高中数学推理与证明测试题及答案
厦门市双十中学选修1-2第三章《推理与证明》测试题(有答案解析)
一、选择题1.类比推理是一种重要的推理方法.已知1l ,2l ,3l 是三条互不重合的直线,则下列在平面中关于1l ,2l ,3l 正确的结论类比到空间中仍然正确的是( )①若13//l l ,23//l l ,则12l l //;②若13l l ⊥,23l l ⊥,则12l l //;③若1l 与2l 相交,则3l 必与其中一条相交;④若12l l //,则3l 与1l ,2l 相交所成的同位角相等 A .①④B .②③C .①③D .②④2.下列推理属于演绎推理的是( ) A .由圆的性质可推出球的有关性质B .由等边三角形、等腰直角三角形的内角和是180°,归纳出所有三角形的内角和都是180°C .某次考试小明的数学成绩是满分,由此推出其它各科的成绩都是满分D .金属能导电,金、银、铜是金属,所以金、银、铜能导电 3.将正整数1,2,3,4,按如图所示的方式排成三角形数组,则第20行从左往右数第1个数是( )A .381B .361C .362D .4004.如图中的三角形图案称为谢宾斯基三角形.在四个三角形图案中,着色的小三角形的个数依次构成数列{}n a 的前4项,则{}n a 的通项公式可以为( )A .21n a n =-B .21nn a =- C .3nn a =D .13-=n n a5.将正整数1,2,3,4,,,n 按第k 组含1k +个数分组:()()()1,2,3,4,5,6,7,8,9,,那么2019所在的组数为( ) A .62B .63C .64D .656.在ABC △中,若AC BC ⊥,AC b =,BC a =,则ABC △的外接圆半径222a b r +=,将此结论拓展到空间,可得出的正确结论是:在四面体S ABC -中,若SA 、SB 、SC 两两互相垂直,SA a =,SB b =,SC c =,则四面体S ABC -的外接球半径R =( )A .222a b c ++B .222a b c ++C .3333a b c ++D .3abc7.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,所以将其称为三角形数;类似地,称图(2)中的1,4,9,16,…这样的数为正方形数,则下列数中既是三角形数又是正方形数的是( )A .289B .1024C .1225D .13788.现有甲、乙、丙、丁四人参加数学竞赛,其中只有一位获奖. 有人走访了四人,甲说:“乙、丁都未获奖”,乙说:“是甲或丙获奖”,丙说:“是甲获奖”,丁说:“是乙获奖”,四人所说话中只有一位是真话,则获奖的人是( ) A .甲B .乙C .丙D .丁9.设F 为椭圆的左焦点,A 为椭圆的右顶点,B 为椭圆短轴上的一个顶点,当72AB =时,该椭圆的离心率为12,将此结论类比到双曲线,得到的正确结论为()A .设F 为双曲线的左焦点,A 为双曲线的右顶点,B 为双曲线虚轴上的一个顶点,当72AB =时,该双曲线的离心率为2 B .设F 为双曲线的左焦点,A 为双曲线的右顶点,B 为双曲线虚轴上的一个顶点,当72AB =时,该双曲线的离心率为4 C .设F 为双曲线的左焦点,A 为双曲线的右顶点,B 为双曲线虚轴上的一个顶点,当72FB AB =时,该双曲线的离心率为2 D .设F 为双曲线的左焦点,A 为双曲线的右顶点,B 为双曲线虚轴上的一个顶点,当72FB AB =时,该双曲线的离心率为410.===⋅⋅⋅=(m 、n 均为正实数),根据以上等式,可推测m 、n 的值,则m n +等于( )A .40B .41C .42D .4311.下面使用类比推理正确的是( )A .直线a ∥b ,b ∥c ,则a ∥c ,类推出:向量a b b c ,,则a cB .同一平面内,直线a ,b ,c ,若a ⊥c ,b ⊥c ,则a ∥b .类推出:空间中,直线a ,b ,c ,若a ⊥c ,b ⊥c ,则a ∥bC .实数a ,b ,若方程x 2+ax +b =0有实数根,则a 2≥4b .类推出:复数a ,b ,若方程x 2+ax +b =0有实数根,则a 2≥4bD .以点(0,0)为圆心,r 为半径的圆的方程为x 2+y 2=r 2.类推出:以点(0,0,0)为球心,r 为半径的球的方程为x 2+y 2+z 2=r 212.有6名选手参加演讲比赛,观众甲猜测:1、2、6号选手中的一位获得第一名;观众乙猜测:4、5、6号选手都不可能获得第一名;观众丙猜测:4号或5号选手得第一名;观众丁猜测:3号选手不可能得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( ) A .甲B .乙C .丙D .丁二、填空题13.为贯彻教育部关于全面推进素质教育的精神,某学校推行体育选修课.甲、乙、丙、丁四个人分别从太极拳、足球、击剑、游泳四门课程中选择一门课程作为选修课,他们分别有以下要求:甲:我不选太极拳和足球; 乙:我不选太极拳和游泳;丙:我的要求和乙一样; 丁:如果乙不选足球,我就不选太极拳.已知每门课程都有人选择,且都满足四个人的要求,那么选击剑的是___________. 14.若数列{}n a 是等差数列,则数列()*1n n mn a a b m N m++++=∈也为等差数列,类比上述性质,相应地,若正项数列{}n c 是等比数列,则数列n d = _________也是等比数列. 15.从11,14(12),149123,14916(1234),=-=-+-+=++-+-=-+++⋅⋅⋅,概括出第n 个式子为___________. 16.观察下列恒等式:12tan tan tan 2ααα=+,14tan 2tan 2tan tan 4αααα=++,18tan 2tan 24tan 4tan tan8ααααα=+++,,请你把结论推广到一般情形,则得到的第n 个等式为___________________________________.17.我国南宋数学家杨辉所著的《详解九章算术》一书中,用图①的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为n S ,如123451,2,2,4,2,S S S S S =====⋯⋯,则33S =____________① ②18.某学校举办科技节活动,有甲、乙、丙、丁四个团队参加“智能机器人”项目比赛,该项目只设置一个一等奖,在评奖揭晓前,小张、小王、小李、小赵四位同学对这四个参赛团队获奖结果预测如下: 小张说:“甲团队获得一等奖”; 小王说:“甲或乙团队获得一等奖”; 小李说:“丁团队获得一等奖”;小赵说:“乙、丙两个团队均未获得一等奖”.若这四位同学中只有两位预测结果是对的,则获得一等奖的团队是___.19.我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d 处的平面截这两个几何体,可横截得到S 圆及S 环两截面.可以证明圆环=S S 总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是_______.20.2233442,33,4,...,33881515+=+=+=类比这些等式,若6a ab b+=(a ,b 均为正实数),则a b +=______.三、解答题21.(1)用分析法证明:当0x ≥,0y ≥;(2)证明:对任意x ∈R ,131x x --+,2x x +,21x --这3个值至少有一个不小于0. 22.若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值()0f x D ∈,则称函数()f x 在D 上封闭.(1)若下列函数:()121f x x =-,()221xf x =-的定义域为()0,1D =,试判断其中哪些在D 上封闭,并说明理由. (2)若函数()52x ag x x -=+的定义域为()1,2,是否存在实数a ,使得()g x 在其定义域()1,2上封闭?若存在,求出所有a 的值,并给出证明;若不存在,请说明理由.(3)已知函数()f x 在其定义域D 上封闭,且单调递增,若0x D ∈且()()0f f x x =,求证:()00f x x =.23.设,,a b c 为三角形ABC 的三边,求证:111a b c a b c+>+++ 24.已知动圆过定点(0,2)F ,且与定直线:2L y =-相切.(1)求动圆圆心的轨迹C 的方程;(2)若AB 是轨迹C 的动弦,且AB 过(0,2)F , 分别以A 、B 为切点作轨迹C 的切线,设两切线交点为Q ,证明:AQ BQ ⊥. 25.设n 个正数12,,,n a a a 满足*12(n a a a n N ≤≤≤∈且3)n ≥.(1)当3n =时,证明:233112123312a a a a a a a a a a a a ++++≥; (2)当4n =时,不等式2334124112343412a a a a a a a a a a a a a a a a ++++++≥也成立,请你将其推广到n *(n N ∈且3)n ≥个正数12,,,n a a a 的情形,归纳出一般性的结论并用数学归纳法证明. 26.若a b c、、是不全相等的正数,求证:lglg lg lg lg lg 222a b b c c aa b c +++++>++.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】由平行线的传递性可判断①;举特例,三棱锥的一个顶点处三条相交的棱所在的直线两两相垂可判断②;l 3不在l 1与l 2确定的平面内可判断③;结合空间中线与线的位置关系和平行线的性质可判断④. 【详解】①由平行线的传递性可知正确;②如图不妨设直线1l 是直线BD ,直线2l 是直线CD ,直线3l 是直线AD ,由图可得13l l ⊥,23l l ⊥,但是21l l ⊥,所以错误;③由于l 1与l 2相交,所以l 1与l 2可以确定一个平面,若l 3不在该平面内,则l 3与这两条直线都可以不相交,即错误;④由于l 3与l 1,l 2相交,所以这三条直线在同一个平面内,又l 1∥l 2,根据平行线的性质可知正确.所以成立的有①④. 故选:A . 【点睛】本题考查类比推理、空间中线与线的位置关系,考查学生的空间立体感、空间想象能力,属于基础题.2.D解析:D 【解析】选项A, 由圆的性质类比推出球的有关性质,这是类比推理;选项B, 由等边三角形、直角三角形的内角和是0180,归纳出所有三角形的内角和都是0180,是归纳推理;选项C, 某次考试小明的数学成绩是满分,由此推出其它各科的成绩都是满分,是归纳推理; 选项D, 金属能导电,金、银、铜是金属,所以金、银、铜能导电,这是三段论推理,属于演绎推理; 故选D.3.C解析:C本题可根据图中数字的排列规律来思考,先观察每行数字的个数的规律,然后找到每行第一个数之间的规律,然后根据规律得出第20行的第1项的数字. 【详解】解:由图中数字排列规律可知:∵第1行有1个数,第2行有3个数,第3行有5个数,第4行有7个数,… ∴第i 行有(21)i -个数.可设第i 行第j 个数字为.i j a ,其中121j i ≤≤-.观察每行的第1项,可得: 1.11a =, 2.12a =, 3.15a =, 4.110a =,… ∴ 1.11a =,2.1 1.11a a -=,3.1 2.13a a -=,4.1 3.15a a -=,….1 1.123i i a a i ---=.以上各项相加,可得:.1113523i a i =++++⋅⋅⋅+-()(1)(123)12i i -+-=+2(1)1i =-+.∴220.1(201)1362a =-+=. 故选:C . 【点睛】本题主要考查数列排列规律,等差数列的特点及求通项和求和.属于中档题.4.D解析:D 【分析】着色的小三角形个数构成数列{}n a 的前4项,分别得出,即可得出{}n a 的通项公式. 【详解】着色的小三角形个数构成数列{}n a 的前4项,分别为:11a =,23a =,23333a =⨯=,234333a =⨯=,因此{}n a 的通项公式可以是:13-=n n a . 故选:D . 【点睛】本题考查了等比数列的通项公式,考查了观察分析猜想归纳推理能力与计算能力,属于中5.B解析:B 【分析】观察规律,看每一组的最后一个数与组数的关系,可知第n 组最后一个数是2+3+4+…..+n +1=()32n n +,然后再验证求解. 【详解】观察规律,第一组最后一个数是2=2, 第二组最后一个数是5=2+3, 第三组最后一个数是9=2+3+4,……, 依此,第n 组最后一个数是2+3+4+…..+n +1=()32n n +. 当62n =时,()320152n n +=,所以2019所在的组数为63. 故选:B 【点睛】本题主要考查了数列的递推,还考查了推理论证的能力,属于中档题.6.A解析:A 【解析】 【分析】四面体S ABC -中,三条棱SA 、SB 、SC 两两互相垂直,则可以把该四面体补成长方体,长方体的外接球就是四面体的外接球,则半径易求. 【详解】四面体S ABC -中,三条棱SA 、SB 、SC 两两互相垂直,则可以把该四面体补成长方体,SA a =,SB b =,SC c =是一个顶点处的三条棱长.所以外接球的直径就是长方体的体对角线,则半径R =.故选A. 【点睛】本题考查空间几何体的结构,多面体的外接球问题,合情推理.由平面类比到立体,结论不易直接得出时,需要从推理方法上进行类比,用平面类似的方法在空间中进行推理论证,才能避免直接类比得到错误结论.7.C解析:C 【分析】记三角形数构成的数列为{}n a ,计算可得()12n n n a +=;易知2n b n =.据此确定复合题意的选项即可. 【详解】记三角形数构成的数列为{}n a ,则11a =,2312a ==+,36123a ==++,4101234a ==+++,…, 易得通项公式为()11232n n n a n +=++++=;同理可得正方形数构成的数列{}n b 的通项公式为2n b n =.将四个选项中的数字分别代入上述两个通项公式,使得n 都为正整数的只有249501225352⨯==. 故选C . 【点睛】本题主要考查归纳推理的方法,数列求和的方法等知识,意在考查学生的转化能力和计算求解能力.8.B解析:B 【分析】结合题意分类讨论甲乙丙丁获奖的情况,然后考查说真话的人的个数即可确定获奖的人. 【详解】结合题意分类讨论:若甲获奖,则说真话的人为:甲乙丙,说假话的人为:丁,不合题意; 若乙获奖,则说真话的人为:丁,说假话的人为:甲乙丙,符合题意; 若丙获奖,则说真话的人为:甲乙,说假话的人为:丙丁,不合题意; 若丁获奖,则说假话的人为:甲乙丙丁,不合题意; 综上可得,获奖人为乙. 故选B. 【点睛】本题主要考查数学推理的方法,分类讨论的数学思想,属于中等题.9.C解析:C 【分析】先排除A,B,再根据FB =求出双曲线的离心率得解. 【详解】对于双曲线而言,FB AB >,排除A ,B .由FB =22222234224c c c a c e e a=⇒-=⇒==⇒=,故选:C . 【点睛】本题主要考查双曲线的简单几何性质和双曲线离心率的计算,考查类比推理,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.B解析:B 【分析】根据前面几个等式归纳出一个关于k 的等式,再令6k =可得出m 和n 的值,由此可计算出m n +的值. 【详解】==,====)2,k k N *=≥∈,当6k ==26135m ∴=-=,6n =,因此,41m n +=,故选B. 【点睛】本题考查归纳推理,解题时要根据前几个等式或不等式的结构进行归纳,考查推理能力,属于中等题.11.D解析:D 【分析】类比推理中,对于不成立的选项通过举反例的形式说明即可. 【详解】A :当b 为零向量时,不一定有a c ,故错误;B :正方体的某一顶点处的三条棱互相垂直,其中没有两条棱是平行的,故错误;C :取,1a i b i ==--,则方程有实根1x =,此时24a b ≥不成立,故错误;D :设球上任意一点(,,)P x y z ,则有||OP =2222x y z r ++=,故正确.故选:D. 【点睛】本题考查推理与证明中的类比推理,难度一般.对于一些无法直接证明出真假的命题,可以考虑通过举例的方法尝试推翻结论.12.B解析:B【解析】【分析】分别假设甲、乙、丙、丁猜对比赛结果,逐一判断得到答案.【详解】假设甲猜对比赛:则观众丁猜测也正确,矛盾假设乙猜对比赛:3号得第一名,正确假设丙猜对比赛:则观众丁猜测也正确,矛盾假设丁猜对比赛:则观众甲和丙中有一人正确,矛盾故答案选B【点睛】本题考查了逻辑推理,意在考查学生的逻辑推理能力.二、填空题13.丙【分析】列出表格用√表示已选的用×表示未选的课程逐个将每门课程所选的人确定下来即可得知选击剑的人是谁【详解】在如下图中用√表示该门课程被选择用×表示该门课程未选且每行每列只有一个勾太极拳足球解析:丙【分析】列出表格,用√表示已选的,用×表示未选的课程,逐个将每门课程所选的人确定下来,即可得知选击剑的人是谁.【详解】在如下图中,用√表示该门课程被选择,用×表示该门课程未选,且每行每列只有一个勾,丁所说的命题正确,其逆否命题为“我选太极拳,那么乙选足球”为真,则选足球的是乙,由于乙、丙、丁都为选择游泳,那么甲选择游泳,最后只有丙选择击剑.故答案为丙.【点睛】本题考查合情推理,充分利用假设法去进行论证,考查推理论证能力,属于中等题.14.【分析】利用类比推理分析若数列是各项均为正数的等比数列则当时数列也是等比数列【详解】由数列是等差数列则当时数列也是等差数列类比上述性质若数列是各项均为正数的等比数列则当时数列也是等比数列故答案为【点【分析】利用类比推理分析,若数列{}n a 是各项均为正数的等比数列,则当n d =时,数列{}n d 也是等比数列.【详解】由数列{}n c 是等差数列,则当()*1n n mn a a b m N m ++++=∈时,数列{}nb 也是等差数列.类比上述性质,若数列{}n a 是各项均为正数的等比数列,则当n d =时,数列{}n d 也是等比数列.【点睛】类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).15.;【分析】由中找出各式运算量之间的关系归纳其中的规律并大胆猜想得出答案【详解】;;;;…;所以猜想:故答案为:【点睛】本题考查的知识点是归纳推理归纳推理的一般步骤是:(1)通过观察个别情况发现某些相解析:121(1)14916(1)(1)2n n n n n +++-+-++-=-; 【分析】由1114(12)=-=-+,,14912314916(1234)-+=++-+-=-+++,,中找出各式运算量之间的关系,归纳其中的规律,并大胆猜想,得出答案. 【详解】1111(1)1+==-⋅;2114(12)(1)(12)+-=-+=-⋅+; 31149123(1)(123)+-+=++=-⋅++;4114916(1234)(1)(1234)+-+-=-+++=-⋅+++;…;所以猜想:()1211+114916(1)(1)(123)(1)2n n n n n n n +++-+-+⋯+-⋅=-⋅+++⋯+=-⋅,故答案为: 121(1)14916(1)(1)2n n n n n +++-+-++-=-. 【点睛】本题考查的知识点是归纳推理, 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想),属于中档题.16.【分析】观察等式右边代数式的结构与的关系可得出结果【详解】由由上述规律归纳出第个等式为故答案为:【点睛】本题考查归纳推理解题的关键主要是找出式子的规律考查推理能力属于中等题解析:1112tan 2tan 22tan 2tan tan 2n n n nααααα--=++++. 【分析】观察等式右边代数式的结构与n 的关系可得出结果.【详解】由11122tan tan tan tan 2tan 2ααααα=+=+, 211142tan 2tan 2tan 2tan 2tan tan 4tan 4ααααααα=++=++, 311223182tan 2tan 24tan 4tan 2tan 22tan 2tan tan8tan 2ααααααααα=+++=+++,由上述规律,归纳出第n 个等式为1112tan 2tan 22tan 2tan tan 2nn n nααααα--=++++. 故答案为:1112tan 2tan 22tan 2tan tan 2nn n nααααα--=++++. 【点睛】本题考查归纳推理,解题的关键主要是找出式子的规律,考查推理能力,属于中等题.17.【分析】首先确定全部是1的行在此基础上确定33行和【详解】由题得全行的数都为 1 的分别是:第1行第2行第4行第8行第16行第32行又因为数 1281632… 的通项为所以第5次全行的数都为1的是第 解析:2【分析】首先确定全部是1的行,在此基础上确定33行和. 【详解】由题得,全行的数都为 1 的分别是:第1行,第2行,第4行,第8行,第16行,第32行, 又因为数 1,2,8,16,32,… 的通项为12n - , 所以第5次全行的数都为1的是第32行, 则第33行为除了首尾为1,其余都为0, ∴332S = 故答案为2本题考查了归纳推理的能力,意在考查学生的逻辑推理能力.18.丁【解析】【分析】先阅读理解题意再逐一进行检验进行简单的合情推理即可【详解】若获得一等奖的团队是甲团队则小张小王小赵预测结果是对的与题设矛盾即假设错误若获得一等奖的团队是乙团队则小王预测结果是对的与解析:丁 【解析】 【分析】先阅读理解题意,再逐一进行检验进行简单的合情推理即可. 【详解】①若获得一等奖的团队是甲团队,则小张、小王、小赵预测结果是对的,与题设矛盾,即假设错误,②若获得一等奖的团队是乙团队,则小王预测结果是对的,与题设矛盾,即假设错误, ③若获得一等奖的团队是丙团队,则四人预测结果都是错的,与题设矛盾,即假设错误, ④若获得一等奖的团队是丁团队,则小李、小赵预测结果是对的,与题设相符,即假设正确,即获得一等奖的团队是:丁 故答案为丁 【点睛】本题考查了阅读理解能力及进行简单的合情推理,属简单题.19.【分析】由已知条件推导出椭球体的体积公式然后代入求出结果【详解】总成立则半椭球体的体积为:椭球体的体积椭球体半短轴长为1半长轴长为3即椭球体的体积故答案为【点睛】本题考查了求椭球体体积通过已知条件得 解析:4π【分析】由已知条件推导出椭球体的体积公式,然后代入求出结果 【详解】=S S 环圆总成立则半椭球体的体积为:22212πππ33b a b a b a -= ∴椭球体的体积24π3V b a =椭球体半短轴长为1,半长轴长为3 即1,3b a ==∴椭球体的体积2244ππ13433V b a π==⨯⨯= 故答案为4π本题考查了求椭球体体积,通过已知条件得到椭球体体积公式是解题关键,然后再代入相关数值求出结果.20.【解析】【分析】根据题意依次分析3个式子可得成立即可求解相应的的值得到答案【详解】根据题意对于第一个式子;第二个式子;第二个式子;分析可得:第个式子可得当时即即【点睛】本题考查了合情推理对于合情推理 解析:41【解析】 【分析】根据题意,依次分析3(n =+可求解相应的,a b 的值,得到答案. 【详解】=⇒==⇒===分析可得:第n (n =+当5n ==25,61a b ==-,即41a b +=. 【点睛】本题考查了合情推理,对于合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).三、解答题21.(1)证明见解析;(2)证明见解析. 【分析】(1)先移项,再平方去根式,再根据分析法写法得结论;(2)利用反证法进行证明,先假设,再三式相加,根据范围找到矛盾,否定假设,即得结果. 【详解】(1即证:22≥成立,即证:22x y x y ++≥+成立,0≥成立,因为0,0,x y ≥≥0≥,所以原不等式成立.(2)假设1231,,21x x x x x --++--这个3值都小于0,即12310,0,210x x x x x --+<+<--<则12320x x x -+-<,(*) 而()2112323110x x x x x --+-=+--≥.这与(*)矛盾,所以假设不成立,即原命题成立. 【点睛】本题考查分析法与反证法,考查综合分析论证能力,属中档题.22.(1)()2f x 在D 上封闭,理由见解析;(2)存在,2a =,证明见解析;(3)证明见解析 【分析】(1)根据定义域,求得函数的值域,利用新定义,即可得到结论;(2)根据函数封闭定义转化为不等式恒成立问题,再利用变量分离法求解,可求a 的值. (3)函数f (x )在其定义域D 上封闭,且单调递增,假设()00f x x ≠,根据单调函数性质可证假设不成立,由此能证明f (x 0)=x 0. 【详解】(1)当()0,1x ∈时,()()1211,1f x x =-∈-, ∴()1f x 在D 上不封闭;()()2210,1x f x =-∈,∴()2f x 在D 上封闭.(2)设存在实数a ,使得()52x ag x x -=+在()1,2上封闭, 即对一切()1,2x ∈,5122x ax -<<+恒成立, ∵20x +>,∴2524x x a x +<-<+, 即3442x a x -<<-恒成立, ∵()341,2x -∈-∴2a ≥; ∵()422,6x -∈∴2a ≤. 综上,满足条件的2a =.(3)假设()00f x x ≠,①若()00f x x >,∵()00f x x D ∈,,()f x 在D 上单调递增, ∴()()()0ff x f x >,即()00x f x >,矛盾;②若()00f x x <,∵()0f x ,0x D ∈,()f x 在D 上单调递增, ∴()()()0ff x f x <,即()00xf x <,矛盾.∴假设不成立,()00f x x =. 【点睛】本题考查函数的综合运用,根据函数封闭的定义与函数定义域、值域、单调性等知识点进行综合的考查,考查转化能力与函数基础知识的应用,属于中等题. 23.见解析 【解析】试题分析:本题用直接法不易找到证明思路,用分析法,要证该不等式成立,因为0,0,0a b c >>>,所以10,10,10a b c +>+>+>,只需证该不等式两边同乘以(1)(1)(1)a b c +++转化成的等价不等式a(1+b)(1+c)+ b(1+a)(1+c)> c(1+a)(1+b)成立,用不等式性质整理为a+2ab+b+abc>c 成立,用不等式性质及三角不等式很容易证明此不等式成立. 试题 要证明:需证明: a(1+b)(1+c)+ b(1+a)(1+c)> c(1+a)(1+b) 5分需证明:a(1+b+c+bc)+ b(1+a+c+ac)> c(1+a+b+ab) 需证明a+2ab+b+abc>c 10分 ∵a,b,c 是的三边 ∴a>0,b>0,c>0且a+b>c,abc>0,2ab>0∴a+2ab+b+abc>c ∴成立。
(易错题)高中数学选修1-2第三章《推理与证明》测试(含答案解析)
一、选择题1.某扶贫调研团根据要求从甲、乙、丙、丁、戊五个镇选择调研地点:①若去甲镇,则必须去乙镇;②丁、戊两镇至少去一镇;③乙、丙两镇只去一镇;④丙、丁两镇都去或都不去;⑤若去戊镇,则甲、丁两镇也必须去.该调研团至多去了( ) A .丙、丁两镇B .甲、乙两镇C .乙、丁两镇D .甲、丙两镇2.学校艺术节对同一类的A 、B 、C 、D 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下: 甲说:“是C 或D 作品获得一等奖” 乙说:“B 作品获得一等奖” 丙说:“A 、D 两项作品未获得一等奖” 丁说:“是C 作品获得一等奖” 若这四位同学中只有两位说的话是对的,则获得一等奖的作品为( ) A .C 作品B .D 作品C .B 作品D .A 作品3.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣,”其体现的是一种无限与有限的转化过程,比如在“…”.即代表无限次重复,但原式却是个定值x,这可以通过方程x =确定出来2x =,类似地不难得到12122+=++⋅⋅⋅( )A .122 B.12C1 D.14.三角形的面积为1()2S a b c r =++⋅,其中,,a b c 为三角形的边长,r 为三角形内切圆的半径,则利用类比推理,可得出四面体的体积为( )A .13V abc = B .13V Sh = C .1()3V ab bc ca h =++,(h 为四面体的高) D .()123413V S S S S r =+++,(1234,,,S S S S 分别为四面体的四个面的面积,r 为四面体内切球的半径)5.祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子,他提出了一条原原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆22221(0)x y a b a b+=>> 所围成的平面图形绕y 轴旋转一周后,得一橄榄状的几何体(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于( ) A .243a b π B .243ab π C .22a b πD .22ab π6.将正整数排列如下:则图中数2020出现在( ) A .第64行第3列B .第64行4列C .第65行3列D .第65行4列7.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3, 6,10记为数列{}n a ,将可被5整除的三角形数,按从小到大的顺序组成一个新数列{}n b ,可以推测:19b =( ) A .1225B .1275C .2017D .20188.观察下面数阵,则该数阵中第9行,从左往右数的第20个数是( ) A .545B .547C .549D .5519.下列说法中正确的个数是( )①命题:“x 、y R ∈,若110x y -+-=,则1x y ==”,用反证法证明时应假设1x ≠或1y ≠;②若2a b +>,则a 、b 中至少有一个大于1;③若1-、x 、y 、z 、4-成等比数列,则2y =±; ④命题:“[]0,1m ∃∈,使得12+<m x x”的否定形式是:“[]0,1m ∀∈,总有12m x x +≥”.A .1B .2C .3D .410.在《九章算术)方田章圆田术(刘徽注)中指出:“割之弥细,所失弥少.割之又割,以至不能割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过“…”即代表无限次重复,但原式却是个定值x ,这可以通过x =确定出来2x =,类似地,可得112122...+++的值为( )A1 B1 CD11.现有A B C D 、、、四位同学被问到是否去过甲,乙,丙三个教师办公室时,A 说:我去过的教师办公室比B 多,但没去过乙办公室;B 说:我没去过丙办公室;C 说:我和A B 、去过同一个教师办公室;D 说:我去过丙办公室,我还和B 去过同一个办公室.由此可判断B 去过的教师办公室为( ) A .甲 B .乙 C .丙 D .不能确定 12.已知在正三角形ABC 中,若D 是BC 边的中点,G 是三角形ABC 的重心,则2AGGD=.若把该结论推广到空间,则有:在棱长都相等的四面体ABCD 中,若三角形BCD 的重心为M ,四面体内部一点O 到四面体各面的距离都相等,则AOOM等于( ) A .4 B .3 C .2 D .1 二、填空题13.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:====,则按照以上规律,若(1n +=“穿墙术”,n T 为数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和,则9T 的值为______.14.已知对任意正实数1a 、2a 、1b 、2b 都有22212121212()b b b b a a a a ++≥+,类比可得对任意正实数1a 、2a 、3a 、1b 、2b 、3b 都有________.15.若点()000,P x y 在椭圆22221(0)x y a b a b+=>>内,则被0P 所平分的弦所在的直线方程是2200002222x x y y x y a b a b+=+,通过类比的方法,可求得:被()1,1P 所平分的双曲线2214x y -=的弦所在直线方程是________. 16.现将甲、乙、丙、丁四个人安排到座位号分别是1,2,3,4的四个座位上,他们分别有以下要求:甲:我不坐座位号为1和2的座位;乙:我不坐座位号为1和4的座位;丙:我的要求和乙一样;丁:如果乙不坐座位号为2的座位,那么我就不坐座位号为1的座位.那么坐在座位号为3的座位上的是________.17.有编号依次为1,2,3,4,5,6的6名学生参加数学竞赛选拔,今有甲,乙,丙,丁四位老师在猜谁将获得第一名,甲猜不是3号就是5号;乙猜6号不可能;丙猜是1号,2号,4号中的一个;丁猜2号,3号,4号都不可能,若以上四位老师只有一位猜对,则猜对者是___________(填甲、乙、丙、丁)18.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人走访了四位歌手,甲说“是乙或丙获奖”,乙说“甲、丙都未获奖”,丙说”我获奖了”,丁说“是乙获奖”.已知四位歌手有且只有一位说了假话,则获奖的歌手是________. 19.给出下列等式:222233311=1;122231411+=1;122232323141511++=1;12223234242⨯-⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯ 由以上等式可推出一个一般结论:对于*n N ∈,()2314121++=12223212n n n n +⨯⨯+⨯⨯⨯+__________________.20.对于问题“已知关于x 的不等式20ax bx c ++>的解集为(2,3)-,解关于x 的不等式20ax bx c -+>的”,给出一种解法:由20ax bx c ++>的解集为(2,3)-,得2()()0a x b x c -+-+>的解集为(3,2)-.即关于x 的不等式20ax bx c -+>的解集为(3,2)-.类比上述解法,若关于x 的不等式20ax bx c ++>的解集为(1,4),则关于x 的不等式20a bc x x++>的解集为_____. 三、解答题21.三角比内容丰富,公式很多,若仔细观察、大胆猜想、科学求证,你也能发现其中的一些奥秘.请你完成以下问题: (1)计算:cos 2cos88sin 47sin133︒︒+︒︒,cos5cos85sin 50sin130︒︒+︒︒,cos12cos78sin 57sin123︒︒+︒︒; (2)根据(1)的计算结果,请你猜出一个一般的结论用数学式子加以表达,并证明你的结论,写出推理过程.22.已知函数()2x x a a f x -+=,()2x xa a g x --=(其中0a >,且1a ≠),(1)若()()()()()1221f g f g g k ⋅+⋅=,求实数k 的值;(2)能否从(1)的结论中获得启示,猜想出一个一般性的结论并证明你的猜想. 23.证明下列不等式:(1)当2a >时,求证:0>; (2)设0a >,0b >,若0a b ab +-=,求证:4a b +≥.24.对于不等式12+2<+<正确的.(1))n N +∈的大小并加以证明;(2))n N +<∈成立,请你写出a b c d ,,,所满足的一个等式和一个不等式,不必证明.25.(1)3.a <>(2)求由曲线y =2y x =-及y 轴所围成的图形的面积.26.设n 个正数12,,,n a a a 满足*12(n a a a n N ≤≤≤∈且3)n ≥.(1)当3n =时,证明:233112123312a a a a a a a a a a a a ++++≥; (2)当4n =时,不等式2334124112343412a a a a a a a a a a a a a a a a ++++++≥也成立,请你将其推广到n *(n N ∈且3)n ≥个正数12,,,n a a a 的情形,归纳出一般性的结论并用数学归纳法证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A【分析】根据条件假设去甲镇,则可找到矛盾,排除两个答案,再假设不去甲镇,去乙镇同样可得到矛盾,进而可得到答案【详解】解:假设去甲镇,则必去乙镇,但去乙镇则不能去丙镇,不去丙镇则也不能去丁镇,不去丁镇则也不能去戊镇,而丁、戊都不去则不符合条件.矛盾,则可淘汰选项B、D,若不去甲镇去乙镇,同样无法完成参观;故甲、乙两镇都不能去,则一定不能去戊镇,∴能去的地方只有丙、丁两镇.故选:A.【点睛】本题考查学生合情推理的能力,也运用假设法是关键,属于中档题,2.C解析:C【解析】分析:根据学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,故假设A,B,C,D分别为一等奖,判断甲、乙、丙、丁的说法的正确性,即可判断.详解:若A为一等奖,则甲,丙,丁的说法均错误,故不满足题意,若B为一等奖,则乙,丙说法正确,甲,丁的说法错误,故满足题意,若C为一等奖,则甲,丙,丁的说法均正确,故不满足题意,若D为一等奖,则只有甲的说法正确,故不合题意,故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B故答案为C.点睛:本题考查推理的应用,意在考查学生的分析、推理能力.这类题的特点是:通过几组命题来创设问题情景,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.对于逻辑推理问题,应耐心读题,找准突破点,一般可以通过假设前提依次验证即可.3.C解析:C【分析】本题依照题干中的例子进行类比推理进行计算即可得到结果.【详解】由题意,令12(0)122x x+=>++⋯,即12xx+=,即2210x x--=,解得1x=或1x=(舍去)121122∴+=++⋅⋅⋅,故选:C 【点睛】 本题主要考查类比推理方法的应用,以及一元二次方程的解法,属于中档题.4.D解析:D 【分析】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ,根据体积公式得到答案. 【详解】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ,将O 与四顶点连起来, 可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和, ∴V 13=(S 1+S 2+S 3+S 4)r . 故选:D . 【点睛】本题考查了类比推理,意在考查学生的空间想象能力和推断能力.5.A解析:A 【分析】先构造两个底面半径为a ,高为b 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积. 【详解】椭圆的长半轴长为a ,短半轴长为b ,先构造两个底面半径为a ,高为b 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积为:()222142233V V V a b a b a b πππ⎛⎫=-=⨯⨯-⨯⨯= ⎪⎝⎭圆柱圆锥,故选:A.【点睛】本题考查了类比推理的问题,类比推理过程中要注重方法的类比,属基础题.6.B解析:B 【分析】根据题意,构造数列,利用数列求和推出2020的位置. 【详解】根据已知,第n 行有n 个数,设数列{}n a 为n 行数的数列,则n a n =, 即第1行有1个数,第2行有2个数,……,第n 行有n 个数, 所以,第1行到第n 行数的总个数()1122n n n S n +=+++=, 当63n =时,数的总个数()636363120162S ⨯+==, 所以,2020为64n =时的数,即64行的数为:2017,2018,2019,2020,……, 所以,2020为64行第4列. 故选:B. 【点睛】本题考查数列的应用,构造数列,利用数列知识求解很关键,属于中档题.7.A解析:A 【分析】通过寻找规律以及数列求和,可得n a ,然后计算21k b -,可得结果.【详解】根据题意可知:12...n n a =+++ 则()12n a n n +=由14254556,,22b b a a ⨯⨯==== 394109101011,22b b a a ⨯⨯==== …可得()215512k k k b --=所以()19510510112252b ⨯⨯⨯-==故选:A 【点睛】本题考查不完全归纳法的应用,本题难点在于找到21k b -,属难题,8.C解析:C 【分析】观察数阵可得出数阵从左到右从上到下顺序是正奇数顺序排列,要求出某一个位置的数,只要求出这个位置是第几个奇数即可,而每一行有12m -个数,可求出前m 行共有21m -个数,根据以上特征,即可求解. 【详解】由题意可得该数阵中第m 行有12m -个数,所以前m 行共有21m -个数,所以前8行共255个数.因为该数阵中的数依次相连成等差数列,所以该数阵中第9行, 从左往右数的第20个数是()127512549+-⨯=. 故选:C. 【点睛】本题以数阵为背景,考查等差、等比数列通项与前n 项和,认真审题,注意观察找出规律是解题的关键,属于中档题.9.C解析:C 【分析】根据命题的否定形式可判断出命题①的正误;利用反证法可得出命题②的真假;设等比数列的公比为q ,利用等比数列的定义和等比中项的性质可判断出命题③的正误;利用特称命题的否定可判断出命题④的正误. 【详解】对于命题①,由于1x y ==可表示为1x =且1y =,该结论的否定为“1x ≠或1y ≠”,所以,命题①正确;对于命题②,假设1a ≤且1b ≤,由不等式的性质得2a b +≤,这与题设条件矛盾,假设不成立,故命题②正确;对于命题③,设等比数列1-、x 、y 、z 、4-的公比为q ,则201yq =>-,0y ∴<. 由等比中项的性质得()()2144y =-⨯-=,则2y =-,命题③错误;对于命题④,由特称命题的否定可知,命题④为真命题,故选C. 【点睛】本题考查命题真假的判断,涉及反证法、等比中项以及特称命题的否定,理解这些知识点是解题的关键,考查分析问题和解决问题的能力,属于基础题.10.B解析:B 【解析】 【分析】设()1012122...t t =>+++,可得12t t=+,求解即可. 【详解】设()1012122...t t =>+++,则12t t=+,即2210t t +-=,解得1t =,取1t =. 故选B. 【点睛】本题考查了类比推理,考查了计算能力,属于基础题.11.A解析:A 【解析】 【分析】根据已知信息:首先判断B 去过一个办公室,再确定B 去的哪一个办公室,得到答案. 【详解】C 说:我和A B 、去过同一个教师办公室⇒ B 至少去过一个办公室A 说:我去过的教师办公室比B 多,但没去过乙办公室⇒A 去过2个办公室,B 去过1个办公室.B 说:我没去过丙办公室,C 说:我和A B 、去过同一个教师办公室,A 没有去过乙办公室所以B去的是甲办公室.答案选A【点睛】本题考查了逻辑推理,意在考查学生的逻辑推理能力.12.B解析:B【分析】利用类比推理把平面几何的结论推广到空间中.【详解】因为O到四面体各面的距离都相等,所以O为四面体内切球的球心,设四面体的内切球半径为r,则43V Sr=,其中V表示四面体的体积,S表示一个面的面积;所以1433V S AM Sr=⋅=,即14r AM=,所以34314AMAOOM AM==.故选B.【点睛】本题主要考查类比推理,平面性质类比到空间时注意度量关系的变化.二、填空题13.【分析】归纳出数列的通项公式利用裂项求和法可求得的值【详解】以此类推由可知事实上因此故答案为:【点睛】本题考查归纳推理同时也考查了裂项求和法考查计算能力与推理能力属于中等题解析:36 55【分析】归纳出数列{}n a的通项公式,利用裂项求和法可求得9T的值.【详解】2 23============,以此类推,由(1n+=()211na n=+-,事实上((11n n +=+====()()211111122211n a n n n n n ⎛⎫∴===- ⎪++⎝⎭+-, 因此,9111111111111361123243591122101155T ⎛⎫⎛⎫=-+-+-++-=+--= ⎪ ⎪⎝⎭⎝⎭. 故答案为:3655. 【点睛】本题考查归纳推理,同时也考查了裂项求和法,考查计算能力与推理能力,属于中等题.14.【分析】根据类比的定义按照题设规律直接写出即可【详解】由题意通过类比可得对任意正实数都有故答案为:【点睛】本题考查推理证明中的类比考查类比推理的应用等基础知识考查运算求解能力考查函数与方程思想属于基解析:2222312312123123()b b b b b b a a a a a a ++++≥++ 【分析】根据类比的定义,按照题设规律直接写出即可. 【详解】由题意,通过类比可得对任意正实数1a 、2a 、3a 、1b 、2b 、3b 都有2222312312123123()b b b b b b a a a a a a ++++≥++. 故答案为:2222312312123123()b b b b b b a a a a a a ++++≥++. 【点睛】本题考查推理证明中的类比,考查类比推理的应用等基础知识,考查运算求解能力,考查函数与方程思想,属于基础题.15.【分析】由已知类比可得双曲线被所平分的弦所在的直线方程是可得被所平分的双曲线的弦所在直线方程【详解】由点在椭圆内则被所平分的弦所在的直线方程是类比可得双曲线被所平分的弦所在的直线方程是则被所平分的双 解析:430x y -+=【分析】由已知类比可得双曲线22221(0,0)x y a b a b-=>>被00(P x ,0)y 所平分的弦所在的直线方程是2200002222x x y y x y a b a b -=-,可得被(1,1)P 所平分的双曲线2214x y -=的弦所在直线方程. 【详解】由点000(,)P x y 在椭圆22221(0)x y a b a b+=>>内,则被0P 所平分的弦所在的直线方程是2200002222x x y y x y a b a b+=+,类比可得双曲线22221(0,0)x y a b a b-=>>被000(,)P x y 所平分的弦所在的直线方程是2200002222x x y y x y a b a b-=-,则被(1,1)P 所平分的双曲线2214xy -=的弦所在直线方程是1144x y -=-,即430x y -+=. 故答案为:430x y -+=. 【点睛】本题考查类比推理,类比推理是找出两类事物之间的相似性或一致性,用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).16.丙【分析】根据题意分类讨论即可得出符合题意的结果得到答案【详解】由题意若乙坐3号位置则丁坐2号或4号位置甲丙两人必定有1人坐1号位置与题意矛盾若乙坐2号位置则丙坐3号位置甲坐4号位置丁坐1号位置符合解析:丙 【分析】根据题意,分类讨论,即可得出符合题意的结果,得到答案. 【详解】由题意,若乙坐3号位置,则丁坐2号或4号位置,甲、丙两人必定有1人坐1号位置,与题意矛盾,若乙坐2号位置,则丙坐3号位置,甲坐4号位置,丁坐1号位置,符合题意, 故答案为:丙. 【点睛】本题主要考查了合情推理的应用,其中解答中认真审题,合理分类讨论是解答的关键,着重考查了推理与运算能力,属于基础题.17.丁【解析】【分析】分四种情况讨论即四位老师只有一个老师猜对进行逻辑推理得出答案【详解】若甲老师猜对则其他三位老师全部猜错乙老师猜错则号获得第一名这与甲老师的猜测矛盾这种情况不可能;若乙老师猜对则其他解析:丁 【解析】 【分析】分四种情况讨论,即四位老师只有一个老师猜对,进行逻辑推理得出答案。
2023届高考复习数学专项(复数及推理与证明)好题练习(附答案)
2023届高考复习数学专项(复数及推理与证明)好题练习1.若复数:::满足(l�i)z=3+i<其中i是虚数单位),则()A.二的实部是2B.=的虚部是2iC.乞=1-2i2.已知复数z=3-4i, 则下列命题中正确的为()A.l z l= 5B.z=3+4iC. z的虚部为-4iD.z在复平而上对应点在第四象限3.下面四个命题中的真命题为()1A.若复数z满足-ER,则zERB.若复数z满足/ER,则zERC.若复数Z1,Z2满足z亿2ER,则z1=D.若复数zE R,则豆ER Z2D.lzl=✓S4.已知复数二满足i2k+1z=2+i,-(kE z), 则z在复平面内对应的点可能位于()A.第一象限B.第二象限C.第三象限D.第四象限5.设z是复数,则下列命题中的真命题是()A.若z2�o.则z是实数B.若z2<o,则z是虚数C.若z是虚数,则z2�oo.若z是纯虚数,则z2<o6.已知Z1与Z-2是共枙虚数,以下四个命题一定正确的是()2 2A. Z l <i z2B. zi z2=z Z2C.z1+z2E Rz+l.7设复数z满足——=i,则下列说法错误的是()A.z为纯虚数B.z的虚部为一-i2C.在复平而内,z对应的点位千第二象限D.z=-—ZtD .• —ERZ28.某大学进行自主招生测试,盂要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是( )A .甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前D .甲同学的总成绩排名比丙同学的总成绩排名更靠前 9.在0,0a b >>的条件下,下列四个结论正确的是( ) A .22a b aba b+≥+B .2a b +≤C .22a b a b b a+≤+D .设,,a b c 都是正数,则三个数111,,a b c b c a+++至少有一个不小于2 10.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是( )A.2018年3月至2019年3月全国居民消费价格同比均上涨B.2018年3月至2019年3月全国居民消费价格环比有涨有跌C.2019年3月全国居民消费价格同比涨幅最大D.2019年3月全国居民消费价格环比变化最快参考答案1.若复数:::满足(l�i)z=3+i<其中i是虚数单位),则()D.lzl=✓S A. 二的实部是2 B.=的虚部是2i C.乞=1-2i【参考答案】CD3 +i(3 +i)(l +i) 2 + 4i—= = = 1+2i,【答宋解析】z=l—1 2 2即二的实部是1,虚部是2'故A错误,B铅误,又亏=1—2i,121 =✓1三了-= Js'故C,D均正确故选CD2. 已知复数z=3-4i, 则下列命题中正确的为()A.l z l= 5B.z=3+4iC. z的虚部为-4iD. z在复平面上对应点在第四象限【参考答案】ABD【答案解析】:;=3-4i, 则仁l=F五二正=5.故A正确;�=3+4i, 故B正确;二的虚部为4,故C铅误;二在复平面上对应点的坐标为(3,-4), 在第四象限,故D正确.:.命题中正确的个数为3.故选ABD.3.下而四个命题中的真命题为()1A. 若复数z满足-E R,则zE RB.若复数z满足/E R,则zE RC. 若复数Z1,Z2满足z亿2R,则z=22D.若复数zE R,则�E R【参考答案】AD1【答案解析】若复数二满足-E R,则二E R,故命题A为真命题;复数z =i 满足z 2=﹣1∈R ,则z ∉R ,故命题B 为假命题; 若复数z 1=i ,z 2=2i 满足z 1z 2∈R ,但z 1≠,故命题C 为假命题;若复数z ∈R ,则=z ∈R ,故命题D 为真命题. 故选:AD .4.已知复数z 满足212k i z i +=+,()k z ∈,则z 在复平面内对应的点可能位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【参考答案】BD【答案解析】212k i z i +=+ ,212k iz i ++∴=15i i i === ,37i i i ===-当k 为奇数时 ()2122212k i ii i z i i i i i++++∴====-+--⨯ 在复平面上对应的点为()1,2-位于第二象限; 当k 为偶数时 ()2122212k i ii i z i i i i i++++∴====-⨯ 在复平面上对应的点为()1,2-位于第四象限;故复数z 在复平面内对应的点位于第二象限或第四象限. 故选BD5.设z 是复数,则下列命题中的真命题是( ) A .若z 2≥0,则z 是实数 B .若z 2<0,则z 是虚数C .若z 是虚数,则z 2≥0 D .若z 是纯虚数,则z 2<0 【参考答案】ABD【答案解析】设z =a +bi ,a ,b ∈R ,z 2=a 2﹣b 2+2abi , 对于A ,z 2≥0,则b =0,所以z 是实数,真命题;对于B ,z 2<0,则a =0,且b ≠0,⇒z 是虚数;所以B 为真命题; 对于C ,z 是虚数,则b ≠0,所以z 2≥0是假命题.对于D ,z 是纯虚数,则a =0,b ≠0,所以z 2<0是真命题;故选ABD.6.已知z1与z2是共轭虚数,以下四个命题一定正确的是( )A.z12<|z2|2B.z1z2=|z1z2| C.z1+z2∈R D.∈R【参考答案】BC【答案解析】解:z1与z2是共轭虚数,设z1=a+bi,z2=a﹣bi(a,b∈R).z12<|z2|2;=a2﹣b2+2abi,复数不能比较大小,因此A不正确;z1z2=|z1z2|=a2+b2,B正确;z1+z2=2a∈R,C正确;===+i不一定是实数,因此D不一定正确.故选:BC.7.设复数z满足,则下列说法错误的是( )A.z为纯虚数B.z的虚部为C.在复平面内,z对应的点位于第二象限D.|z|=【参考答案】ABC【答案解析】∵z+1=zi,设z=a+bi,则(a+1)+bi=﹣b+ai,∴,解得.∴z=.∴|z|=,复数z的虚部为,8.某大学进行自主招生测试,需要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是()A .甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前D .甲同学的总成绩排名比丙同学的总成绩排名更靠前 【参考答案】AC【答案解析】根据图示,可得甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前, 他的阅读表达成绩排名靠后.故选AC.9.在0,0a b >>的条件下,下列四个结论正确的是( )A .22a b aba b+≥+ B .2a b +≤C .22a b a b b a +≤+D .设,,a b c 都是正数,则三个数111,,a b c b c a+++至少有一个不小于2 【参考答案】ABD 【答案解析】选项A:222()4()22022()2()220,0a b ab a b ab a b a b ab a b aba b a b a b a b a b a b++--++-==∴-≥∴≥+++>+>+ ,故本选项是正确的;选项B:因为0,0a b >>,22222222()()02244a b a b a b ab a b ++++--=-=≥,所以2a b +≤,因此本选项是正确的; 选项C:222233222()()()()()a b a b ab a b a b a b a b a b b a a b b a ab ab ab +---+-+-+-+===-,因为0,0a b >>,所以22222()()()0a b b a b a a b a b a b b a ab b a+-+-+=-≤⇒+≥+,因此本选项是不正确的;选项D:根据本选项特征,用反证法来解答.假设三个数111,,a b c b c a+++至少有一个不小于2不成立,则三个数111,,a b c b c a+++都小于2,所以这三个数的和小于6,而111111()(()6a b c a b cb c a a b c+++++=+++++≥++=(当且仅当1a b c===时取等号),显然与这三个数的和小于6矛盾,故假设不成立,即三个数111,,a b cb c a+++至少有一个不小于2,故本选项是正确的.故选:ABD10.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是()A.2018年3月至2019年3月全国居民消费价格同比均上涨B.2018年3月至2019年3月全国居民消费价格环比有涨有跌C.2019年3月全国居民消费价格同比涨幅最大D.2019年3月全国居民消费价格环比变化最快【参考答案】ABD【答案解析】对于选项A,从图可以看出同比涨跌幅均为正数,故A正确;对于选项B,从图可以看出环比涨跌幅有正数有负数,故B正确;对于选项C,从图可以看出同比涨幅最大的是2018年9月份和2018年10月份,故C错误;对于选项D,从图可以看出2019年3月全国居民消费价格环比变化最快,故D正确.故选ABD.。
高考数学压轴专题最新备战高考《推理与证明》基础测试题附答案解析
新单元《推理与证明》专题解析一、选择题1.已知()()2739nf n n =+⋅+,存在自然数m ,使得对任意*n N ∈,都能使m 整除()f n ,则最大的m 的值为( ) A .30 B .9 C .36 D .6【答案】C 【解析】 【分析】依题意,可求得(1)f 、(2)f 、(3)f 、(4)f 的值,从而可猜得最大的m 的值为36,再利用数学归纳法证明即可. 【详解】由()(27)39nf n n =+⋅+,得(1)36f =,(2)336f =⨯,(3)1036f =⨯,(4)3436f =⨯,由此猜想36m =.下面用数学归纳法证明: (1)当1n =时,显然成立。
(2)假设n k =时,()f k 能被36整除,即()(27)39k f k k =+⋅+能被36整除;当1n k =+时,1[2(1)7]39k k +++⋅+13(27)391823k k k +⎡⎤=+⋅+-+⨯⎣⎦ ()13(27)391831k k k -⎡⎤=+⋅++-⎣⎦131k --Q 是2的倍数,()11831k -∴-能被36整除,∴当1n k =+时,()f n 也能被36整除.由(1)(2)可知对一切正整数n 都有()(27)39n f n n =+⋅+能被36整除, m 的最大值为36.故选:C. 【点睛】本题主要考查的是数学归纳法的应用,解题的关键是熟练掌握数学归纳法解题的一般步骤,考查的是推理计算能力,是中档题.2.我们在求高次方程或超越方程的近似解时常用二分法求解,在实际生活中还有三分法.比如借助天平鉴别假币.有三枚形状大小完全相同的硬币,其中有一假币(质量较轻),把两枚硬币放在天平的两端,若天平平衡,则剩余一枚为假币,若天平不平衡,较轻的一端放的硬币为假币.现有 27 枚这样的硬币,其中有一枚是假币(质量较轻),如果只有一台天平,则一定能找到这枚假币所需要使用天平的最少次数为( ) A .2 B .3C .4D .5【答案】B 【解析】 【分析】根据提示三分法,考虑将硬币分为3组,然后将有问题的一组再分为3组,再将其中有问题的一组分为3,此时每组仅为1枚硬币,即可分析出哪一个是假币. 【详解】第一步将27枚硬币分为三组,每组9枚,取两组分别放于天平左右两侧测量,若天平平衡,则假币在第三组中;若天平不平衡,假币在较轻的那一组中;第二步把较轻的9枚金币再分成三组,每组3枚,任取2组,分别放于天平左右两侧测量,若天平平衡,则假币在第三组,若天平不平衡则假币在较轻的一组;第三步再将假币所在的一组分成三组,每组1枚,取其中两组放于天平左右两侧测量若天平平衡,则假币是剩下的一个;若天平不平衡,则较轻的盘中所放的为假币.因此,一定能找到假币最少需使用3次天平. 故选:B. 【点睛】本题考查类比推理思想的应用,难度一般.处理该类问题的关键是找到题干中的提示信息,由此入手会方便很多.3.二维空间中圆的一维测度(周长)2lr π=,二维测度(面积)2S r π=;三维空间中球的二维测度(表面积)24S r π=,三维测度(体积)343V r π=.若四维空间中“超球”的三维测度38V r π=,猜想其四维测度W =( )A .42r πB .43r πC .44r πD .46r π【答案】A 【解析】分析:由题意结合所给的性质进行类比推理即可确定四维测度W .详解:结合所给的测度定义可得:在同维空间中,1n +维测度关于r 求导可得n 维测度, 结合“超球”的三维测度38V r π=,可得其四维测度42W r π=. 本题选择A 选项.点睛:本题主要考查类比推理,导数的简单应用等知识,意在考查学生的转化能力和计算求解能力.4.已知点(10,3)P 在椭圆222:199x y C a +=上.若点()00,N x y 在圆222:M x y r +=上,则圆M 过点N 的切线方程为200x x y y r +=.由此类比得椭圆C 在点P 处的切线方程为( )A .13311x y +=B .111099x y += C .11133x y += D .199110x y += 【答案】C 【解析】【分析】先根据点在椭圆上,求得2a ,再类比可得切线方程. 【详解】因为点(10,3)P 在椭圆222:199x y C a +=上,故可得21009199a +=,解得2110a =; 由类比可得椭圆C 在点P 处的切线方程为:103111099x y +=,整理可得11133x y+=. 故选:C. 【点睛】本题考查由椭圆上一点的坐标求椭圆方程,以及类比法的应用,属综合基础题.5.观察下列等式:332123+=,33321236++=,33332123410+++=,记()3333123f n n =+++⋅⋅⋅+.根据上述规律,若()225f n =,则正整数n 的值为( )A .8B .7C .6D .5【答案】D 【解析】 【分析】由规律得()()()22211234n n f n n +=+++⋅⋅⋅+=再解方程即可 【详解】由已知等式的规律可知()()()22211234n n f n n +=+++⋅⋅⋅+=,当()225f n =时,可得5n =. 故选:D 【点睛】本题考查归纳推理,熟记等差数列求和公式是关键,考查观察转化能力,是基础题6.观察下图:123434567 45678910 L L则第行的各数之和等于22017()A.2017 B.1009 C.1010 D.1011【答案】B【解析】【分析】由图可得:第n行的第一个数为n,有21n-个数,且这21n-个数成公差为1的等差数列,利用等差数列求和公式算出即可【详解】由图可得:第n行的第一个数为n,有21n-个数且这21n-个数成公差为1的等差数列所以第n行的各数之和为:()()()()22122211212n nn n n---+⨯=-令212017n-=,得1009n=故选:B【点睛】本题考查的是推理和等差数列的知识,较简单.7.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:2n=及3n=时,如图:记n S为每个序列中最后一列数之和,则6S为()A.147 B.294 C.882 D.1764【答案】A【解析】【分析】根据题目所给的步骤进行计算,由此求得6S 的值. 【详解】 依题意列表如下:所以6603020151210147S =+++++=.故选:A 【点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.8.分子间作用力只存在于分子与分子之间或惰性气体原子间的作用力,在一定条件下两个原子接近,则彼此因静电作用产生极化,从而导致有相互作用力,称范德瓦尔斯相互作用.今有两个惰性气体原子,原子核正电荷的电荷量为q ,这两个相距R 的惰性气体原子组成体系的能量中有静电相互作用能U .其计算式子为212121111U kcq R R x x R x R x ⎛⎫=+-- ⎪+-+-⎝⎭,其中,kc 为静电常量,1x 、2x 分别表示两个原子的负电中心相对各自原子核的位移.已知12121x x R x x R R -⎛⎫+-=+⎪⎝⎭,111x R x R R ⎛⎫+=+ ⎪⎝⎭,221x R x R R ⎛⎫-=- ⎪⎝⎭,且()1211x x x -+≈-+,则U 的近似值为( )A .2123kcq x x R B .2123kcq x x R - C .21232kcq x x R D .21232kcq x x R- 【答案】D 【解析】 【分析】将12121x x R x x R R -⎛⎫+-=+⎪⎝⎭,111x R x R R ⎛⎫+=+ ⎪⎝⎭,221x R x R R ⎛⎫-=- ⎪⎝⎭代入U ,结合()1211x x x -+≈-+化简计算可得出U 的近似值.【详解】221212121211111111111U kcq kcq x x x x R R x x R x R x R R R R R R R ⎡⎤⎢⎥⎛⎫⎢⎥=+--=+-- ⎪-+-+-⎛⎫⎛⎫⎛⎫⎢⎥⎝⎭++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2222121211221111x x x x x x x x kcq RR R R R R R ⎡⎤--⎛⎫⎛⎫⎛⎫=+-+-+----⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦21232kcq x x R =-. 故选:D. 【点睛】本题考查U 的近似计算,充分理解题中的计算方法是解答的关键,考查推理能力与计算能力,属于中等题.9.现有甲、乙、丙、丁四人参加数学竞赛,其中只有一位获奖. 有人走访了四人,甲说:“乙、丁都未获奖”,乙说:“是甲或丙获奖”,丙说:“是甲获奖”,丁说:“是乙获奖”,四人所说话中只有一位是真话,则获奖的人是( ) A .甲 B .乙C .丙D .丁【答案】B 【解析】 【分析】结合题意分类讨论甲乙丙丁获奖的情况,然后考查说真话的人的个数即可确定获奖的人. 【详解】结合题意分类讨论:若甲获奖,则说真话的人为:甲乙丙,说假话的人为:丁,不合题意; 若乙获奖,则说真话的人为:丁,说假话的人为:甲乙丙,符合题意; 若丙获奖,则说真话的人为:甲乙,说假话的人为:丙丁,不合题意; 若丁获奖,则说假话的人为:甲乙丙丁,不合题意; 综上可得,获奖人为乙. 故选:B. 【点睛】本题主要考查数学推理的方法,分类讨论的数学思想,属于中等题.10.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙【答案】A 【解析】 【分析】利用逐一验证的方法进行求解. 【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A . 【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.11.用数学归纳法证明“l+2+3+…+n 3=632n n+,n ∈N*”,则当n=k+1时,应当在n=k 时对应的等式左边加上( ) A .k 3+1 B .(k 3+1)+(k 3+2)+…+(k+1)3C .(k+1)3D .63(1)(1)2k k +++【答案】B 【解析】分析:当项数从n k =到1n k =+时,等式左边变化的项可利用两个式子相减得到。
无锡市民办辅仁高中数学选修2-2第一章《推理与证明》测试题(含答案解析)
一、选择题1.在数学归纳法的递推性证明中,由假设n k =时成立推导1n k =+时成立时,()f n =1+1112321n ++⋅⋅⋅+-增加的项数是( ) A .1B .21k +C .2kD .21k -2.某个命题与正整数n 有关,如果当()n k k N +=∈时命题成立,那么可推得当1n k =+时命题也成立. 现已知当8n =时该命题不成立,那么可推得 ( ) A .当7n =时该命题不成立 B .当7n =时该命题成立 C .当9n =时该命题不成立D .当9n =时该命题成立3.某单位实行职工值夜班制度,已知,,,,5A B C D E 共名职工每星期一到星期五都要值一次夜班,且没有两人同时值夜班,星期六和星期日不值夜班,若A 昨天值夜班,从今天起,B C 至少连续4天不值夜班,D 星期四值夜班,则今天是星期几( )A .五B .四C .三D .二4.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,1()f x '=,2()f x '=,*1())n f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x + B .(cos sin )x e x x - C .(cos sin )x e x x -+ D .(cos sin )x e x x --5.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .46.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为 A .4B .6C .8D .327.在等差数列{}n a 中,如果,,,m n p r N *∈,且3m n p r ++=,那么必有3m n p r a a a a ++=,类比该结论,在等比数列{}n b 中, 如果,,,m n p r N *∈,且3m n p r ++=,那么必有( )A .3++=m n p r b b b bB .3++=m n p r b b b b C .3=m n p r b b b bD .3m n p r b b b b =8.袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号. 甲说:“我无法确定.” 乙说:“我也无法确定.”甲听完乙的回答以后,甲又说:“我可以确定了.” 根据以上信息, 你可以推断出抽取的两球中 A .一定有3号球B .一定没有3号球C .可能有5号球D .可能有6号球9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( ) A .甲 B .乙C .丙D .丁10.用反证法证明“平面四边形中至少有一个内角不超过90︒”,下列假设中正确的是( )A .假设有两个内角超过90︒B .假设有三个内角超过90︒C .假设至多有两个内角超过90︒D .假设四个内角均超过90︒11.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是( ) A .丁B .乙C .丙D .甲12.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( ) A .乙B .甲C .丁D .丙二、填空题13.已知f (x )=21xx +(x >0),若f 1(x )=f (x ),f n +1=f (f n (x )),n ∈N *,则猜想f 2020(x )=_____.14.数表的第1行只有两个数字3,7,从第2行开始,先按序照搬上一行的数再在相邻两数之间插入这两个数的和,如下图所示,那么第10行的各个数之和等于__________.15.“开心辞典”中有这样一个问题:给出一组数,要你根据规律填出后面的第几个数.现给出一组数:11315,,,,228432---,…,则第8个数可以是__________.16.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下: 甲说:“我们四人都没考好.” 乙说:“我们四人中有人考的好.” 丙说:“乙和丁至少有一人没考好.” 丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的______________两人说对了. 17.研究cos n α的公式,可以得到以下结论:2cos )22cos )32cos )42cos )22cos )52cos )32cos )62cos )42cos )22cos )72cos )52cos )32cos 2(2,2cos3(3(2cos ),2cos 4(4(2,2cos5(5(5(2cos ),2cos 6(6(9(2,2cos 7(7(14(7(2cos ααααααααααααααααααααα=-=-=-+=-+=-+-=-+-),以此类推:422cos8(2cos )(2cos )(2cos )16(2cos )m p n q r ααααα=++-+,则m n p q r ++++=__________.18.如图所示,在三棱锥S ﹣ABC 中,SA ⊥SB ,SB ⊥SC ,SC ⊥SA ,且SA ,SB ,SC 和底面ABC 所成的角分别为α1,α2,α3,△SBC ,△SAC ,△SAB 的面积分别为S 1,S 2,S 3,类比三角形中的正弦定理,给出空间图形的一个猜想是________.19.观察下列等式:……据此规律,第个等式可为____________________________________.20.用反证法证明“,a b N ∈,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,应假设_______.三、解答题21.设数列{}n x 各项均为正数,且满足()22221222,n x x x n n n N ++++=+∈,(1)求数列{}n x 的通项公式n x ; (2)已知122311113n n x x x x x x ++++=+++,求n ;(3)试用数学归纳法证明:2122312(1)1n n x x x x x x n +⎡⎤+++<+-⎣⎦.22.用数学归纳法证明:111111111234212122n n n n n-+-+⋯+-=++⋯+-++. 23.已知{}n a 是等差数列,{}n b 是等比数列,11331542,,a b a b a a b ===+=.设,n n n n c a b S =是数列{}n c 的前n 项和.(1)求,n n a b ;(2)试用数学归纳法证明:18(34)2n n S n +=+-⋅.24.已知数列{}n a 满足1a a =,112n na a +=-(*n N ∈); (1)求2a 、3a 、4a ; (2)猜想数列{}n a 的通项公式; (3)用数学归纳法证明你的猜想; 25.在数列{}n a 中,111,21nn n a a a a +==+,其中1,2,3,n =.(Ⅰ)计算234,,a a a 的值;(Ⅱ)猜想数列{}n a 的通项公式,并用数学归纳法加以证明.26.在数列{}n a 中,112a =,133n n n a a a +=+,求2a 、3a 、4a 的值,由此猜想数列{}n a 的通项公式,并用数学归纳法证明你的猜想.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:分别计算当n k =时,()1?f k = + 1112321k ++⋅⋅⋅+-,当1n k =+成立时, ()1?f k = + 1111123212221k k k k ++⋅⋅⋅+++⋅⋅⋅+-+-,观察计算即可得到答案 详解:假设n k =时成立,即()1?f k = + 1112321k ++⋅⋅⋅+- 当1n k =+成立时,()1?f k = + 1111123212221k k k k ++⋅⋅⋅+++⋅⋅⋅+-+- ∴增加的项数是()()221212k k k k +---=故选C点睛:本题主要考查的是数学归纳法。
宿松二中高二数学理科单元测试题第二章推理与证明综合检测.
宿松二中高二数学理科单元测试题 选修2-2第二章 推理与证明综合检测时间120分钟,满分150分。
2013-1-5一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.锐角三角形的面积等于底乘高的一半; 直角三角形的面积等于底乘高的一半; 钝角三角形的面积等于底乘高的一半; 所以,凡是三角形的面积都等于底乘高的一半. 以上推理运用的推理规则是( ) A .三段论推理 B .假言推理 C .关系推理 D .完全归纳推理 [答案] D[解析] 所有三角形按角分,只有锐角三角形、Rt 三角形和钝角三角形三种情形,上述推理穷尽了所有的可能情形,故为完全归纳推理.2.数列1,3,6,10,15,…的递推公式可能是( )A.⎩⎪⎨⎪⎧a 1=1,a n +1=a n +n (n ∈N *) B.⎩⎪⎨⎪⎧a 1=1,a n =a n -1+n (n ∈N *,n ≥2) C.⎩⎪⎨⎪⎧a 1=1,a n +1=a n +(n -1)(n ∈N *) D.⎩⎪⎨⎪⎧a 1=1,a n =a n -1+(n -1)(n ∈N *,n ≥2) [答案] B[解析] 记数列为{a n },由已知观察规律:a 2比a 1多2,a 3比a 2多3,a 4比a 3多4,…,可知当n ≥2时,a n 比a n -1多n ,可得递推关系⎩⎪⎨⎪⎧a 1=1,a n -a n -1=n (n ≥2,n ∈N *).3.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,因为( )A .大前提错误B .小前提错误C .推理形式错误D .不是以上错误 [答案] C[解析] 大小前提都正确,其推理形式错误.故应选C.4.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2(n ∈N *)时,验证n =1,左边应取的项是( )A .1B .1+2C .1+2+3D .1+2+3+4 [答案] D[解析] 当n =1时,左=1+2+…+(1+3)=1+2+…+4,故应选D.5.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 都成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12[答案] C[解析] 类比题目所给运算的形式,得到不等式(x -a )⊗(x +a )<1的简化形式,再求其恒成立时a 的取值范围.(x -a )⊗(x +a )<1⇔(x -a )(1-x -a )<1 即x 2-x -a 2+a +1>0 不等式恒成立的充要条件是 Δ=1-4(-a 2+a +1)<0 即4a 2-4a -3<0 解得-12<a <32.故应选C.6.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14[答案] D[解析] 项数为n 2-(n -1)=n 2-n +1,故应选D. 7.已知a +b +c =0,则ab +bc +ca 的值( ) A .大于0 B .小于0 C .不小于0 D .不大于0 [答案] D[解析] 解法1:∵a +b +c =0, ∴a 2+b 2+c 2+2ab +2ac +2bc =0, ∴ab +ac +bc =-a 2+b 2+c 22≤0.解法2:令c =0,若b =0,则ab +bc +ac =0,否则a 、b 异号,∴ab +bc +ac =ab <0,排除A 、B 、C ,选D.8.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( ) A .a >b B .a <b C .a =b D .a 、b 大小不定 [答案] B[解析] a =c +1-c =1c +1+c ,b =c -c -1=1c +c -1,因为c +1>c >0,c >c -1>0, 所以c +1+c >c +c -1>0,所以a <b .9.若凸k 边形的内角和为f (k ),则凸(k +1)边形的内角和f (k +1)(k ≥3且k ∈N *)等于( )A .f (k )+π2B .f (k )+πC .f (k )+32πD .f (k )+2π [答案] B[解析] 由凸k 边形到凸(k +1)边形,增加了一个三角形,故f (k +1)=f (k )+π. 10.若sin A a =cos B b =cos C c ,则△ABC 是( )A .等边三角形B .有一个内角是30°的直角三角形C .等腰直角三角形D .有一个内角是30°的等腰三角形 [答案] C[解析] ∵sin A a =cos B b =cos Cc ,由正弦定理得,sin A a =sin B b =sin C c ,∴sin B b =cos B b =cos C c =sin Cc , ∴sin B =cos B ,sin C =cos C ,∴∠B =∠C =45°, ∴△ABC 是等腰直角三角形.11.若a >0,b >0,则p =(ab )a +b2与q =a b ·b a 的大小关系是( )A .p ≥qB .p ≤qC .p >qD .p <q [答案] A若a >b ,则a b >1,a -b >0,∴pq >1;若0<a <b ,则0<a b <1,a -b <0,∴pq >1;若a =b ,则pq=1,∴p ≥q .12.设函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2011=( )A.1 B .2 C .4 D .5 [答案] C[解析] x 1=f (x 0)=f (5)=2,x 2=f (2)=1,x 3=f (1)=4,x 4=f (4)=5,x 5=f (5)=2,…,数列{x n }是周期为4的数列,所以x 2011=x 3=4,故应选C.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上) 13.半径为r 的圆的面积S (r )=πr 2,周长C (r )=2πr ,若将r 看作(0,+∞)上的变量,则(πr 2)′=2πr .①①式可用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看作(0,+∞)上的变量,请你写出类似于①式的式子:______________________________,你所写的式子可用语言叙述为__________________________.[答案] ⎝⎛⎭⎫43πR 3′=4πR 2;球的体积函数的导数等于球的表面积函数. 14.已知f (n )=1+12+13+…+1n (n ∈N *),用数学归纳法证明f (2n )>n 2时,f (2k +1)-f (2k )=________.[答案]12k+1+12k +2+…+12k +1 [解析] f (2k +1)=1+12+13+…+12k +1f (2k )=1+12+13+…+12kf (2k +1)-f (2k )=12k +1+12k +2+…+12k +1.15.观察①sin 210°+cos 240°+sin10°cos40°=34;②sin 26°+cos 236°+sin6°cos36°=34.两式的结构特点可提出一个猜想的等式为________________.[答案] sin 2α+cos 2(30°+α)+sin αcos(30°+α)=34[解析] 观察40°-10°=30°,36°-6°=30°, 由此猜想:sin 2α+cos 2(30°+α)+sin αcos(30°+α)=34.可以证明此结论是正确的,证明如下: sin 2α+cos 2(30°+α)+sin α·cos(30°+α) =1-cos2α2+1+cos(60°+2α)2+12[sin(30°+2α)-sin30°]=1+12[cos(60°+2α)-cos2α]+12sin(30°+2α)-12=1+12[-2sin(30°+2α)sin30°]+12sin(30°+2α)-12=34-12sin(30°+2α)+12sin(30°+2α)=34. 16.设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集F ={a +b 2|a ,b ∈Q }也是数域.有下列命题:①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域; ③数域必为无限集; ④存在无穷多个数域.其中正确命题的序号是________.(把你认为正确命题的序号都填上) [答案] ③④[解析] 考查阅读理解、分析等学习能力. ①整数a =2,b =4,ab不是整数;②如将有理数集Q ,添上元素2,得到数集M ,则取a =3,b =2,a +b ∉M ; ③由数域P 的定义知,若a ∈P ,b ∈P (P 中至少含有两个元素),则有a +b ∈P ,从而a +2b ,a +3b ,…,a +nb ∈P ,∴P 中必含有无穷多个元素,∴③对.④设x 是一个非完全平方正整数(x >1),a ,b ∈Q ,则由数域定义知,F ={a +b x |a 、b ∈Q }必是数域,这样的数域F 有无穷多个.三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分) ABC 的三个内角C B A ,,成等差数列,求证:cb ac b b a ++=+++311 17证明:要证原式,只要证3,1a b c a b c c aa b b c a b b c+++++=+=++++即即只要证2221,bc c a abab b ac bc +++=+++而02222,60,A C B B b a c ac +===+- 222222222221bc c a ab bc c a ab bc c a abab b ac bc ab a c ac ac bc ab a c bc+++++++++∴===+++++-+++++18.(本题满分12分) 已知,a b c >> 求证:114.a b b c a c+≥--- 17证明:a c a c a b b c a b b ca b b c a b b c---+--+-+=+----224b c a b a b b c --=++≥+--,()a b c >> 1144,.a c a c a b b c a b b c a c--∴+≥∴+≥----- 19.(本题满分12分)如图,长方体1111D C B A ABCD -中,底面1111D C B A 是正方形,O 是BD 的中点,E 是棱1AA 上任意一点。
精选最新版高中数学单元测试试题-推理与证明专题考核题库完整版(含参考答案)
2019年高中数学单元测试试题 推理与证明专题(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=( ) (A )()f x (B)()f x - (C) ()g x (D)()g x - (2010山东文10)第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题2.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n 个图案中有白色地面砖_________________块.3.在计算“1223(1)n n ⨯+⨯+⋅⋅⋅++”时,某同学学到了如下一种方法:先改写第k 项:1(1)[(1)(2)(1)(1)],3k k k k k k k k +=++--+由此得112(123012),3⨯=⨯⨯-⨯⨯123(234123),3⨯=⨯⨯-⨯⨯…1(1)[(1)(2)(1)(1)].3n n n n n n n n +=++--+相加,得11223(1)(1)(2).3n n n n n ⨯+⨯+⋅⋅⋅++=++类比上述方法,请你计算“123234(1)(2)n n n ⨯⨯+⨯⨯+⋅⋅⋅+++”,其结果为 ▲ .4.已知各项为正数的等比数列}{n b ,若m b a =,n b b =,)(n m >, 则m m n b +=,类比上述性质,得出在等差数列{}n a 中的相关性质,若s a m =,t a n =,)(n m >,则 .5.古希腊数学家把数1,3,6,10,15,21,…,叫做三角数,它有一定的规律性,则第30个三角数减去第28个三角数的值为 .6.若ABC 的三边长分别为a, b, c ,其内切圆半径为r ,则S △ABC =12 (a+b+c )·r ,类比这一结论到空间,写出三棱锥中的一个正确结论为7.观察x x 2)(2=',344)(x x =',x x sin )(cos -=',由归纳推理可得:若定义在R 上的函数)(x f 满足)()(x f x f =-,记()g x 为)(x f 的导函数,则)(x g -与()g x 的关系是 ▲ .8.已知下列结论: ① 1x 、2x 都是正数⇔⎩⎨⎧>>+02121x x x x ,② 1x 、2x 、3x 都是正数⇔⎪⎩⎪⎨⎧>>++>++000321133221321x x x x x x x x x x x x ,则由①②猜想:1x 、2x 、3x 、4x 都是正数⇔9.下列不等式:121⋅≥2111⋅,⎪⎭⎫ ⎝⎛+⋅31131≥⎪⎭⎫⎝⎛+⋅412121 ,⎪⎭⎫ ⎝⎛++⋅5131141≥⎪⎭⎫⎝⎛++⋅61412131,…,由此猜测第1+n 个不等式为 ▲ (*n N ∈) 10.用反证法证明结论“a ,b ,c 至少有一个是正数”时,应假设 ▲ .11.二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W = ▲ .12.观察下列等式:=(﹣)×,=(﹣)×,=(﹣)×,=(﹣)×,…可推测当n ≥3,n ∈N *时,= (﹣)×.(3分)13.如图,将全体奇数排成一个三角形数阵,根据以上排列规律,数阵中第(4)n n ≥行的从左到右的第4个数是 ▲ .14.用反证法证明命题“三角形的内角中至少有一个角不大于60”时应假设 ▲ . 15.整数的数对列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…则第61个数对是 ▲ .04321>+++x x x x434232413121>+++++x x x x x x x x x x x x12340.x x x x >▲13 5 7 9 11 13 15 17 19 ………………16.用数学归纳法证明“当n 为正奇数时,nn y x +能被y x +整除”的第二步是__________.17.若三角形内切圆半径为r,三边长分别为a,b,c,则三角形面积S=21r(a+b+c),根据类比推理方法,若一个四面体的内切球半径为R,四个面的面积分别为4321,,,S S S S ,则四面体的体积V=__________三、解答题18.(本小题满分10分)如图,圆周上有n 个固定点,分别为A 1,A 2,…,A n (n *∈N ,n ≥2),在每一个点上分别标上1,2,3中的某一个数字,但相邻的两个数字不相同,记所有的标法总数为a n . (1)写出a 2,a 3,a 4的值;(2)写出a n 的表达式,并用数学归纳法证明.19.已知n x x f )2()(+=, 其中*N n ∈.(1)若展开式中含3x 项的系数为14, 求n 的值;(2)当3=x 时, 求证:)(x f*)s N ∈的形式. (本小题满分15分)20.试用两种方法证明: (1);(2).(15分)21.设n ∈*N 且2n ≥,证明:()22221212n n a a a a a a ++⋅⋅⋅+=++⋅⋅⋅+()1232n a a a a ⎡+++⋅⋅⋅+⎣()234n a a a a +++⋅⋅⋅++⋅⋅⋅]1n n a a -+.A A证明:(1)当2n =时,有()2221212122a a a a a a +=++,命题成立. ………2分 (2)假设当(2)n k k =≥时,命题成立,即()22221212k k a a a a a a ++⋅⋅⋅+=++⋅⋅⋅+()1232k a a a a ⎡+++⋅⋅⋅+⎣()234k a a a a +++⋅⋅⋅+ +⋅⋅⋅]1k k a a -+成立, ………4分 那么,当1n k =+时,有()2121k k a a a a +++⋅⋅⋅++ ()()221212112k k k k a a a a a a a a ++=++⋅⋅⋅++++⋅⋅⋅++22212k a a a =++⋅⋅⋅+()1232k a a a a ⎡+++⋅⋅⋅+⎣()234k a a a a +++⋅⋅⋅++⋅⋅⋅]1k k a a -+ (12a +2a ++⋅⋅⋅)211k k k a a a ++++.2222121k k a a a a +=++⋅⋅⋅++()12312k k a a a a a +⎡+++⋅⋅⋅++⎣+(234a a a ++⋅⋅⋅k a +)1k a ++ +⋅⋅⋅ ]1k k a a ++.所以当1n k =+时,命题也成立. ………8分根据(1)和(2),可知结论对任意的n ∈*N 且2n ≥都成立. ………10分22.在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ; (Ⅲ)证明存在k *∈N ,使得11n k n ka aa a ++≤对任意n *∈N 均成立. 本小题以数列的递推关系式为载体,主要考查等比数列的前n 项和公式、数列求和、不等式的证明等基础知识与基本方法,考查归纳、推理、运算及灵活运用数学知识分析问题和解决问题的能力.满分14分.(Ⅰ)解法一:22222(2)22a λλλλ=++-=+,2232333(2)(2)222a λλλλλ=+++-=+, 3343444(22)(2)232a λλλλλ=+++-=+.由此可猜想出数列{}n a 的通项公式为(1)2n nn a n λ=-+.以下用数学归纳法证明.(1)当1n =时,12a =,等式成立.(2)假设当n k =时等式成立,即(1)2k kk a k λ=-+,那么111(2)2k k k a a λλλ++=++-11(1)222k k k k kk λλλλλ++=-+++-11[(1)1]2k k k λ++=+-+.这就是说,当1n k =+时等式也成立.根据(1)和(2)可知,等式(1)2n nn a n λ=-+对任何n *∈N 都成立.解法二:由11(2)2()n n n n a a n λλλ+*+=++-∈N ,0λ>,可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭, 所以2nn n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭为等差数列,其公差为1,首项为0,故21n n n a n λλ⎛⎫-=- ⎪⎝⎭,所以数列{}n a 的通项公式为(1)2n n n a n λ=-+.(Ⅱ)23.已知等比数列{}n a 的首项12a =,公比3q =,n S 是它的前n 项和.求证:131n n S n S n++≤.(江苏省南京市2011届高三第一次模拟考试) 24.观察下面运算结果:22393941641624,24,3,3,441122223333+=⨯=+=⨯=+=⨯=,,525525554444+=⨯=,,…,根据这些运算结果,归纳出一个关于正整数n 的等式,这个等式为________________25.已知,m n 是正数,证明:33m n n m+≥22m n +.26. 已知各项均为整数的等比数列{}n a ,公比q>1,且满足a 2a 4=64,a 3+2是a 2,a 4的等差中项。
(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试题(包含答案解析)(3)
一、选择题1.数学归纳法证明*1111(1,)n 1n 2n 2n n N n +++>>∈+++,过程中由n k =到1n k =+时,左边增加的代数式为( )A .122k +B .121k + C .11+2122++k k D .112k 12k 2++- 2.正四面体ABCD 的棱AD 与平面α所成角为θ,其中02πθ<<,点D 在平面α内,则当四面体ABCD 转动时( )A .存在某个位置使得BC α,也存在某个位置使得BC α⊥B .存在某个位置使得BC α,但不存在某个位置使得BC α⊥ C .不存在某个位置使得BC α,但存在某个位置使得BC α⊥D .既不存在某个位置使得BC α,也不存在某个位置使得BC α⊥ 3.用反证法证明某命题时,对其结论“a ,b 都是正实数”的假设应为( ) A .a ,b 都是负实数B .a ,b 都不是正实数C .a ,b 中至少有一个不是正实数D .a ,b 中至多有一个不是正实数4.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .45.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则411a a +的值为A .528B .1032C .1040D .20646.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( ) A .甲B .乙C .丙D .丁7.圆有6条弦,两两相交,这6条弦将圆最多分割成( )个部分 A .16 B .21 C .22 D .238.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A .甲B .乙C .丙D .丁9.定义*A B ,*B C ,*C D ,*D A 的运算分别对应下面图中的⑴,⑵,⑶,⑷,则图中⑸,⑹对应的运算是( )A .*B D ,*A D B .*B D ,*AC C .*B C ,*AD D .*C D ,*A D10.由圆心与弦(非直径)中点的连线垂直于弦,想到球心与截面圆(不经过球心的小截面圆)圆心的连线垂直于截面,用的是( )A .类比推理B .三段论推理C .归纳推理D .传递性推理 11.根据给出的数塔猜测12345697⨯+( )19211⨯+=1293111⨯+= 123941111⨯+= 12349511111⨯+= 1234596111111⨯+=…A .1111111B .1111110C .1111112D .111111312.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变二、填空题13.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=14.在圆中:半径为r 的圆的内接矩形中,以正方形的面积最大,最大值为22r .类比到球中:半径为R 的球的内接长方体中,以正方体的体积最大,最大值为__________. 15.某次高三英语听力考试中有5道选择题,每题1分,每道题在三个选项中只有一个是正确的.下表是甲、乙、丙三名同学每道题填涂的答案和这5道题的得分:1 2 3 4 5 得分甲 4 乙 3 丙2则甲同学答错的题目的题号是__________.16.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块.17.在探究实系数一元二次方程的根与系数的关系时,可按下述方法进行: 设实系数一元二次方程22100a x a x a ++=……①在复数集C 内的根为1x ,2x ,则方程①可变形为()()2120a x x x x --=, 展开得()222122120a x a x x x a x x -++=.……②比较①②可以得到:11220122a x x a a x x a ⎧+=-⎪⎪⎨⎪=⎪⎩类比上述方法,设实系数一元n 次方程11100nn n n a x a xa x a --++++=(2n ≥且*N n ∈)在复数集C 内的根为1x ,2x ,…,n x ,则这n 个根的积1ni i x ==∏ __________.18.观察下列等式: (1)24sin sin 033ππ+= (2)2468sin sin sin sin 05555ππππ+++= (3)2468sinsin sin sin 7777ππππ+++1012sin sin 077ππ++= …… …… …… …… …… ……由以上规律推测,第n 个等式为:__________.19.小明在做一道数学题目时发现:若复数111cos i?sin ?,z αα=+222 cos i?sin ,z αα=+,333cos i?sin z αα=+(其中123,,R ααα∈), 则121212cos()i?sin(+)z z αααα⋅=++,232323cos()i?sin(+)z z αααα⋅=++ ,根据上面的结论,可以提出猜想: z 1·z 2·z 3=__________________. 20.观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=______________.三、解答题21.设数列{}n a 的前n 项和为n S ,对任意*n ∈N 都有2132n n S n a =+. (1)求数列{}n a 的通项公式;(2)记*4()n n b a n N =+∈*1)nn N b ++<∈ 22.已知数列{}n a 满足11a =,1(5)5n n n a a a ++=. (1)计算234,,a a a 的值,猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中的猜想. 23.已知数列1111,,,,,112123123n+++++++,其前n 项和为n S ;(1)计算1234,,,S S S S ;(2)猜想n S 的表达式,并用数学归纳法进行证明.24.(1)当1x >时,求2()1x f x x =-的最小值.(2)用数学归纳法证明:11111222n n n +++≥++*()n N ∈. 25.在数列{}n a 中,111,21nn n a a a a +==+,其中1,2,3,n =.(Ⅰ)计算234,,a a a 的值;(Ⅱ)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 26.已知()()()()20121111nnn x a a x a x a x +=+-+-++-(2,*n n N ≥∈),(1)当5n =时,求12345a a a a a ++++的值; (2)设2233,2n n n n a b T b b b -==+++,试用数学归纳法证明:当2n ≥时,()()113n n n n T +-=。
(常考题)北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(有答案解析)(4)
一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.如图,第(1)个图案由1个点组成,第(2)个图案由3个点组成,第(3)个图案由7个点组成,第(4)个图案由13个点组成,第(5)个图案由21个点组成,……,依此类推,根据图案中点的排列规律,第50个图形由多少个点组成( )A .2450B .2451C .2452D .2453 3.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .1994.设,,(0,1)a b c ∈,则1a b +,1b c +,1c a+( ) A .都不大于2 B .都不小于2 C .至少有一个不大于2D .至少有一个大于25.下面几种推理过程是演绎推理的是 ( ).A .某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B .由三角形的性质,推测空间四面体的性质C .平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D .在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式 6.期末考试结束后,甲、乙、丙、丁四位同学预测数学成绩甲:我不能及格. 乙:丁肯定能及格. 丙:我们四人都能及格.丁:要是我能及格,大家都能及格.成绩公布后,四人中恰有一人的预测是错误的,则预测错误的同学是( ) A .甲 B .乙 C .丙 D .丁7.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,01()()2f x f x '=,12()(),2f x f x '=,*1()()()2n n f x f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x + B .(cos sin )x e x x - C .(cos sin )x e x x -+D .(cos sin )x e x x --8.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确9.若实数,,a b c 满足1a b c ++=,给出以下说法:①,,a b c 中至少有一个大于13;②,,a b c 中至少有一个小于13;③,,a b c 中至少有一个不大于1;④,,a b c 中至少有一个不小于14.其中正确说法的个数是( ) A .3B .2C .1D .010.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )A .0720sin1B .0720sin 0.5C .0720sin 0.25D .0720sin 0.12511.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( )A .甲B .乙C .丙D .丁12.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是 ( )2017 2016 2015 2014……6 5 4 3 2 1 4033 4031 4029…………11 9 7 5 3 8064 8060………………20 16 12 8 16124……………………36 28 20 ……………………… A .201620172⨯ B .201501822⨯ C .201520172⨯D .201601822⨯二、填空题13.点()00,x y 到直线0Ax By c ++=的距离公式为0022Ax By c d A B++=+,通过类比的方法,可求得:在空间中,点()1,1,2到平面230x y z +++=的距离为___.14.如图所示为计算机科学中的蛇形模型,则第20行从左到右第4个数字为__________.15.把一数列依次按第一个括号内一个数,第二个括号内两个数,第三个括号内三个数,第四个括号内一个数,……循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第100个括号内的数为_________.16.某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是__________小时.17.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块.18.研究问题:“已知关于x 的不等式20ax bx c -+>的解集为(1,2),解关于x 的不等式20cx bx a -+>”,有如下解法:由22110()()0ax bx c a b c x x-+>⇒-+>,令1y x=,则1(,1)2y ∈,所以不等式20cx bx a -+>的解集为1(,1)2,类比上述解法,已知关于x 的不等式0k x b x a x c ++<++的解集为(2,1)(2,3)--⋃,则关于x 的不等式1011kx bx ax cx -+<--的解集为__________.19.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.20.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是__________.三、解答题21.在数列{}n a 中,11a =,()*121n n n a a n N n++=+∈. (1)求2a 、3a 、4a 的值;(2)猜想{}n a 的通项公式,并用数学归纳法证明. 22.将下列问题的解答过程补充完整.依次计算数列1,121++,12321++++,1234321++++++,…的前四项的值,由此猜测123(1)(1)321n a n n n =++++-++-++++的有限项的表达式,并用数学归纳法加以证明. 解:计算 11=,1214++=,12321++++= ① ,1234321++++++= ② ,由此猜想123(1)(1)321n a n n n =++++-++-++++= ③ .(*)下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立,即 123(1)(1)321k a k k k =++++-++-++++= ④ .那么,当1n k =+时,1k a += ⑤k a =+ ⑥= ⑦ .等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 23.用数学归纳法证明11111112324n n n n n +++⋅⋅⋅+>++++*()n N ∈. 24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式.25.已知,a b ∈R ,且1a b +=求证:()()2225222a b +++≥. 26.已知数列{}11,2n a a =,133n n n a a a +=+. (1)求2345,,,a a a a 的值;(2)猜想数列{n a }的通项公式,并用数学归纳法证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.B解析:B 【解析】 【分析】设第n 个图案的点的个数为n a ,由图归纳可得()121,1n n a a n n --=--个式子相加,由等差数列的求和公式可得结果. 【详解】设第n 个图案的点的个数为n a ,由题意可得123451,3,7,13,21a a a a a =====, 故213243542,4,6,8,...a a a a a a a a -=-=-=-=, 由此可推得()121n n a a n --=-,以上1n -个式子相加可得:()()()()()2132431...246...21n n a a a a a a a a n --+-+-++-=++++-,化简可得()()()1222112n n n a n n -+--==-,故()11n a n n =-+, 故50504912451a =⨯+=,即第50个图形由2451个点组成,故选B . 【点睛】本题主要考查归纳推理以及等差数列的求和公式,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.3.C解析:C 【详解】由题观察可发现,347,4711,71118+=+=+=, 111829,182947+=+=,294776,4776123+=+=,即1010123a b +=, 故选C.考点:观察和归纳推理能力.4.D解析:D 【解析】分析:利用举反例和反证法证明每一个命题,即得正确答案. 详解:因为1116a b c b c a+++++>与都不大于2矛盾,所以A 错误. 若1315,,2,343a b a b ==+=<所以B 错误. 若111,,,222a b c <<<则a>2,b>2,c>2,所以C 错误. 故答案为D 点睛:(1)本题主要考查推理证明和反证法,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”等概念的命题常用反证法.5.C解析:C 【解析】分析:根据归纳推理、类比推理、演绎推理得概念判断选择.详解:某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人,这个是归纳推理;由三角形的性质,推测空间四面体的性质,是类比推理;平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分,是演绎推理;在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式,是归纳推理,因此选C.点睛:本题考查归纳推理、类比推理、演绎推理,考查识别能力.6.A解析:A【解析】分析:若甲预测正确,显然导出矛盾.详解:若甲预测正确,则乙,丙 , 丁都正确,乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.,即四人都及格显然矛盾, 故甲预测错误. 故选A.点睛:本题考查推理与论证,根据已知分别假设得出矛盾进而得出是解题关键.7.B解析:B 【解析】分析:易得到f n (x )表达式以8为周期,呈周期性变化,由于2018÷8余2,故f 2008(x )= f 2(x ),进而得到答案详解:∵f 0(x )=e x (cosx+sinx ),∴f 0′(x )=e x (cosx+sinx )+e x (﹣sinx+cosx )=2e x cosx , ∴f1(x )'f x x cosx ,∴f1′(x )x (cosx ﹣sinx ), ∴f 2(x )'f x =e x (cosx ﹣sinx ),∴f 2′(x )=e x (cosx ﹣sinx )+e x (﹣sinx ﹣cosx )=﹣2e x sinx , ∴f3(x )=x sinx , ∴f3′(x )=x (sinx+cosx ), ∴f 4(x )=﹣e x (cosx+sinx ), ∴f 4′(x )=﹣2e x cosx , ∴f5(x )=x cosx , ∴f 6(x )=﹣e x (cosx ﹣sinx ), ∴f7(x )x sinx , ∴f 8(x )=e x (cosx+sinx ), …,∴()2018f x == f 2(x )=()cos sin xe x x -,故选:B .点睛:本题通过观察几个函数解析式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.8.A解析:A 【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为()0'0f x =时,0x 是()f x 的极值点,而对于函数()3f x x =,()'00f =,所以0是函数()3f x x =的极值点.”中,大前提:()0'0f x =时,f x '()在0x 两侧的符号如果不相反,则0x 不是()f x 的极值点,故错误,故导致错误的原因是:大前提错误, 故选:A .点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题9.B解析:B 【解析】分析:根据反证法思想方法,可判定③④是正确的,通过举例子,可判定①②是错误的. 详解:由题意,,a b c 满足1a b c ++=, 则在①、②中,当13a b c ===时,满足1a b c ++=,所以命题不正确; 对于③中,假设,,a b c 三个数列都大于1,则1a b c ++>,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不大于1,所以是正确的; 对于④中,假设,,a b c 三个数列都小于14,则1a b c ++<,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不小于14,所以是正确的; 综上可知,正确的命题由两个,故选B.点睛:本题主要考查了 命题个数的真假判定,其中解答中涉及反证法的思想的应用,着重考查了分析问题和解答问题的能力.10.C解析:C 【解析】 设圆的半径为1,正多边形的圆心角为3600.5720︒︒=,边长为2sin0.25︒==,所以7202sin0.252π︒⨯=,即0π720sin0.25=故选:C11.C解析:C 【详解】若甲是获奖的歌手,则四句全是假话,不合题意;若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,与题意不符; 若丁是获奖的歌手,则甲、丁、丙都说假话,丙说真话,与题意不符; 当丙是获奖的歌手,甲、丙说了真话,乙、丁说了假话,与题意相符. 故选C.点睛:本题主要考查的是简单的合情推理题,解决本题的关键是假设甲、乙、丙、丁分别是获奖歌手时的,甲乙丙丁说法的正确性即可.12.B解析:B 【分析】数表的每一行都是等差数列,从右到左,第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M ,由此可得结论. 【详解】由题意,数表的每一行都是等差数列,从右到左,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014, 故从右到左第1行的第一个数为:2×2﹣1, 从右到左第2行的第一个数为:3×20, 从右到左第3行的第一个数为:4×21, …从右到左第n 行的第一个数为:(n+1)×2n ﹣2,第2017行只有M ,则M=(1+2017)•22015=2018×22015 故答案为:B . 【点睛】本题主要考查归纳与推理,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可详解:类比点到直线的距离可知在空间中点到平面的距离故答案是点睛:该题考查的是类比推理利用平面内点到直线的距离公式类比着得【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可. 详解:类比点00(,)P x y 到直线0Ax By C ++=的距离d =,可知在空间中点(0,1,1)-到平面230x y z +++=的距离2d ==,故答案是2.点睛:该题考查的是类比推理,利用平面内点到直线的距离公式类比着得出空间中点到平面的距离公式,代入求得结果,属于简单题目.14.194【解析】由题意得前行共有个数第行最左端的数为第行从左到右第个数字为点睛:本题非常巧妙的将数表的排列问题和数列融合在一起首先需要读懂题目所表达的具体含义以及观察所给定数列的特征进而判断出该数列的解析:194 【解析】由题意得,前19行共有19(119)1902+=个数,第19行最左端的数为190,第20行从左到右第4个数字为194.点睛:本题非常巧妙的将数表的排列问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和,另外,本题的难点在于根据数表中的数据归纳数列的知识,利用等差数列的通项公式及前n 项和公式求解,体现了用方程的思想解决问题.15.392【解析】由题意可得将三个括号作为一组则由第50个括号应为第17组的第二个括号即50个括号中应有两个数因为每组中有6个数所以第48个括号的最后一个数为数列的第项第50个括号的第一个数为数列的第项解析:392 【解析】由题意可得,将三个括号作为一组,则由501632=⨯+,第50个括号应为第17组的第二个括号,即50个括号中应有两个数,因为每组中有6个数,所以第48个括号的最后一个数为数列{}21n -的第16696⨯=项,第50个括号的第一个数为数列{}21n -的第166298⨯+=项,即2981195⨯-=,第二个数是2991197⨯-=,所以第50个括号内各数之和为195197392+=16.11【解析】A 到E 的时间为2+4=6小时或5小时A 经C 到D 的时间为3+4=7小时故A 到F 的最短时间就为9小时则A 经F 到G 的时间为9+2=11小时即组装该产品所需要的最短时间是11小时解析:11 【解析】A 到E 的时间,为2+4=6小时,或5小时, A 经C 到D 的时间为3+4=7小时, 故A 到F 的最短时间就为9小时, 则A 经F 到G 的时间为9+2=11小时, 即组装该产品所需要的最短时间是11小时17.4n+2【解析】解:观察分析图案得到规律第1个第2个第3个…个图案有白色地板砖分别是61014…个组成一个公差是4首项为6的等差数列因此第n 个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4【解析】解:观察、分析图案,得到规律,第1个、第2个,第3个…个图案有白色地板砖分别是6,10,14…个,组成一个公差是4,首项为6的等差数列.因此第n个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4n+2.故答案为:4n+2.18.【解析】解析:111,,1232⎛⎫⎛⎫--⋃⎪ ⎪⎝⎭⎝⎭【解析】关于x的不等式111kx bxax cx-+<--可化为111bk xa cx x-+<--,则由题设中提供的解法可得:1111(2,1)(2,3)(,)(,1)232xx-∈--⋃⇒∈--⋃,则关于x的不等式111kx bx ax cx -+< --的解集为111(,)(,1)232--,应填答案111(,)(,1)232--.19.1和3【详解】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加解析:1和3.【详解】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又加说:“我与乙的卡片上相同的数字不是2”;所以甲的卡片上写的数字不是1和2,这与已知矛盾;所以甲的卡片上的数字是1和3.20.丙【详解】若甲获奖则甲乙丙丁说的都是错的同理可推知乙丙丁获奖的情况可知获奖的歌手是丙考点:反证法在推理中的应用解析:丙【详解】若甲获奖,则甲、乙、丙、丁说的都是错的,同理可推知乙、丙、丁获奖的情况,可知获奖的歌手是丙.考点:反证法在推理中的应用.21.(1)24a =,39a =,416a =;(2)2n a n =,证明见解析.【分析】(1)根据数列递推关系,把1n =、2、3分别代入,求出2a 、3a 、4a 的值;(2)先假设n k =时,2k a k =成立,再证明1n k =+时,猜想也成立.【详解】 (1)11a =,1n a +21n n a n+=+,22314a a ∴=+=,32219a a =+=,4351163a a =+=;(2)由(1)猜想2n a n =,用数学归纳法证明如下: ①当1n =时,11a =,猜想显然成立; ②设n k =时,猜想成立,即2k a k =, 则当1n k =+时,()22121211k k k a a k k k k++=+=++=+, 即当1n k =+时猜想也成立, 由①②可知,猜想成立,即2n a n =. 【点睛】运用数学归纳法证明命题时,要求严格按照从特殊到一般的思想证明,特别是归纳假设一定要用到,否则算是没有完成证明.22.①:9;②:16;③:2n ;④:2k ;⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【分析】根据数学归纳法的定义依次填空得到答案. 【详解】123219++++=,123432116++++++=,由此猜想2123(1)(1)321n a n n n n =++++-++-++++=,下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立, 即2123(1)(1)321k a k k k k =++++-++-++++=.当1n k =+时,1123(1)(1)(1)321k a k k k k k +=++++-+++++-++++()2211k k a k +=+=+,等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 故答案为:①:9;②:16;③:2n ;④:2k ; ⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【点睛】本题考查了数学归纳法,意在考查学生对于数列归纳法的理解和应用能力. 23.见解析. 【解析】分析:直接利用数学归纳法的证明步骤证明不等式,(1)验证1n =时不等式成立;(2)假设当()*,1n k k N k =∈≥时成立,利用放缩法证明1n k =+时,不等式也成立.详解:证明:①当1n =时,左边111224=>,不等式成立. ②假设当()*,1n k k N k =∈≥时,不等式成立,即11111112324k k k k k +++⋅⋅⋅+>++++, 则当1n k =+时,111112322122k k k k k ++⋅⋅⋅+++++++ 11111232k k k k =+++⋅⋅⋅++++ 11121221k k k ++-+++ 111112421221k k k >++-+++, ∵11121221k k k +-+++ ()()()()()21212212121k k k k k +++-+=++()()102121k k =>++,∴11111232k k k k +++⋅⋅⋅++++ 11121221k k k ++-+++ 1111111242122124k k k >++->+++, ∴当1n k =+时,不等式成立.由①②知对于任意正整数n ,不等式成立.点睛:本题是中档题,考查数学归纳法的证明步骤,注意不等式的证明方法,放缩法的应用,考查逻辑推理能力.24.(I )()541f =;(II )()2221f n n n =-+.【解析】试题分析:(I )先用前几项找出规律()()21441f f -==⨯,()()32842f f -==⨯,()()431243f f -==⨯,()()541644f f -==⨯,可知()5254441f =+⨯=;(II )由(I )知()()14f n f n n +-=,然后利用累加法求出()2221f n n n =-+.试题 解:(I )()11f =,()25f =,()313f =,()425f =,∴()()21441f f -==⨯,()()32842f f -==⨯,()()431243f f -==⨯,()()541644f f -==⨯∴()5254441f =+⨯=.(II )由上式规律得出()()14f n f n n +-=.∴()()2141f f -=⨯,()()3242f f -=⨯,()()4343f f -=⨯,⋅⋅⋅,()()()1242f n f n n ---=⋅-,()()()141f n f n n --=⋅-∴()()()()()14122121f n f n n n n ⎡⎤-=++⋅⋅⋅+-+-=-⋅⎣⎦, ∴()2221f n n n =-+.考点:1.合情推理与演绎推理;2.数列累加法求通项公式. 25.见解析. 【分析】将代数式()()2222a b +++展开,利用基本不等式()2222a b a b ++≥可证出所证的不等式. 【详解】222a b ab +≥,()()2222222a babab a b ∴+≥++=+,则()222122a b a b ++≥=,()()()222212522484822a b a b a b ∴+++=++++≥++=, 当且仅当12a b ==时,等号成立,因此,()()2225222a b +++≥. 【点睛】本题考查利用基本不等式证明不等式,解题的关键就是对基本不等式进行变形,再对所证不等式进行配凑得到,考查计算能力,属于中等题. 26.(1)237a =,338a =,439a =,5310a =.(2)证明见解析. 【分析】利用递推式直接求2a 、3a 、4a 、5a ,猜想数列{}n a 的通项公式为35n a n =+()*n N ∈用数学归纳法证明即可. 【详解】(1)由112a =,133n n n a a a +=+,得121333213732a a a ===++,232933733837a a a ===++,444933833938a a a ===++, 5559339331039a a a ===++. (2)由(1)猜想35n a n =+,下面用数学归纳法证明:①当n =1时,131152a ==+猜想成立. ②假设当n =k (k ≥1,k ∈N *)时猜想成立,即35k a k =+. 则当n =k +1时,133335331535k k k a k a a k k +⨯+===+++++,所以当n =k +1时猜想也成立,由①②知,对n ∈N *,35n a n =+都成立. 【点睛】本题考查了数列中的归纳法思想,及证明基本步骤,属于基础题;用数学归纳法证明恒等式的步骤及注意事项:①明确初始值0n 并验证真假;②“假设n k =时命题正确”并写出命题形式;③分析“1n k =+时”命题是什么,并找出与“n k =”时命题形式的差别,弄清左端应增加的项;④明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等,并用上假设.。
高考数学压轴专题2020-2021备战高考《推理与证明》基础测试题及解析
高中数学《推理与证明》期末考知识点一、选择题1.观察下列各式:2x y ⊗=,224x y ⊗=,339x y ⊗=,4417x y ⊗=,5531x y ⊗=,6654x y ⊗=,7792x y ⊗=,L ,根据以上规律,则1010x y ⊗=( )A .255B .419C .414D .253【答案】B 【解析】 【分析】每个式子的值依次构成一个数列{}n a ,然后归纳出数列的递推关系12n n n a a a n --=++后再计算. 【详解】以及数列的应用根据题设条件,设数字2,4,9,17,31,54,92,L 构成一个数列{}n a ,可得数列{}n a 满足12n n n a a a n --=++()*3,n n ≥∈N ,则876854928154a a a =++=++=,9879154929255a a a =++=++=,10981025515410419a a a =++=++=.故选:B . 【点睛】本题主要考查归纳推理,解题关键是通过数列的项归纳出递推关系,从而可确定数列的一些项.2.关于甲、乙、丙三人参加高考的结果有下列三个正确的判断:①若甲未被录取,则乙、丙都被录取;②乙与丙中必有一个未被录取;③或者甲未被录取,或者乙被录取.则三人中被录取的是( ) A .甲 B .丙C .甲与丙D .甲与乙【答案】D 【解析】 【分析】分别就三人各自被录取进行分类讨论,分析①②③能否同时成立,进而可得出结论. 【详解】若甲被录取,对于命题①,其逆否命题成立,即若乙、丙未全被录取,则甲被录取, 命题②成立,则乙、丙有且只有一人录取,命题③成立,则乙被录取,三个命题能同时成立;若乙被录取,命题②成立,则丙未被录取,命题③成立,命题①成立,其逆否命题成立,即若乙、丙未全被录取,则甲被录取,三个命题能同时成立;若丙被录取,命题②成立,则乙未被录取,命题③成立,则甲未被录取,那么命题①就不能成立,三个命题不能同时成立. 综上所述,甲与乙被录取.故选:D. 【点睛】本题考查合情推理,考查分类讨论思想的应用,属于中等题.3.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队 B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变 【答案】B 【解析】 【分析】表示出拎小桶者先接水时等候的时间,然后加上拎大桶者一共等候者用的时间,用(2m+2T+t )减去二者的和就是节省的时间;由此可推广到一般结论 【详解】事实上,只要不按从小到大的顺序排队,就至少有紧挨着的两个人拎着大桶者排在拎小桶者之前,仍设大桶接满水需要T 分钟,小桶接满水需要t 分钟,并设拎大桶者开始接水时已等候了m 分钟,这样拎大桶者接满水一共等候了(m+T )分钟,拎小桶者一共等候了(m+T+t )分钟,两人一共等候了(2m+2T+t )分钟,在其他人位置不变的前提下,让这两个人交还位置,即局部调整这两个人的位置,同样介意计算两个人接满水共等候了22m t T ++ 2m+2t+T 分钟,共节省了T t - T-t分钟,而其他人等候的时间未变,这说明只要存在有紧挨着的两个人是拎大桶者在拎小桶者之前都可以这样调整,从而使得总等候时间减少.这样经过一系列调整后,整个队伍都是从小打到排列,就打到最优状态,总的排队时间就最短. 故选B. 【点睛】一般的,对某些设计多个可变对象的数学问题,先对其少数对象进行调整,其他对象暂时保持不变,从而化难为易,取得问题的局部解决.经过若干次这种局部的调整,不断缩小范围,逐步逼近目标,最终使问题得到解决,这种数学思想就叫做局部调整法.4.已知数列{}n a 满足132n n a -=⨯,*n N ∈,现将该数列按下图规律排成蛇形数阵(第i行有i 个数,*i N ∈),从左至右第i 行第j 个数记为(),i j a (*,i j N ∈且j i ≤),则()21,20a =( )A .20932⨯B .21032⨯C .21132⨯D .21232⨯【答案】C 【解析】 【分析】由题可观察得到第i 行有i 个数,当i 为奇数时,该行由右至左i 逐渐增大,()21,20a 表示第21行第20个数,即为第21行倒数第2个数,则先求得前20行的数的个数,再加2即为()21,20a 对应的数列的项,即可求解. 【详解】由题可知,第i 行有i 个数,当i 为奇数时,该行由右至左i 逐渐增大,()21,20a 表示第21行第20个数,即为第21行倒数第2个数,则前20行共有()1+2020=2102⨯个数,即第21行倒数第1个数为211a,所以()21121221,2032a a ==⨯,故选:C 【点睛】本题考查合情推理,考查归纳总结能力,考查等差数列求和公式的应用.5.甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是( )A .甲是工人,乙是知识分子,丙是农民B .甲是知识分子,乙是农民,丙是工人C .甲是知识分子,乙是工人,丙是农民D .甲是农民,乙是知识分子,丙是工人 【答案】C 【解析】“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人,故选C.6.已知()sin cos f x x x =-,定义1()()f x f x '=,[]'21()()f x f x =,…[]1()()n n f x f x '+=,(*n N ∈),经计算,1()cos sin f x x x =+,2()sin cos f x x x =-+,3()cos sin f x x x =--,…,照此规律,2019()f x =( )A .cos sin x x --B .cos sin x x -C .sin cos x x +D .cos sin x x -+【答案】A 【解析】 【分析】根据归纳推理进行求解即可. 【详解】解:由题意知:()sin cos f x x x =-,1()()cos sin f x f x x x '==+,[]1'2()()sin cos f x f x x x ==-+, []'23()()cos sin f x f x x x ==--, []'34()()sin cos f x f x x x ==-,L照此规律,可知:[]'201923()()co )s (s in f x f x x x f x ==--=,故选:A. 【点睛】本题考查函数值的计算,利用归纳推理是解决本题的关键.7.设x ,y ,z >0,则三个数,,y y z z x xx z x y z y+++ ( ) A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2【答案】C 【解析】 【分析】 【详解】假设这三个数都小于2,则三个数之和小于6,又y x +y z +z x +z y +xz +x y =(y x+x y )+(yz +z y )+(z x +x z)≥2+2+2=6,当且仅当x =y =z 时取等号,与假设矛盾,故这三个数至少有一个不小于2.8.已知数组1()1,12(,)21,123()321,,,…,121(,,,,)121n nn n --L ,…,记该数组为1()a ,23(,)a a ,456(,,)a a a ,…,则200a =( )A .911B .1011C .1112D .910【答案】B 【解析】 【分析】设a 200在第n 组中,则()()1120022n n n n -+≤<(n ∈N *),由等差数列求和得:a 200在第20组中,前19组的数的个数之和为:19202⨯=190, 再进行简单的合情推理得:a 20010102010111==-+,得解.【详解】由题意有,第n 组中有数n 个,且分子由小到大且为1,2,3…n ,设a 200在第n 组中,则()()1120022n n n n -+≤<(n ∈N *),解得:n =20,即a 200在第20组中,前19组的数的个数之和为:19202⨯=190, 即a 200在第20组的第10个数,即为10102010111=-+,a 2001011=, 故选B . 【点睛】本题考查了阅读理解及等差数列求和与进行简单的合情推理能力,属中档题.9.我们在求高次方程或超越方程的近似解时常用二分法求解,在实际生活中还有三分法.比如借助天平鉴别假币.有三枚形状大小完全相同的硬币,其中有一假币(质量较轻),把两枚硬币放在天平的两端,若天平平衡,则剩余一枚为假币,若天平不平衡,较轻的一端放的硬币为假币.现有 27 枚这样的硬币,其中有一枚是假币(质量较轻),如果只有一台天平,则一定能找到这枚假币所需要使用天平的最少次数为( ) A .2 B .3C .4D .5【答案】B 【解析】 【分析】根据提示三分法,考虑将硬币分为3组,然后将有问题的一组再分为3组,再将其中有问题的一组分为3,此时每组仅为1枚硬币,即可分析出哪一个是假币. 【详解】第一步将27枚硬币分为三组,每组9枚,取两组分别放于天平左右两侧测量,若天平平衡,则假币在第三组中;若天平不平衡,假币在较轻的那一组中;第二步把较轻的9枚金币再分成三组,每组3枚,任取2组,分别放于天平左右两侧测量,若天平平衡,则假币在第三组,若天平不平衡则假币在较轻的一组;第三步再将假币所在的一组分成三组,每组1枚,取其中两组放于天平左右两侧测量若天平平衡,则假币是剩下的一个;若天平不平衡,则较轻的盘中所放的为假币.因此,一定能找到假币最少需使用3次天平.故选:B.【点睛】本题考查类比推理思想的应用,难度一般.处理该类问题的关键是找到题干中的提示信息,由此入手会方便很多.10.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。
高考数学压轴专题最新备战高考《推理与证明》经典测试题附答案解析
高考数学《推理与证明》练习题一、选择题1.幻方最早起源于我国,由正整数1,2,3,……,2n 这2n 个数填入n n ⨯方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫n 阶幻方.定义()f n 为n 阶幻方对角线上所有数的和,如(3)15f =,则(10)f =( )A .55B .500C .505D .5050【答案】C 【解析】 【分析】因为幻方的每行、每列、每条对角线上的数的和相等,可得2123()n f n n+++⋅⋅⋅+=,即得解. 【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以n 阶幻方对角线上数的和()f n 就等于每行(或每列)的数的和,又n 阶幻方有n 行(或n 列),因此,2123()n f n n+++⋅⋅⋅+=,于是12399100(10)50510f +++⋅⋅⋅++==.故选:C 【点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.2.甲、乙、丙、丁四个孩子踢球打碎了玻璃.甲说:“是丙或丁打碎的.”乙说:“是丁打碎的.”丙说:“我没有打碎玻璃.”丁说:“不是我打碎的.”他们中只有一人说了谎,请问是( )打碎了玻璃. A .甲 B .乙C .丙D .丁【答案】D 【解析】 【分析】假设其中一个人说了谎,针对其他的回答逐个判断对错即可,正确答案为丁. 【详解】假设甲打碎玻璃,甲、乙说了谎,矛盾,假设乙打碎了玻璃,甲、乙说了谎,矛盾, 假设丙打碎了玻璃,丙、乙说了谎,矛盾, 假设丁打碎了玻璃,只有丁说了谎,符合题意, 所以是丁打碎了玻璃; 故选:D 【点睛】本题考查了进行简单的合情推理,采用逐一检验的方法解题,属基础题.3.观察下图:12343456745678910LL则第 行的各数之和等于22017( ) A .2017 B .1009C .1010D .1011【答案】B 【解析】 【分析】由图可得:第n 行的第一个数为n ,有21n -个数,且这21n -个数成公差为1的等差数列,利用等差数列求和公式算出即可 【详解】由图可得:第n 行的第一个数为n ,有21n -个数 且这21n -个数成公差为1的等差数列 所以第n 行的各数之和为:()()()()22122211212n n n n n ---+⨯=-令212017n -=,得1009n = 故选:B 【点睛】本题考查的是推理和等差数列的知识,较简单.4.设a ,b ,c 都大于0,则三个数1a b +,1b c +,1c a+的值( ) A .至少有一个不小于2 B .至少有一个不大于2 C .至多有一个不小于2 D .至多有一个不大于2【答案】A 【解析】 【分析】根据基本不等式,利用反证法思想,即可得出答案【详解】因为a ,b ,c 都大于0 1111111112226a b c a b c a b c b c a a b c a b c+++++=+++++≥⋅+⋅+⋅= 当且仅当1a b c ===时取得最小值若12a b +<,12b c+<,12c a +<则1116a b c b c a+++++<,与前面矛盾所以三个数1a b +,1b c +,1c a+的值至少有一个不小于2 故选:A 【点睛】本题是一道关于基本不等式应用的题目,掌握基本不等式是解题的关键.5.用“算筹”表示数是我国古代计数方法之一,计数形式有纵式和横式两种,如图1所示.金元时期的数学家李冶在《测圆海镜》中记载:用“天元术”列方程,就是用算筹来表示方程中各项的系数.所谓“天元术”,即是一种用数学符号列方程的方法,“立天元一为某某”,意即“设x 为某某”.如图2所示的天元式表示方程10110n n n n a x a x a x a --++⋅⋅⋅++=,其中0a ,1a ,…,1n a -,n a 表示方程各项的系数,均为筹算数码,在常数项旁边记一“太”字或在一次项旁边记一“元”字,“太”或“元”向上每层减少一次幂,向下每层增加一次幂.试根据上述数学史料,判断图3天元式表示的方程是( ) A .228617430x x ++= B .4227841630x x x +++= C .2174328610x x ++= D .43163842710x x x +++=【答案】C 【解析】 【分析】根据“算筹”法表示数可得题图3中从上至下三个数字分别为1,286,1743,结合“天元术”列方程的特征即可得结果. 【详解】由题意可得,题图3中从上至下三个数字分别为1,286,1743, 由“元”向上每层减少一次幂,向下每层增加一次幂.可得天元式表示的方程为2174328610x x ++=.故选:C. 【点睛】本题主要是以数学文化为背景,考查数学阅读及理解能力,充分理解“算筹”法表示数和“天元术”列方程的概念是解题的关键,属于中档题.6.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2n B .n nC .2nD .222n -【答案】B 【解析】 【分析】由题意归纳推理得到a 的值即可. 【详解】由题意,当分母的指数为1时,分子为111=; 当分母的指数为2时,分子为224=; 当分母的指数为3时,分子为3327=; 据此归纳可得:1n ax n x+≥+中,a 的值为n n . 本题选择B 选项. 【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.7.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A .丙被录用了 B .乙被录用了C .甲被录用了D .无法确定谁被录用了 【答案】C 【解析】 【分析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可. 【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意, 若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意, 若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意, 综上可得甲被录用了, 故选:C. 【点睛】本题考查了逻辑推理能力,属基础题.8.已知2a b c ++=,则ab bc ca ++的值( ) A .大于2 B .小于2C .不小于2D .不大于2【答案】B 【解析】 【分析】把已知变形得到a b c +=-,a c b +=-,b c a +=-,把2()ab bc ac ++拆开后提取公因式代入a b c +=-,a c b +=-,b c a +=-,则可判断2()ab bc ac ++的符号,从而得到ab bc ac ++的值的符号. 【详解】解:2a b c ++=Q ,2a b c ∴+=-,2a c b +=-,2b c a +=-.则2()ab bc ac ++222ab ac bc =++ ab ac bc ac ab bc =+++++()()()a b c c b a b a c =+++++ (2)(2)(2)b b a a c c =-+-+-222222b b a a c c =-+-+-()()2222a b c a b c =-+++++ ()2224a b c =-+++,2a b c ++=Q ,()2220a b c ∴++>,即()2220a b c -++<,2()4ab bc ac ++<Q ,()2ab bc ac ∴++<即ab bc ac ++的值小于2. 故选:B . 【点睛】本题考查不等式的应用,考查了学生的灵活处理问题和解决问题的能力.9.观察下列等式:332123+=,33321236++=,33332123410+++=,记()3333123f n n =+++⋅⋅⋅+.根据上述规律,若()225f n =,则正整数n 的值为( )A .8B .7C .6D .5【答案】D 【解析】 【分析】由规律得()()()22211234n n f n n +=+++⋅⋅⋅+=再解方程即可 【详解】由已知等式的规律可知()()()22211234n n f n n +=+++⋅⋅⋅+=,当()225f n =时,可得5n =. 故选:D 【点睛】本题考查归纳推理,熟记等差数列求和公式是关键,考查观察转化能力,是基础题10.学业水平测试成绩按照考生原始成绩从高到低分为A 、B 、C 、D 、E 五个等级.某班共有36名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为A 的学生有5人,这两科中仅有一科等级为A 的学生,其另外一科等级为B ,则该班( )A.物理化学等级都是B的学生至多有12人B.物理化学等级都是B的学生至少有5人C.这两科只有一科等级为B且最高等级为B的学生至多有18人D.这两科只有一科等级为B且最高等级为B的学生至少有1人【答案】D【解析】【分析】根据题意分别计算出物理等级为A,化学等级为B的学生人数以及物理等级为B,化学等级为A的学生人数,结合表格中的数据进行分析,可得出合适的选项.【详解】-+-=人根据题意可知,36名学生减去5名全A和一科为A另一科为B的学生105858(其中物理A化学B的有5人,物理B化学A的有3人),表格变为:对于A选项,物理化学等级都是B的学生至多有13人,A选项错误;对于B选项,当物理C和D,化学都是B时,或化学C和D,物理都是B时,物理、化--=(人),B选项错误;学都是B的人数最少,至少为13724对于C选项,在表格中,除去物理化学都是B的学生,剩下的都是一科为B且最高等级为B的学生,因为都是B的学生最少4人,所以一科为B且最高等级为B的学生最多为1391419++-=(人),C选项错误;对于D选项,物理化学都是B的最多13人,所以两科只有一科等级为B且最高等级为B -=(人),D选项正确.的学生最少14131故选:D.【点睛】本题考查合情推理,考查推理能力,属于中等题.11.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测:甲预测说:获奖者在乙、丙、丁三人中;乙预测说:我不会获奖,丙获奖丙预测说:甲和丁中有一人获奖;丁预测说:乙的猜测是对的成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是() A .甲和丁 B .乙和丁 C .乙和丙 D .甲和丙 【答案】B 【解析】 【分析】从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断 【详解】若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出获奖的是乙和丁 答案选B 【点睛】真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证12.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()lg 20.3≈( )A .30010B .40010C .50010D .60010【答案】A 【解析】 【分析】结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前n 项和公式和对数恒等式即可求解 【详解】如图,将数字塔中的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前10层的指数之和为29101222211023+++⋅⋅⋅+=-=,所以原数字塔中前10层所有数字之积为10231023lg 230021010=≈.故选:A 【点睛】本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前n 项和公式应用,属于中档题13.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:223344552,33,4,55338815152424====888n n=“穿墙术”,则n =( ) A .35 B .48C .63D .80【答案】C 【解析】 【分析】通过观察四个等式,发现存在相同性质,从而得出78763n =⨯+=即可. 【详解】 因为22222233121==⨯+33333388232==⨯⨯+ 444441515343==⨯⨯+,5555552424454==⨯⨯+ 所以8888888878763n n ==⨯=⨯+63n =. 故选:C. 【点睛】归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).14.三角形面积为()12S a b c r =++,a ,b ,c 为三角形三边长,r 为三角形内切圆半径,利用类比推理,可以得出四面体的体积为( ) A .13V abc =B .13V Sh = C .()13V ab bc ac h =++⋅(h 为四面体的高) D .()123413V s s s s r =+++⋅(其中1s ,2s ,3s ,4s 分别为四面体四个面的面积,r 为四面体内切球的半径,设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ) 【答案】D 【解析】 【分析】根据平面与空间的类比推理,由点类比直线,由直线类比平面,由内切圆类比内切球,由平面图形的面积类比立体图形的体积,结合求三角形的面积的方法类比四面体的体积计算方法,即可求解. 【详解】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r , 根据三角形的面积的求解方法:利用分割法,将O 与四个顶点连起来,可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥的体积之和, 即()123413V s s s s r =+++⋅,故选D . 【点睛】本题主要考查了类比推理的应用,其中解答中类比推理是将已知的一类数学对象的性质类比到另一类数学对象上去,通常一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质取推测另一类事物的性质,得出一个明确的命题,本题属于基础题.15.观察下列一组数据11a = 235a =+ 37911a =++ 413151719a =+++…则20a 从左到右第一个数是( ) A .379 B .383C .381D .377【答案】C 【解析】 【分析】先计算前19行数字的个数,进而可得20a 从左到右第一个数. 【详解】由题意可知,n a 可表示为n 个连续的奇数相加,从1a 到19a 共有()119191902+⨯=个奇数, 所以20a 从左到右第一个数是第191个奇数,第n 个奇数为21n -,所以第191个奇数为21911381⨯-=.故选:C.【点睛】本小题主要考查归纳推理、等差数列求和公式等基础知识,考查运算求解能力,属于中档题.16.分形几何是美籍法国数学家芒德勃罗在20世纪70年代创立的一门数学新分支,其中的“谢尔宾斯基”图形的作法是:先作一个正三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的每个小正三角形中又挖去一个“中心三角形”.按上述方法无限连续地作下去直到无穷,最终所得的极限图形称为“谢尔宾斯基”图形(如图所示),按上述操作7次后,“谢尔宾斯基”图形中的小正三角形的个数为( )A .53B .63C .73D .83【答案】C【解析】【分析】 根据题意分别求出第1,2,3次操作后,图形中的小正三角形的个数,然后可归纳出一般结论,得到答案.【详解】如图,根据题意第1次操作后,图形中有3个小正三角.第2次操作后,图形中有3×3=23个小正三角.第3次操作后,图形中有9×3=33个小正三角.…………………………所以第7次操作后,图形中有73 个小正三角.故选:C【点睛】本题考查归纳推理,属于中档题.17.为了调节高三学生学习压力,某校高三年级举行了拔河比赛,在赛前三位老师对前三名进行了预测,于是有了以下对话:老师甲:“7班男生比较壮,7班肯定得第一名”.老师乙:“我觉得14班比15班强,14班名次会比15班靠前”.老师丙:“我觉得7班能赢15班”.最后老师丁去观看完了比赛,回来后说:“确实是这三个班得了前三名,且无并列,但是你们三人中只有一人预测准确”.那么,获得一、二、三名的班级依次为( )A.7班、14班、15班B.14班、7班、15班C.14班、15班、7班D.15班、14班、7班【答案】C【解析】【分析】分别假设甲、乙、丙预测准确,分析三个人的预测结果,由此能求出一、二、三名的班级.【详解】假设甲预测准确,则乙和丙都预测错误,14∴班名次比15班靠后,7班没能赢15班,故甲预测错误;假设乙预测准确,则甲和乙都预测错误,7∴班不是第一名,14班名次比15班靠前,7班没能赢15班,则获得一、二、三名的班级依次为14班,15班,7班;假设丙预测准确,则甲和乙都预测错误,7∴班不是第一名,14班名次比15班靠后,7班能赢15班,不合题意.综上,得一、二、三名的班级依次为14班,15班,7班.故选:C.【点睛】本题考查获得一、二、三名的班级的判断,考查合情推理等基础知识,考查运算求解能力,是基础题.18.三角形的面积为1()2S a b c r=++⋅,其中,,a b c为三角形的边长,r为三角形内切圆的半径,则利用类比推理,可得出四面体的体积为()A.13V abc =B.13V Sh =C.1()3V ab bc ca h=++,(h为四面体的高)D .()123413V S S S S r =+++,(1234,,,S S S S 分别为四面体的四个面的面积,r 为四面体内切球的半径)【答案】D【解析】【分析】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ,根据体积公式得到答案.【详解】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ,将O 与四顶点连起来, 可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和, ∴V 13=(S 1+S 2+S 3+S 4)r . 故选:D .【点睛】本题考查了类比推理,意在考查学生的空间想象能力和推断能力.19.设x 、y 、0z >,1a x y =+,1b y z =+,1c z x =+,则a 、b 、c 三数( ) A .都小于2B .至少有一个不大于2C .都大于2D .至少有一个不小于2【答案】D【解析】【分析】利用基本不等式计算出6a b c ++≥,于此可得出结论.【详解】 由基本不等式得111111a b c x y z x y z y z x x y z ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=+++++=+++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭6≥=, 当且仅当1x y z ===时,等号成立,因此,若a 、b 、c 三数都小于2,则6a b c ++<与6a b c ++≥矛盾,即a 、b 、c 三数至少有一个不小于2,故选D.【点睛】本题考查了基本不等式的应用,考查反证法的基本概念,解题的关键就是利用基本不等式求最值,考查分析问题和解决问题的能力,属于中等题.20.设x ,y ,z >0,则三个数,,y y z z x x x z x y z y+++ ( )A.都大于2 B.至少有一个大于2 C.至少有一个不小于2 D.至少有一个不大于2【答案】C【解析】【分析】【详解】假设这三个数都小于2,则三个数之和小于6,又yx+yz+zx+zy+xz+xy=(yx+xy)+(yz+zy)+(zx+xz)≥2+2+2=6,当且仅当x=y=z时取等号,与假设矛盾,故这三个数至少有一个不小于2.。
高考数学压轴专题怀化备战高考《推理与证明》经典测试题附答案
《推理与证明》知识点汇总一、选择题1.观察下列各式:2749=,37343=,472401=,…,则10097的末两位数字为( ) A .49 B .43C .07D .01【答案】C 【解析】 【分析】先观察前5个式子的末两位数的特点,寻找规律,结合周期性进行判断即可. 【详解】观察2749=,37343=,472401=,572401716807=⨯=,67168077117649=⨯=,…,可知末两位每4个式子一个循环,2749=到10097一共有1008个式子,且10084252÷=,则10097的末两位数字与57的末两位数字相同,为07. 故选:C. 【点睛】本题主要考查归纳推理的应用,根据条件寻找周期性是解决本题的关键.2.关于甲、乙、丙三人参加高考的结果有下列三个正确的判断:①若甲未被录取,则乙、丙都被录取;②乙与丙中必有一个未被录取;③或者甲未被录取,或者乙被录取.则三人中被录取的是( ) A .甲 B .丙C .甲与丙D .甲与乙【答案】D 【解析】 【分析】分别就三人各自被录取进行分类讨论,分析①②③能否同时成立,进而可得出结论. 【详解】若甲被录取,对于命题①,其逆否命题成立,即若乙、丙未全被录取,则甲被录取, 命题②成立,则乙、丙有且只有一人录取,命题③成立,则乙被录取,三个命题能同时成立;若乙被录取,命题②成立,则丙未被录取,命题③成立,命题①成立,其逆否命题成立,即若乙、丙未全被录取,则甲被录取,三个命题能同时成立;若丙被录取,命题②成立,则乙未被录取,命题③成立,则甲未被录取,那么命题①就不能成立,三个命题不能同时成立. 综上所述,甲与乙被录取. 故选:D. 【点睛】本题考查合情推理,考查分类讨论思想的应用,属于中等题.3.观察下列等式:332123+=,33321236++=,33332123410+++=,记()3333123f n n =+++⋅⋅⋅+.根据上述规律,若()225f n =,则正整数n 的值为( )A .8B .7C .6D .5【答案】D 【解析】 【分析】由规律得()()()22211234n n f n n +=+++⋅⋅⋅+=再解方程即可 【详解】由已知等式的规律可知()()()22211234n n f n n +=+++⋅⋅⋅+=,当()225f n =时,可得5n =. 故选:D 【点睛】本题考查归纳推理,熟记等差数列求和公式是关键,考查观察转化能力,是基础题4.若数列{}n a 是等差数列,则数列12nn a a a b n++⋯+=也为等差数列.类比这一性质可知,若正项数列{}n c 是等比数列,且n d 也是等比数列,则n d 的表达式应为( ) A .12nn c c c d n++⋯+=B .12nn c c c d n⋅⋅⋯⋅=C .n d =D .n d =【答案】D 【解析】 【分析】利用等差数列的求和公式,等比数列的通项公式,即可得到结论. 【详解】解:Q 数列{}n a 是等差数列,则()12112n n na a a a d n -++⋯++=,∴数列12112n n a a a n b a d n ++⋯+-==+也为等差数列Q 正项数列{}n c 是等比数列,设首项为1c ,公比为q ,则()112121111n n nn n c c c c c q c q c q--⋅⋅⋯⋅⋅⋅⋯==⋅∴121n n d c q-=∴n d =故选:D . 【点睛】本题考查类比推理,解题的关键是掌握好类比推理的定义及等差等比数列之间的共性,由此得出类比的结论即可.5.已知函数()f x 的导函数为()f x ',记()()1f x f x '=,()()21f x f x '=,…,()()1n n f x f x +'=(n ∈N *). 若()sin f x x x =,则()()20192021f x f x += ( )A .2cos x -B .2sin x -C .2cos xD .2sin x【答案】D 【解析】 【分析】通过计算()()()()()12345,,,,f x f x f x f x f x ,可得()()()()4342414,,,k k k k f x f x f x f x ---,最后计算可得结果.【详解】由题可知:()sin f x x x =所以()()12sin cos ,2cos sin f x x x x f x x x x =+=-()()343sin cos ,4cos sin f x x x x f x x x x =--=-+ ()55sin cos ,f x x x x =+⋅⋅⋅所以猜想可知:()()4343sin cos k f x k x x x -=-+()()4242cos sin k f x k x x x -=-- ()()4141sin cos k f x k x x x -=---()44cos sin k f x k x x x =-+由201945051,202145063=⨯-=⨯- 所以()20192019sin cos f x x x x =--()20212021sin cos f x x x x =+所以()()201920212sin f x f x x += 故选:D 【点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.6.观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= A .()f x B .()f x -C .()g xD .()g x -【答案】D 【解析】由归纳推理可知偶函数的导数是奇函数,因为()f x 是偶函数,则()()g x f x '=是奇函数,所以()()g x g x -=-,应选答案D .7.甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是( )A .甲是工人,乙是知识分子,丙是农民B .甲是知识分子,乙是农民,丙是工人C .甲是知识分子,乙是工人,丙是农民D .甲是农民,乙是知识分子,丙是工人 【答案】C 【解析】“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人,故选C.8.给出下面类比推理:①“若2a<2b ,则a<b”类比推出“若a 2<b 2,则a<b”; ②“(a +b)c =ac +bc(c≠0)”类比推出“a b a bc c c+=+ (c≠0)”; ③“a ,b ∈R ,若a -b =0,则a =b”类比推出“a ,b ∈C ,若a -b =0,则a =b”; ④“a ,b ∈R ,若a -b>0,则a>b”类比推出“a ,b ∈C ,若a -b>0,则a>b(C 为复数集)”. 其中结论正确的个数为( ) A .1 B .2C .3D .4【答案】B 【解析】 【分析】在数集的扩展过程中,有些性质是可以传递的,但有些性质不能传递,因此,要判断类比的结果是否正确,关键是要在新的数集里进行论证,当然要想证明一个结论是错误的,也可以直接举一个反例,要想得到本题的正确答案,可对四个结论逐一进行分析,不难解答. 【详解】①若“22a b <,则a b <”类比推出“若22a b <,则a b <”,不正确,比如1,2a b ==-;②“()(0)a b c ac bc c +=+≠”类比推出“(0)a b a bc c c c+=+≠”,正确; ③在复数集C 中,若两个复数满足0a b -=,则它们的实部和虚部均相等,则,a b 相等,故正确;④若,a b C ∈,当1,a i b i =+=时,10a b -=>,但,a b 是两个虚数,不能比较大小,故错误;所以只有②③正确,即正确命题的个数是2个, 故选B. 【点睛】该题考查的是有关判断类比得到的结论的正确性的问题,涉及到的知识点有式子的运算法则,数相等的条件,复数不能比较大小等结论,属于简单题目.9.现有甲、乙、丙、丁四人参加数学竞赛,其中只有一位获奖. 有人走访了四人,甲说:“乙、丁都未获奖”,乙说:“是甲或丙获奖”,丙说:“是甲获奖”,丁说:“是乙获奖”,四人所说话中只有一位是真话,则获奖的人是( ) A .甲 B .乙C .丙D .丁【答案】B 【解析】 【分析】结合题意分类讨论甲乙丙丁获奖的情况,然后考查说真话的人的个数即可确定获奖的人. 【详解】结合题意分类讨论:若甲获奖,则说真话的人为:甲乙丙,说假话的人为:丁,不合题意; 若乙获奖,则说真话的人为:丁,说假话的人为:甲乙丙,符合题意; 若丙获奖,则说真话的人为:甲乙,说假话的人为:丙丁,不合题意; 若丁获奖,则说假话的人为:甲乙丙丁,不合题意; 综上可得,获奖人为乙. 故选:B. 【点睛】本题主要考查数学推理的方法,分类讨论的数学思想,属于中等题.10.数学家托勒密从公元127年到151年在亚历山大城从事天文观测,在编制三角函数表过程中发现了很多重要的定理和结论,如图便是托勒密推导倍角公式“2212cos a sin a =-”所用的几何图形,已知点,B C 在以线段AC 为直径的圆上,D 为弧BC 的中点,点E 在线段AC 上且,AE AB =点F 为EC 的中点.设2,AC r =,DAC a ∠=那么下列结论:2,DC rcosa =① 22,AB rcos a =②()12,FC r cos a =-③ ()22DC r r AB =-④.其中正确的是( ) A .②③ B .②④C .①③④D .②③④【答案】D 【解析】 【分析】在Rt ADC ∆中,可判断①,Rt ABC ∆中,可判断②,利用ADB ∆与ADE ∆全等及ADC ∆与DFC ∆相似即可判断③④. 【详解】在Rt ADC ∆中,2sin ,DC r a =故①不正确; 因为 ,BD DC =所以2,BAC a ∠=在Rt ABC ∆中,2cos2AB r a =,故②正确; 因为AE AB BD DC ==,,易知ADB ∆与ADE ∆全等,故DE BD DC DF EC ==⊥,,所以()1cos22ABFC r r a =-=-, 又CC ACD FC D =,所以()22DC AC FC r r AB =⋅=-,故③④正确, 由2sin 2cos2DC r a AB r a ==,,()22DC r r AB =-,可得()()22sin 22cos2r a r r r a =-,即22sin 1cos2a a =-.故选:D. 【点睛】本题考查推理与证明,考查学生在圆中利用三角形边长证明倍角公式的背景下,判断所需的边长是否正确,是一道中档题.11.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测: 甲预测说:获奖者在乙、丙、丁三人中; 乙预测说:我不会获奖,丙获奖 丙预测说:甲和丁中有一人获奖;丁预测说:乙的猜测是对的成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是() A .甲和丁 B .乙和丁 C .乙和丙 D .甲和丙 【答案】B 【解析】 【分析】从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断 【详解】若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出获奖的是乙和丁 答案选B 【点睛】真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证12.已知2a b c ++=,则ab bc ca ++的值( ) A .大于2 B .小于2C .不小于2D .不大于2【答案】B 【解析】 【分析】把已知变形得到a b c +=-,a c b +=-,b c a +=-,把2()ab bc ac ++拆开后提取公因式代入a b c +=-,a c b +=-,b c a +=-,则可判断2()ab bc ac ++的符号,从而得到ab bc ac ++的值的符号. 【详解】解:2a b c ++=Q ,2a b c ∴+=-,2a c b +=-,2b c a +=-.则2()ab bc ac ++222ab ac bc =++ ab ac bc ac ab bc =+++++()()()a b c c b a b a c =+++++ (2)(2)(2)b b a a c c =-+-+- 222222b b a a c c =-+-+-()()2222a b c a b c =-+++++ ()2224a b c =-+++,2a b c ++=Q ,()2220a b c ∴++>,即()2220a b c -++<,2()4ab bc ac ++<Q ,()2ab bc ac ∴++<即ab bc ac ++的值小于2. 故选:B . 【点睛】本题考查不等式的应用,考查了学生的灵活处理问题和解决问题的能力.13.已知数组1()1,12(,)21,123()321,,,…,121(,,,,)121n nn n --L ,…,记该数组为1()a ,23(,)a a ,456(,,)a a a ,…,则200a =( )A .911B .1011C .1112D .910【答案】B 【解析】 【分析】设a 200在第n 组中,则()()1120022n n n n -+≤<(n ∈N *),由等差数列求和得:a 200在第20组中,前19组的数的个数之和为:19202⨯=190, 再进行简单的合情推理得:a 20010102010111==-+,得解.【详解】由题意有,第n 组中有数n 个,且分子由小到大且为1,2,3…n ,设a 200在第n 组中,则()()1120022n n n n -+≤<(n ∈N *),解得:n =20,即a 200在第20组中,前19组的数的个数之和为:19202⨯=190, 即a 200在第20组的第10个数,即为10102010111=-+,a 2001011=, 故选B . 【点睛】本题考查了阅读理解及等差数列求和与进行简单的合情推理能力,属中档题.14.对于实数a ,b ,已知下列条件:①2a b +=;②2a b +>;③2a b +>-;④1ab >;⑤log 0a b <.其中能推出“a ,b 中至少有一个大于1”的条件为( ) A .②③④ B .②③④⑤ C .①②③⑤ D .②⑤【答案】D 【解析】 【分析】根据条件分别利用特殊值以及反证法进行判断即可. 【详解】①当a =b =1时,满足a +b =2,但此时推不出结论,②若a ≤1,b ≤1,则a +b ≤2,与a +b >2,矛盾,即a +b >2,可以推出,③当a 12=,b 12=时,满足条件a +b >﹣2,则不可以推出, ④若a =﹣2,b =﹣1.满足ab >1,但不能推出结论,⑤由log a b <0得log a b <log a 1,若a >1,则0<b <1,若0<a <1,则b >1,可以推出结论.故可能推出的有②⑤, 故选:D . 【点睛】本题主要考查合情推理的应用,利用特殊值法以及反证法是解决本题的关键.比较基础.15.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第n 个图案中正六边形的个数是()f n .由(1)1f =,(2)7f =,(3)19f =,…,可推出(10)f =( ) A .271 B .272C .273D .274【答案】A 【解析】 【分析】观察图形,发现,第一个图案中有一个正六边形,第二个图案中有7个正六边形;… 根据这个规律,即可确定第10个图案中正六边形的个数. 【详解】由图可知,()11f =,()212667f =+⨯-=,()()312362619f =++⨯-⨯=, ()()212362619f =++⨯-⨯=,()()4123463637f =+++⨯-⨯=,…()()101234...10696271.f =+++++⨯-⨯=故选A. 【点睛】此类题要能够结合图形,发现规律:当2n ≥时,()()()161.f n f n n --=-16.观察下列各式:2x y ⊗=,224x y ⊗=,339x y ⊗=,4417x y ⊗=,5531x y ⊗=,6654x y ⊗=,7792x y ⊗=,L ,根据以上规律,则1010x y ⊗=( )A .255B .419C .414D .253【答案】B 【解析】 【分析】每个式子的值依次构成一个数列{}n a ,然后归纳出数列的递推关系12n n n a a a n --=++后再计算. 【详解】以及数列的应用根据题设条件,设数字2,4,9,17,31,54,92,L 构成一个数列{}n a ,可得数列{}n a 满足12n n n a a a n --=++()*3,n n ≥∈N ,则876854928154a a a =++=++=,9879154929255a a a =++=++=,10981025515410419a a a =++=++=.故选:B . 【点睛】本题主要考查归纳推理,解题关键是通过数列的项归纳出递推关系,从而可确定数列的一些项.17.桌面上有3枚正面朝上的硬币,如果每次用双手同时翻转2枚硬币,那么无论怎么翻转( )A .都不可能使3枚全部正面朝上B .可能使其中2枚正面朝上,1枚反面朝上C .都不可能使3枚全部反面朝上D .都不可能使其中1枚正面朝上,2枚反面朝上 【答案】C 【解析】 【分析】先推理出正确答案,再利用反证法进行证明,对错误选项可举反例说明即可.【详解】对A ,对两枚硬币连续翻转2次,能使3枚全部正面朝上,故A 错误;对B ,如果能1枚反面朝上,则就有可能3枚全部反面朝上,利用C 选项的证明,发现此种情况不可能,故B 错误;对C ,假设经过若干次翻转可以使硬币全部反面向上,由于每枚硬币从正面朝上变为反面朝上,都需要翻转奇数次,所以3枚硬币全部反面朝上时,需要翻转(3×奇数)次,即要翻转奇数次,但由于每次用双手同时翻转2枚硬币,3枚硬币被翻转的次数只能是2的倍数,即偶数次,这个矛盾说明假设错误,所以原结论成立.故C 正确;对D ,只要翻转一次,就可实现两枚反面朝上,一枚正面朝上,故D 错误;故选:C.【点睛】本题考查合情推理和反证法的运用,考查逻辑推理能力,属于基础题.18.用数学归纳法证明不等式11112321n n +++⋅⋅⋅+<-(2n ≥且*n N ∈)时,在证明从n k =到1n k =+时,左边增加的项数是( ) A .2kB .21k -C .12k -D .k 【答案】A【解析】【分析】根据题意由n k =递推到1n k =+时,由1n k =+时的不等式左边11111111232122121k k k k +=+++⋯++++⋯+-+-与n k =时不等式的左边比较即可求解.【详解】 用数学归纳法证明不等式11112321n n +++⋅⋅⋅+<-的过程中, 假设n k =时不等式成立,则左边11112321k =+++⋅⋅⋅+-, 那么当1n k =+时,左边11111111232122121k k k k +=+++⋯++++⋯+-+-, ∴由n k =递推到1n k =+时,不等式左边增加了:111122121k k k +++⋯++-, 共()121212k k k +--+=项. 故选:A【点睛】本题考查数学归纳法,考查观察、推理与运算能力,属于中档题.19.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。
(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试题(含答案解析)(4)
一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A .B .C .D .3.某地铁换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下: 安全出口编号 A ,BB ,CC ,DD ,EA ,E疏散乘客时间(s )186125160175145则疏散乘客最快的一个安全出口的编号是( ) A .AB .BC .CD .D4.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为 A .4B .6C .8D .325.设实数a,b,c 满足a+b+c=1,则a,b,c 中至少有一个数不小于 ( ) A .0B .13C .12D .16.利用数学归纳法证明不等式()()1111++++,2,232n f n n n N +<≥∈的过程中,由n k =变成1n k =+时,左边增加了( )A .1项B .k 项C .12k -项D .2k 项7.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )A .201620172⨯B .201501822⨯C .201520172⨯D .201601822⨯8.用数学归纳法证明“11112321n++++- ”时,由(1)n k k =>不等式成立,推证1n k =+时,左边应增加的项数是( )A .12k -B .21k -C .2kD .21k +9.一次猜奖游戏中,1,2,3,4四扇门里摆放了a ,b ,c ,d 四件奖品(每扇门里仅放一件).甲同学说:1号门里是b ,3号门里是c ;乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是c .如果他们每人都猜对了一半,那么4号门里是( ) A .aB .bC .cD .d10.如果把一个多边形的所有便中的任意一条边向两方无限延长称为一直线时,其他个边都在此直线的同旁,那么这个多边形就叫凸多边形.平行内凸四边形由2条对角线,凸五边形有5条对角线,以此类推,凸16变形的对角线条为( ) A .65B .96C .104D .11211.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2nB .n nC .2nD .222n -12.已知 222233+=,333388+=,44441515+=,m m m mt t+=()*,2m t N m ∈≥且,若不等式30m t λ--<恒成立,则实数λ的取值范围为( ) A .)22,⎡+∞⎣B .(),22-∞C .(),3-∞D .[1,3]二、填空题13.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=14.36的所有正约数之和可按如下方法得到:因为223623=⨯,所以36的所有正约数之和为22(133)(22323)++++⨯+⨯22222(22323)(122)++⨯+⨯=++2(133)91++=,参照上述方法,可得100的所有正约数之和为__________.15.平面上画n 条直线,且满足任何2条直线都相交,任何3条直线不共点,则这n 条直线将平面分成__________个部分. 16.利用数学归纳法证明不等式“()*11112,23212n n n n N +++⋯+>≥∈-”的过程中,由“n k =”变到“1n k =+”时,左边增加了_____项.17.将正整数对作如下分组,第1组为()(){}1,2,2,1,第2组为()(){}1,3,3,1,第3组为()()()(){}1,4,2,3,3,2,4,1,第4组为()()()(){}1,5,2,44,25,1⋅⋅⋅⋅⋅⋅则第30组第16个数对为__________.18.甲、乙、丙、丁四人分别从一个装有编号为1,2,3,4,的四个完全相同的小球的袋中依次取出一个小球.现知道:①甲取出的小球编号为偶数;②乙取出的小球编号比甲大;③乙、丙取出的小球编号差的绝对值比甲大.则丁取出的小球编号是________. 19.观察下面的数阵,则第40行最左边的数是__________.20.观察下列式子:,,,,…,根据以上规律,第个不等式是_________.三、解答题21.若数列{}n a 的前n 项和为n S ,且13a =,()211324222n n S S n n n -=+-+≥. (1)求2a ,3a ,4a ;(2)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 22.若10a >,11a ≠,121+=+nn na a a (n =1,2,…). (1)求证:1+≠n n a a ; (2)令112a =,写出2a ,3a ,4a ,5a 的值,观察并归纳出这个数列的通项公式n a ,并用数学归纳法证明.23.已知数列11111,,,,,12233445(1)n n ⨯⨯⨯⨯⨯+,…的前n 项和为n S .(1)计算1234,,,S S S S 的值,根据计算结果,猜想n S 的表达式; (2)用数学归纳法证明(1)中猜想的n S 表达式.24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式. 25.依次计算数列114⎛⎫-⎪⎝⎭,111149⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭,1111114916⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭,11111111491625⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,的前4项的值,由此猜想21111111111491625(1)n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(n *∈N )的结果,并用数学归纳法加以证明.26.设a ,b 均为正数,且ab .证明:(1)664224a b a b a b +>+(2)a b a b b a+>+【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.C解析:C 【分析】 结合题意可知,代入数据,即可.【详解】A 选项,13不满足某个数的平方,故错误;B 选项,,故错误;C 选项,故正确;D 选项,,故错误.故选C. 【点睛】本道题考查了归纳推理,关键抓住利用边长点数计算总点数,难度中等.3.C解析:C 【解析】分析:根据疏散1000名乘客所需的时间,两两对比,即可求出结果. 详解:同时开放其中的两个安全出口,疏散1000名乘客,所需时间对比:开方AB 、出口时间为186s ,开方BC 、出口时间为125s ,得C 比A 快; 开方CD 、出口时间为160s ,开方DE 、出口时间为175s ,得C 比E 快;开方AB 、出口时间为186s ,开方A E 、出口时间为145s ,得E 比B 快; 开方BC 、出口时间为125s ,开方CD 、出口时间为160s ,得B 比D 快; 综上,疏散乘客最快的安全出口的编号是C. 故选C.点睛:本题考查简单的合情推理,考查学生推理论证能力.4.B解析:B 【解析】分析:利用第八项为1出发,按照规则,逆向逐项即可求解n 的所有可能的取值. 详解:如果正整数n 按照上述规则施行变换后第八项为1, 则变换中的第7项一定为2, 变换中的第6项一定为4,变换中的第5项可能为1,也可能是8, 变换中的第4项可能是2,也可能是16,变换中的第4项为2时,变换中的第3项是4,变换中的第2项是1或8,变换中的第1项是2或6,变换中的第4项为16时,变换中的第3项是32或5,变换中的第2项是64或108,变换中的第1项是128或21或20,或3,则n 的所有可能的取值为2,3,16,20,21,128,共6个,故选B.点睛:本题主要考查了归纳推理的应用,其中解答中正确理解题意,利用变换规则,进行逆向逐项推理、验证是解答的关键,着重考查了推理与论证能力,试题有一定的难度,属于中档试题.5.B解析:B 【解析】∵三个数a ,b ,c 的和为1,其平均数为13∴三个数中至少有一个大于或等于13假设a ,b ,c 都小于13,则1a b c ++<∴a ,b ,c 中至少有一个数不小于13故选B.6.D解析:D 【分析】分别写出n k =、1n k =+时,不等式左边的式子,从而可得结果. 【详解】当n k =时,不等式左边为1111232k++++,当1n k =+时,不等式左边为1111111232212k k k +++++++++,则增加了112(21)1222k k k k k ++-++=-=项,故选D. 【点睛】项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.7.B解析:B 【详解】由题意,数表的每一行从右往左都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为20142, 故第1行的从右往左第一个数为:122-⨯, 第2行的从右往左第一个数为:032⨯, 第3行的从右往左第一个数为:142⨯, …第n 行的从右往左第一个数为:2(1)2n n -+⨯ , 表中最后一行仅有一个数,则这个数是201501822⨯.8.C解析:C 【解析】左边的特点:分母逐渐增加1,末项为121n -; 由n=k ,末项为121k-到n=k+1,末项为11121212k k k+=--+, ∴应增加的项数为2k . 故选C .9.A解析:A【解析】由题意得,甲同学说:1号门里是b ,3号门里是c ,乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是cc ,若他们每人猜对了一半,则可判断甲同学中1号门中是b 是正确的;乙同学说的2号门中有d 是正确的;并同学说的3号门中有c 是正确的;丁同学说的4号门中有a 是正确的,则可判断在1,2,3,4四扇门中,分别存有,,,b d c a ,所以4号门里是a ,故选A. 点睛:本题主要考查了归纳推理问题,通过具体事例,根据各位同学的说法给出判断,其中正确理解题意,合理作出推理是解答此类问题的关键,同时注意仔细审题,认真梳理.10.C解析:C 【解析】可以通过列表归纳分析得到;16边形有2+3+4+…+14=2=104条对角线. 故选C .11.B解析:B 【分析】由题意归纳推理得到a 的值即可. 【详解】由题意,当分母的指数为1时,分子为111=; 当分母的指数为2时,分子为224=; 当分母的指数为3时,分子为3327=; 据此归纳可得:1n ax n x+≥+中,a 的值为n n . 本题选择B 选项. 【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.12.C解析:C 【解析】分析:由等式归纳得出m 和t 的关系,从而得出关于m 的恒等式,利用函数单调性得出最小值即可得出λ的范围.=21t m =-, 30m t λ--<恒成立,即220m m λ--<恒成立,m N *∈且2m ≥,222m m m mλ+∴<=+.令()2f m m m =+,()221f m m ='-,2m ≥,()0f m ∴'>,()f m ∴单调递增,∴当2m =时,()f m 取得最小值()23f =,3λ∴<.故选:C.点睛:若f (x )≥a 或g (x )≤a 恒成立,只需满足f (x )min ≥a 或g (x )max ≤a 即可,利用导数方法求出f (x )的最小值或g (x )的最大值,从而问题得解.二、填空题13.【解析】分析:由题意结合所给等式的规律归纳出第个等式即可详解:首先观察等式左侧的特点:第1个等式开头为1第2个等式开头为2第3个等式开头为3第4个等式开头为4则第n 个等式开头为n 第1个等式左侧有1个解析:2(1)(32)(21)n n n n ++++-=-.【解析】分析:由题意结合所给等式的规律归纳出第n 个等式即可. 详解:首先观察等式左侧的特点: 第1个等式开头为1,第2个等式开头为2, 第3个等式开头为3,第4个等式开头为4, 则第n 个等式开头为n ,第1个等式左侧有1个数,第2个等式左侧有3个数, 第3个等式左侧有5个数,第4个等式左侧有7个数, 则第n 个等式左侧有2n -1个数, 据此可知第n 个等式左侧为:()()132n n n ++++-,第1个等式右侧为1,第2个等式右侧为9, 第3个等式右侧为25,第4个等式右侧为49, 则第n 个等式右侧为()221n -, 据此可得第n 个等式为()()()213221n n n n ++++-=-.点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.14.217【分析】根据题意类比36的所有正约数之和的方法分析100的所有正约数之和为(1+2+221+5+52)计算可得答案【详解】根据题意由36的所有正约数之和的方法:100的所有正约数之和可按如下方解析:217 【分析】根据题意,类比36的所有正约数之和的方法,分析100的所有正约数之和为(1+2+22)(1+5+52),计算可得答案. 【详解】根据题意,由36的所有正约数之和的方法:100的所有正约数之和可按如下方法得到:因为100=22×52, 所以100的所有正约数之和为(1+2+22)(1+5+52)=217. 可求得100的所有正约数之和为217; 故答案为:217. 【点睛】本题考查简单的合情推理应用,关键是认真分析36的所有正约数之和的求法,并应用到100的正约数之和的计算.15.【解析】分析:根据几何图形列出前面几项根据归纳推理和数列中的累加法即可得到结果详解:1条直线将平面分成2个部分即2条直线将平面分成4个部分即3条直线将平面分为7个部分即4条直线将平面分为11个部分即解析:(1)12n n ++ 【解析】分析:根据几何图形,列出前面几项,根据归纳推理和数列中的累加法即可得到结果。
(典型题)高中数学选修1-2第三章《推理与证明》测试题(包含答案解析)
一、选择题1.观察下列一组数据12a = 246a =+ 381012a =++ 414161820a =+++…则20a 从左到右第三个数是( ) A .380B .382C .384D .3862.在数学兴趣课堂上,老师出了一道数学思考题,某小组的三人先独立思考完成,然后一起讨论.甲说:“我做错了!”乙对甲说:“你做对了!”丙说:“我也做错了!”老师看了他们三人的答案后说:“你们三人中有且只有一人做对了,有且只有一人说对了.”请问下列说法正确的是( ) A .丙做对了B .甲做对了C .乙说对了D .乙做对了3.在等差数列{}n a 中,若0n a >,公差0d ≠,则有2415a a a a >.类比上述性质,在等比数列{}n b 中,若0n b >,公比1q ≠,则关于3b ,5b ,2b ,6b 的一个不等关系正确的是( ) A .3526b b b b > B .5623b b b b > C .3526b b b b +<+D .5623b b b b +<+4.在ABC △中,若AC BC ⊥,AC b =,BC a =,则ABC △的外接圆半径r =,将此结论拓展到空间,可得出的正确结论是:在四面体S ABC -中,若SA 、SB 、SC 两两互相垂直,SA a =,SB b =,SC c =,则四面体S ABC -的外接球半径R =( )A .2B .3C D 5.下面几种推理中是演绎推理的为( )A .由金、银、铜、铁可导电,猜想:金属都可导电B .猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+ C .半径为r 的圆的面积2S r π=,则单位圆的面积S π=D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=6.中国古代近似计算方法源远流长,早在八世纪,我国著名数学家、天文学家张隧(法号:一行)为编制《大衍历》发明了一种近似计算的方法——二次插值算法(又称一行算法,牛顿也创造了此算法,但是比我国张隧晚了上千年):对于函数()y f x =在()123123,,x x x x x x <<处的函数值分别为()()()112233,,y f x y f x y f x ===,则在区间[]13,x x 上()f x 可以用二次函数()()()111212()f x y k x x k x x x x =+-+--来近似代替,其中3221112213231,,y y y y k k k k k x x x x x x ---===---.若令10x =,2π2x =,3πx =,请依据上述算法,估算2πsin 5的近似值是( ) A .2425B .1725C .1625D .357.将正整数排列如下:则图中数2020出现在( ) A .第64行第3列 B .第64行4列C .第65行3列D .第65行4列8.观察下面数阵,则该数阵中第9行,从左往右数的第20个数是( ) A .545B .547C .549D .5519.英国数学家布鲁克泰勒(Taylor Brook ,1685~1731)建立了如下正、余弦公式( )()()357211sin 13!5!7!21!n n x x x x x x n --=-+-++-+-()()2462cos 112!4!6!2!nnx x x x x n -=-+-++-+其中*x R n N ∈∈,,!1234n n =⨯⨯⨯⨯⨯,例如:1!12!23!6===,,.试用上述公式估计cos0.2的近似值为(精确到0.01) A .0.99B .0.98C .0.97D .0.9610.现有A B C D 、、、四位同学被问到是否去过甲,乙,丙三个教师办公室时,A 说:我去过的教师办公室比B 多,但没去过乙办公室;B 说:我没去过丙办公室;C 说:我和A B 、去过同一个教师办公室;D 说:我去过丙办公室,我还和B 去过同一个办公室.由此可判断B 去过的教师办公室为( ) A .甲 B .乙 C .丙 D .不能确定11.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽.2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的 A .甲辰年B .乙巳年C .丙午年D .丁未年12.甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:甲说:我不是第三名;乙说:我是第三名;丙说:我不是第一名.若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第三名的是 A .甲B .乙C .丙D .无法预测二、填空题13.设1250,,,a a a 是从1-,0,1这三个整数中取值的数列,若12509a a a +++=,且()()()2221250111107a a a ++++++=,则1250,,,a a a 中数字0的个数为________ .14.已知集合22{|,}A m m x y x y ==-∈Z 、,将A 中的正整数从小到大排列为:1a ,2a ,3a ,….若2015n a =,则正整数n =________.15.我国南北朝时期数学家祖瞘,提出了著名的祖暅原理:“幂势既同, 则积不容异”,其中“幂”是截面积,“势” 是几何体的高,该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的xoy 平面内,若函数1,[1,0]()1,(0,1]x x f x x x ⎧+∈-⎪=⎨-∈⎪⎩的图象与轴x 围城一个封闭的区域A ,将区域A 沿z 轴的正方向平移2个单位长度,得到几何体(图一),现有一个与之等高的圆柱(图二),其底面积与区域A 的面积相等,则此圆柱的体积为 _______.图一 图二16.甲、乙、丙三个同学同时做标号为A 、B 、C 的三个题,甲做对了两个题,乙做对了两个题,丙做对了两个题,则下面说法正确的是_____.(1)三个题都有人做对;(2)至少有一个题三个人都做对;(3)至少有两个题有两个人都做对.17.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人走访了四位歌手,甲说“是乙或丙获奖”,乙说“甲、丙都未获奖”,丙说”我获奖了”,丁说“是乙获奖”.已知四位歌手有且只有一位说了假话,则获奖的歌手是________. 18.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市.丙说:我们三个去过同一城市. 由此可判断乙去过的城市为__________19.学校艺术节对同一类的A ,B ,C ,D 四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下: 甲说:“C 或D 作品获得一等奖”; 乙说:“B 作品获得一等奖”; 丙说:“A ,D 两项作品未获得一等奖”; 丁说:“C 作品获得一等奖”. 若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是______. 20.将正整数1,2,3,⋯按照如图的规律排列,则100应在第______列.三、解答题21.(1)用分析法证明:3725+<;(2)已知数列{}n a 的前n 项和为n S ,123a =-,满足()122nn n S a n S ++=≥,计算,1234,,,S S S S ,并猜想n S 的表达式.22.用综合法或分析法证明: (1)如果 ,0a b >,则 lg lg lg22a b a b++≥; (2)610232+>+.23.如图1,已知PAB ∆中,PA PB ⊥,点P 在斜边AB 上的射影为点H .(Ⅰ)求证:222111PH PA PB =+; (Ⅱ)如图2,已知三棱锥P ABC -中,侧棱PA ,PB ,PC 两两互相垂直,点P 在底面ABC 内的射影为点H .类比(Ⅰ)中的结论,猜想三棱锥P ABC -中PH 与PA ,PB ,PC 的关系,并证明. 24.证明下列不等式:(1)当2a >时,求证:0>; (2)设0a >,0b >,若0a b ab +-=,求证:4a b +≥. 25.证明:(Ⅰ)已知a b m 、、是正实数,且a b <.求证:a a mb b m+<+; (Ⅱ)已知a b c d R ∈、、、,且1a b +=,1c d +=,1ac bd +>.求证:a b c d 、、、中至少有一个是负数.26.设不等式2120x x -<--+<的解集为M ,,a b M ∈.(1)证明:111364a b +<; (2)比较14ab -与2a b -的大小,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先计算前19行数字的个数,进而可得20a 从左到右第三个数. 【详解】由题意可知,n a 可表示为n 个连续的偶数相加,从1a 到19a 共有()119191902+⨯=个偶数,所以20a 从左到右第一个数是第191个偶数,第n 个偶数为2n , 所以第191个偶数为2191382⨯=,20a 从左到右第三个数为386. 故选:D. 【点睛】本小题主要考查归纳推理、等差数列求和公式等基础知识,考查运算求解能力,属于中档题.2.A解析:A 【分析】根据题意分析,分别假设甲、乙、丙做对了,由此推出结论. 【详解】假设甲做对了,则乙和丙都做错了,乙和丙说的都对了,这不合题意; 假设乙做对了,则甲和丙都说对了,也不合题意; 假设丙做对了,则甲说对了,乙和丙都说错了,符合题意. 所以,说对的是甲,做对的是丙. 故选:A . 【点睛】本题考查了阅读理解能力以及逻辑思维能力的应用问题,是中档题.3.C解析:C 【分析】利用等差数列和等比数列的通项公式及性质逐一计算判断即可. 【详解】在等比数列{}n b 中,0n b >,公比1q ≠,0q ∴>,即01q <<或1q >, 在A 中,3526b b b b =,故A 错误;在B 中,29561b b b q =,23231b b b q =,故当01q <<时,5623b b b b <,当1q >时5623b b b b >,故B 错误;在C 中,()3351b b b q q q+=+,()42611b b b q q +=+,而()()()()()()243332111110qq q q q q q q q +-+=---=-++>,得431qq q +>+,故3526b b b b +<+,故C 正确;在D 中,()45611b b b q q +=+,()2311b b b q q +=+,故当01q <<时,5623b b b b +<+,当1q >时5623b b b b +>+,故D 错误.故选:C. 【点睛】本题考查了等差数列和等比数列的综合应用,属于中档题.4.A解析:A 【解析】 【分析】四面体S ABC -中,三条棱SA 、SB 、SC 两两互相垂直,则可以把该四面体补成长方体,长方体的外接球就是四面体的外接球,则半径易求. 【详解】四面体S ABC -中,三条棱SA 、SB 、SC 两两互相垂直,则可以把该四面体补成长方体,SA a =,SB b =,SC c =是一个顶点处的三条棱长.所以外接球的直径就是长方体的体对角线,则半径2R =.故选A. 【点睛】本题考查空间几何体的结构,多面体的外接球问题,合情推理.由平面类比到立体,结论不易直接得出时,需要从推理方法上进行类比,用平面类似的方法在空间中进行推理论证,才能避免直接类比得到错误结论.5.C解析:C 【分析】根据合情推理与演绎推理的概念,得到A 是归纳推理,B 是归纳推理,C 是演绎推理,D 是类比推理,即可求解. 【详解】根据合情推理与演绎推理的概念,可得:对于A 中, 由金、银、铜、铁可导电,猜想:金属都可导电,属于归纳推理; 对于B 中, 猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+,属于归纳推理,不是演绎推理;对于C 中,半径为r 的圆的面积2S r π=,则单位圆的面积S π=,属于演绎推理; 对于D 中, 由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=,属于类比推理, 综上,可演绎推理的C 项,故选C . 【点睛】本题主要考查了合情推理与演绎推理的概念及判定,其中解答中熟记合情推理和演绎推理的概念,以及推理的规则是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.A解析:A 【分析】直接按照所给算法逐步验算即可得出最终结论. 【详解】解:函数()sin y f x x ==在0x =,π2x =,πx =处的函数值分别为 1(0)0y f ==,2π()12y f ==,3(π)0y f ==,故211212y y k x x π-==-,32322y y k x x π-==--,122314k k k x x π-==--,故2222444()()2f x x x x x x πππππ=--=-+, 即2244sin x x x ππ≈-+,∴222424224sin()55525πππππ≈-⨯+⨯=, 故选:A . 【点睛】本题主要考查新定义问题,准确理解题目所给运算法则是解决本题的关键,属于中档题.7.B解析:B 【分析】根据题意,构造数列,利用数列求和推出2020的位置. 【详解】根据已知,第n 行有n 个数,设数列{}n a 为n 行数的数列,则n a n =, 即第1行有1个数,第2行有2个数,……,第n 行有n 个数, 所以,第1行到第n 行数的总个数()1122n n n S n +=+++=, 当63n =时,数的总个数()636363120162S ⨯+==, 所以,2020为64n =时的数,即64行的数为:2017,2018,2019,2020,……, 所以,2020为64行第4列. 故选:B. 【点睛】本题考查数列的应用,构造数列,利用数列知识求解很关键,属于中档题.8.C解析:C 【分析】观察数阵可得出数阵从左到右从上到下顺序是正奇数顺序排列,要求出某一个位置的数,只要求出这个位置是第几个奇数即可,而每一行有12m -个数,可求出前m 行共有21m -个数,根据以上特征,即可求解. 【详解】由题意可得该数阵中第m 行有12m -个数,所以前m 行共有21m -个数,所以前8行共255个数.因为该数阵中的数依次相连成等差数列,所以该数阵中第9行, 从左往右数的第20个数是()127512549+-⨯=. 故选:C. 【点睛】本题以数阵为背景,考查等差、等比数列通项与前n 项和,认真审题,注意观察找出规律是解题的关键,属于中档题.9.B解析:B 【分析】利用题设中给出的公式进行化简,即可估算,得到答案. 【详解】由题设中的余弦公式得()()24620.20.20.20.2cos0.2112!4!6!2!nnn =-+-++-+0.040.00160.00006410.98224720=-+-+≈,故答案为B 【点睛】 本题主要考查了新信息试题的应用,其中解答中理解题意,利用题设中的公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.10.A解析:A 【解析】 【分析】根据已知信息:首先判断B 去过一个办公室,再确定B 去的哪一个办公室,得到答案. 【详解】C 说:我和A B 、去过同一个教师办公室⇒ B 至少去过一个办公室A 说:我去过的教师办公室比B 多,但没去过乙办公室⇒A 去过2个办公室,B 去过1个办公室.B 说:我没去过丙办公室,C 说:我和A B 、去过同一个教师办公室,A 没有去过乙办公室所以B 去的是甲办公室. 答案选A 【点睛】本题考查了逻辑推理,意在考查学生的逻辑推理能力. 11.C解析:C 【分析】按照题中规则依次从2019年列举到2026年,可得出答案. 【详解】根据规则,2019年是己亥年,2020年是庚子年,2021年是辛丑年,2022年是壬寅年,2023年是癸卯年,2024年是甲辰年,2025年是乙巳年,2026年是丙午年,故选C . 【点睛】本题考查合情推理的应用,理解题中“干支纪年法”的定义,并找出相应的规律,是解本题的关键,考查逻辑推理能力,属于中等题.12.A解析:A 【分析】若甲的预测正确,则乙、丙的预测错误,推出矛盾!若乙的预测正确,甲、丙的预测错误,推出矛盾!若丙的预测正确,甲、乙的预测错误,可推出三个人的名次. 【详解】若甲的预测正确,乙、丙的预测错误,则丙是第一名,甲不是第三名,则甲是第二名,乙是第三名,矛盾!若乙的预测正确,甲、丙的预测错误,则乙是第三名,甲的预测错误,那么甲是第三名,矛盾!若丙的预测正确,则甲、乙的预测错误,则甲是第三名,乙不是第三名,丙是第一名,则乙是第二名.因此,第三名是甲,故选A . 【点睛】本题考查合情推理,突出假设法在推理中的应用,通过不断试错来推出结论,考查推理分析能力,属于中等题.二、填空题13.11【分析】由题意中1的个数比的个数多9则中2的个数比0的个数多9个其他都是1由此可设中有个1个0列方程组求解【详解】设中有个1个0因为所以的个数为又由解得故答案为:11【点睛】本题考查推理关键是认解析:11 【分析】 由题意1250,,,a a a 中1的个数比1-的个数多9,则12501,1,,1a a a +++中2的个数比0的个数多9个,其他都是1,由此可设1250,,,a a a 中有m 个1,n 个0,列方程组求解. 【详解】 设1250,,,a a a 中有m 个1,n 个0,因为12509a a a +++=,所以1-的个数为9m -,()()()22212501114107a a a m n ++++++=+=,又(9)50m n m ++-=,由4107259m n m n +=⎧⎨+=⎩,解得2411m n =⎧⎨=⎩.故答案为:11. 【点睛】本题考查推理,关键是认识到12501,1,,1a a a +++是由1250,,,a a a 各加1得到的,因此数字的个数存在相应的关系.这样可列出方程组求解.14.1511【分析】利用平方差公式分解后对分别研究即可得到集合中的所有正整数然后从小到大排列观察规律进而计数即可【详解】当时(表示奇数)当时(表示4个倍数)∴将中的正整数从小到大排列可得134578…(解析:1511【分析】利用平方差公式分解后,对1x y -=,2x y -=分别研究,即可得到集合中的所有正整数,然后从小到大排列,观察规律,进而计数即可.【详解】22()()m x y x y x y =-=-+,当1x y -=时,21m y =+(表示奇数),当2x y -=时,44m y =+(表示4个倍数),∴将A 中的正整数从小到大排列,可得1,3,4,5,7,8,…,(每4个正整数,保留3个),又201545033÷=,∴503321511n =⨯+=.【点睛】本题考查分类讨论思想,观察归纳思想,属探索性试题,难度较大.15.【分析】先利用定积分计算底面面积再用体积公式得到答案【详解】的图象与轴围城一个封闭的区域故答案为【点睛】本题考查了体积的计算意在考查学生解决问题的能力 解析:73【分析】先利用定积分计算底面面积,再用体积公式得到答案.【详解】[1,0]()1,(0,1]x f x x x ∈-=-∈⎪⎩的图象与轴x 围城一个封闭的区域A13221001217(1)(1)(1)10326A S x dx x x -=+-=+--=-⎰ 77263A V S h ==⨯= 故答案为73【点睛】 本题考查了体积的计算,意在考查学生解决问题的能力.16.③【分析】运用题目所给的条件进行合情推理即可得出结论【详解】若甲做对乙做对丙做对则题无人做对所以①错误;若甲做对乙做对丙做对则没有一个题被三个人都做对所以②错误做对的情况可分为这三种:三个人做对的都解析:③【分析】运用题目所给的条件,进行合情推理,即可得出结论.【详解】若甲做对A、B,乙做对A、B,丙做对A、B,则C题无人做对,所以①错误;若甲做对A、B,乙做对A、C,丙做对B、C,则没有一个题被三个人都做对,所以②错误.做对的情况可分为这三种:三个人做对的都相同;三个人中有两个人做对的相同;三个人每个人做对的都不完全相同,分类可知三种情况都满足③的说法.故答案是:③.【点睛】该题考查的是有关推理的问题,属于简单题目.17.乙【分析】根据乙丙;的说法是相互矛盾的得出乙与丙说法一对一错唉根据甲丁的说法都准确推出获奖的歌手是乙即可【详解】由题意乙与丙的说法是相互矛盾的所以乙与丙的说法中一对一错又甲说:是乙或丙获奖是正确;丁解析:乙【分析】根据乙丙;的说法是相互矛盾的,得出乙与丙说法一对一错,唉根据甲、丁的说法都准确,推出获奖的歌手是乙即可.【详解】由题意,乙与丙的说法是相互矛盾的,所以乙与丙的说法中一对一错,又甲说:“是乙或丙获奖”,是正确;丁说“是乙获奖”是正确,由此可知获奖的歌手是一,且乙说的也对.【点睛】本题主要考查了简单的合情推理的应用,其中解答中正确理解题意,合理利用合情推理进行,逐一判定是解答的关键,着重考查了推理与论证能力,属于基础题.18.A【解析】试题分析:由乙说:我没去过C城市则乙可能去过A城市或B 城市但甲说:我去过的城市比乙多但没去过B城市则乙只能是去过AB中的任一个再由丙说:我们三人去过同一城市则由此可判断乙去过的城市为A考点解析:A【解析】试题分析:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A考点:进行简单的合情推理19.B【分析】首先根据学校艺术节对四件参赛作品只评一件一等奖故假设分别为一等奖然后判断甲乙丙丁四位同学的说法的正确性即可得出结果【详解】若A 为一等奖则甲丙丁的说法均错误不满足题意;若B 为一等奖则乙丙的说 解析:B【分析】首先根据“学校艺术节对A B C D 、、、四件参赛作品只评一件一等奖”,故假设A B C D 、、、分别为一等奖,然后判断甲、乙、丙、丁四位同学的说法的正确性,即可得出结果.【详解】若A 为一等奖,则甲、丙、丁的说法均错误,不满足题意;若B 为一等奖,则乙、丙的说法正确,甲、丁的说法错误,满足题意;若C 为一等奖,则甲、丙、丁的说法均正确,不满足题意;若D 为一等奖,则乙、丙、丁的说法均错误,不满足题意;综上所述,故B 获得一等奖.【点睛】本题属于信息题,可根据题目所给信息来找出解题所需要的条件并得出答案,在做本题的时候,可以采用依次假设A B C D 、、、为一等奖并通过是否满足题目条件来判断其是否正确.20.【解析】分析:先找到数的分布规律求出第n 列结束的时候一共出现的数的个数每一列的数字都是从大大小按排列的且每一列的数字个数等于列数继而求出答案详解:由排列的规律可得第n 列结束的时候排了个数每一列的数字 解析:【解析】分析:先找到数的分布规律,求出第n 列结束的时候一共出现的数的个数,每一列的数字都是从大大小按排列的,且每一列的数字个数等于列数,继而求出答案.详解:由排列的规律可得,第n 列结束的时候排了()1123112n n n +++⋯+-=+个数. 每一列的数字都是从大大小按排列的,且每一列的数字个数等于列数,而第13列的第一个数字是()113131912⨯⨯+=,第14列的第一个数字是()1141411052⨯⨯+=, 故100应在第14列.故答案为:14点睛:此题主要考查了数字的变化规律,借助于一个三角形数阵考查数列的应用,是道基础题三、解答题21.(1)见证明;(2) 123S =-,234S =-;345S =-;456S =-;猜想12n n S n +=-+,n ∈+N .【分析】(1)不等式两边先平方,然后逐步化简,直到不等式明显成立为止;(2)分别令n=1,2,3,4,求出1234,,,S S S S ,然后找规律猜想表达式。
精选高中数学单元测试试题-推理与证明专题模拟考试题库(含参考答案)
2019年高中数学单元测试试题推理与证明专题(含答案)学校:__________第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b⊆/平面α,直线a≠⊂平面α,直线b∥平面α,则直线b∥直线a”的结论显然是错误的,这是因为A.大前提错误B.小前提错误C.推理形式错误D.非以上错误2.把下面在平面内成立的结论类比地推广到空间,结论还正确的是-----------------------------------()(A) 如果一条直线与两条平行线中的一条相交,则比与另一条相交.(B) 如果一条直线与两条平行线中的一条垂直,则比与另一条垂直.(C) 如果两条直线同时与第三条直线相交,则这两条直线相交.(D) 如果两条直线同时与第三条直线垂直,则这两条直线平行.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题3.用数学归纳法证明:(31)(1)(2)()2n nn n n n+++++++=*()n N∈的第二步中,当1n k=+时等式左边与n k=时的等式左边的差等于▲.4.把1,3,6,10,15,21,这些数叫做三角形数,这是因为这些数目的点可以排成5.观察下列式子:474131211,3531211,2321122222<+++<++<+…则可归纳出第(1,)n n n N *≥∈个不等式是 ▲ .6.观察下列等式:311=,33129+=,33312336++=,33331234100+++=,……猜想:3333123n +++⋅⋅⋅+= ▲ (n ∈*N ).7.已知结论:“在三边长都相等的ABC ∆中,若D 是BC 的中点,G 是ABC ∆外接圆的圆心,则2AG GD=”.若把该结论推广到空间,则有结论:“在六条棱长都相等的四面体ABCD 中,若M 是BCD ∆的三边中线的交点,O 为四面体ABCD 外接球的球心,则AO OM= ▲ 8.已知 0(1,2,,)i a i n >=,考察下列式子: 111()1i a a ⋅≥; 121211()()()4ii a a a a ++≥; 123123111()()()9iii a a a a a a ++++≥. 我们可以归纳出,对12,,,n a a a 也成立的类似不等式为 ▲ .9.若点O 在三角形ABC 内,则有结论S OBC ∆·+ S OAC ∆· +S OAB∆·= ,把命题类比推广到空间,若点O 在四面体ABCD 内,则有结论: .10.用反证法证明命题“),(*∈⋅Z b a b a 是偶数,那么a ,b 中至少有一个是偶数.”那么 反设的内容是 ;11.设面积为S 的平面四边形的第i 条边的边长记为a i (i =1,2,3,4),P 是该四边形内任意一点,P 点到第i 条边的距离记为h i ,若31241234a a a a k ====, 则412()i i S ih k ==∑.类比上述结论,体积为V 的三棱锥的第i 个面的面积记为S i (i =1,2,3,4),Q 是该三棱锥内的任意一点,Q 点到第i 个面的距离记为H i ,则相应的正确命题是:若31241234S S S S k ====,则 .12.请阅读下列材料:若两个正实数12,a a 满足22121a a +=,那么12a a +≤.证明:构造函数2221212()()()22()1f x x a x a x a a x =-+-=-++,因为对一切实数x ,恒有()0f x ≥,所以0∆≤,从而得2124()80a a +-≤,所以12a a +≤.根据上述证明方法,若n 个正实数满足222121n a a a ++⋅⋅⋅+=时,你能得到的结论为 ▲ .(不必证明)13.观察下列各图,并阅读下面的文字,像这样,10条直线相交,交点的个数最多是____________;2条直线相交, 3条直线相交, 4条直线相交,最多有1个交点 最多有3个交点 最多6个交点14.已知各项为正数的等比数列}{n b ,若m b a =,n b b =,)(n m >, 则m n b +=,类比上述性质,得出在等差数列{}n a 中的相关性质,若s a m =,t a n =,)(n m >,则 .15.若定义在区间D 上的函数()x f 对D 上的任意n 个值1x ,2x ,…,n x ,总满足()()()[]n x f x f x f n ++211≤⎪⎭⎫ ⎝⎛++n x x x f n 21,则称()x f 为D 上的凸函数.已知函数x y sin =在区间()π,0上是“凸函数”,则在△ABC 中,C B A sin sin sin ++的最大值是三、解答题16.>本题满分14分)17.已知a i >0(i=1,2,…,n ),考查 ①; ②; ③.(15分)归纳出对a 1,a 2,…,a n 都成立的类似不等式,并用数学归纳法加以证明.18.已知数列}{n a 满足21=a ,)1(11+-=++n a a n n n 。
高二数学第一章推理与证明单元测试题及答案
高二数学选修2-2《推理与证明》质量检测试题参赛试卷 姓名:_________班级:________ 得分:________第Ⅰ卷(选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
. 2.由10>8,11>10,25>21,…若a >b >0且m >0,则a +m 与a 之间大小关系为( )A .相等B .前者大C .后者大D .不确定3、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。
(A)假设三内角都不大于60度; (B) 假设三内角都大于60度;(C) 假设三内角至多有一个大于60度; (D) 假设三内角至多有两个大于60度。
5、用数学归纳法证明“)12(212)()2)(1(-⋅⋅⋅⋅=+++n n n n n n”(+∈N n )时,从 “1+==k n k n 到”时,左边应增添的式子是 ( )A .12+kB .)12(2+kC .112++k k D .122++k k 6、某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时命题也成立. 现已知当7=n 时该命题不成立,那么可推得( )A .当n=6时该命题不成立B .当n=6时该命题成立C .当n=8时该命题不成立D .当n=8时该命题成立7、已知n 为正偶数,用数学归纳法证明 )214121(2114131211nn n n +++++=-++-+-时,若已假设2(≥=k k n 为偶 数)时命题为真,则还需要用归纳假设再证( )A .1+=k n 时等式成立B .2+=k n 时等式成立C .22+=k n 时等式成立D .)2(2+=k n 时等式成立8、在十进制中01232004410010010210=⨯+⨯+⨯+⨯,那么在5进制中数码2004折合成十进制为 ( ) A.29 B. 254 C. 602 D. 20049、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是( ) A .12 B.13 C.14 D.1510、数列{}n a 中,a 1=1,S n 表示前n 项和,且S n ,S n+1,2S 1成等差数列,通过计算S 1,S 2,S 3,猜想当n ≥1时,S n =( ) A .1212-+n nB .1212--n nC .nn n 2)1(+ D .1-121-n二、填空题(每小题5分,共4小题,满分20分)11、设等差数列{a n }的前n 项和为S n , 则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.12、设平面内有n条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用()f n 表示这n条直线交点的个数,则(4)f = ;当n>4时,()f n = (用含n 的数学表达式表示)。
最新高二数学题库 高二数学选修12推理与证明测试题及答案
推理与证明命题人:杨建国 审题人:郝 蓉本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.测试时间120分钟.一、选择题(本大题共12小题,每小题5分,共60分) 1. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误2.下面使用类比推理,得到正确结论的是( ) A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D.“n n a a b =n (b )” 类推出“n n a a b +=+n(b )” 3.在十进制中01232004410010010210=⨯+⨯+⨯+⨯,那么在5进制中数码2004折合成十进制为( ) A.29 B. 254 C. 602 D. 20044. 设0()sin f x x =,10()()f x f x '=,21()()f x f x '=,…,1()()n n f x f x +'=,n ∈N ,则2010()f x =( )A.cos x B .-cos x C .sin x D -sin x5.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误6.下面几种推理是类比推理的是( )A .两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线的同旁内角,则∠A +∠B =1800 B .由平面三角形的性质,推测空间四边形的性质C .某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.D .一切偶数都能被2整除,1002是偶数,所以1002能被2整除.7.黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第五个图案中有白色地面砖( )块.A.21B.22C.20D.238.用反证法证明命题“若整系数一元二次方程20(0)ax bx c a ++=≠有有理根,那么,,a b c 中至少有一个是偶数”时,下列假设中正确的是( )(A )假设,,a b c 不都是偶数 (B )假设,,a b c 都不是偶数 (C )假设,,a b c 至多有一个是偶数 (D )假设,,a b c 至多有两个是偶数9.如果=++==+)5()6()3()4()1()2(,2)1()()()(f f f f f f f b f a f b a f 则且( ). A .512B .537 C .6 D .82()3110:344,()(cos sin )(),24x x y x y y x y αα≥⎧∙=∙=-∙+-⎨<⎩、定义运算例如则的最大值为( )A .4B .3C .2D .111.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a+≥+∙+.其中不成立的有A.1个B.2个C.3个D.4个 12.已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式为( ) A.4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21f x x =+二、填空题(本大题共6小题,每小题5分,共30分)13.已知一列数1,-5,9,-13,17,……,根据其规律,下一个数应为 . 14.下列表述正确的是 .①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理。
高中数学-推理与证明综合测试题
高中数学-推理与证明综合测试题一、选择题1.分析法是从要证明的结论出发,逐步寻求使结论成立的( )A.充分条件 B.必要条件 C.充要条件 D.等价条件答案:A2.结论为:n n x y +能被x y +整除,令1234n =,,,验证结论是否正确,得到此结论成立的条件可以为( )A.n *∈N B.n *∈N 且3n ≥ C.n 为正奇数 D.n 为正偶数答案:C3.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定答案:C4.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >··,类经上述性质,在等比数列{}n b 中,若01n b q >>,,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+D.4578b b b b +>+答案:B5.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥,(2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( ) A.(1)与(2)的假设都错误 B.(1)与(2)的假设都正确C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确答案:D6.观察式子:213122+<,221151233++<,222111712344+++<,L ,则可归纳出式子为( ) A.22211111(2)2321n n n ++++<-L ≥ B.22211111(2)2321n n n ++++<+L ≥ C.222111211(2)23n n n n -++++<L ≥ D.22211121(2)2321n n n n ++++<+L ≥答案:C7.如图,在梯形ABCD 中,()AB DC AB a CD b a b ==>,,∥.若EF AB ∥,EF 到CD 与AB 的距离之比为:m n ,则可推算出:ma mbEF m m+=+.试用类比的方法,推想出下述问题的结果.在上面的梯形ABCD 中,延长梯形两腰AD BC ,相交于O 点,设OAB △,OCD △的面积分别为12S S ,,EF AB ∥且EF 到CD 与AB 的距离之比为:m n ,则OEF △的面积0S 与12S S ,的关系是( )A.120mS nS S m n+=+B.120nS mS S m n +=+C.120m S n S S +=D.120n S m S S +=答案:C8.已知a b ∈R ,,且2a b a b ≠+=,,则( ) A.2212a b ab +<<B.2212a b ab +<<C.2212a b ab +<<D.2212a b ab +<<答案:B9.用反证法证明命题:若整系数一元二次方程20(0)ax bx c a ++=≠有有理根,那么a b c ,,中至少有一个是偶数时,下列假设中正确的是( ) A.假设a b c ,,都是偶数 B.假设a b c ,,都不是偶数C.假设a b c ,,至多有一个是偶数 D.假设a b c ,,至多有两个是偶数答案:B10.用数学归纳法证明(1)(2)()213(21)nn n n n n +++=-L L ····,从k 到1k +,左边需要增乘的代数式为( ) A.21k + B.2(21)k + C.211k k ++ D.231k k ++答案:B11.类比“两角和与差的正余弦公式”的形式,对于给定的两个函数,()2x xa a S x --=,()2x xa a C x -+=,其中0a >,且1a ≠,下面正确的运算公式是( ) ①()()()()()S x y S x C y C x S y +=+; ②()()()()()S x y S x C y C x S y -=-; ③()()()()()C x y C x C y S x S y +=-; ④()()()()()C x y C x C y S x S y -=+;A.①③ B.②④ C.①④ D.①②③④答案:D12.正整数按下表的规律排列则上起第2005行,左起第2006列的数应为( ) A.22005 B.22006C.20052006+D.20052006⨯答案:D二、填空题13.写出用三段论证明3()sin ()f x x x x =+∈R 为奇函数的步骤是 .答案:满足()()f x f x -=-的函数是奇函数, 大前提1 2 5 10 17 4 3 6 11 18 9 8 7 12 19 16 15 14 13 20 25 24 23 22 21333()()sin()sin (sin )()f x x x x x x x f x -=-+-=--=-+=-, 小前提所以3()sin f x x x =+是奇函数. 结论14.已知111()1()23f n n n *=++++∈N L ,用数学归纳法证明(2)2n nf >时,1(2)(2)k k f f +-等于 . 答案:111121222k k k ++++++L15.由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为 .答案:三角形内角平分线交于一点,且这个点是三角形内切圆的圆心16.下面是按照一定规律画出的一列“树型”图:设第n 个图有n a 个树枝,则1n a +与(2)n a n ≥之间的关系是 .答案:122n n a a +=+三、解答题17.如图(1),在三角形ABC 中,AB AC ⊥,若AD BC ⊥,则2AB BD BC =·;若类比该命题,如图(2),三棱锥A BCD -中,AD ⊥面ABC ,若A 点在三角形BCD 所在平面内的射影为M ,则有什么结论?命题是否是真命题.解:命题是:三棱锥A BCD -中,AD ⊥面ABC ,若A 点在三角形BCD 所在平面内的射影为M ,则有2ABC BCMBCD S S S =△△△·是一个真命题. 证明如下:在图(2)中,连结DM ,并延长交BC 于E ,连结AE ,则有DE BC ⊥. 因为AD ⊥面ABC ,,所以AD AE ⊥. 又AM DE ⊥,所以2AE EM ED =·. 于是22111222ABCBCM BCD SBC AE BC EM BC ED S S ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭△△△·····.18.如图,已知PA ⊥矩形ABCD 所在平面,M N ,分别是AB PC ,的中点. 求证:(1)MN ∥平面PAD ;(2)MN CD ⊥.证明:(1)取PD 的中点E ,连结AE NE ,. N E ,∵分别为PC PD ,的中点.EN ∴为PCD △的中位线,12EN CD ∥∴,12AM AB =,而ABCD 为矩形, CD AB ∴∥,且CD AB =.EN AM ∴∥,且EN AM =.AENM ∴为平行四边形,MN AE ∥,而MN ⊄平面PAC ,AE ⊂平面PAD , MN ∴∥平面PAD .(2)PA ⊥∵矩形ABCD 所在平面,CD PA ⊥∴,而CD AD ⊥,PA 与AD 是平面PAD 内的两条直交直线, CD ⊥∴平面PAD ,而AE ⊂平面PAD , AE CD ⊥∴.又MN AE ∵∥,MN CD ⊥∴.19.求证:当一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大.证明:(分析法)设圆和正方形的周长为l ,依题意,圆的面积为2π2πl ⎛⎫⎪⎝⎭·, 正方形的面积为24l ⎛⎫⎪⎝⎭.因此本题只需证明22π2π4l l ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭.要证明上式,只需证明222π4π16l l >,两边同乘以正数24l ,得11π4>.因此,只需证明4π>.∵上式是成立的,所以22π2π4l l ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭.这就证明了如果一个圆和一个正方形的周长相等,那么圆的面积比正方形的面积最大.20.已知实数a b c d ,,,满足1a b c d +=+=,1ac bd +>,求证a b c d ,,,中至少有一个是负数.证明:假设a b c d ,,,都是非负实数,因为1a b c d +=+=,所以a b c d ,,,[01]∈,,所以2a c ac +,2b cbd +, 所以122a cb dac bd ++++=≤, 这与已知1ac bd +>相矛盾,所以原假设不成立,即证得a b c d ,,,中至少有一个是负数.21.设()2x x a a f x -+=,()2x xa a g x --=(其中0a >,且1a ≠).(1)523=+请你推测(5)g 能否用(2)(3)(2)(3)f f g g ,,,来表示;(2)如果(1)中获得了一个结论,请你推测能否将其推广.解:(1)由3332332255(3)(2)(3)(2)22221a a a a a a a a a a f g g f -----+--+-+=+=··, 又55(5)2a a g --=,因此(5)(3)(2)(3)(2)g f g g f =+.(2)由(5)(3)(2)(3)(2)g f g g f =+,即(23)(3)(2)(3)(2)g f g g f +=+, 于是推测()()()()()g x y f x g y g x f y +=+.证明:因为()2x x a a f x -+=,()2x xa a g x --=(大前提).所以()()2x y x y a a g x y +-+-+=,()2y y a a g y --=,()2y ya a f y -+=,(小前提及结论)所以()()()()()()22222x x y y x x y y x y x y a a a a a a a a a a f x g y g x f y g x y ----+-++--+-+=+==+··.22.若不等式111123124an n n +++>+++L 对一切正整数n 都成立,求正整数a 的最大值,并证明结论.解:当1n =时,11111123124a ++>+++,即262424a>, 所以26a <.而a 是正整数,所以取25a =,下面用数学归纳法证明:11125123124n n n +++>+++L . (1)当1n =时,已证;(2)假设当n k =时,不等式成立,即11125123124k k k +++>+++L . 则当1n k =+时,有111(1)1(1)23(1)1k k k +++++++++L 111111112313233341k k k k k k k =++++++-+++++++L 251122432343(1)k k k ⎡⎤>++-⎢⎥+++⎣⎦. 因为2116(1)2323491883(1)k k k k k k ++=>+++++, 所以2116(1)2323491883(1)k k k k k k ++=>+++++, 所以112032343(1)k k k +->+++. 所以当1n k =+时不等式也成立. 由(1)(2)知,对一切正整数n ,都有11125123124n n n +++>+++L , 所以a 的最大值等于25.。
上海华东师范大学附属枫泾中学高中数学选修2-2第一章《推理与证明》测试题(有答案解析)
一、选择题1.某个命题与正整数n 有关,如果当()*,n k k N =∈ 时命题成立,那么可推得当1n k =+时命题也成立. 现已知当n=8时该命题不成立,那么可推得 ( )A .当n=7时该命题不成立B .当n=7时该命题成立C .当n=9时该命题不成立D .当n=9时该命题成立2.用反证法证明“若x y <,则33x y <”时,假设内容应是( ) A .33x y =B .33x y >C .33x y =或33x y >D .33x y =或33x y <3.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确4.设a R ∈,则三个数2,2,23a a a a +++( ) A .都大于13B .都小于13C .至少有一个不大于13D .至少有一个不小于135.命题“若,x y >则()()()()332222x y x y x yx xy y -+=--+”的证明过程:“要证明()()()()332222x y x y x y x xy y -+=--+, 即证()()()()()3322.x y x y x y x y x xy y -+=-+-+因为,x y >即证()()3322x y x y x xy y +=+-+,即证33322223,x y x x y xy x y xy y +=-++-+ 即证3333,x y x y +=+因为上式成立,故原等式成立应用了( ) A .分析法B .综合法C .综合法与分析法结合使用D .演绎法6.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .47.用数学归纳法证明“l+2+3+…+n 3=632n n +,n ∈N*”,则当n=k+1时,应当在n=k 时对应的等式左边加上( ) A .k 3+1 B .(k 3+1)+(k 3+2)+…+(k+1)3C .(k+1)3D .63(1)(1)2k k +++8.我们把平面几何里相似的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就称它们是相似体,给出下面的几何体:①两个球体;②两个长方体;③两个正四面体;④两个正三棱柱;⑤两个正四棱锥,则一定是相似体的个数是( ) A .4 B .2 C .3 D .19.数列0,75-,135,6317-,…的一个通项公式是( ) A .()312111n n n +--+ B .()32111nn n --+C .()312111n n n ---- D .()32111nn n ---10.根据给出的数塔猜测12345697⨯+( )19211⨯+= 1293111⨯+= 123941111⨯+=12349511111⨯+= 1234596111111⨯+=…A .1111111B .1111110C .1111112D .111111311.请观察这些数的排列规律,数字1位置在第一行第一列表示为(1,1),数字14位置在第四行第三列表示为(4,3),根据特点推算出数字2019的位置A .(45,44)B .(45,43)C .(45,42)D .该数不会出现 12.下面推理过程中使用了类比推理方法,其中推理正确的是( )A .平面内的三条直线,若,则.类比推出:空间中的三条直线,若,则 B .平面内的三条直线,若,则.类比推出:空间中的三条向量,若,则C .在平面内,若两个正三角形的边长的比为,则它们的面积比为.类比推出:在空间中,若两个正四面体的棱长的比为,则它们的体积比为D .若,则复数.类比推理:“若,则”二、填空题13.在xOy 平面上,将双曲线的一支221916x y -=(0)x >及其渐近线43y x =和直线0y =、4y =围成的封闭图形记为D ,如图中阴影部分,记D 绕y 轴旋转一周所得的几何体为Ω,过(0,)y (04)y ≤≤作Ω的水平截面,计算截面面积,利用祖暅原理得出Ω体积为________14.如图是一个三角形数阵,满足第n 行首尾两数均为n ,(),A i j 表示第()2i i ≥行第j 个数,则()100,2A 的值为__________.15.甲、乙、丙三人中只有一人做了好事,他们各自都说了一句话,而且其中只有一句真话.甲说:是乙做的.乙说:不是我做的.丙说:不是我做的.则做好事的是__________.(填甲、乙、丙中的一个)16.在平面内,点,,P A B 三点共线的充要条件是:对于平面内任一点O ,有且只有一对实数,x y ,满足向量关系式OP xOA yOB =+,且1x y +=.类比以上结论,可得到在空间中,,,,P A B C 四点共面的充要条件是:对于平面内任一点O ,有且只有一对实数,,x y z 满足向量关系式__________.17.把一数列依次按第一个括号内一个数,第二个括号内两个数,第三个括号内三个数,第四个括号内一个数,……循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第100个括号内的数为_________.18.已知结论“1a ,*2R a ∈,且121a a +=,则12114a a +≥;若1a 、2a 、*3R a ∈,且1231a a a ++=,则1239111a a a ++≥”,请猜想若1a 、2a 、…、*R n a ∈,且121n a a a +++=,则12111na a a +++≥__________. 19.观察下列等式: (1)24sin sin 033ππ+= (2)2468sin sin sin sin 05555ππππ+++= (3)2468sinsin sin sin 7777ππππ+++1012sin sin 077ππ++= …… …… …… …… …… ……由以上规律推测,第n 个等式为:__________.20.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn=nm”类比得到“•=•”;②“(m+n )t=mt+nt”类比得到“(+)•=•+•”; ③“t≠0,mt=nt ⇒m=n”类比得到“≠0,•=•⇒=”; ④“|m•n|=|m|•|n|”类比得到“|•|=||•||”.以上类比得到的正确结论的序号是 _________ (写出所有正确结论的序号).三、解答题21.设数列{}n a 的前n 项和为n S ,对任意*n ∈N 都有2132n n S n a =+. (1)求数列{}n a 的通项公式;(2)记*4()n n b a n N =+∈*121232()3nn n N b b b ++<+∈ 22.已知函数()2231x f x x -=+.(1)计算()()13,4,3f f f ⎛⎫ ⎪⎝⎭及14f ⎛⎫⎪⎝⎭的值; (2)由(1)的结果猜想一个普遍的结论,并加以证明;(3)求值:()()()111122015232015f f f f f f ⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.23.已知()()()2012211+=+-+-nx a a x a x ()()1++-∈nn a x n *N .(1)求0a 及12n n S a a a =+++;(2)试比较n S 与223n n -的大小,并用数学归纳法证明.24.在数列{}n a ,{}n b 中,12a =,14b =,且n a ,n b ,1n a +成等差数列,n b ,1n a +,1n b +成等比数列(*n N ∈).(1)求2a ,3a ,4a 及2b ,3b ,4b ;(2)根据计算结果,猜想{}n a ,{}n b 的通项公式,并用数学归纳法证明. 25.设等差数列的公差,且,记(1)用分别表示,并猜想;(2)用数学归纳法证明你的猜想.26.若,x y 都是正实数,且2x y +>,求证:12x y +<或12yx+<中至少有一个成立.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:本题考查的知识点是数学归纳法,由归纳法的性质,我们由P (n )对n=k 成立,则它对n=k+1也成立,由此类推,对n >k 的任意整数均成立,结合逆否命题同真同假的原理,当P (n )对n=k 不成立时,则它对n=k-1也不成立,由此类推,对n <k 的任意正整数均不成立,由此不难得到答案.详解:由题意可知,原命题成立则逆否命题成立, P (n )对n=8不成立,P (n )对n=7也不成立, 否则n=7时成立,由已知推得n=8也成立. 与当n=7时该命题不成立矛盾 故选:A .点睛:当P (n )对n=k 成立,则它对n=k+1也成立,由此类推,对n >k 的任意整数均成立;结合逆否命题同真同假的原理,当P (n )对n=k 不成立时,则它对n=k-1也不成立,由此类推,对n <k 的任意正整数均不成立.2.C【解析】试题分析:∵用反证法证明命题时,应先假设命题的否定成立, 而“33x y <”的否定为:“33x y ≥”,故选C . 考点:反证法与放缩法.3.A解析:A 【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为()0'0f x =时,0x 是()f x 的极值点,而对于函数()3f x x =,()'00f =,所以0是函数()3f x x =的极值点.”中,大前提:()0'0f x =时,f x '()在0x 两侧的符号如果不相反,则0x 不是()f x 的极值点,故错误,故导致错误的原因是:大前提错误, 故选:A .点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题4.D解析:D 【解析】分析:由题意结合反证法即可确定题中的结论. 详解:不妨假设2,2,23a a a a +++都小于13, 由不等式的性质可知:()()()22231a a a a +++++<,事实上:()()()2223aa a a +++++245a a =++ ()2211a =++≥,与假设矛盾,故假设不成立,即2,2,23a a a a +++至少有一个不小于13. 本题选择D 选项.点睛:本题主要考查不等式的性质,反证法及其应用等知识,意在考查学生的转化能力和计算求解能力.5.A解析:A分析:由题意结合分析法的定义可知题中的证明方法应用了分析法. 详解:题中的证明方法为执果索因,这是典型的分析法, 即原等式成立应用了分析法. 本题选择A 选项.点睛:本题主要考查分析法的特征及其应用,意在考查学生的转化能力和知识应用能力.6.C解析:C 【详解】分析:根据题意,利用类比推理的概念逐一判定,即可得到结论.详解:由题意,对于①中,根据复数的表示和复数的几何意义,可知“若复数12,z z ,则1212z z z z +≤+”是正确的;对于②中,根据平面与空间的类比推理可得:“在半径为R 的球内接长方体中,正方体的体积最大”是正确的;对于③中,由球的体积公式为343V R π=,其表面积公式为24S R π=,所以V S '=,所以是正确的;对于④中,如在极坐标系中,点(1,0),(1,)2C D π,此时CD 的中点坐标为(,)24π,不满足“极坐标系中两点1122(,),(,)C D ρθρθ的中点坐标为1212(,)22ρρθθ++”,所以不正确,综上,正确命题的个数为三个,故选C .点睛:本题主要考查了命题的真假判定,以及类比推理的应用,其中熟记类比推理的概念和应用,以及命题的真假判定是解答的关键,着重考查了分析问题和解答问题,以及推理与论证能力.7.B解析:B 【解析】分析:当项数从n k =到1n k =+时,等式左边变化的项可利用两个式子相减得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学推理与证明测试题及答案高二数学推理与证明苏教版【本讲教育信息】一. 教学内容:推理与证明二. 本周教学目标:1. 结合已经学过的数学实例和生活实例,了解合情推理,能利用归纳和类比等方法进行简单的推理,体会并认识合情推理在数学中的作用。
2. 结合已经学过的数学实例和生活实例,了解演绎推理的重要性,掌握演绎推理的模式,并能运用它们进行一些简单的推理。
3. 了解直接证明的两种基本方法分析法与综合法;了解间接证明的一种基本方法反证法。
三. 本周知识要点:(一)合情推理与演绎推理1. 归纳推理与类比推理(1)已知数列的通项公式,记,试通过计算的值,推测出的值。
(2)若数列为等差数列,且,则。
现已知数列为等比数列,且,类比以上结论,可得到什么结论?你能说明结论的正确性吗?【学生讨论:】(学生讨论结果预测如下)(1)由此猜想,(2)结论:证明:设等比数列的公比为,则,所以所以如(1)是从个别事实中推演出一般结论,像这样的推理通常称为归纳推理。
如(2)是根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理。
说明:(1)归纳推理是由部分到整体,从特殊到一般的推理。
通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。
(2)归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质。
②从已知的相同性质中推出一个明确表述的一般命题(猜想)。
(3)类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。
类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。
(4)类比推理的一般步骤:①找出两类事物之间的相似性或者一致性。
②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)。
2. 演绎推理现在冰雪覆盖的南极大陆,地质学家说它们曾在赤道附近,是从热带飘移到现在的位置的,为什么呢?原来在它们的地底下,有着丰富的煤矿,煤矿中的树叶表明它们是阔叶树。
从繁茂的阔叶树可以推知当时有温暖湿润的气候。
所以南极大陆曾经在温湿的热带。
被人们称为世界屋脊的西藏高原上,一座座高山高入云天,巍然屹立。
西藏高原南端的喜马拉雅山横空出世,雄视世界。
珠穆朗玛峰是世界第一高峰,登上珠峰顶,一览群山小。
谁能想到,喜马拉雅山所在的地方,曾经是一片汪洋,高耸的山峰的前身,竟然是深不可测的大海。
地质学家是怎么得出这个结论的呢?科学家们在喜马拉雅山区考察时,曾经发现高山的地层中有许多鱼类、贝类的化石。
还发现了鱼龙的化石。
地质学家们推断说,鱼类贝类生活在海洋里,在喜马拉雅山上发现它们的化石,说明喜马拉雅山曾经是海洋。
科学家们研究喜马拉雅变迁所使用的方法,就是一种名叫演绎推理的方法。
1. 演绎推理:从一般性的原理出发,推出某个特殊情况下的结论的推理方法。
2. 演绎推理的一般模式分析喜马拉雅山所在的地方,曾经是一片汪洋的推理过程:鱼类、贝类、鱼龙,都是海洋生物,它们世世代代生活在海洋里……大前提在喜马拉雅山上发现它们的化石……小前提喜马拉雅山曾经是海洋……结论M-P(M是P)常用格式:S-M(S是M)S-P(S是P)三段论:(1)大前提……已知的一般原理(2)小前提……所研究的特殊情况(3)结论……根据一般原理,对特殊情况作出的判断用集合论的观点分析:若集合M中的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P。
练习:分析下面几个推理是否正确,说明为什么?(1)因为指数函数是增函数,(2)因为无理数是无限小数而是指数函数而是无限小数所以是增函数所以是无理数(3)因为无理数是无限小数,而(=0.333……)是无限小数,所以是无理数说明:在应用“三段论”进行推理的过程中,大前提、小前提或推理形式之一错误,都可能导致结论错误。
比较:合情推理与演绎推理的区别与联系从推理形式上看,归纳是由部分到整体、个体到一般的推理;类比推理是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理。
从推理所得的结论来看,合情推理的结论不一定正确,有待于进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确。
人们在认识世界的过程中,需要通过观察、实验等获取经验;也需要辨别它们的真伪,或将积累的知识加工、整理,使之条理化,系统化,合情推理和演绎推理分别在这两个环节中扮演着重要的角色。
就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程,但数学结论、证明思路等的发现,主要靠合情推理。
因此,我们不仅要学会证明,也要学会猜想。
(二)直接证明与间接证明1. 综合法与分析法(1)综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理证明,最后推导出所要证明的结论成立,这种证明方法叫做综合法又叫顺推证法。
它的基本思路是“由因导果”,即从“已知”得“可知”,再逐步推向未知的方法。
(2)分析法我们从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件,这种证明方法叫分析法,它的特点是:从未知看需知,再逐步靠近已知。
2. 间接证明反证法一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法。
(三)数学归纳法用数学归纳法证明一个与正整数有关的命题的步骤:(1)证明:当n取第一个值时结论正确;(2)假设当n=k(k ,且k )时结论正确,证明当n=k+1时结论也正确。
由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。
数学归纳法被用来证明与自然数有关的命题:递推基础不可少,归纳假设要用到,结论写明莫忘掉。
【典型例题】例1. 如图所示,在锐角三角形ABC中,ADBC,BEAC,D,E为垂足,求证:AB的中点M到D,E的距离相等。
证明:(1)因为有一个内角为直角的三角形是直角三角形,…………大前提在△ABD中,ADBC,ADB=90,………………………小前提所以△ABD是直角三角形。
……………………………………结论同理,△AEB也是直角三角形(2)因为直角三角形斜边上的中线等于斜边的一半,…………………大前提而M是Rt△ABD斜边AB的中点,DM是斜边上的中线,………小前提所以DM=,……………………………………………………结论同理,EM=。
所以DM=EM例2. 已知,求证:。
证法一(综合法):证法二(分析法):,为了证明,只需证明,即,即,即,即.成立,成立例3:证明:不能为同一等差数列的三项。
证明:假设、、为同一等差数列的三项,则存在整数m,n满足= +md ① = +nd ②① n-② m得:n-m= (n-m)两边平方得:3n2+5m2-2 mn=2(n-m)2左边为无理数,右边为有理数,且有理数无理数所以,假设不正确。
即、、不能为同一等差数列的三项例4. 通过计算可得下列等式:将以上各式分别相加得:即:类比上述求法:请你求出的值。
解:将以上各式分别相加得:所以:例5.自然状态下鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响,用表示某鱼群在第年年初的总量,,且>0。
不考虑其它因素,设在第年内鱼群的繁殖量及捕捞量都与成正比,死亡量与成正比,这些比例系数依次为正常数。
(Ⅰ)求与的关系式;(Ⅱ)猜测:当且仅当,满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)解:(I)从第n年初到第n+1年初,鱼群的繁殖量为axn,被捕捞量为bxn,死亡量为(II)若每年年初鱼群总量保持不变,则xn恒等于x1,n ,从而由(*)式得因为x10,所以ab。
猜测:当且仅当ab,且时,每年年初鱼群的总量保持不变。
【模拟试题】1. 如果数列是等差数列,则A. B.C. D.2. 下面使用类比推理正确的是A. “若,则”类推出“若,则”B. “若”类推出“ ”C. “若” 类推出“ (c0)”D. “ ” 类推出“ ”3. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为A. 大前提错误B. 小前提错误C. 推理形式错误D. 非以上错误4. 设,,nN,则A. B. -C. D. -5. 在十进制中,那么在5进制中数码2019折合成十进制为A. 29B. 254C. 602D. 20196. 函数的图像与直线相切,则=A. B. C. D. 17. 下面的四个不等式:①;②;③;④。
其中不成立的有A. 1个B. 2个C. 3个D. 4个8. 类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:。
若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为。
9. 从中,可得到一般规律为(用数学表达式表示)10. 函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是。
11. 在△ABC中,,判断△ABC的形状12. △ABC三边长的倒数成等差数列,求证:。
13. 在各项为正的数列中,数列的前n项和满足(1)求;(2)由(1)猜想数列的通项公式;(3)求【试题答案】1. B2. C3. C4. D5. B6. B7. A8. .9.10. f(2.5)f(1)f(3.5)11. ABC是直角三角形;因为sinA=据正、余弦定理得:(b+c)(a2-b2-c2)=0;又因为a,b,c为ABC的三边,所以b+c 0所以a2=b2+c2即ABC为直角三角形。
12. 证明:=为△ABC三边,13. (1);要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。
在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。
(2);要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。
在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。