面1111D C B A ,11DCD ∴∠即为1C D 与底面1111D C B A 所成角,1160DC D ∴∠=, 111AB C D ==,13DD ∴=以D 为原点,建立如图所示空间直角坐标系,则()(()((1110,0,0,3,0,1,0,3,1,3,3D C C B D ,则()((1110,1,3,3,0,3,0,3DC CB CD ===-,设平面11CB D 的一个法向量为(),,n x y z =,则1100n CB n CD ⎧⋅=⎪⎨⋅=⎪⎩,即33030x z y z ⎧+=⎪⎨-+=⎪⎩,令1x =,则3,1y z ==-,即()1,3,1n =--,设直线1C D 与平面11CB D 所成的角为θ, 则1112315sin cos ,25DC n DC n DC nθ⋅-=<>===⨯⋅ 故答案为:155. 【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.15.①②③【分析】设以点为坐标原点所在直线分别为轴建立空间直角坐标系利用空间向量数量积的坐标运算可判断①②③④的正误【详解】设由于两两垂直以点为坐标原点所在直线分别为轴建立空间直角坐标系如下图所示:则对解析:①②③ 【分析】设OA OB OC a ===,以点O 为坐标原点,OA 、OB 、OC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量数量积的坐标运算可判断①②③④的正误.【详解】设OA OB OC a ===,由于OA 、OB 、OC 两两垂直,以点O 为坐标原点,OA 、OB 、OC 所在直线分别为x 、y 、z 轴建立空间直角坐标系, 如下图所示:则()0,0,0O、(),0,0A a 、()0,,0B a 、()0,0,C a .对于①,(),,OA OB OC a a a ++=,所以,()()22233OA OB OC a OA ++==,①正确;对于②,(),0,0CA CO OA a -==,()0,,BC a a =-,则()0BC CA CO ⋅-=,②正确;对于③,(),,0OA OB a a +=,(),0,CA a a =-,()()221cos ,22OA OB CA a OA OB CA OA OB CAa+⋅<+>===+⋅, 0,180OA OB CA ≤<+>≤,所以,()OA OB +和CA 的夹角为60,③正确;对于④,(),,0AB a a =-,(),0,AC a a =-,()0,,BC a a =-,则2AB AC a ⋅=,所以,()223122666a a AB AC BC BC a ⋅==⨯=,而三棱锥O ABC -的体积为3111326V OA OB OC a =⨯⋅⋅=,④错误. 故答案为:①②③. 【点睛】关键点点睛:在立体几何中计算空间向量的相关问题,可以选择合适的点与直线建立空间直角坐标系,利用空间向量的坐标运算即可.16.②④【分析】由题意知abAC 三条直线两两相互垂直构建如图所示的长方体|AC|=1|AB|=2斜边AB 以直线AC 为旋转轴则A 点保持不变B 点的运动轨迹是以C 为圆心为半径的圆以C 坐标原点以CD 为x 轴CB 为解析:②④ 【分析】由题意知,a 、b 、AC 三条直线两两相互垂直,构建如图所示的长方体,|AC |=1,|AB |=2,斜边AB 以直线AC 为旋转轴,则A 点保持不变,B 点的运动轨迹是以C 为圆心,3为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系,利用向量法求出结果. 【详解】由题意知,a 、b 、AC 三条直线两两相互垂直,画出图形如图,不妨设图中所示的长方体高为13 故|AC |=1,|AB |=2,斜边AB 以直线AC 为旋转轴,则A 点保持不变, B 点的运动轨迹是以C 3为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系,则D 3,0,0),A (0,0,1),直线a 的方向单位向量a =(0,1,0),|a |=1, 直线b 的方向单位向量b =(1,0,0),|b |=1,设B 点在运动过程中的坐标中的坐标B ′3θ3θ,0),其中θ为B ′C 与CD 的夹角,[02θπ∈,),∴AB ′在运动过程中的向量,'AB =3θ3θ,﹣1),|'AB |=2, 设'AB 与a 所成夹角为α∈[0,2π],则)(10cos 3,,θα-⋅=='⋅sin a AB θ|∈[0, ∴α∈[6π,2π],∴③错误,④正确. 设'AB 与b 所成夹角为β∈[0,2π], ()(1100c 33os ,-,,,θθβ-⋅'⋅===''⋅⋅cos sin AB b AB bb AB θ|, 当'AB 与a 夹角为60°时,即α3π=,|sin θ|3πα===, ∵cos 2θ+sin 2θ=1,∴cos 2β=|cos θ|2=,∵β∈[0,2π],∴4πβ=,此时'AB 与b 的夹角为45°,∴②正确,①错误. 故答案为:②④. 【点睛】本题考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,涉及空间向量的知识点,属于中档题.17.【详解】如图建立空间直角坐标系则所以设平面的一个法向量为由题可得令可得设与平面所成角为则故直线与平面所成角的正弦值为故答案为:解析:13【详解】如图,建立空间直角坐标系D xyz -,则1(0,0,1)D ,1(0,2,1)C ,1(1,0,1)A ,(1,2,0)B ,所以11(0,2,0)DC =,设平面11A BC 的一个法向量为(,,)n x y z =, 由题可得111(,,)(1,2,0)20(,,)(0,2,1)20n AC x y z x y n A B x y z y z ⎧⋅=⋅-=-+=⎪⎨⋅=⋅-=-=⎪⎩,令1y =,可得(2,1,2)n =, 设11D C 与平面11A BC 所成角为θ,则11111121sin cos ,233D C nD C n D C n θ⋅====⨯⋅, 故直线11D C 与平面11A BC 所成角的正弦值为13. 故答案为:13.18.【分析】先根据不共线三点用平面向量基底表示;再根据平面向量基本定理表示求和即得结果【详解】因为四点共面三点不共线所以因为因为是任意一点故可不共面所以故故答案为:1【点睛】本题考查用基底表示向量以及平 解析:1【分析】先根据不共线三点A B C ,,,用平面向量基底AB AC ,表示PA ;再根据平面向量基本定理表示,,x y z ,求和即得结果.【详解】 因为,,,P A B C 四点共面,三点A B C ,,不共线,所以,,,m n R PA mAB nAC ∃∈=+()(),(1)OA OP m OB OA n OC OA OP m n OA mOB nOC -=-+-∴=++--因为OP xOA yOB zOC =++,因为O 是任意一点,故,,OA OB OC 可不共面,所以1,,x m n y m z n =++=-=-, 故1x y z ++=.故答案为:1【点睛】本题考查用基底表示向量以及平面向量基本定理应用,考查基本分析求解能力,属基础题. 19.【分析】由于平面不是特殊的平面故建系用法向量求解以为原点建系正方体三边为坐标轴求出平面的法向量求解面对角线和的夹角即可求得答案【详解】以点为原点所在直线为轴所在直线为轴所在直线为轴设正方体棱长为2如 解析:4【分析】由于平面1A ECF 不是特殊的平面,故建系用法向量求解,以D 为原点建系,正方体三边为坐标轴,求出平面1A ECF 的法向量n ,求解面对角线和n 的夹角,即可求得答案.【详解】以点D 为原点,AD 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴设正方体棱长为2,如图:则(2,0,0),(0,0,0),(2,2,0),(0,2,0)A D B C1111(2,0,2),(2,2,2,),(0,2,2),(0,0,2)A B C D ,(2,1,0),(0,1,2)E F∴ 1(2,1,0),((0,1,2),(2,2,0)EC A E AC =-==-1(2,2,0),(2,0,2)BD BC =--=-- 11(0,2,2),(0,2,2)B A A B =--=-当面对角线与截面1A ECF 成60︒角,∴ 需保证直线与法向量的夹角为30︒,即其余弦值32± 设平面1A ECF 的法向量(,,)n x y z =100n EC n A E ⎧⋅=⎪⎨⋅=⎪⎩ 可得:2020y z x y -=⎧⎨-+=⎩ ,取2y = ∴ (1,2,1)n = ,则||6n = 33cos ,62||||86n AC AC n n AC ⋅<>===≠±⋅⋅ 3cos ,86BD n <>==⨯ 13cos ,286B C n <>=≠±⋅1cos,B A n<>==1cos,A B n<>=≠当两条面对角线平行时,求解其中一条与面1A ECF的法向量n夹角即可.平面11AA D D中1AD与EF平行,故不符合题意.综上所述,符合题意的面对角线为:1111,,,BD B D AB DC共4条.故答案为:4.【点睛】本题考查了线面角求法,根据题意画出几何图形,掌握正方体结构特征是解本题的关键.对于立体几何中角的计算问题,可以利用空间向量法,利用向量的夹角公式求解,属于基础题. 20.【解析】很明显当四点共面时数量积能取得最值由题意可知:则是以点D 为顶点的直角三角形且:当向量反向时取得最小值:解析:4-【解析】很明显当,,,O D M N四点共面时数量积能取得最值,由题意可知:OD OM ON==,则MDN△是以点D为顶点的直角三角形,且:()()()2420,AM AN AD DM AD DNAD AD DM DN DM DNAD DO⋅=+⋅+=+⋅++⋅=+⋅+当向量,AD DO反向时,AM AN⋅取得最小值:4224-⨯=-21.【分析】以点为坐标原点所在直线分别为轴建立空间直角坐标系利用空间向量法可求得直线与平面所成角的正弦值【详解】以点为坐标原点所在直线分别为轴建立如下图所示的空间直角坐标系则设平面的法向量为由可得令则可解析:3【分析】以点D为坐标原点,DA、DC、1DD所在直线分别为x、y、z轴建立空间直角坐标系D xyz-,利用空间向量法可求得直线BM与平面11B D M所成角的正弦值.【详解】以点D为坐标原点,DA、DC、1DD所在直线分别为x、y、z轴建立如下图所示的空间直角坐标系D xyz-,则()2,2,0B 、(12,2,22B 、(10,0,22D 、(2M ,设平面11B D M 的法向量为(),,n x y z =,()112,2,0D B =,(12,0,2D M =-, 由111100n D B n D M ⎧⋅=⎪⎨⋅=⎪⎩,可得220220x y x z +=⎧⎪⎨=⎪⎩,令1x =,则1y =-,2z =()1,1,2n =-, (0,2,2BM =-,6cos ,26n BMn BM n BM ⋅<>===⨯⋅, 因此,BM 与平面11B D M 6 故答案为:63. 【点睛】 方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin h lθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.22.【分析】根据题意先得到平面所以向量为平面的一个法向量;分别以为轴轴以垂直于平面过点的直线为轴建立空间直角坐标系根据题意求出平面的一个法向量根据向量夹角公式求出二面角的夹角余弦值进而可求出结果【详解】【分析】根据题意,先得到AC ⊥平面11BCC B ,所以向量AC 为平面11BCC B 的一个法向量;分别以CA ,CB 为x 轴,y 轴,以垂直于平面ABC 过点C 的直线为z 轴,建立空间直角坐标系C xyz -,根据题意求出平面1B ED 的一个法向量,根据向量夹角公式求出二面角的夹角余弦值,进而可求出结果.【详解】因为AC BC ⊥,1AC CC ⊥,1BC CC C =,且1,BC CC ⊂平面11BCC B , 所以AC ⊥平面11BCC B ,所以向量AC 为平面11BCC B 的一个法向量;分别以CA ,CB 为x 轴,y 轴,以垂直于平面ABC 过点C 的直线为z 轴,建立空间直角坐标系C xyz -,因为2AC BC ==,160C CB ∠=︒,13CC =,所以()2,0,0A ,()0,0,0C ,()2,0,0B ,则12,2D ⎛ ⎝⎭,(E,170,2B ⎛ ⎝⎭,所以12,,2ED ⎛=- ⎝⎭,150,2EB ⎛= ⎝⎭,()2,0,0AC =- 设平面1B ED 的一个法向量为(),,m x y z =,则 1m ED m EB ⎧⊥⎪⎨⊥⎪⎩,即11202502m ED x y z m EB y z ⎧⋅=-=⎪⎪⎨⎪⋅=+=⎪⎩,解35x z y z ⎧=⎪⎪⎨⎪=⎪⎩,令5z=,则()3,m =,所以cos ,4AC mAC m AC m ⋅<>===, 由图像可得,二面角1B B E D --为锐角,记为θ,所以co cos s ,AC m θ>=<=, 因此sin θ==所以sin 28221tan cos 3θθθ===.221. 【点睛】 本题主要考查求二面角的正切值,根据向量的方法求解即可,属于常考题型.23.【分析】建立空间直角坐标系利用三点共线设出点P(λλ2﹣λ)0≤λ≤2以及Q(02μ)0≤μ≤2根据两点间的距离公式以及配方法即可求解【详解】建立如图所示空间直角坐标系设P(λλ2﹣λ)Q(02μ)2【分析】建立空间直角坐标系,利用,,A B P 三点共线设出点P (λ,λ,2﹣λ),0≤λ≤2,以及Q (0,2,μ),0≤μ≤2,根据两点间的距离公式,以及配方法,即可求解.【详解】建立如图所示空间直角坐标系,设P (λ,λ,2﹣λ),Q (0,2,μ)(0≤λ≤2且0≤μ≤2),可得PQ 22222(2)(2)2(1)(2)2λλλμλλμ+-+--=-+--+∵2(λ﹣1)2≥0,(2﹣λ﹣μ)2≥0,∴2(λ﹣1)2+(2﹣λ﹣μ)2+2≥2,当且仅当λ﹣1=2﹣λ﹣μ=0时,等号成立,此时λ=μ=1,∴当且仅当P 、Q 分别为AB 、CD 的中点时, PQ 2.故答案为2.【点睛】本题考查空间向量法求两点间的距离,将动点用坐标表示是解题的关键,考查配方法求最值,属于中档题.24.【分析】由题意结合向量基本定理得到方程组求解方程组即可确定的值【详解】由题意可知存在实数满足:据此可得方程组:求解方程组可得:故答案为【点睛】本题主要考查空间向量基本定理方程的数学思想等知识意在考查 解析:1-【分析】由题意结合向量基本定理得到方程组,求解方程组即可确定λ的值.【详解】由题意可知,存在实数,m n 满足:c ma nb =+,据此可得方程组:325432m n m n m n λ-=-⎧⎪=-+⎨⎪=+⎩,求解方程组可得:111m n λ=-⎧⎪=⎨⎪=-⎩. 故答案为1-.【点睛】本题主要考查空间向量基本定理,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.25.【分析】直接利用空间向量的数量积求解两个平面的二面角的大小即可【详解】解:两个平面的法向量分别为则这两个平面所成的锐二面角的大小是这两个平面所成的锐二面角的余弦值为故答案为:【点睛】本题考查空间二面 解析:225【分析】直接利用空间向量的数量积求解两个平面的二面角的大小即可.【详解】解:两个平面α,β的法向量分别为(4,0,3)u →=,(1,1,0)v →=-,则这两个平面所成的锐二面角的大小是θ, ()222222cos 5215431a ba b θ→→→→+====⨯⨯-+这两个平面所成的锐二面角的余弦值为225. 故答案为:225. 【点睛】 本题考查空间二面角的求法,空间向量的数量积的应用,考查计算能力. 26.【分析】构造一个正方体三棱锥放入正方体中建立坐标系利用数量积公式求解即可【详解】将三棱锥放入如下图所示的正方体中且棱长为分别以为轴故答案为:【点睛】本题主要考查了求空间向量的数量积属于中档题 解析:12- 【分析】构造一个正方体,三棱锥A BCD -放入正方体中,建立坐标系利用数量积公式求解即可.【详解】将三棱锥A BCD -放入如下图所示的正方体中,且棱长为2 分别以,,OC OD OB 为,,x y z 轴222222222(,,),(,0,0),(,,0),(,,)222244442A C G E (0,02222,),(20,,)2GE AC ==-- 1222)2(=2GE AC ∴⋅=--⨯ 故答案为:12-【点睛】本题主要考查了求空间向量的数量积,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用空间向量求解二面角(一)(人教A版)
一、单选题(共7道,每道14分)
1.如图,在三棱锥P-ABC中,PA⊥底面ABC,AC⊥AB,PA=AB=2,AC=1,二面角A-PC-B的正弦值为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:用空间向量求二面角
2.如图,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,则平面PCD与平面QEF所成的锐二面角的正切值为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:用空间向量求二面角
3.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,,二面角Q-BP-C的正弦值为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:用空间向量求二面角
4.如图,在三棱柱中,是边长为4的正方形.,若AB=3,BC=5,则二面角的余弦值为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:用空间向量求二面角
5.如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,.二面角B-AD-E的大小为( )
A.30°
B.45°
C.60°
D.75°
答案:A
解题思路:
试题难度:三颗星知识点:用空间向量求二面角
6.如图,在长方体中,,E为CD中点.若二面角
的大小为30°,则AB的长为( )
A. B. C. D.2
答案:D
解题思路:
试题难度:三颗星知识点:用空间向量求二面角
7.如图,直三棱柱,∠BAC=90°,,点M,N分别为和
的中点.若二面角为直二面角,则λ的值为( )
A. B.1
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:用空间向量求二面角
第11页共11页。

相关文档
最新文档