两角和与差的正弦余弦公式ppt课件
合集下载
数学人教A版必修第一册5.5.1两角和与差的正弦、余弦、正切公式课件
4
22
又因为sin 2 5 , 13
注意 2 的范围
所以cos 2 1 sin2 2 1 ( 5 )2 12 . 13 13
tan 4 sin 4 ( 120) 169 120 . cos 4 169 119 119
练习:课本135页 5(1)(3)
例2 (1) sin15cos15
44 . 117
2
练习:课本223页 3
解:∵sin 2 sin ,sin 2 sin 0,
即:2sin cos sin 0,
∵ ( , ),sin 0,2 cos 1 0,
2
cos 1 , 2 ,
2
3
tan tan 2 3
3
练习:课本223页 4
解:∵tan 2
tan 22.5 (3)1 tan2 22.5 ;
(2)cos2 π sin2 π ;
8
8
(4)2cos2 22.5°-1.
(1).原式=
1 2
sin30°=
1 4
(3).原式=
1 2
tan45°=
1 2
(2).原式=cos
π 4
=
2
2
(4).原式= cos45°=
2
2
3. 2 sin2 2 cos 4的值是( )
变形公式
升幂公式:1+cos 2 1 cos 2
2 cos2 2sin 2
降幂公式:scions22==11-+cco2o2ss22
例1. 已知sin 2 5 , ,
13 4
2
求 sin 4,cos 4,tan 4的值.
分析:先求 cos2的值,再利用公式求值.
解:由 , 得 2 .
两角和与差的正弦、余弦、正切公式:课件十三(230张PPT)
tan tan tan( ) 1 tan tan tan tan tan( ) 1 tan tan
( C(-) ) ( C(+) ) ( S(+) ) ( S(-) ) ( T(+) )
( T(-) )
小结
三角函数求值及证明问题中, 变角是一种常用的技巧,如 ( ) ; ( ) (( ) ( ) 等, ( 4 4 2 这样可充分利用已知条件中的三角函数值,通过三角运算 来求值、化简和证明.
练习
求下列各式的值
4cos74 sin 14 sin 74 cos14 ; 3 原式=sin 14 74 sin 60 2 5sin 34 sin 26 cos34 cos26 ; 1 原式= cos 34 cos 26 sin 34 sin 26 cos34 26 2 6sin 20 cos110 cos160 sin 70. 原式=sin 20 cos110 cos 20 sin 110 sin 20 110 1
分析 : ( ) , 则 cos cos[( ) ] cos( ) cos sin( ) sin
练习
1 cos 2
小结 两角和与差的正弦、余弦、正切公式
cos(-)= coscos+sinsin cos(+)= coscos-sinsin sin(+)= sincos+cossin sin(-)= sincos-cossin
( C(-) ) ( C(+) ) ( S(+) ) ( S(-) ) ( T(+) )
( T(-) )
小结
三角函数求值及证明问题中, 变角是一种常用的技巧,如 ( ) ; ( ) (( ) ( ) 等, ( 4 4 2 这样可充分利用已知条件中的三角函数值,通过三角运算 来求值、化简和证明.
练习
求下列各式的值
4cos74 sin 14 sin 74 cos14 ; 3 原式=sin 14 74 sin 60 2 5sin 34 sin 26 cos34 cos26 ; 1 原式= cos 34 cos 26 sin 34 sin 26 cos34 26 2 6sin 20 cos110 cos160 sin 70. 原式=sin 20 cos110 cos 20 sin 110 sin 20 110 1
分析 : ( ) , 则 cos cos[( ) ] cos( ) cos sin( ) sin
练习
1 cos 2
小结 两角和与差的正弦、余弦、正切公式
cos(-)= coscos+sinsin cos(+)= coscos-sinsin sin(+)= sincos+cossin sin(-)= sincos-cossin
5.5.1两角和与差的正弦、余弦和正切公式1PPT课件(人教版)
第五章 三角函数
5.5.1两角和与差的正弦、余弦和正切公式
第一课时 两角差的余弦公式
学习目标: 1.掌握两角差的余弦公式; 2.明确公式的推导过程; 3.能利用公式进行相关计算.
教学重点: 掌握两角差的余弦公式. 教学难点: 公式的推导过程.
根据两点间的 距离公式
思考 两角差的余弦公式有无巧记的方法呢?
跟踪训练1 化简下列各式: (1)cos(θ+21°)cos(θ-24°)+sin(θ+21°)sin(θ-24°);
解 原式=cos[θ+21°-(θ-24°)] =cos 45°= 22.
(2)-sin 167°·sin 223°+sin 257°·sin 313°.
解 原式=-sin(180°-13°)sin(180°+43°)+sin(180°+77°)·sin(360°-47°)
55×3 1010=
2 2.
又 sin α<sin β,∴0<α<β<π2,
∴-π2<α-β<0.故 α-β=-π4.
反 已知三角函数值求角的解题步骤
思
感 (1)界定角的范围,根据条件确定所求角的范围. 悟 (2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三
角函数.
(3)结合三角函数值及角的范围求角.
1-172=4
7
3 .
∵β=α-(α-β)∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)
=17×1134+4 7 3×3143=12.
∵0<β<π2,∴β=π3.
随堂练习
1.cos 47°cos 137°+sin 47°sin 137°的值等于
5.5.1两角和与差的正弦、余弦和正切公式
第一课时 两角差的余弦公式
学习目标: 1.掌握两角差的余弦公式; 2.明确公式的推导过程; 3.能利用公式进行相关计算.
教学重点: 掌握两角差的余弦公式. 教学难点: 公式的推导过程.
根据两点间的 距离公式
思考 两角差的余弦公式有无巧记的方法呢?
跟踪训练1 化简下列各式: (1)cos(θ+21°)cos(θ-24°)+sin(θ+21°)sin(θ-24°);
解 原式=cos[θ+21°-(θ-24°)] =cos 45°= 22.
(2)-sin 167°·sin 223°+sin 257°·sin 313°.
解 原式=-sin(180°-13°)sin(180°+43°)+sin(180°+77°)·sin(360°-47°)
55×3 1010=
2 2.
又 sin α<sin β,∴0<α<β<π2,
∴-π2<α-β<0.故 α-β=-π4.
反 已知三角函数值求角的解题步骤
思
感 (1)界定角的范围,根据条件确定所求角的范围. 悟 (2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三
角函数.
(3)结合三角函数值及角的范围求角.
1-172=4
7
3 .
∵β=α-(α-β)∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)
=17×1134+4 7 3×3143=12.
∵0<β<π2,∴β=π3.
随堂练习
1.cos 47°cos 137°+sin 47°sin 137°的值等于
两角和与差的余弦、正弦课件
π sin x± cos x= 2sin(x± ); 4 π sin x± 3cos x=2 sin(x± ); 3 π 3sin x± cos α=2sin(x± ). 6
统名公式将形如 asin α+bcos α(a,b 不同时为零)的三角函数 辅助角公式 式统一为一种三角函数式,这样做有利于三角函数式的化简,更 是研究三角函数性质的常用工具.其最值是± a +b
=0. 提示:若为客观性试题,可特殊化令 x=0 解得。
4.化简下列各式: cos 10° (1)(tan 10° - 3) ; sin 50° (2) 2cos x+ 6sin x.
cos 10° cos 10° 解:(1)(tan 10° - 3) =(tan 10° -tan 60° ) sin 50° sin 50° sin 10° sin 60°cos 10° =( - ) cos 10° cos 60°sin 50° sin 10° cos 60° -cos 10° sin 60°cos 10° = · cos 10° cos 60° sin 50° sin(-50° ) cos 10° = · cos 10° cos 60° sin 50° 1 =- =-2. cos 60°
(2) 2cos x+ 6sin x.
解:(2) 2cos x+ 6sin x 1 3 =2 2( cos x+ sin x) 2 2 =2 2(sin 30° cos x+cos 30° sin x) =2 2sin(30° +x).
辅助角公式:a sin x b cos x a 2 b2 sin( x ), b 其中tan = . a
2
此时,cos C=cos[π-(A+B)]=-cos(A+B)
16 =sin Asin B-cos Acos B= ; 65 4 当 A 为钝角时,cos A=- 1-sin A=- , 5
统名公式将形如 asin α+bcos α(a,b 不同时为零)的三角函数 辅助角公式 式统一为一种三角函数式,这样做有利于三角函数式的化简,更 是研究三角函数性质的常用工具.其最值是± a +b
=0. 提示:若为客观性试题,可特殊化令 x=0 解得。
4.化简下列各式: cos 10° (1)(tan 10° - 3) ; sin 50° (2) 2cos x+ 6sin x.
cos 10° cos 10° 解:(1)(tan 10° - 3) =(tan 10° -tan 60° ) sin 50° sin 50° sin 10° sin 60°cos 10° =( - ) cos 10° cos 60°sin 50° sin 10° cos 60° -cos 10° sin 60°cos 10° = · cos 10° cos 60° sin 50° sin(-50° ) cos 10° = · cos 10° cos 60° sin 50° 1 =- =-2. cos 60°
(2) 2cos x+ 6sin x.
解:(2) 2cos x+ 6sin x 1 3 =2 2( cos x+ sin x) 2 2 =2 2(sin 30° cos x+cos 30° sin x) =2 2sin(30° +x).
辅助角公式:a sin x b cos x a 2 b2 sin( x ), b 其中tan = . a
2
此时,cos C=cos[π-(A+B)]=-cos(A+B)
16 =sin Asin B-cos Acos B= ; 65 4 当 A 为钝角时,cos A=- 1-sin A=- , 5
两角和与差的正弦、余弦、正切公式 课件
即 tan(α-β)=________,这就是两角差的正切公式.
练习 5:1t+an4ta5n°4-5°ttaann1155°°=________________.
tan α-tan β 1+tan αtan β
练习:5.
3 3
思考应用
3.两角和与差的正切公式的适用范围及公式的特 征有哪些?
解析:(1) 适用范围:限制条件:α、β、α+β 均不为 kπ+π2(k∈Z);可以是数、字母和代数式.从公式推导过程进 行说理:cos(α+β)≠0,则 α+β≠kπ+π2;同除 cos α、cos β, 得 cos α≠0,cos β≠0,则 α≠kπ+π2,cos β≠kπ+π2.cos x≠0, 保证了 tan x 有意义.
∵cos(α-β)=1134,∴sin(α-β)=3143, 由 β=α-(α-β),得
cos β=cos[α-(α-β)]
=cos αcos(α-β)+sin αsin(α-β)
=17×1134+4 7 3×3143=7×4914=12, ∵0<β<π2,所以 β=π3.
点评: 解答此类问题分三步:第一步,求角的某 一个三角函数值;第二步,确定角所在的范围;第三 步,根据角的范围写出所求的角.特别注意选取角的 某一个三角函数值,是取正弦?还是取余弦?应先缩 小所求角的取值范围,最好把角的范围缩小在某一三 角函数值的一个单调区间内.
sin αcos β+cos αsin β
以-β 代替公式 sin(α+β)=sin αcos β+cos αsin β
中的 β,得到 sin[α+(-β)]=sin αcos(-β)+
cos αsin(-β)=sin αcos β-cos αsin β,
高中数学两角和与差的正弦、余弦、正切公式课件
Thanks.
小结:
1.掌握C ( ) , C( ) 公式的推导,小心
它们的差别与联系;
2.注意角的拆分与组合,如:
( ) , 2 ( ) ,
2 ( ) ( ),
2 ( ) ( ),
( − ) = − .
公式五
( − ) = ,
( − ) = .
公式六
( + ) = ,
2
( + ) = − .
2
3.两点间的距离公式
平面上任取两点A(x 1 , y1 ), B(x 2 , y 2 )
2
2
sin cos cos sin
两角差的正弦公式
两角和的正弦公式:sin( ) sin cos cos sin
两角差的正弦公式:sin( ) sin cos cos sin
法一:
sin( )
sin[ ( )]
A(x 1 , y 1 )
y
| y1 y 2 |
B(x 2 , y 2 )
| x1 x 2 |
0
x
2
2
AB (x1 x2 ) (y 1 y 2 )
02
两角和与差的余弦公式
终边
两角差的余弦公式
y
P1 (cos , sin )
终边
A1 (cos , sin )源自,
2
2
2
3.注意整体代换思想的应用.
2
;
1
④ cos
《两角和与差的正弦、余弦、正切公式》三角函数PPT
何选择公式,选择哪一个公式会更好.需要说明的是,(4)运用到了切
化弦,将特殊值 化为tan 60°等,为此可以熟记一些常见的特殊角
的函数值,如1=sin 90°=cos 0°=tan 45°, =tan
3 60°等.
2.公式的推广:本例第(5)小题所得结论可以推广到一般情形:若
π
A+B= ,则(1+tan A)(1+tan B)=2;若(1+tan A)(1+tan B)=2,则
(4)sin 15°+cos 15°= 2 sin 60°.(
)
答案:(1)× (2)× (3)√ (4)√
)
课前篇
自主预习
一
二
三
四
三、两角和与差的正切公式
1.(1)求tan 15°的值.
提示:(1)∵sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin
6- 2
2sin50°cos10°+2sin10°cos50°
×
cos10°
cos10°
2cos 10°
=2 2(sin 50°cos 10°+sin 10°cos 50°)
=
=2 2sin(50°+10°)=2 2 × 3 = 6.
2
1
(2)原式=sin(α+β)cos α-2[sin(α+α+β)-sin(α+β-α)]=sin(α+β)cos
(2)sin(α-β)=sin αcos β-cos αsin β.
课前篇
自主预习
一
二
三
四
3.判断正误
(1)sin(α-β)=sin αcos α-cos βsin β.(
化弦,将特殊值 化为tan 60°等,为此可以熟记一些常见的特殊角
的函数值,如1=sin 90°=cos 0°=tan 45°, =tan
3 60°等.
2.公式的推广:本例第(5)小题所得结论可以推广到一般情形:若
π
A+B= ,则(1+tan A)(1+tan B)=2;若(1+tan A)(1+tan B)=2,则
(4)sin 15°+cos 15°= 2 sin 60°.(
)
答案:(1)× (2)× (3)√ (4)√
)
课前篇
自主预习
一
二
三
四
三、两角和与差的正切公式
1.(1)求tan 15°的值.
提示:(1)∵sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin
6- 2
2sin50°cos10°+2sin10°cos50°
×
cos10°
cos10°
2cos 10°
=2 2(sin 50°cos 10°+sin 10°cos 50°)
=
=2 2sin(50°+10°)=2 2 × 3 = 6.
2
1
(2)原式=sin(α+β)cos α-2[sin(α+α+β)-sin(α+β-α)]=sin(α+β)cos
(2)sin(α-β)=sin αcos β-cos αsin β.
课前篇
自主预习
一
二
三
四
3.判断正误
(1)sin(α-β)=sin αcos α-cos βsin β.(
两角和与差的正弦、余弦、正切公式 课件
2 2.
(2)(tan 10°-
Hale Waihona Puke cos 3) sin5100°°=(tan
10°-tan
cos 60°) sin
10° 50°
=csoins
1100°°-csoins
60°cos 60° sin
5100°°=cossin10-°c5o0s°60°·csoins
10° 50°
=-cos160°=-2.
例 3 已知 sin(2α+β)=3sin β,求证:tan(α+β)=2tan α.
证明 sin(2α+β)=3sin β ⇒sin[(α+β)+α]=3sin[(α+β)-α] ⇒sin(α+β)cos α+cos(α+β)sin α =3sin(α+β)cos α-3cos(α+β)sin α ⇒2sin(α+β)cos α=4cos(α+β)sin α ⇒tan(α+β)=2tan α. 小结 证明三角恒等式一般采用“由繁到简”、“等价转化”、 “往中间凑”等办法,注意等式两边角的差异、函数名称的差异、 结构形式的差异.
解 原式=sinπ4-3xcos3π-3x-sinπ3-3xcos4π-3x
=sinπ4-3x-3π-3x=sinπ4-π3=sin
π 4cos
π3-cos
π 4sin
π 3
= 22×12- 22× 23=
2- 4
6 .
【典型例题】
例 1 化简求值: (1)sin(x+27°)cos(18°-x)-sin(63°-x)sin(x-18°);
探究点一 由公式 C(α-β)推导公式 C(α+β) 由于公式 C(α-β)对于任意 α,β 都成立,那么把其中的+β 换成 -β 后,也一定成立.请你根据这种联系,从两角差的余弦公 式出发,推导出用任意角 α,β 的正弦、余弦值表示 cos(α+β) 的公式.试一试写出推导过程. 答 ∵α+β=α-(-β),cos(-β)=cos β,sin(-β)=-sin β,
5.5.1两角和与差的正弦、余弦和正切公式课件2024-2025学年人教A版必修第一册
π
0<β<α<2,
=
2
.
2
变式探究
π
本例中,若将条件“α,β均为锐角”改为“α,β∈ 2 ,π
”,再求α-β的值.
解因为 α,β∈
π
,π
2
,sin
2 5
α= 5 ,sin
β=
cos(α-β)=cos αcos β+sin αsin β= 又因为 sin α>sin
π
β,所以2<α<β<π,
π
因此-2<α-β<0,故
(cosα,sinα)
(cosβ,sinβ)
(cos(α-β),sin(α-β))
y
单位圆与x轴非负半轴交于A(1,0)
α
O
β
α-β
x
新课内容
(cosα,sinα)
(cosβ,sinβ)
P1OA1 POA
(SAS)
(cos(α-β),sin(α-β))根据圆的旋转对称性,容易发现AP=A P
例1.利用公式C(α-β)证明:
cos(α − β) = cosαcosβ + sinαsinβ
(1) cos( ) sin ;
2
(2) cos( ) cos .
例1.利用公式C(α-β)证明:
(1) cos( ) sin ;
2
y
证明:
(, )
新课内容
sinα=y
cosα=x
问题1:已知 为角α的终边,
用α的三角函数来表示单位圆上点 的坐标
y
问题2:已知 为角β的终边,
两角和与差正弦余弦公式课件
于信号的合成、滤波等操作。
在数学竞赛中的应用
代数问题
在数学竞赛中,两角和与差的正弦、 余弦公式常与其他数学知识结合,用 于解决代数问题,例如求值、证明等 。
几何问题
在几何学中,两角和与差的正弦、余 弦公式常用于证明几何定理或解决几 何问题,例如角度计算、面积计算等 。
03
两角和与差正弦余弦公式的 扩展
案例三:数学竞赛中的应用
总结词
用于解决数学竞赛中的三角函数问题
详细描述
在数学竞赛中,两角和与差正弦余弦公式是解决三角函数问题的关键工具。通过这些公 式,可以快速求解复杂的三角函数表达式,解决诸如求三角函数的最值、判断三角函数 的单调性等问题。同时,这些公式也是数学竞赛中考察学生数学思维和解题能力的重要
两角和与差正弦余弦公式ppt课件
$number {01}
目录
• 两角和与差正弦余弦公式的基本 概念
• 两角和与差正弦余弦公式的应用 • 两角和与差正弦余弦公式的扩展 • 两角和与差正弦余弦公式的变种 • 两角和与差正弦余弦公式的实际
应用案例
01
两角和与差正弦余弦公式的 基本概念
定义
1 3
定义
两角和与差正弦余弦公式是三角函数中重要的公式之一,用 于计算两个角度的和或差的三角函数值。
利用扩展公式解决一些实 际问题,如测量、物理、 工程等领域的问题。
简化计算
扩展公式可以简化一些复 杂的三角函数计算,提高 计算的效率和准确性。
推广到其他领域
扩展公式可以推广到其他 领域,如复数、矩阵等领 域,促进数学和其他学科 的交叉融合。
扩展公式的证明
证明方法
利用三角函数的性质、三角恒等变换和代数运算等工具,证明扩展公式的正确 性。
在数学竞赛中的应用
代数问题
在数学竞赛中,两角和与差的正弦、 余弦公式常与其他数学知识结合,用 于解决代数问题,例如求值、证明等 。
几何问题
在几何学中,两角和与差的正弦、余 弦公式常用于证明几何定理或解决几 何问题,例如角度计算、面积计算等 。
03
两角和与差正弦余弦公式的 扩展
案例三:数学竞赛中的应用
总结词
用于解决数学竞赛中的三角函数问题
详细描述
在数学竞赛中,两角和与差正弦余弦公式是解决三角函数问题的关键工具。通过这些公 式,可以快速求解复杂的三角函数表达式,解决诸如求三角函数的最值、判断三角函数 的单调性等问题。同时,这些公式也是数学竞赛中考察学生数学思维和解题能力的重要
两角和与差正弦余弦公式ppt课件
$number {01}
目录
• 两角和与差正弦余弦公式的基本 概念
• 两角和与差正弦余弦公式的应用 • 两角和与差正弦余弦公式的扩展 • 两角和与差正弦余弦公式的变种 • 两角和与差正弦余弦公式的实际
应用案例
01
两角和与差正弦余弦公式的 基本概念
定义
1 3
定义
两角和与差正弦余弦公式是三角函数中重要的公式之一,用 于计算两个角度的和或差的三角函数值。
利用扩展公式解决一些实 际问题,如测量、物理、 工程等领域的问题。
简化计算
扩展公式可以简化一些复 杂的三角函数计算,提高 计算的效率和准确性。
推广到其他领域
扩展公式可以推广到其他 领域,如复数、矩阵等领 域,促进数学和其他学科 的交叉融合。
扩展公式的证明
证明方法
利用三角函数的性质、三角恒等变换和代数运算等工具,证明扩展公式的正确 性。
两角和与差的正弦、余弦、正切公式课件
3.两角和与差的正切公式
名称
公式
两角和的正切
tan(α+β) =
tan α+tan β 1-tan αtan β
两角差的正切
tan(α-β) =
tan α-tan β 1+tan αtan β
简记符号
使用条件
T(α+β)
α,β,α+β≠kπ+π2 (k∈Z)
T(α-β)
α,β,α-β≠kπ+π2 (k∈Z)
∴cos(α+β)=cos α·cos β-sin αsin β
=2 5 5·3 1010-
55·1100=
2 2.
由 0<α<2π,0<β<2π得 0<α+β<π,
又 cos(α+β)>0,∴α+β 为锐角,∴α+β=4π.
规律方法 此类题是给值求角问题,步骤如下:①求所求角的 某一个三角函数值,②确定所求角的范围,此类题常犯的错误 是对角的范围不加讨论,或范围讨论的程度过大或过小,这样 就会使求出的角不合题意或者漏解,同时要根据角的范围确定 取该角的哪一种三角函数值.
规律方法 化简三角函数式是为了更清楚地显示式中所含量之 间的关系,以便于应用,对于三角函数式的化简要求应熟练掌 握:(1)能求出值的应求出值.(2)使三角函数种数尽量少.(3) 使三角函数式中的项数尽量少.(4)尽量使分母不含有三角函 数.(5)尽量使被开方数不含三角函数.
题型二 给角求值问题
【例 2】 求下列各式的值:
两角和与差的正弦、余弦、正切公式
自学导引
1.两角和与差的余弦公式
C(α+β):cos(α+β)= cos αcos β-sin αsin β
;
C(α-β):cos(α-β)= cos αcos β+sin αsin β.来自2.两角和与差的正弦公式
两角和与差的正弦、余弦、正切公式 课件
• 二、两角和与差的正弦公式
名称 简记符号
公式
两角和 的正弦
S(α+β)
sin(α+β)= sin αcos β+cos αsin β
两角差 的正弦
S(α-β)
sin(α-β)= sin αcos β-cos αsin β
使用条件 α,β∈R α,β∈R
• 2.怎样利用诱导公式推出sin(α±β)? 提示:sin(α+β)=cosπ2-α+β=cosπ2-α-β =cosπ2-αcos β+sinπ2-αsin β =sin αcos β+cos αsin β, 用-β 代 β 得 sin(α-β)=sin[α+(-β)]=sin αcos(-β)+ cos αsin(-β)=sin αcos β-cos αsin β.
(4)若角的范围是-π2,π2,则选择正弦函数比余弦函数 更好;
(5)若角的范围是(0,π),则选择余弦函数比正弦函数更 好.总之,尽量选择在区间上单调的函数.
• 三、两角和与差的正切公式
名称
公式
简记符号
使用条件
两角和 的正切
tan(α+β)= tan α+tan β 1-tan αtan β
T(α+β)
α,β,α+β≠ kπ+π2(k∈Z)
tan(α-β)=
两角差 的正切
tan α-tan β 1+tan αtan β
T(α-β)
α,β,
α-β≠ π
kπ+ 2(k∈Z)
α=(α+β)-β,α=β-(β-α), α=(2α-β)-(α-β),2α=(α+β)+(α-β) α=12[(α+β)+(α-β)],α=12[(β+α)-(β-α)]等.
• S(α±β)的正向应用是把α±β的形式转化为单角α、β的三角函 数值计算.
两角和与差的正弦、余弦和正切公式 (共38张PPT)
tan(
4
) 2求
1 2 sin cos cos 2 的值。
(二)小题查验
1.判断正误
(1)两角和与差的正弦、余弦公式中的角 α,β 是任意的 ( √ )
(2)存在实数 α,β,使等式 sin(α+β)=sin α+sin β 成立 ( √ )
(3)在锐角△ABC 中,sin Asin B 和 cos Acos B 大小不确定( × ) tan α+tan β (4) 公式 tan(α + β) = 可以变形为 tan α + tan β = 1-tan αtan β
为锐角,由
所以 原式
tan
5 4
1 2 得 cos , 2 5
(二)小题查验
1.判断正误
θ 2θ (1)cos θ=2cos -1=1-2sin 2 2
2
( √ )
(2)二倍角的正弦、余弦、正切公式的适用范围是任意角 ( × )
(3)存在角 α,使得 sin 2α=2sin α 成立 ( √ )
2.二倍角的正弦、余弦、正切公式 sin 2α=2sin αcos α; cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α; 2tan α tan 2α= 2 . 1-tan α
[题组练透]
π 3 1.已知 sin α= ,α∈2 ,π,则 5
cos 2α
7 3 25 2. (人教 A 版教材习题改编)已知 sin(α-π)= , 则 cos 2α=________.
5
2- 3 tan 7.5° 2 3.计算: =________. 2
1-tan 7.5°
考点一
三角函数公式的基本应用 (基础送分型考点——自主练透)
4
) 2求
1 2 sin cos cos 2 的值。
(二)小题查验
1.判断正误
(1)两角和与差的正弦、余弦公式中的角 α,β 是任意的 ( √ )
(2)存在实数 α,β,使等式 sin(α+β)=sin α+sin β 成立 ( √ )
(3)在锐角△ABC 中,sin Asin B 和 cos Acos B 大小不确定( × ) tan α+tan β (4) 公式 tan(α + β) = 可以变形为 tan α + tan β = 1-tan αtan β
为锐角,由
所以 原式
tan
5 4
1 2 得 cos , 2 5
(二)小题查验
1.判断正误
θ 2θ (1)cos θ=2cos -1=1-2sin 2 2
2
( √ )
(2)二倍角的正弦、余弦、正切公式的适用范围是任意角 ( × )
(3)存在角 α,使得 sin 2α=2sin α 成立 ( √ )
2.二倍角的正弦、余弦、正切公式 sin 2α=2sin αcos α; cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α; 2tan α tan 2α= 2 . 1-tan α
[题组练透]
π 3 1.已知 sin α= ,α∈2 ,π,则 5
cos 2α
7 3 25 2. (人教 A 版教材习题改编)已知 sin(α-π)= , 则 cos 2α=________.
5
2- 3 tan 7.5° 2 3.计算: =________. 2
1-tan 7.5°
考点一
三角函数公式的基本应用 (基础送分型考点——自主练透)
两角和与差的正弦、余弦、正切公式 课件
由于角的范围过大致误
典例 4 已知 sinα= 55,sinβ= 1100,且 α、β 为锐角,求 α+β 的值. [错解] ∵α 为锐角,∴cosα= 1-sin2α=255. 又 β 为锐角,∴cosβ= 1-sin2β=31010. ∴sin(α+β)=sinαcosβ+cosαsinβ= 55×31010+255× 1100= 22. 由于 0°<α<90°,0°<β<90°, 所以 0°<α+β<180°,故 α+β=45°或 135°.
[辨析] 上述解法欠严密,仅由 sin(α+β)= 22以及 0°<α+β<180°就得到 α+β =45°或 α+β=135°是不正确的,因为角 α、β 的范围是有一定限制的,事实上 sinα = 55<12,sinβ= 1100<12,故 α<30°,β<30°,从而 0°<α+β<60°,故应仅有 α+β= 45°.为了避免出现上述失误我们可以选用两角和的余弦公式计算.
又 cos(α-β)=1123,sin(α+β)=-35,
所以 sin(α-β)= 1-cos2α-β=
1-11232=153,
cos(α+β)=- 1-sin2α+β=- 所以 sin2α=sin[(α-β)+(α+β)]
1--352=-45.
=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)
=153×(-45)+1123×(-35)=-5665.
辅助角公式及其运用
(1)公式形式:公式 asinα+bcosα= a2+b2sin(α+φ)(或 asinα+bcosα)= a2+b2cos(α-φ)将形如 asinα+bcosα(a,b 不同时为零)的三角函数式收缩为同一 个角的一种三角函数式.
两角和与差的正弦、余弦、正切公式 课件
1.求解该类问题常犯的错误是对角的范围讨论程度过 大(小),导致求出的角不合题意或者漏解.
2.求角的大小,要解决两点:(1)确定所求角的范围, (2)求角的某一三角函数值,特别是要根据角的范围确定取该 角的哪一种三角函数值.
若把本例题的条件改为“α∈(0,2π),β∈(-π2,0),且 cos(α-β)=35,sin β=-102”,试求角 α 的大小.
化简求值: (1)sin1π2- 3cos1π2;
sin 15°-cos 15° (2)cos 15°+sin 15°.
【思路探究】 解答本题中的(1)可先考虑如何去变换系 数,才能与学习的公式相联系,可以考虑 1=2×12, 3= 2× 23,引入特殊角的三角函数;(2)可先分子分母同除以 cos 15°得出t1a+n 1ta5n°-151°,然后再把该式向公式 tan(α±β)转化.
= 22sin(x+51π2).
1.对于形如 sin α±cos α, 3sin α±cos α 的三角函数式均 可利用特殊值与特殊角的关系,运用和差角正、余弦公式化 简为含有一个三角函数的形式.
2.在解法上充分体现了角的变换和整体思想,在三角 函数求值化简的变换过程中,一定要本着先整体后局部的基 本原则.
【自主解答】
(1)法一
原式=2(12sin1π2-
3π 2 cos12)
=2(sinπ6sin1π2-cosπ6cos1π2)
=-2cos(π6+1π2)=-2cosπ4
=- 2.
法二
原式=2(12sin1π2-
3π 2 cos12)
=2(cosπ3sin1π2-sinπ3cos1π2)
=-2sin(π3-1π2)
将本例中条件“已知 α、β 是锐角”改为“α、β 都是钝 角”.仍求 sin β 的值.
5.5.1两角和与差的正弦、余弦和正切公式-高一数学课件
“差角”的形式,进而推导两角和的余弦公式?
两角差的余弦公式:cos(α-β) = cosα cosβ + sinα sinβ
cos(α+β)= cos[α-(-β)]
= cosα cos(-β) + sinα sin(-β)
= cosα cosβ - sinα sinβ
PART 1 两角和与差的余弦公式
tanα + tanβ
= ——————
1 - tanα tanβ
tanα - tanβ
同理可证,tan(α - β)= ——————
1 + tanα tanβ
分子分母同时
除以cosα cosβ
PART 3 两角和与差的正切公式
对于任意角α,β (α,β≠ + , ∈ )有
tanα
+
tanβ
弦、余弦表示sin(α+β),sin(α-β)的公式吗?
提示:诱导公式五:sin(
2
−
)=cos,cos(
2
− )=sin
= sinα cosβ + cosα sinβ
同理可证,sin(α - β)= sinα cosβ - cosα sinβ
PART 2 两角和与差的正弦公式
对于任意角α,β有
tan(α+β)= ——————
1 - tanα tanβ
T(α+β)
tanα - tanβ
tan(α - β)= ——————
1 + tanα tanβ
T(α-β)
记忆要点:上同下异
例题探究
例1 已知sin = − ,是第四象限角,求sin(
两角差的余弦公式:cos(α-β) = cosα cosβ + sinα sinβ
cos(α+β)= cos[α-(-β)]
= cosα cos(-β) + sinα sin(-β)
= cosα cosβ - sinα sinβ
PART 1 两角和与差的余弦公式
tanα + tanβ
= ——————
1 - tanα tanβ
tanα - tanβ
同理可证,tan(α - β)= ——————
1 + tanα tanβ
分子分母同时
除以cosα cosβ
PART 3 两角和与差的正切公式
对于任意角α,β (α,β≠ + , ∈ )有
tanα
+
tanβ
弦、余弦表示sin(α+β),sin(α-β)的公式吗?
提示:诱导公式五:sin(
2
−
)=cos,cos(
2
− )=sin
= sinα cosβ + cosα sinβ
同理可证,sin(α - β)= sinα cosβ - cosα sinβ
PART 2 两角和与差的正弦公式
对于任意角α,β有
tan(α+β)= ——————
1 - tanα tanβ
T(α+β)
tanα - tanβ
tan(α - β)= ——————
1 + tanα tanβ
T(α-β)
记忆要点:上同下异
例题探究
例1 已知sin = − ,是第四象限角,求sin(
两角和与差的正弦、余弦函数-PPT课件
如何求sin 的值?
解:sin
cos
2
cos
2
cos
2
cos
sin
2
sin
sin cos cos sin
sin sin cos cos sin
20
用 代
sin[ ( )] sin cos( ) cos sin( )
sin( ) sin cos cos sin
思考5:如果能,那么一般情况下cos(α-β)能否用角 α,β的三角函数值来表示?请进入本节课的学习!
5
1.利用向量的数量积发现两角差的余弦公式.(重点) 2.能由两角差的余弦公式得到两角和的余弦公式和两 角和与差的正弦公式.(难点) 3.灵活正反运用两角和与差的正弦、余弦函数. (难点)
6
探究点1 两角差的余弦函数
向量b OP2 (cos ,sin ),
因为a b a b cos( )
y
P1(cos ,sin )
O
P2(cos ,sin )
P0 (1,0)
x
a b coscos sinsin 所以 cos( - ) coscos sinsin
我们称上式为两角差的余弦公式,记作 C
8
思 考 : 公 式 cos(α-β)=cosαcosβ+sinαsinβ 是 否对任意角α,β都成立? 提示:当0≤α-β≤π时,公式显然成立; 当α-β不在[0,π]内时,利用诱导公式,存在θ∈ [0,2π],使α-β=θ+2kπ,k∈Z,若θ∈[0,π], cosθ=cos(α-β) ; 若 θ∈(π , 2π ] , 2π-θ∈ [0,π),cos(2π-θ)=cosθ=cos(α-β),故上述公 式对任意角α,β都成立.
解:sin
cos
2
cos
2
cos
2
cos
sin
2
sin
sin cos cos sin
sin sin cos cos sin
20
用 代
sin[ ( )] sin cos( ) cos sin( )
sin( ) sin cos cos sin
思考5:如果能,那么一般情况下cos(α-β)能否用角 α,β的三角函数值来表示?请进入本节课的学习!
5
1.利用向量的数量积发现两角差的余弦公式.(重点) 2.能由两角差的余弦公式得到两角和的余弦公式和两 角和与差的正弦公式.(难点) 3.灵活正反运用两角和与差的正弦、余弦函数. (难点)
6
探究点1 两角差的余弦函数
向量b OP2 (cos ,sin ),
因为a b a b cos( )
y
P1(cos ,sin )
O
P2(cos ,sin )
P0 (1,0)
x
a b coscos sinsin 所以 cos( - ) coscos sinsin
我们称上式为两角差的余弦公式,记作 C
8
思 考 : 公 式 cos(α-β)=cosαcosβ+sinαsinβ 是 否对任意角α,β都成立? 提示:当0≤α-β≤π时,公式显然成立; 当α-β不在[0,π]内时,利用诱导公式,存在θ∈ [0,2π],使α-β=θ+2kπ,k∈Z,若θ∈[0,π], cosθ=cos(α-β) ; 若 θ∈(π , 2π ] , 2π-θ∈ [0,π),cos(2π-θ)=cosθ=cos(α-β),故上述公 式对任意角α,β都成立.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
18
探索新知二
cos 75 cos(30 45 )
cos30 cos 45 sin 30 sin 45
6 4
2
思考:如何求 sin(a ) ?
sina cos[ (a )] cos[( a ) ]
2
2
cos
求 cos(
4
a ) 的值。
3
a 解 因为 为第二象限角,所以
sin a 1 cos2 a 1 ( 3)2 7
44
cos( a ) cos cosa sin sin a
3
3
3
1 ( 3) 3 7 21 3
2 424
8
13
探索新知一
两角和与差的余弦公式
8
探索新知一
两角差的余弦公式
cos(a ) cosa cos sina sin
9
探索新知一
思考:由 cos(a ) cosacos sinasin 如何
求: cos(a ) ?
分析:注意到a a ( ),结合两角差的余
弦公式及诱导公式,将上式中以代得
6
7
探索新知一
向量
a
a OP (cosa,sina)
则 b OQ (cos ,sin )
a b a b cos(a - )
又有
cos(a - )
a b cosa cos sina sin
因此
cos(a ) cosa cos sina sin
2
a
cos
sin
2
a
sin
sina cos cosa sin
sin(a ) sina cos cosa sin
上述公式就是两角和的正弦公式
19
20
探索新知二
那 sin(a- ) ?
由sin a sina cos cosa sin
(公式一)
sin( a ) sina cos( a ) cosa tan( a ) tana
(公式三)
sin( a ) sina cos( a ) cosa tan( a ) tana
sin(a ) sina cos(a ) cosa tan(a ) tana
2
2
2 、利用公式可以求非特殊角的三角函数值, 灵活 使用使用公式.
17
作业
1.不用计算器,求下列各式的值
1 cos165
2 cos 15
3cos85cos 40 sin85sin 40
4cos2 15 sin2 15
2.不用计算器,求下列各式的值
cos( a) sina sin( a) cosa
cos(a ) cosa cos sina sin cos(a ) cosa cos sina sin
14
练习
已知
cosa
2 3
,a
3
2
, 2
,求
cos
6
a
,
cos
6
a
的值。
15
问题解 决
回顾旧知
α 30° 45° 60° 90°
弧度
2
sinα
1
cosα
0
tanα
不存在
1
回顾旧知
三种函数的值在各象限的符号
y
y
(+ ) (+ ) (- ) (+ )
y (- ) (+ )
(- )
(- ) x
(- ) (+ ) x
(+ ) (- )x
sina y r
cosa x r
tana y x
用两角和与差的余弦公式证明:
cos( a ) sina
2
sin( a) cosa
2
16
小结
1 、两角和与差的余弦公式及应用;
cos(a ) cosa cos sina sin
cos(a ) cosa cos sina sin
cos( a) sina sin( a) cosa
2 cos 15
3cos80cos 20 sin80sin 20
4cos 40cos 20 sin 40sin 20 5cos 22.5cos 22.5 sin 22.5sin 22.5
12
例题剖析
a 例2 已知cosa 3 ,且 为第二象限角,
(公式二)
(公式四)
4
15.1两角和与差的正弦、余弦公 式
5
新课导入
探究
已知cos60 1 , cos30 3 ,下列各式是否成立?
2
2
(1) cos(60 30 ) cos 60 cos30
(2) cos(60 30 ) cos 60 cos30
cos(a ) cos[a ( )] cosa cos( ) sina sin( ) cosa cos sina sin
cos(α+β) = cosαcosβ- sinαsinβ
上述公式就是两角和的余弦公式 10
例题剖析
例1 不用计算器,求cos75°和cos15°的值。
解 cos175 cos(4350 3405)) cos3405 cos4350 -ssinin3405ssinin4350 32 23 -1 2 21 2 2 22 22 6 - 22 44
11
练习:不用计算器,求下列各式的值
1 cos105
一二正(三四负) 一四正(二三负) 一三正(二四负)
Ⅰ全正 Ⅱ正弦正 Ⅲ切正 Ⅳ余弦正
2
回顾旧知
同角三角函数基本关系
平方关系: sin2 a a 1
商数关系:
tana sina cosa
(a k , k Z )
2
3
回顾旧知
诱导公式(4组)
sin(a 2k ) sina (k Z) cos(a 2k ) cosa (k Z) tan(a 2k ) tana (k Z)