单纯形法求解线性规划的步骤
线性规划问题的单纯形法求解步骤
线性规划问题的单纯形法求解步骤线性规划是一种优化问题,它的解决方法有很多种,在这里我们来介绍其中一种常用的方法——单纯形法。
我们将介绍单纯形法的求解步骤,以帮助读者更好地理解和掌握这种求解方法。
1. 建立数学模型任何一个线性规划问题的解决都需要先进行建模。
我们将问题转换成数学模型,然后使用数学方法进行求解。
线性规划问题的一般形式为:max cxs.t.Ax ≤ bx ≥ 0其中,c、x、b、A都是向量或矩阵,x≥0表示各变量都是非负数。
其中c表示目标函数,A和b表示约束条件。
2. 计算初始基可行解我们需要从初始点开始,逐步优化目标函数。
但是,在开始优化前我们需要先找到一个基可行解。
基可行解的定义是:如果所有非基变量的取值都是0,并且所有基变量的取值都是非负的,则该解被称为基可行解。
当基可行解找到后,我们就可以开始进行优化。
3. 确定进入变量在单纯形法中,每次迭代中我们都需要找到进入变量。
进入变量是指,通过操作非基变量可以使得目标函数增加的变量。
我们需要找到一个使得目标函数增加最多的非基变量,将其称为进入变量。
4. 确定离开变量在确定进入变量后,我们需要确定一个离开变量。
离开变量是指,通过操作基变量可以使得目标函数增加的变量。
我们需要找到一个离开变量,使得当进入变量增加到某个值时,该离开变量的值为0。
这样,我们就找到了一个最小的正根比率,使得通过基本变量出基到进入变量变为零而得到的新解是可行的。
5. 交换变量接下来,我们需要将已选定的进入变量和离开变量进行交换。
此时,我们将进入变量转变为基变量,离开变量转变为非基变量。
通过这种交换,我们还需要调整我们的基向量。
由于这个交换,我们将得到一个新的基可行解,并且它可以比之前的解更好。
6. 重复迭代我们需要重复上述步骤,直到我们找到最优解。
重复迭代意味着我们将不断查找新的进入变量和离开变量,并进行变量交换。
这种找到最优解的过程可能非常复杂,但是单纯形法的效率很高,通常可以在很短的时间内找到最优解。
单纯形法求解过程
单纯形法求解过程单纯形法是一种经典的线性规划求解方法,它是由乔治·达竞士等人在1947年提出的。
该方法的基本思想是,通过在单纯形空间内不断移动顶点的位置来寻找最优解。
单纯形法是目前广泛应用的线性规划求解方法之一,它求解线性规划问题可大大地简化计算过程。
单纯形法的求解过程包括以下几个步骤:1. 将线性规划问题转化为标准形式线性规划问题的标准形式为:$ \max_{x} \ \ c^T x $$s.t. \ Ax=b$$x\geq 0$其中,$x$是要求解的向量;$b$是一个常数向量;$A$是一个$m\times n$的矩阵;$c$是一个常数向量。
2. 初始化单纯形表因为单纯形法是通过移动顶点来寻找最优解的方法,因此需要初始化单纯形表。
单纯形表是将原始的约束条件表示为不等式形式时形成的。
例如,对于一个带有3个变量的线性规划问题,其单纯形表的形式如下:CB | X1 | X2 | X3 | X4 | RHS----|-----|-----|-----|-----|----0 | a11| a12| a13| 0 | b10 | a21| a22| a23| 0 | b20 | a31| a32| a33| 0 | b31 | z1 | z2 | z3 | 0 | 0其中,CB代表成本系数,X1、X2、X3、X4分别代表变量。
a11、a12、a13等代表矩阵A中的元素,b1、b2、b3代表矩阵b中的元素。
3. 选择进入变量和离开变量在单纯形表中,规定最后一列为等式右边的常数(RHS),即b。
在单纯形法的求解过程中,首先需要选择一个“进入变量”,即在单纯形表的第一行中,寻找一个系数为正的变量,使得将其加入目标函数后,目标函数值可以上升。
这里以X1为例,X1为进入变量。
接着,需要选择一个“离开变量”,即在单纯形表中,寻找一个使得添加X1变量后,约束条件不改变且取得约束条件中系数最小的一个变量离开。
程序求解 单纯形法
程序求解单纯形法
单纯形法是一种求解线性规划问题的常用方法。
它通过一系列的迭代步骤,从一个初始的基本可行解开始,逐步改进解,直到找到最优解或证明问题无最优解。
以下是使用单纯形法求解线性规划问题的一般步骤:
1. 构建初始基本可行解:选择一个初始的基本可行解,通常可以通过引入松弛变量或人工变量来构建。
2. 计算目标函数值:计算当前基本可行解下的目标函数值。
3. 检查最优性:如果当前基本可行解满足最优性条件(目标函数值最小或最大),则停止迭代,当前解即为最优解。
4. 寻找改进方向:如果当前基本可行解不满足最优性条件,则需要找到一个改进的方向。
这可以通过计算每个非基变量(即未被选入基本可行解的变量)的检验数来完成。
5. 选择进入变量:根据检验数,选择一个具有正检验数的非基变量作为进入变量。
6. 确定离开变量:为了保持基本可行解的可行性,需要选择一个离开变量。
通常选择一个具有最小比值的基变量作为离开变量。
7. 更新基本可行解:通过替换离开变量和进入变量,构建一个新的基本可行解。
8. 重复步骤 2 至步骤 7,直到找到最优解或证明问题无最优解。
需要注意的是,单纯形法的具体实现可能因问题的规模和结构而有所不同。
在实际应用中,可以使用编程语言或优化软件来实现单纯形法。
希望以上内容对你有所帮助。
如果你有具体的线性规划问题需要求解,我可以根据具体问题提供更详细的帮助。
运筹学课件1-4单纯形法计算步骤
b 21 4
9 4
3 x1 1 -1 3 4 -1 12
9 x2 3 1 9 0 1 0
0 x3 1 0 0 1 0 0
0 x4 0 1 0 -3 1 -9
θ 7 4
9/4 -
所以把x3换出为非基变量,x1为换入变量即新的基变量。
第20页
cj
CB 0 0
0 9 3
XB x3 x4 cj-zj x3 x2 cj-zj x1
cj-zj
x3 x1 x5 cj-zj
6
0 1 0
5
5/2 1/2 1
0
1 0 0
0
-1/2 1/2 -1
0
0 0 1
75 5
0
2
0
-3
0
5
x2
5
0
1
0
-1
1
第10页
cj CB 0 0 0 0 6 0 XB x3 x4 x5 b 90 75 80 105/2 75/2 5
6 x1 1 2 2
5 x2 3 1 2
9/4
-
3 9
9/4 25/4
1 0 0
25
第24页
cj CB 0 0 XB x3 x4 cj-zj b 21 4
3 x1 1 -1 3
9 x2 3 1 9
0 x3 1 0 0
0 x4 0 1 0 θ 7 4
0
9
x3
x2 cj-zj x1 x2 cj-zj
9
4
4
-1 12
0
1 0 0 1 0
1
0 0 1/4 1/4 -3
i 1
第1页
单纯形表求解线性规划问题
单纯形法计算步骤
单纯形法计算步骤引言单纯形法是一种常用的数学优化方法,主要用于求解线性规划问题。
它的基本思想是通过不断地在可行解集合内移动,逐步靠近最优解,直到找到最优解。
本文将介绍单纯形法的基本步骤,以帮助读者了解如何使用该方法解决线性规划问题。
步骤一:建立线性规划模型在使用单纯形法之前,首先需要建立线性规划模型。
线性规划模型由决策变量、目标函数和约束条件组成。
决策变量是需要在问题中决策的变量,目标函数是需要最大化或最小化的目标,约束条件是限制决策变量取值范围的条件。
步骤二:将线性规划模型转化为标准形式单纯形法只适用于标准形式的线性规划模型。
标准形式要求目标函数为最大化,并且所有的约束条件都是等式形式。
如果初始线性规划模型不符合标准形式,我们可以通过适当的代数操作将其转化为标准形式。
步骤三:构造初始单纯形表初始单纯形表是单纯形法求解线性规划问题的起点。
它由决策变量、松弛变量、人工变量、目标函数系数和约束条件组成。
初始单纯形表的构造方法如下: 1. 将决策变量的系数及其对应的松弛变量、人工变量放在单纯形表的第一行。
2. 将目标函数的系数放在单纯形表的第一列。
3. 将约束条件的系数及其对应的松弛变量、人工变量放在单纯形表的其他行。
步骤四:确定基变量和非基变量基变量是单纯形表中拥有非零系数的变量,非基变量是单纯形表中拥有零系数的变量。
基变量和非基变量的确定方法如下: 1. 将目标函数的系数列中不为零的变量作为基变量。
2. 将约束条件中非零系数列中对应的变量作为基变量。
3. 剩余的变量作为非基变量。
步骤五:计算单纯形表中的系数根据基变量和非基变量的定义,我们可以计算单纯形表中的系数。
计算方法如下: 1. 将基变量的系数列除以对应的基变量系数。
2. 将非基变量的系数列减去对应的基变量系数列乘以非基变量所在行和基变量所在行之间的系数。
步骤六:检查是否达到最优解在每次迭代过程中,都需要检查是否达到最优解。
如果单纯形表中目标函数系数列的所有值都是非负的,表示已经达到最优解;否则,需要进行下一次迭代。
单纯形法求解过程
单纯形法求解过程单纯形法是一种用于求解线性规划问题的迭代算法。
它是由美国数学家George Dantzig在1947年提出的。
单纯形法的目标是通过不断地沿着一些方向逼近最优解,最终找到使目标函数取得最大(或最小)值的最优解。
单纯形法的求解过程可以分为以下几个步骤:1.标准化问题:将线性规划问题转化为标准化形式。
标准化的目的是将原问题转化为一个等价问题,使得约束条件全部为等式,且目标函数的系数都为非负数。
2.设置初始解:选择一个初始可行解作为起始点。
起始点可以通过代入法求解出来,或者通过其他启发式算法得到。
初始可行解需要满足所有约束条件,即满足等式以及非负性约束。
3.检验最优性:计算当前解的目标函数值,并检验这个值是否是最优解。
如果当前解是最优解,算法终止;否则,进入下一步。
4.选择进入变量:从目标函数的系数中选择一个可以增大(最大化问题)或减小(最小化问题)目标函数值的变量作为进入变量。
选择进入变量的策略可以有多种,例如最大增益法或者随机选择法。
5.计算离基变量:选择一个出基变量并将其移出基变量集合。
离基变量的选择通常采用最小比率法,即选择使得约束条件最紧张的变量。
6.更新解:通过求解一个新的线性方程组来计算新的解,更新基变量集合和非基变量集合。
由于每次只有一个变量进基,一个变量出基,将保持可行解的性质。
7.转到步骤3:重复步骤3-6,直到找到最优解。
单纯形法的关键在于选择进入变量和离基变量,以及求解线性方程组。
进入变量的选择决定了算法在解空间中的方向,而离基变量的选择决定了算法沿着哪个方向逼近最优解。
在实际应用中,单纯形法往往需要进行大量的迭代计算,因此效率可能不是很高。
为了提高效率,可以采用一些改进的单纯形法,例如双线性法、内点法等。
总结起来,单纯形法是一种基于迭代的算法,通过每次选择一个进入变量和一个离基变量来逐步逼近最优解。
虽然它的计算复杂度较高,但是在实践中仍然是一种很受欢迎的求解线性规划问题的方法。
单纯形法解题步骤
三、单纯形法的解题步骤第一步:作单纯形表.)(1)把原线性规划问题化为标准形式;)(2)找出初始可行基,通常取约束方程组系数矩阵中的单位矩阵;)(3)目标函数非基化;)(4)作初始单纯形表.第二步:最优解的判定.(1) 若所有检验数都是非正数,即,则此时线性规划问题已取得最优解.(2) 若存在某个检验数是正数,即,而所对应的列向量无正分量,则线性规划问题无最优解.如果以上两条都不满足,则进行下一步.第三步:换基迭代.,并确定所在列的非基变量为进基变量.(1)找到最大正检验数,设为(2)对最大正检验数所在列实施最小比值法,确定出主元,并把主元加上小括号.主元是最大正检验数所在列,用常数项与进基变量所对应的列向量中正分量的比值最小者;替换出基变量,从而得到新的基变量.也就是主元所在(3)换基:用进基变量(4)利用矩阵的行初等变换,将主元变为1,其所在列其他元素都变为零,从此得到新的单纯形表;(5)回到第二步,继续判定最优解是否存在,然后进行新一轮换基迭代,直到问题得到解决为止.例3 求.解(1)化标准型:令,引进松弛变量,其标准型为求(2)作单纯形表:在约束方程组系数矩阵中的系数构成单位矩阵,故取为基变量,目标函数已非基化了,作初始单纯形表并“换基迭代”(见表6.8).表 6.8(3)最终结果:此时检验数均为非正数,线性规划问题取得最优解,最优解为标函数取得最优值.目性规划问题的最优解为:.原线目标函数的最优值为14,即.例4 用单纯形方法解线性规划问题.求.解此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵(1、2行,3、4列构成),取为基变量,而目标函数没有非基化.从约束方程找出,,代入目标函数, 经整理后,目标函数非基化了.作单纯形表,并进行换基迭代(见表6.9).最大检验数,由最小比值法知:为主元,对主元所在列施以行初等变换,基变量出基,非基变量进基.表 6.9目前最大检验数,其所在列没有正分量,所以该线性规划问题没有最优解.例5用单纯形方法解线性规划问题.求解此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵,取为基变量,而目标函数没有非基化.从约束方程找出,,代入目标函数,经整理得,目标函数已非基化.作单纯形表,并进行换基迭代(见表6.10).最大检验数,由最小比值法知:为主元,对主元所在列施以行初等变换,基变量出基,非基变量x2进基,先将主元化为1,然后再将主元所在列的其他元素化为零.表 6.10至此,检验数均为非正数,故得基础可行解.原问题的最优解为:.最优值为6,即.如果我们再迭代一次,将基变量出基,非基变量进基(见表6.11).表 6.11可得到另一个基础可行解,原问题的最优解为:,最优值仍为6,说明该线性规划问题有无穷多最优解,其最优解均为6.如何知道线性规划问题有无穷多最优解呢?这主要反映在单纯形表中.如果非基变量所对应的检验数为0,我们可对此列继续进行换基迭代,就可以得到另一个基础可行解.以此作下去,可得到许多基础可行解,即相对应的最优解有无穷多个.(4) 011 0。
线性规划中的单纯形法分析
线性规划中的单纯形法分析在数学和运筹学领域中,线性规划是一种优化问题的数学建模方法,通过最小化或最大化线性目标函数,同时满足一系列线性等式和不等式约束条件。
而单纯形法则是一种广泛应用于线性规划问题求解的算法,它通过迭代计算来找到最优解。
本文将对线性规划中的单纯形法进行详细分析。
一、线性规划基本概念在介绍单纯形法之前,我们需要先了解线性规划的基本概念。
线性规划包括目标函数、决策变量和约束条件三个主要部分。
目标函数是线性规划问题中待优化的目标,可以是最大化或最小化某个线性表达式。
决策变量是这个问题中需要确定的变量,它们的取值将影响到目标函数的结果。
约束条件则是对决策变量的限制条件,可以是等式或不等式。
二、单纯形法的基本原理单纯形法是由美国数学家Dantzig于1947年提出的一种求解线性规划问题的有效算法。
该算法基于以下基本原理:在每一次迭代中,通过选择合适的决策变量进行优化,使目标函数的值不断逼近最优解。
具体而言,单纯形法通过构造一个初始可行解,然后通过迭代计算找到一个更优的解。
三、单纯形法的步骤1. 构造初始可行解:根据约束条件,求解一组可行解,并将其用于下一步的迭代计算。
2. 检验最优性:计算当前解的目标函数值,判断是否满足最优性要求。
3. 选择进入变量:根据规则选择一个进入变量,即使得目标函数值增加最大的变量。
4. 选择离开变量:根据规则选择一个离开变量,即使目标函数值达到最大的变量离开。
5. 更新解的值:根据进入变量和离开变量,更新当前解的值。
6. 返回步骤2,直至达到最优解或无界。
四、单纯形法的优缺点1. 优点:a) 单纯形法适用于大多数线性规划问题,并且可以找到全局最优解。
b) 算法相对简单直观,易于理解和实现。
c) 在实践中,单纯形法已被证明是一种高效的求解方法。
2. 缺点:a) 即使是对于中等规模的问题,单纯形法的计算复杂度也很高,需要大量的迭代计算。
b) 在某些特殊情况下,单纯形法可能会陷入循环,并无法找到最优解。
管理运筹学,用单纯形法求解以下线性规划问题
管理运筹学,用单纯形法求解以下线性规划问题管理运筹学是处理决策问题的重要科学,不仅根据不同目标和条件制定策略,而且可以更有效地识别和解决问题。
有些决策问题往往是非线性复杂性,涉及多个因素和变量之间的复杂关系,因此,以线性规划模型的形式来处理这些问题被认为是最有效的方法之一。
但是,线性规划模型的求解可能会非常困难,尤其是规模较大的问题。
而单纯形法作为其中一种有效的求解方法,其有效性和灵活性,使其在管理运筹学的研究中具有重要的意义。
单纯形法是指将原始线性规划问题转换为单纯形问题,然后利用相应的单纯形算法求解该问题,以求解线性规划问题。
单纯形法最早由威廉伯恩斯特(William B.Von Neumann)提出,它是利用单纯形理论把原始线性规划问题转化为单纯形问题,然后求解单纯形问题,得到原始线性规划问题的最优解。
单纯形算法的基本步骤包括:首先,根据原始线性规划问题的约束条件,构造单纯形方程组;其次,可以以此单纯形方程组为基础,进行单纯形法的迭代;最后,根据迭代的结果来求解原始的线性规划问题。
单纯形法在管理运筹学中的应用非常广泛,它不仅可以用来求解比较复杂的线性规划问题,而且可以用来解决某些约束条件下的非线性规划问题,从而解决管理运筹学中的相关问题。
另外,单纯形法还可以在企业资源规划(ERP)等管理运筹学领域的应用中发挥重要作用。
在实际应用中,单纯形法有其优缺点。
优点主要有以下几点:首先,它是一种有效的求解线性规划问题的方法,可以用来解决比较复杂的问题;其次,求解步骤简单,可以在较短的时间里求得最优解;最后,它适用性强,也可以用来解决某些约束条件下的非线性规划问题。
然而,单纯形法也有一些缺点,比如具有结构性特征,可能不能求解一些复杂的问题;另外,在求解比较大的问题时,运算负荷较大,效率较低。
总之,单纯形法是一种求解线性规划问题的有效方法,在管理运筹学中,它具有重要的意义和应用价值,它可以有效地解决复杂的线性规划问题,也能够解决某些特定条件下的非线性规划问题。
单纯形法求解线性规划的步骤
单纯形法求解线性规划的步骤1>初始化将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示2>最优化测试如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为03>确定输入变量从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列4>确定分离变量对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行5>建立下一张表格将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步为求简单在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式:1:指定行和列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0);2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法)程序中主要的函数以及说明~SimpleMatrix();销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数bool Is_objectLine_All_Positive();其中row2为主元所在的行,col为主元所在的列,row1为要处理的行void PrintAnswer();数不合法"<<endl;}SimpleMatrix::SimpleMatrix(int row,int col){init(row,col);for(int i=0;i<rowLen;i++)cout<<"请输入矩阵中第"<<i+1<<"行的系数"<<endl; for(int j=0;j<colLen;j++)cin>>data[i][j];}?}SimpleMatrix::SimpleMatrix(int row,int col,double **M) {rowLen=row;colLen=col;init(row,col);for (int i=0;i<row;i++)for(int j=0;j<col;j++){data[i][j]=*((double*)M+col*i+j); ;}}SimpleMatrix::~SimpleMatrix(){if(colLen*rowLen != 0 ){for(int i=rowLen-1;i>=0;i--){if (data[i]!=NULL)delete[] data[i];}if (data!=NULL)delete[] data;}?}bool SimpleMatrix::Is_objectLine_All_Positive(){for(int i=0;i<colLen-1;i++)if(data[rowLen-1][i]<0)return false;return true;}bool SimpleMatrix::Is_MainCol_All_Negative(int col) {for(int i=0;i<rowLen;i++)if(data[i][col]>0)return false;return true;}bool SimpleMatrix::Is_column_all_Positive(int col){for(int i=0;i<rowLen-1;i++){return false;}return true;}int SimpleMatrix::InColumn(){int count=0;for(int i=0;i<colLen-1;i++){int temp=GetItem(rowLen-1,i);if(temp>=0){count++;}elsebreak;}double maxItem=fabs(GetItem(rowLen-1,count));int index_col;for(i=0;i<colLen-1;i++){double temp=GetItem(rowLen-1,i);if(temp<0){if(maxItem<=fabs(temp)){maxItem=fabs(temp);index_col=i;}}}return index_col;}int SimpleMatrix::DepartRow(int col){int index_row;int count=0;for(int i=0;i<rowLen;i++){if(data[i][col]<0)count++;elsebreak;}double minItem=data[count][colLen-1]/data[count][col]; index_row=count;double temp;for(i=0;i<rowLen-1;i++)temp=data[i][col];if(temp>0){temp=data[i][colLen-1]/temp;if(temp<minItem){minItem=temp;index_row=i;}}}return index_row;}void SimpleMatrix::MainItem_To_1(int row,int col){double temp=GetItem(row,col);pp#include <iostream>#include ""using namespace std;int main(){double M[4][7]={{5,3,1,1,0,0,9},{-5,6,15,0,1,0,15},{2,-1,1,0,0,-1,5},{-10,-15,-12,0,0,0,}}; SimpleMatrix Matrix(4,7,(double **)M);if(5))//判断是否存在最优解{bool p=();//判断主元列是否全部为正,确定是否已经取得最优解while(!p){int col=();//确定主元所在的行if(col))//确定线性规划的解是否为无解的{cout<<"线性规划问题是无界的,没有最优解"<<endl;exit(EXIT_FAILURE);}else{int mainRow=(col);//确定主元所在的行(mainRow,col);//将主元所在的行做变换,使主元变成1int i=0;while(i<()){if(i!=mainRow){(i,mainRow,col);//处理矩阵中其他的行,使主元列的元素为0i++;}elsei++;}}}for(int i=0;i<();i++)//输出变换以后的矩阵,判断是否正确处理{for (int j=0;j<();j++){cout<<(i,j)<<" ";}cout<<endl;}p=();}();}elsecout<<"线性规划无解"<<endl;return0;}。
简述单纯形法步骤
简述单纯形法步骤单纯形法是一种用于求解线性规划问题的常用方法,它通过不断迭代来逐步逼近最优解。
下面将以简述单纯形法步骤为标题,详细介绍单纯形法的具体步骤。
1. 构建初始单纯形表单纯形法的第一步是构建初始单纯形表。
将线性规划问题的约束条件和目标函数转化为矩阵形式,并引入松弛变量,得到初始单纯形表。
初始单纯形表由约束系数矩阵、决策变量系数矩阵、右侧常数向量以及目标函数系数矩阵组成。
2. 检验是否达到最优解在初始单纯形表中,通过计算每个基变量的单位贡献值来检验是否达到最优解。
单位贡献值等于目标函数系数与对应基变量列的乘积之和减去目标函数系数。
如果所有单位贡献值均小于等于0,则达到最优解,算法结束。
否则,进入下一步。
3. 确定入基变量和出基变量在初始单纯形表中,选择单位贡献值最小且小于0的列所对应的非基变量作为入基变量。
然后,通过计算各行的比值,选择使得比值最小的行所对应的基变量作为出基变量。
4. 更新单纯形表在确定了入基变量和出基变量后,需要对单纯形表进行更新。
首先,将出基变量所在列归一化为1,然后通过高斯消元法将其他列元素消为0,得到新的单纯形表。
5. 转至步骤2经过更新后的单纯形表还不能达到最优解,需要再次进行检验。
重复步骤2至步骤4,直到所有单位贡献值均小于等于0,达到最优解为止。
6. 解读单纯形表当单纯形法得到最优解时,可以通过解读单纯形表来获得最优解的数值。
在单纯形表的最后一行,可以得到最优解的目标函数值。
而在单纯形表的非基变量列中,可以得到各个决策变量的取值。
单纯形法是一种高效的线性规划求解算法,通过不断迭代来逐步逼近最优解。
它的基本思想是通过选择合适的入基变量和出基变量,来更新单纯形表,使得目标函数值不断减小,最终达到最优解。
在实际应用中,单纯形法被广泛应用于生产计划、资源分配、运输问题等领域。
总结一下单纯形法的步骤:首先,构建初始单纯形表;然后,检验是否达到最优解;接着,确定入基变量和出基变量;然后,更新单纯形表;最后,转至步骤2,直到达到最优解。
图解法和单纯形法求解线性规划问题
在单纯形法的求解过程中,有下列重要指标:
(1)每一个基本可行解的检验向量 ,根据检验向量可以确定所求得的基本可行解是否为最优解。如果不是最优又可以通过检验向量确定合适的换入变量。
图解法和单纯形法求解以下线性规划问题
1.1
只含两个变量的线性规划问题,可以通过在平面上作图的方法求解,步骤如下:
(1)以变量x1为横坐标轴,x2为纵坐标轴,适当选取单位坐标长度建立平面坐标直角坐标系。由变量的非负性约束性可知,满足该约束条件的解均在第一象限内。
(2)图示约束条件,找出可行域(所有约束条件共同构成的图形)。
单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。
单纯形法的一般解题步骤可归纳如下:①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。②若基本可行解不存在,即约束条件有矛盾,则问题无解。③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。⑤若迭代过程中发现问题的目标函数值无界,则终止迭代。
1.3
使用单纯形法求解线性规划时,首先要化问题为标准形式
所谓标准形式是指下列形式:
当实际模型非标准形式时,可以通过以下变换化为标准形式:
①当目标函数为 时,可令Z′=-Z,而将其写成为
求得最终解时,再求逆变换Z=-Z′即可。
单纯形法的计算方法
第4章 单纯形法的计算方法单纯形法求解线性规划的思路: 一般线性规划问题具有线性方程组的变量数大于方程个数, 这时有不定的解。
但可以从线性方程组中找出一个个的单纯形, 每一个单纯形可以求得一组解, 然后再判断该解使目标函数值是增大还是变小, 决定下一步选择的单纯形。
这就是迭代, 直到目标函数实现最大值或最小值为止。
4.1 初始基可行解的确定为了确定初始基可行解, 要首先找出初始可行基, 其方法如下。
(1)第一种情况:若线性规划问题 max z =nj j j=1c x ∑1,1,2,...,0,1,2,...nij j i j ja xb i mx j n =⎧==⎪⎨⎪≥=⎩∑从Pj ( j = 1 , 2 , ⋯ , n )中一般能直接观察到存在一个初始可行基121(,,...,)n B P P P 0 0⎛⎫ ⎪0 1 0 ⎪== ⎪ ⎪0 0 1⎝⎭(2)第二种情况:对所有约束条件是“ ≤”形式的不等式, 可以利用化为标准型的方法, 在每个约束条件的左端加上一个松弛变量。
经过整理, 重新对j x 及ij a ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n )进行编号, 则可得下列方程组11,111122,1122,1112.........,,...,0m m n n m m n n m m m m nn n nn x a x a x b x a x a x b x ax a x b x x x +++++++++=⎧⎪+++=⎪⎪⎨⎪+++=⎪⎪≥⎩显然得到一个m ×m 单位矩阵121(,,...,)n B P P P 0 0⎛⎫ ⎪0 1 0 ⎪== ⎪ ⎪0 0 1⎝⎭ 以B 作为可行基。
将上面方程组的每个等式移项得111,111222,112,11.........m m n nm m n nm m m m m mn n x b a x a x x b a x a x x b a x a x ++++++=---⎧⎪=---⎪⎨ ⎪⎪=---⎩令12...0,m m n x x x ++====由上式得(1,2,...,)i i x b i m == 又因i b ≥0, 所以得到一个初始基可行解12()12()(,,...,,0,...,0)(,,...,,0,...,0)Tm n m Tm n m X x x x b b b --= =个个(3)第三种情况:对所有约束条件是“ ≥”形式的不等式及等式约束情况, 若不存在单位矩阵时, 就采用人造基方法。
实验2 单纯形法求解线性规划
实验2 单纯形法求解线性规划一、实验目的1. 理解线性规划的概念和基本形式。
2. 熟悉单纯形法的步骤和实现过程。
3. 学会使用Matlab编程求解线性规划问题。
二、实验原理线性规划是一种优化问题,其目标是在一组约束条件下,使目标函数(通常是一个线性函数)最大或最小化。
线性规划具有以下一般形式:$$\begin{aligned}&\underset{x_{1},x_{2},\cdots,x_{n}}{\max }\quadc_{1}x_{1}+c_{2}x_{2}+\cdots+c_{n}x_{n}\\&\text{s.t.}\quad a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1n}x_{n}\leq b_{1}\\&\quad \quad \quad \,\,\,\quada_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2n}x_{n}\leq b_{2}\\&\quad \quad \quad\quad \quad \quad \vdots \\&\quad \quad \quad \,\,\,\quada_{m1}x_{1}+a_{m2}x_{2}+\cdots+a_{mn}x_{n}\leq b_{m}\\&\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad x_{1},x_{2},\cdots,x_{n}\geq 0\end{aligned}$$其中,$x_{1},x_{2},\cdots,x_{n}$表示决策变量;$c_{1},c_{2},\cdots,c_{n}$是目标函数的系数;$a_{i1},a_{i2},\cdots,a_{in}$($i$=1,2,...,m)是限制条件的系数,$b_{1},b_{2},\cdots,b_{m}$是限制条件右侧的常数。
线性规划(单纯形法)
不难看出x 可作为初始基变量,列单纯形表计算。 不难看出 4、x5可作为初始基变量,列单纯形表计算。
单纯形法的进一步讨论- 单纯形法的进一步讨论-人工变量法
Page 17
故人为添加两个单位向量,得到人工变量单纯形法数学模型: 故人为添加两个单位向量,得到人工变量单纯形法数学模型: max Z = 3x1 − x2 − x3 + 0x4 + 0x5-Mx6 − Mx7
x1 − 2x2 + x3 + x4 = 11 − 4x + x + 2x − x + x = 10 1 2 3 5 6 − 2x1 + x3 + x7 = 1 x j ≥ 0, j = 1,2,L,7
确定换出变量。根据下式计算并选择θ 选最小的θ对应基 ② 确定换出变量。根据下式计算并选择 ,选最小的 对应基
单纯形法的计算步骤
③
Page 6
用换入变量xk替换基变量中的换出变量,得到一个新的基。 用换入变量 替换基变量中的换出变量,得到一个新的基。 替换基变量中的换出变量 对应新的基可以找出一个新的基可行解, 对应新的基可以找出一个新的基可行解,并相应地可以画出 一个新的单纯形表。 一个新的单纯形表。
4 4 2
1 0 0 0
0 0 1 0
0 -2 1/2 -3/2
1/4 1/2 -1/8 -1/8
0 1 0 0
线性规划单纯形法
线性规划单纯形法线性规划是一种优化问题求解方法,它通过建立数学模型,来寻找使目标函数达到最优的决策变量取值。
线性规划的主要特点是目标函数和约束条件都是线性的。
单纯形法是线性规划中最常用的求解方法之一,它是由美国数学家Dantzig在1947年提出的。
单纯形法通过迭代计算的方式,逐步优化目标函数的值,直到找到最优解为止。
单纯形法的步骤如下:1. 建立线性规划模型:确定决策变量、目标函数和约束条件,并确定它们的线性关系。
2. 初始可行解:选择一个初始可行解,使得所有的约束条件都得到满足。
一般来说,可以通过将约束条件全部转化为等式约束,从而求解出一个初始可行解。
3. 判断最优解:计算当前可行解对应的目标函数值,判断是否是最优解。
如果是最优解,则终止算法;如果不是最优解,则进入下一步。
4. 寻找进入变量:选择一个进入变量,即目标函数可以通过增加该变量的值而增大。
5. 寻找离开变量:选择一个离开变量,即通过增加进入变量来保持其他约束条件满足的同时,尽可能减小目标函数的值。
6. 更新可行解:根据进入变量和离开变量的取值更新可行解,并转化为下一个迭代的初始可行解。
7. 重复以上步骤,直到找到最优解为止。
单纯形法的优势在于它可以在有限的迭代次数内找到最优解。
然而,单纯形法的缺点也是显著的,它在处理大规模问题时计算复杂度很高,可能需要大量的计算时间。
总结来说,线性规划单纯形法是一种求解线性规划问题的有效方法。
通过迭代计算,单纯形法不断改进可行解,最终找到使目标函数达到最优的决策变量取值。
虽然单纯形法在处理大规模问题时存在一定的局限性,但在许多实际问题中仍然得到广泛应用。
线性规划 第四讲 单纯形法的计算步骤
amj
检验数 j
上页 下页 返回
基本步骤
1、标准化(构造初始可行基); 2、列出初始单纯形表; 3、最优性检验:判断是否最优解
根据最大检验数原则:if σj≦0 是:计算结束;否:转入下一步 4、从一个基可行解转到相邻的另一个基可行解,然 后转3。要保证目标函数值比原来更优。 (1)进基 (2)出基
am,k
j
检验数 if k max j j 0
k
xk进基
上页 下页 返回
单纯形表
单纯形表结构
c j
2
CX
B
B
b
x1
c1 x1 b1
cm xm bm
z c z
j
j0
主元,主元变成1, 主元所在列其他数变
成0
1 C0 0 0
x2 xmxn min
a1,k
c1 x1 b1
—
A
cm xm bm
24/6 5/1
j
检验数
上页 下页 返回
单纯形表
单纯形表结构
c j
2
CX
B
B
b
x1
c1 x1 b1
cm xm bm
j cj zj
基可行解:
X (b1, , bm , 0, , 0)
1 C0
x2
A
0 0
xm xn min
— 24/6 5/1
根据最大检验数原则:if σj≦0 是:计算结束;否:转入下一步 4、从一个基可行解转到相邻的另一个基可行解,然 后转3。要保证目标函数值比原来更优。 (1)进基 (2)出基
上页 下页 返回
线性规划与单纯形法-计算步骤
max Z 3x1 5x2
x1
s.t.
3x1
x1 0
2x2 2 x 2 x2 0
4 12 18
第一次迭代 x2为入基, x4为出基 第二次迭代 x1为入基, x5为出基
X * (2, 6, 2, 0, 0) Z* 36
2.4 单纯形法计算步骤
3、确定进基变量(迭代的第一步)
确定进基变量对应于图解法的确定运动方向
x1
x3
8
3x1
2x2 4x2
x4
12
x5 36
3x1 5x2 0x3 0x4 0x5 Z
j
从目标函数-Z+3x1+5 x2 +0x3 +0x4+0x5 =0可知: 因为x2的系数大于x1的系数,即生产单位乙产品比甲产品利 润更高一些,故应优先多生产乙产品。即x2为进基
5 2
x4
0 x5
Z 30
④
x3
2 3
x4
1 3
x5
4 ①
x2
x1
1 2 x4
2 3 x4
1 3 x5
6 ② 4 ③
3x1 0x2
0 x3
5 2
x4
0 x5
Z 30 ④
④-3×③
x3
2 3
x4
1 3
x5
4 ①
x2
1 2
x4
6 ②
x1
2 3
x4
1 3
x5
4 ③
0
x1
STOP 包括三个步骤: 1、确定进基变量(进基) 2、确定出基变量(出基) 3、对新基可行解的求解(高斯消元)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单纯形法求解线性规划的步骤单纯形法求解线性规划的步骤1>初始化将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示2>最优化测试如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为03>确定输入变量从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列4>确定分离变量对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行5>建立下一张表格将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步为求简单在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式:1:指定行和列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0);2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法)程序中主要的函数以及说明~SimpleMatrix();销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数bool Is_objectLine_All_Positive(); //判断目标行是否全部为非负数,最后一列不作考虑这个函数用来判断是否已经存在最优解bool Is_MainCol_All_Negative(int col);//判断主元列是否全部为负数或零这个函数用来判断线性规划是否是无解的bool Is_column_all_Positive(int col); //判断col列中是否全部为正(不包括目标行)用来判断线性规划是否存在最优解,因为如果最后一列如果有负数的化,就无解了,算法终止int InColumn(); //确定输入变量用来判断主元所在的列int DepartRow(int col); //确定分离变量(寻找主元)用来确定主元所在的行void MainItem_To_1(int row,int col); //将主元所在的行做处理,使主元变为1void SubMatrixLine(int row1,int row2,intcol);//将矩阵的其他行做处理,矩阵的两行相减这个函数是在主元行已经做处理以后调用,目的是是矩阵的其他行主元列的元素变成0.其中row2为主元所在的行,col为主元所在的列,row1为要处理的行void PrintAnswer(); //输出矩阵的最优解int GetRows(); //返回矩阵的行数int GetCols(); //返回矩阵的列数double GetItem(int row,int col); //返回矩阵第row行,第col列的元素源代码//SimpleMatrix.h#ifndef SIMPLEMATRIX_H_#define SIMPLEMATRIX_H_class SimpleMatrix{public:SimpleMatrix(int row=0,int col=0);SimpleMatrix(int row,int col,double **M);~SimpleMatrix();bool Is_objectLine_All_Positive(); //判断目标行是否全部为非负数,最后一列不作考虑 bool Is_MainCol_All_Negative(int col);//判断主元列是否全部为负数或零bool Is_column_all_Positive(int col); //判断col列中是否全部为正(不包括目标行)int InColumn(); //确定输入变量int DepartRow(int col); //确定分离变量(寻找主元)void MainItem_To_1(int row,int col); //将主元所在的行做处理,使主元变为1void SubMatrixLine(int row1,int row2,int col);//将矩阵的其他行做处理,矩阵的两行相减 void PrintAnswer(); //输出矩阵的最优解int GetRows(); //返回矩阵的行数int GetCols(); //返回矩阵的列数double GetItem(int row,int col); //返回矩阵第row行,第col列的元素private:int rowLen; //标准矩阵的行数int colLen; //标准矩阵的列数double **data; //一个二维数组,指向标准矩阵的数据成员void init(int rows,int cols); //动态分配一个rows行,cols列的二维数组};#end if//SimpleMatrix.cpp#include <iostream>#include <cmath>#include "SimpleMatrix.h"using namespace std;void SimpleMatrix::init(int rows,int cols){if(rows>0&&cols>0){rowLen=rows;colLen=cols;data = new double *[rows];for (int i=0;i<rows;i++){data[i]=new double[cols];}}elsecout<<"矩阵的行.列数不合法"<<endl;}SimpleMatrix::SimpleMatrix(int row,int col){init(row,col);for(int i=0;i<rowLen;i++){cout<<"请输入矩阵中第"<<i+1<<"行的系数"<<endl;for(int j=0;j<colLen;j++)cin>>data[i][j];}}SimpleMatrix::SimpleMatrix(int row,int col,double **M) {rowLen=row;colLen=col;init(row,col);for (int i=0;i<row;i++)for(int j=0;j<col;j++){data[i][j]=*((double*)M+col*i+j); ;}}SimpleMatrix::~SimpleMatrix(){if(colLen*rowLen != 0 ){for(int i=rowLen-1;i>=0;i--){if (data[i]!=NULL)delete[] data[i];}if (data!=NULL)delete[] data;}}bool SimpleMatrix::Is_objectLine_All_Positive() {for(int i=0;i<colLen-1;i++)if(data[rowLen-1][i]<0)return false;return true;}bool SimpleMatrix::Is_MainCol_All_Negative(int col) {for(int i=0;i<rowLen;i++)if(data[i][col]>0)return false;return true;}bool SimpleMatrix::Is_column_all_Positive(int col) {for(int i=0;i<rowLen-1;i++){if(data[i][col-1]<0)return false;}return true;}int SimpleMatrix::InColumn(){int count=0;for(int i=0;i<colLen-1;i++){int temp=GetItem(rowLen-1,i);if(temp>=0){count++;}elsebreak;}double maxItem=fabs(GetItem(rowLen-1,count));int index_col;for(i=0;i<colLen-1;i++){double temp=GetItem(rowLen-1,i);if(temp<0){if(maxItem<=fabs(temp)){maxItem=fabs(temp);index_col=i;}}}return index_col;}int SimpleMatrix::DepartRow(int col){int index_row;int count=0;for(int i=0;i<rowLen;i++){if(data[i][col]<0)count++;elsebreak;}double minItem=data[count][colLen-1]/data[count][col]; index_row=count;double temp;for(i=0;i<rowLen-1;i++){temp=data[i][col];if(temp>0){temp=data[i][colLen-1]/temp;if(temp<minItem){minItem=temp;index_row=i;}}}return index_row;}void SimpleMatrix::MainItem_To_1(int row,int col){double temp=GetItem(row,col);//double temp=data[row-1][col-1];for (int i=0;i<colLen;i++){data[row][i]/=temp;}}void SimpleMatrix::SubMatrixLine(int row1,int row2,int col) {double temp=GetItem(row1,col);//double temp=data[row1-1][col-1];double*tempLine=new double[colLen];for(int i=0;i<colLen;i++){tempLine[i]=data[row2][i];}for(i=0;i<colLen;i++){data[row1][i]=data[row1][i]-temp*tempLine[i];}delete[]tempLine;}int SimpleMatrix::GetRows(){return rowLen;}int SimpleMatrix::GetCols(){return colLen;}double SimpleMatrix::GetItem(int row,int col){return data[row][col];}void SimpleMatrix::PrintAnswer(){//先确定单位矩阵中1的位置for (int i=0;i<GetRows();i++)for (int j=0;j<GetRows();j++){if(1==data[i][j]){int index_col=j;cout<<"x"<<index_col+1<<"="<<data[i][colLen-1]<<" ";}}cout<<endl;cout<<"取得最优解,并且最优值为"<<data[rowLen-1][colLen-1]; }//单纯形法.cpp#include <iostream>#include "SimpleMatrix.h"using namespace std;int main(){double M[4][7]={{5,3,1,1,0,0,9},{-5,6,15,0,1,0,15},{2,-1,1,0,0,-1,5},{-10,-15,-12,0,0,0,}};SimpleMatrix Matrix(4,7,(double **)M);if(Matrix.Is_column_all_Positive(5)) //判断是否存在最优解{bool p=Matrix.Is_objectLine_All_Positive(); //判断主元列是否全部为正,确定是否已经取得最优解while(!p){int col=Matrix.InColumn(); //确定主元所在的行if(Matrix.Is_MainCol_All_Negative(col)) //确定线性规划的解是否为无解的{cout<<"线性规划问题是无界的,没有最优解"<<endl;exit(EXIT_FAILURE);}else{int mainRow=Matrix.DepartRow(col); //确定主元所在的行Matrix.MainItem_To_1(mainRow,col); //将主元所在的行做变换,使主元变成1 int i=0;while(i<Matrix.GetRows()){if(i!=mainRow){Matrix.SubMatrixLine(i,mainRow,col); //处理矩阵中其他的行,使主元列的元素为0 i++;}else{i++;}}}for(int i=0;i<Matrix.GetRows();i++) //输出变换以后的矩阵,判断是否正确处理{for (int j=0;j<Matrix.GetCols();j++){cout<<Matrix.GetItem(i,j)<<" ";}cout<<endl;}p=Matrix.Is_objectLine_All_Positive();}Matrix.PrintAnswer();}elsecout<<"线性规划无解"<<endl;return0;}。