【土力学系列】第3章 土的渗透性和渗流.ppt

合集下载

土力学课件(3土的渗透性与渗流)详解

土力学课件(3土的渗透性与渗流)详解

管内减少水量=流经试样水量
-adh=kAh/Ldt 分离变量
积分
k=2.3
aL
At2
t1 lg
h1 h2
k=
aL
A t2
t1 ln
h1 h2
3、影响渗透系数的主要因素 (1)土的粒度成分
v 土粒愈粗、大小愈均匀、形状愈圆滑,渗透系数愈大
v 细粒含量愈多,土的渗透性愈小,
(2)土的密实度 土的密实度增大,孔隙比降低,土的渗透性也减小 土愈密实渗透系数愈小
(3)土的饱和度 土的饱和度愈低,渗透系数愈小
(4)土的结构 扰动土样与击实土样,土的渗透性比同一密度 原状土样的小
(5)水的温度(水的动力粘滞系数) 水温愈高,水的动力粘滞系数愈小 土的渗透系数则愈大
k20 kT T 20
(6)土的构造
T、20分别为T℃和20℃时水的动 力粘滞系数,可查表
水平方向的h>垂直方向v
n
qx q1x q2x qnx qix i1
达西定律
qx kxiH
平均渗透系数
q1x k1 qx q2x k2
q3x k3
H1 H2 H H3
n
qix k1iH 1 k 2iH 2 k n iH n
i 1
整个土层与层面平行的渗透系数
k x
1 H
n
kiH i
i1
(2)垂直渗透系数
H
隧道开挖时,地下 水向隧道内流动
在水位差作用下,水透过土体孔隙的现象称为渗透
渗透
在水位(头)差作用下,水透过土体孔隙的现象
渗透性
土体具有被液体透过的性质
土的渗流 土的变形 土的强度
相互关联 相互影响

3土的渗透性及渗流-PPT精品文档

3土的渗透性及渗流-PPT精品文档

水的动力粘滞系数η 饱和度(含气量) —对k影响很大,封闭气泡
§3 土的渗透性及渗流 §3.2土的渗透性 3.2.3渗透试验及渗透系数
4. 渗透系数k的经验确定方法 (自学教材p70~ p71)
5. 成层土的等效渗透系数 水平渗流
条件:
ii i h L
1
2 z
Δh x
q q x ix
pA w
Δh
A
pB w
h1 zA 0
B L
基准面 水力坡降:
i h L
h2
0
zB
p h z 总水头: w
A点总水头:
B点总水头:
h1 z A
w
pA
h2 z B
w
pB
h h h 1 2
§3 土的渗透性及渗流 §3.2 土的渗透性
3.2.2 层流渗透定律
§3 土的渗透性及渗流 §3.2土的渗透性 3.2.3渗透试验及渗透系数
1.室内渗透试验测定渗透系数
常水头试验 条件 已知 测定 算式 取值 适用
Δh=const
变水头试验
Δh变化 a,A,L Δh,t
Δh aL k ln 1 A (t t1) Δ 2 h 2
Δh,A,L
Q, t
k QL AΔ ht
重复试验后,取均值 粗粒土
不同时段试验,取均值
粘性土
§3 土的渗透性及渗流 §3.2土的渗透性 3.2.3渗透试验及渗透系数
2.现场测定渗透系数 方法同《地下水动力学》略
3.影响渗透系数的主要因素
k f (土 粒 特 性 、 流 体 特 性 )
粒径大小及级配 土的密实度 土的结构 土的构造

土力学渗流专题教育课件

土力学渗流专题教育课件

dh h1
h
Q 土样 L A
▪成果整顿: 选择几组Δh1, Δh2, t ,计算相应旳k,取平均值
t=t1
t t+dt
t=t2
h2
水头 测管
开关
a
§3.2土旳渗透性与渗透规律--渗透系数旳测定
• 野外测定措施-抽水试验和注水试验法
试验措施: 理论根据:
抽水量Q
A=2πrh i=dh/dr
Q Aki 2rh k dh
k1 0.01m / day k 2 1m / day k 3 100m / day
kx
kiHi 33.67m / day H
按层厚加权平均,由较大值控制
H
kz
0.03m / day Hi
ki
倒数按层厚加权平均,由较小值控制
第三章 土旳渗透性和渗流问题
§3.1 概述√
§3.2 土旳渗透性与渗透规律 √
kx
2h x2
kz
2h z 2
0
2h 2h 0
x2 z2
φ∝ h:势函数
与渗透系数无关
2 2
等价于水头
x2 z2 0
Laplace方程
§3.3平面渗流与流网 --平面渗流旳基本方程及求解
1. 基本方程 流线描述
z
ψ+dψ
ψ
dq
x
2 2 x2 z2 0
-dx vz dz
vx
(x,z)
i
h L
qx qmx
H Hm
等效渗透系数:
qx=vxH=kxiH Σqmx=ΣkmimHm
1
kx H kmHm
1
2 Δh
x
q1x

河海大学土力学3-第三章.ppt

河海大学土力学3-第三章.ppt
水 2.0 力 坡 降 1.5 1.0 0.5 0 0 0.5 1.0 1.5 2.0 2.5 流速 (m/h) 达西定律 适用范围
v d 10 Re
Re<5时层流 Re >200时紊流 200> Re >5时为过渡区
达西定律的适用范围
§3.2 土的渗流性与渗透规律
两种特例
在纯砾以上的很粗的粗粒土如堆 石体中,在水力坡降较大时,达 西定律不再适用,此时:
• 结构
水的性质
在宏观构造上,天然沉积层状 粘性土层,扁平状粘土颗粒常 呈水平排列,常使得k水平﹥k垂直 在微观结构上,当孔隙比相同 时,凝聚结构将比分散结构具 有更大的透水性
渗透系数的影响因素
§3.2性质 • 粒径大小及级配 • 孔隙比 • 矿物成分
§3.2 土的渗流性与渗透规律
已知条件 : h h
vi v
i

H
H
i
h z v kz k1 k2 k3 H1
x
达西定律: vi = ki (Δhi / Hi )
v = kz (Δh / H )
等效条件:
hi vH kz v iH ki
i
H2
H3
H
h
vH kz
渗流中的水头与水力坡降
§3.2 土的渗流性与渗透规律
总水头:单位重量水体所具有的能量
h z
u w

v
2
2g
位置水头Z:水体的位置势能(任选基准面)
压力水头u/w:水体的压力势能(u孔隙水压力) 流速水头V2/(2g):水体的动能(对渗流多处于层流≈0)
渗流的总水头: h
水的性质
岭石>伊里石>蒙脱石 ;当粘土 中含有可交换的钠离子越多时, 其渗透性将越低 塑性指数Ip综合反映土的颗粒大 小和矿物成份,常是渗透系数的 参数

土力学系列土的渗透性和渗流PPT课件

土力学系列土的渗透性和渗流PPT课件
第23页/共47页
流入和流出相等:
adh= k(h/L)Adt
即 dt aLdh kAh
整理并积分得
由此求得渗透系数:
第24页/共47页
2021/6/9
变水头渗透试验装置
第25页/共47页
3.现场抽水试验
▪ 粗颗粒土或成层的土,室内试验时不易取得原状土样; ▪ 小土样不能反映天然土层的结构性。
第3页/共47页
图3-1 渗流模型
渗流模型基本假定:
➢ 不考虑渗流路径的迂回曲折,只分析它的主要流向; ➢ 认为孔隙和土粒所占的空间之总和均为渗流所充满。
第4页/共47页
➢ 同一过水断面,渗流模型的流量等于真实渗流的流量; ➢ 任一界面上,渗流模型的压力与真实渗流的压力相等; ➢ 相同体积内,渗流模型所受阻力与真实渗流相等。
图3-1 渗流模型
第5页/共47页
1.渗流速度 断面面积为A,通过的渗透流流量为q,则平均流速为:
v=q/A
真实渗流仅发生在孔隙面积A内,因此真实流速为:
于是
v0=q/A
v/v0=A/A=n
“模型的平均流速要小于真实流速”
第6页/共47页
2.水头
能 量 是 用 水 头 来 表 示 , Bernoulli’s Equation:
图3-12 流土示意图
第42页/共47页
▪ 比较和区别: ✓ 流砂现象发生在土体表面渗流逸出处,不发生于土体内部 ✓ 管涌可以发生在渗流逸出处,也可能发生在土体内部
第43页/共47页
例3-4:
(1)由渗透力计算公式得j=wi 而 故
第44页/共47页
(2) 由 可得
即 发生流土现象。

第45页/共47页

土的渗透性及渗流PPT课件

土的渗透性及渗流PPT课件

t1
k A Δh1 Δ h
dt aL dh kA h
k

aL A ( t2
l nΔ h1 t1) Δ h2
k

2.3
aL A(t2 -
t1
lgΔh1 ) Δh2
结果整理:
(3-12b)
选择几组Δh1, Δh2, t ,计算相应的k,取平均值
t t+ Δt
§3 土的渗透性及渗 §3.2土的渗透性 流3.2.3渗透试验及渗透系 数1.室内渗透试验测定渗透系数
q kxiH
k x

1 H
kiHi
垂直渗流情形
q1 q2 ... q;
Δh hi;H Hi
H1, H2 ...;k1,k 2 ...
h v kzi kz H
kz

H

Hi ki
§3 土的渗透性及渗 §3.2土的渗透性 3.2.3渗透试验及渗透系
流5. 成层土的等效渗透系数
§3.1 概述
渗透性研究主要有以下三方面:
渗流量问题 渗透破坏问题 渗流控制问题
防渗墙
防渗墙射水法施工
防渗墙
§3.2 土的渗透性
3.2.1 渗流基本概

一.渗流中的水头
(伯努力定理1738)
板桩墙
基坑
透水层 不透水层
A B
L
§3.2 土的渗透性 3.2.1 渗流基本概念
总水头-单位质量水体所具有的能量
H3
不透水层
§3 土的渗透性及渗 §3.2土的渗透性 3.2.3渗透试验及渗透系
流5. 成层土的等效渗透系数

竖直渗流:
条件: qi q

土力学-第三章土的渗透性及渗流

土力学-第三章土的渗透性及渗流

aL
At2
t1 lg
h1 h2
-adh=kAh/Ldt
分离变量 积分
k=
aL
At2
t1 ln
h1 h2
天津城市建设学院土木系岩土教研系数
常用的有现场井孔抽水试验或井孔注水试验。 对于均质粗粒土层,现场测出的k值比室内试验得出的值要准确
第3章 土的渗透性及渗流
3.1 概述 3.2 土的渗透性 3.3 土中二维渗流及流网(了解) 3.4 渗透破坏与控制
土力学
天津城市建设学院土木系岩土教研室
第3章 土的渗透性及渗流
3.1 概述 3.2 土的渗透性 3.3 土中二维渗流及流网(了解) 3.4 渗透破坏与控制
土力学
天津城市建设学院土木系岩土教研室
渗流作用于单位土体的力
j

J AL

whA
AL

i
w
说明:渗透力j是渗流对单位土体的作用力,是一种体积力,其大 小与水力坡降成正比,作用方向与渗流方向一致,单位为kN/m3
天津城市建设学院土木系岩土教研室
3.4.2 流砂或流土现象
土力学
渗透力的存在,将使土体内部受力发生变化,这种变化对 土体稳定性有显著的影响
(3)土的饱和度
土中封闭气体阻塞渗流通道,使土的渗透系数降低。封闭气体含量愈多, 土的渗透性愈小。
(4)土的结构
细粒土在天然状态下具有复杂的结构,一旦扰动,原有的过水通道的形态、 大小及其分布都改变,k值就不同。扰动与击实土样的k值比原始的要小
(5)水的温度
粘滞系数随水温发生明显的变化。水温愈高,水的粘滞系数愈小,土的渗 透系数则愈大。
h v2 p z

第三章土的渗透性及渗流ppt课件

第三章土的渗透性及渗流ppt课件

2024年8月1日星期四2时44分59秒
34
3.渗透破坏与控制
J = rwi
(1)流砂 当向上的渗流力与土的浮重
度相等时,粒间有效应力σ'为零, 颗粒群同时发生悬浮、移动的现象 称为流砂现象(流土现象)。
J= r' rwicr= r'
r' icr= rw
i ≥ icr 流砂
2024年8月1日星期四2时44分59秒
水在土中渗透有规律可以遵循吗?
如何定性和定量化评价水在土中的渗透性的大小?如何来描述?
2024年8月1日星期四2时44分58秒
12
一、渗流模型
实际土体中的渗流仅是流 经土粒间的孔隙,由于土体 孔隙的形状、大小及分布极 为复杂,导致渗流水质点的 运动轨迹很不规则。
简化
(1)不考虑渗流路径的迂
回曲折,只分析它的主—“截弯取直” 要流向 ;
9;
由这些特征可进一步知道,流网中等势
线越密的部位,水力梯度越大,流线越
密的部位流速越大。
板桩墙围堰的流网图
2024年8月1日星期四2时44分59秒
28
流网的绘制
(1) 按一定比例绘出结构物和土层的剖面图;
(2) 判定边界条件:透水面(aa' ,bb' )等势线 ; abc 和不透水面 为流线;
27
3.流网的特征与绘制
流网的特征
对于各向同性渗流介质,流网具有下列特征:
(1) 流线与等势线互相正交;
(2) 流线与等势线构成的各个网格的长宽比为常数,当长宽比为
1 时,网格为曲线正方形,这也是最常见的一种流网;
(3) 相邻等势线之间的水头损失相等;Δh= ΔH
(4) 各个流槽的渗流量相等。 q=Nf Δq

3第三章-土的渗透性及渗流

3第三章-土的渗透性及渗流


粗颗粒土一般在完全干燥和洒水饱和状态下最容易密 实。主要因为在潮湿状态下,土中的水为毛细水,毛 细水压增加了粒间阻力。

பைடு நூலகம்
土的击实试验
在试验室内通过击实试验研究土的压实性。击实试验有 轻型和重型两种。
护筒
导筒 击实筒
轻型击实试验适用于粒径小于 击锤 5mm的土,击实筒容积为947cm3, 击锤质量为2.5kg。把制备成一定 含水量的土料分三层装入击实筒, 每层土料用击锤均匀锤击25下, 击锤落高为30.5cm
渗透力
J T wi
负号:渗透力方向与土骨架对水流阻力方向相反
三 土的渗透性——渗透力
根据力的平衡条件
wh1 A w LA cos wh2 A TLA 0
cos ( z1 z2 ) / L h1 H1 z1; h 2 H2 z 2
三 土的渗透性——渗透力 渗流过程
若水自上而下渗流:渗透力方向与土粒所受重力方向相同 ——将增加土粒之间的压力 若水自下而上渗流:渗透力方向与土粒所受重力方向相反 ——将减小土粒之间的压力 此时,若渗透力大小等于土的浮重度时,则土粒之间压力为零,理论上 土粒处于悬浮状态,将随水流一起流动,形成流砂现象
三 土的渗透性
三 土的渗透性——基本概念
1 基本概念
土:具有连续孔隙介质,水在重力作用下可以穿过土中孔隙而流动 渗透或渗流——在水头差作用下,水透过土孔隙流动的现象
渗透性——土体可被水透过的性能
土坝、水闸等挡水后,上游水将通过坝体或地基渗到下游——发生渗透
三 土的渗透性——基本概念
渗透引起两个方面问题:
i>icr:土粒处于流砂状态
i= icr:土粒处于临界状态

土力学第3章.土的渗透性与渗流

土力学第3章.土的渗透性与渗流

3.3.2 不同土渗透系数的范围
不同类的土之间的渗透系数相差极大,一般的范围见表3-2。 应记住:粘土,k ≤ 10-6cm/s;粉土,10-6 < k ≤ 10-4cm/s;砂,
10-3 < k ≤ 10-1cm/s。 卡萨格兰德(CasagrandeБайду номын сангаас1939)建议的渗透系数的三个重要
界限值为 1.0、10-4 和 10-9cm/s,在工程应用中很有意义。一般认为: 1.0cm/s是土中渗流的层流和紊流的界限;10-4cm/s 是排水良好与排 水不良之界限,也是对应于发生管涌的敏感范围;10-9 cm/s大体上 是土的渗透系数的下限。
2. 颗粒的尺寸及级配:渗流通道(即土中孔隙通道)越细,
对水流的阻力就越大,而土中孔隙通道的粗细与颗粒的尺寸和级配
有关,特别是与其中较细的颗粒的尺寸有关。故颗粒越大,则孔隙
通道越大, k 也越大。
对于均匀砂土,当有效粒径 d10 = 0.103mm 时,Hazen (1911)建议了
以下经验公式: 系数。
试验中,量水管水位、水力坡降、流 速和流量都是随时间变化的函数。 根据达西定律,在任意时刻 t 的单 位面积流量:
q v ki k h L
图3-6 变水头渗透试验原理图
计算公式推导
在 dt 时段中从管中流出试样的水量: 在 dt 时段中从管中流入试样的水量:
V1
k
h L
Adt
V2 a dh
图3-4渗流流速与水力坡降的两种非 线性关系
对于硬粘土,为简化,以直线的延长线与横坐标的交点 i0 作为起始梯度
v k2 i i0
(a) 卵石中渗流 (b) 硬粘土中渗流
3.3 土的渗透系数

3第三章土的渗透性及渗流-课件-文档资料

3第三章土的渗透性及渗流-课件-文档资料
vi v q ki
A
k: 反映土的透水性能的比例系数,称为渗透系数 物理意义:水力坡降i=1时的渗流速度 单位:mm/s, cm/s, m/s, m/day
3.2 土的渗透性
适用条件
层流(线性流)
v
——大部分砂土,粉土;疏松的粘土 及砂性较重的粘性土
vcr
o如堆
dh h1
t=t1
t t+dt
• 连续性条件:dVe=dVo
h
t=t2
-adh =k (h/L)Adt
tdtaL h2 dh
0
kAh1 h
dt aLdh kA h
t aL ln h1 kA h2
Q 土样 L
h2
水头 测管
开关
k aL ln h1
A
At h2
选择几组量测结果 ,计算相应的k,取平均值
土粒愈粗、大小愈均匀、形状 愈圆滑,K值愈大。
因由粗颗粒形成的大孔隙可被 细颗粒充填,随细粒含量增加, K值急剧下降。
水的性质
3.2 土的渗透性
土的性质
• 土的粒度成分 • 孔隙比 • 土的饱和度 • 结构和构造
是单位土体中孔隙体积的直接 度量
土愈密实,孔隙比愈小,K值 愈小。
水的性质
3.2 土的渗透性
室内试验方法1—常水头试验法
▪试验装置:如图
▪试验条件: Δh,A,L=const
h 土样
L
▪量测变量:渗水量Q,t
▪结果整理:
A
单位时间渗水量 q=Q/t=Av
达西定律
v=ki
k QL
Q
Aht
水力梯度 i=Δh/L
适用土类:透水性较大的砂性土
选择几组量测结果 ,取平均值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故渗透系数为
k QL hAt
2021/3/12
图3-7 常水头渗透试验
2021/3/12
常水头渗透试验装置
2.变水头渗透试验
▪ 土样的截面积A,高度为L ▪ 储水管截面积为a ▪ 试验开始储水管水头为h0 ▪ 经过时间t后降为h1 ▪ 时间dt内水头降低dh,水量为:
dQ=-adh 另外
dQ=kiAdt=k(h/L)Adt
图3-8 变水头渗透试验
流入和流出相等:
adh= k(h/L)Adt
即 dt aLdh kAh
整理并积分得
由此求得渗透系数:
2021/3/12
变水头渗透试验装置
3.现场抽水试验
▪ 粗颗粒土或成层的土,室内试验时不易取得原状土样; ▪ 小土样不能反映天然土层的结构性。
现场方法:野外注水试验和野外抽水试验等
第3章 土的渗透性和渗流
3.1 概述
“土中的水并非处于静止不变的状态,而是运动着的”
▪ 土的渗透性问题 ▪ 土的固结问题 ▪ 土的毛细现象 ▪ 冻结时水分移动
主要内容:土的渗透性和渗透规律 研究对象:饱和土体
2021/3/12
河滩路堤下的渗流
2021/3/12
3.2 土的渗透性和渗流定律
3.2.1 渗透性
得 h2=10cm h1=hh2=4010=30cm
2021/3/12
图3-4 Darcy渗透定律
例题3-2 两种土,土样1位于土样2的上部, 长度都是20cm,总水头损失40cm,土样l渗 透系数为0.03cm/s,土样2水力坡降为0.5。 求土样2的渗透系数和土样1的水力坡降。
[解] 土样1的水力坡降 i1=h1/L1=1.5 水在土样1和土样2中渗流时的速度相同:
(1) 沿流线方向取一截面积为A,长为L的土样。 (2) 讨论作用在土样上的力
(a)水பைடு நூலகம்整体
(b)土骨架 (c)水
水土整体
a.流入面的静水压力whlA b.流出面的静水压力wh2A c.土样重力在流线上的分量Fw=satLA d.土样底面所受的反力p
其中:h2=hl+Lh
(a)水土整体
(b)土骨架 (c)水
图3-9 抽水试验
▪ 抽水量为Q ▪ 观测孔距离分别为rl和r2 ,水位高度h1和h2 ▪ r处水面高度h,过水断面A=2rh
图3-9 抽水试验
即: 图3-9 抽水试验
两边积分: 故渗透系数为
分析表3-1渗透系数值: 表3-1 渗透系数参考值
可见:不同土类的渗透系数值差异很大 渗透系数的测定十分重要
v=k1i1=k2i2 得 k2=0.09cm/s。
图3-4 Darcy渗透定律
2021/3/12
3.2.3 Darcy定律适用范围
达西定律只适用于层流
适用于中砂、细砂、粉砂等 粗砂、砾石、卵石等粗颗粒土不适合。
图3-5 水力坡度与渗流速度关系
粘土不完全符合达西定律,需进行修正 ➢ 粘土中存在起始水头梯度i0 ➢ 修正后:v=k(i-i0) ➢ 图3-6绘出砂土与粘土的比较。
图3-6 砂土和粘土的渗透规律
关于起始水力坡降是否存在也有不同观点。
3.2.4 渗透系数的测定
1.常水头渗透试验
▪ 截面积为A,流径L; ▪ 压力水头维持不变; ▪ 试验开始时,水自上而下流经土样; ▪ 待渗流稳走后,测得水量Q; ▪ 同时读得a、b两点水头差h。
则得 Q qt kiAt k h At L
土颗粒

(3) 力的平衡条件:
考察土样中的水在垂直方向的受力平衡:
则:
whlA+wLAwh2A =J=jLA
2021/3/12
图3-4 Darcy渗透定律
例题3-2 两种土,土样1位于土样2的上部, 长度都是20cm,总水头损失40cm,土样l渗 透系数为0.03cm/s,土样2水力坡降为0.5。 求土样2的渗透系数和土样1的水力坡降。
[解] 水头损失之和等于总水头损失: h1+h2=h=40cm
根据水力坡降的概念,有 i2=h2/L2=0.5, 而L2=20cm
土孔隙中的自由水在重力作用下发生运动的现象。
图3-1 渗流模型
渗流模型基本假定:
➢ 不考虑渗流路径的迂回曲折,只分析它的主要流向; ➢ 认为孔隙和土粒所占的空间之总和均为渗流所充满。
➢ 同一过水断面,渗流模型的流量等于真实渗流的流量; ➢ 任一界面上,渗流模型的压力与真实渗流的压力相等; ➢ 相同体积内,渗流模型所受阻力与真实渗流相等。
4. 影响土的渗透性的因素
(1)土的粒度成分及矿物成分。 (2)结合水膜厚度。 (3)土的结构构造。 (4)水的粘滞度。
3.3 渗流破坏和控制
3.3.1 渗透力的计算 概念:水流作用在单位体积土体中土颗粒上的力。
“它是体积力”
(a)水土整体
(b)土骨架 (c)水
图3-10 土颗粒和水受力示意图
计算原理:
土骨架 a.土骨架所受浮重力Fw=LA b.总渗透力J=jLA,方向向下 c.土样底面所受的反力p
(a)水土整体 (b)土骨架 (c)水 图3-10 土颗粒和水受力示意图

a.孔隙水重量和土粒浮力反力之和Fw=wLA b.流入面和流出面的静水压力whlA和wh2A c.土粒对水的阻力J ,大小与渗透力相同,方向相反
3.水头差(A点与B点)
4.水力坡降 水力梯度:单位流程总水头的变化
注意:
水头的大小随选取的基准面不同而不同;
最关心的不是水头而是水头差; 水在土中的渗流是从高水头向低水头流动。
例3-1
求:(1)截面的位置水头、压力水头和总水头 (2)截面之间的水头损失和水力梯度
解:
总水头变化:
5 a
25 a
b
c 5
b c
水力梯度:
5 a
25 a
b
c 5
b c
3.2.2 Darcy渗透定律
▪ 法国学者达西(Darcy),砂土实验结果(1852-1855) ▪ 渗透速度与水头梯度成正比:
v=ki

q=kiA
式中:v—渗透速度(m/s); i—水头梯度; k—渗透系数(m/s); q—渗透流量(m3/s) A—截面积。
图3-1 渗流模型
1.渗流速度 断面面积为A,通过的渗透流流量为q,则平均流速为:
v=q/A
真实渗流仅发生在孔隙面积A内,因此真实流速为:
于是
v0=q/A
v/v0=A/A=n
“模型的平均流速要小于真实流速”
2.水头
能量是用水头来表示, Bernoulli’s Equation:
如果忽略流速的影响,则
相关文档
最新文档