七年级数学上册 4.1《几何图形》课件 (新版)新人教版
人教版七年级数学上册第四章几何图形初步PPT课件全套(优质课件)
![人教版七年级数学上册第四章几何图形初步PPT课件全套(优质课件)](https://img.taocdn.com/s3/m/9c4a7beada38376baf1fae54.png)
正方体的展开图有11种基本情况:
一四一型
二三一型
二二二型
三三型
练习:下列图形中可以作为一个正方体的展 开图的是( C ).
(A)
(B)
(C)
(D)
探究常见的立体图形的展开图
我们把从正面看到的图形 叫做主视图,从左面看到的图形 叫左视图,从上面看到的图形叫 做俯视图. 主视图,左视图,俯视 图合称三视图.
例1:分别从正面、左面、上面观察这个 长方体,看一看各能得到什么平面图形?
从正面看
从左面看
从上面看
例2:分别从正面、左面、上面看圆柱、圆 锥、球,各能得到什么平面图形?
)
D、直线m不经过B点
B 答案:C A
l
m
5、如图,射线PA与PB是同一条射线,则符合题意 的图为( ) A A A B A 答案:C B A
P
P
P
B P C
B P B D
6、如图所示的直线、射线、线段能相交的是( C C D
)
D
A B B A
A B A
A
B
D
C C D D
B
C
答案:C
讨论
排队
1、多姿多彩的图形是由点、线、面、体 组成。点是构成图形的基本元素。 2、点无大小,线有直线和曲线,面有平 的面和曲的面。 3、点动成线,线动成面,面动成体。 4、体由面围成,面与面相交成线,线与 线相交成点。
作 业
1.结合实际生活,分别举出点动成线、 线动成面、面动成体的例子。
2.作业本:课本第125~126页习题 4.1第7~12题.
人教版七年级数学上册4.1几何图形 (共83张PPT)
![人教版七年级数学上册4.1几何图形 (共83张PPT)](https://img.taocdn.com/s3/m/82372ec57f1922791688e84c.png)
平面图形和立体图形都是 几何 图形。
圆锥
棱锥
圆柱
人民英雄纪念碑
棱柱
正方体
12
长 方 体
12
12
四棱柱
18
15
9
ቤተ መጻሕፍቲ ባይዱ
三棱柱
五棱柱
六棱柱
6
8
10
12
三棱锥
四棱锥
五棱锥
六棱锥
正方体
长方体
棱柱
棱锥
圆柱
圆锥
球
平 面
立 体
为什么把它们归为一类?
长方体
圆柱
棱柱
球体
圆锥
棱锥
正方体
几何图形的各部分都不在同一平内,这 样的几何图形叫做立体图形.
几何图形是由点、线、面、体组成的
点
其中点是最基本的图形。
点 动 成 线
点动成—— 线 线动成—— 面 面动成—— 体
线与线相交成点 面与面相交成线 体是由面组成
注意:平面没有边界
几何图形中,像直线、角、三角形、圆等, 它们上面的各点都在同一个平面内,这样 的图形叫平面图形。 几何图形中,像长方体、圆柱、棱锥等, 它们上面的各点不都在同一个平面内,这 样的图形叫立体图形。
立方体 圆柱体 圆锥体 球体 长方体
六 六 一两 一一 一 个 立方体,长方体等,围成他们的面都是 个 定义: 个个 个个 个 平 平 平面的一部分,这样的几何体叫做多面体。 曲平 曲平 曲 面 面 圆柱,圆锥,球都是旋转体。 面面 面面 面
思考:面与面相交得到什么?
面与面相交的地方形成线
面与面相交的地方形成线
大家观察下面的图形 :
纸盒
长方体
正方形、长方形 线段、点
2017年秋季学期新版新人教版七年级数学上学期4.1、几何图形课件29
![2017年秋季学期新版新人教版七年级数学上学期4.1、几何图形课件29](https://img.taocdn.com/s3/m/8b11f3313169a4517723a36c.png)
作 品 欣 赏
小结:
1.常见的立体图形有那些?
常见的平面图形有那些?
立体图形和平面图形统称为: 空间图形 2.生活中很多图案都由简单的几何图 形构成,我们也有能力设计美观、有意 义的图案.
万里长城—中国
天坛祈年殿—中国
国家体育馆—中国
金字塔—埃及
泰姬陵—印度
圆形斗兽场—意大利
白宫—美国
巴台农神庙—希腊
大英博物馆—英国
地球—我们的家
《数学》(人教版.七年级 上册)
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
锥体
棱锥
常见的平面图形
三角形
长方形
五边形
圆形
正方形
六边形
找一找:有哪些熟悉的平面图形?
用 “
”构造图形
好朋友
吊环
落日余晖
眼镜
七巧板 (Tangram) 起源于宋代,是我国 人民创造的益智游戏, 流传到世界上不少国 家 . 由一个正方形分 割的七块几何形状可 以拼出千变万化的几 何图形,形似各种自 然事物.近代围绕七 巧板展开的科学研究 证明七巧板的设计和 人工智能、拓扑学之 间有密切的联系.
长方体 正方体
圆柱体
球
圆锥体
常见的立体图形
长方体
正方体
圆锥
球 圆柱
下列实物与给出的哪个几何体相似?Fra bibliotek棱柱和棱锥
三棱柱
六棱柱
三棱锥
常见的立体图形不仅有圆柱、圆锥、正方体、长方体、 球,还有直棱柱、棱锥等。像金字塔给人以棱锥的形 象,帐篷、螺母给人以棱柱的形象。
思考:棱柱、棱锥、圆柱、圆锥它们各有哪些特征?
新人教版七年级数学上册《几何图形初步》精品课件(共37张PPT)
![新人教版七年级数学上册《几何图形初步》精品课件(共37张PPT)](https://img.taocdn.com/s3/m/158a474359eef8c75ebfb34c.png)
四棱柱 五棱柱
六棱柱
圆锥
锥体
三棱锥
棱锥
四棱锥 五棱锥
六棱锥
认识多面体
若围成立体图形的面是平的面,这样的立体图形又称为多面体
著名的欧拉公式:
多面体可以按面数V来+分F类-E,=如2下列图形中:
V:点、 E:棱、 F:面
四面体
六面体
八面体
正视图 从正面看
• 观察 • 立体图
三视图
左视图 从左面看 俯视图 从上面看
D
O
使DB=2CD,延长DC到A,使AC= 1 CB, C
若AB=10,则CD= ______
2
A CD
B
用一个大写字母表示点,1.当角的顶点处只有一个角时,可用表示 用二个大写字母表示线,顶 2.在点顶的点一处个加大上写弧字线母注表上示数; 字; 用三个大写字母表示角,3.在顶点处加上弧线注上希腊字母.
练 习: ⑺在以O为端点的两条射线上,分别取线段OA 、OB二等分OA 、OB,分别得 中点M、N,连结A、B并连结M、N。
• 2.如图:用所给的字母表示图中分别有直线_____,射线
B
______________,线段____
A
DE
CD 、CE、AB
AC DC E
3.填空:⑴如果两条直线有一个公共点,那么这两
A
B
C
o
1
ABC
o
1
1周角=3600 1平角=1800 小于平角的角按角的大小分类
▪ 锐角:小于直角的角; ▪ 直角:平角的一半(900); ▪ 钝角:大于直角且小于平角的角.
角度的转化: 1°=60′ 1′=60 〞 1°=3600 〞
角度的加减: 1.同种形式相加减; 2.度加(减)度;分加(减)分; 秒加(减)秒 3.超60进一;减一成60
七年级数学上册(人教版)课件-第四章 几何图形初步
![七年级数学上册(人教版)课件-第四章 几何图形初步](https://img.taocdn.com/s3/m/96e58fb228ea81c758f578cd.png)
第四章几何图形初步4.1.1立体图形与平面图形(一)1.通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;2.能由实物形状想象出几何图形,由几何图形想象出实物形状;3.能识别一些简单几何体,正确区分平面图形与立体图形.重点:识别简单的几何体;难点:从具体事物中抽象出几何图形.一、温故知新同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……包含着形态各异的图形.图形的世界是丰富多彩的!那就让我们走进图形的世界去看看吧.二、自主学习1.几何图形(1)仔细观察图4.1-1,让同学们感受丰富多彩的图形世界;(2)出示一个长方体的纸盒,让同学们观察图4.1-2,回答问题:从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的.我们把这些图形称为几何图形.注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、质量、材料等则是其他学科所关注的.2.立体图形观察P115,并出示实物(如茶叶盒、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?长方体、正方体、球、圆柱、圆锥等,它们各部分不都在同一平面内,它们是立体图形.想一想:生活中还有哪些物体的形状类似于这些立体图形呢?思考:课本P115图4.1-4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来.3.平面图形平面图形的概念:线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形.思考:课本P116图4.1-5的图中包含哪些简单的平面图形?请再举出一些平面图形的例子.长方形、圆、正方形、三角形……思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系?立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形.1.课本P116练习.1.现实物体――→ 看外形几何图形⎩⎪⎨⎪⎧平面图形立体图形2.平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形.4.1.1 立体图形与平面图形(二)1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果;2.能直观认识立体图形的展开图,掌握研究立体图形的方法;3.通过观察和动手操作,经历和体验平面图形和立体图形相互转换的过程,培养动手操作能力,初步建立空间观念,发展几何直觉.能画出从正面、左面、上面看正方体及简单组合体的平面图形,了解基本几何体与其展开图之间的关系,体会一个立体图形按照不同方式展开可得到不同的平面展开图.一、温故知新多媒体演示庐山景观,请学生背诵苏东坡《题西林壁》,并说说诗中意境.横看成岭侧成峰,远近高低各不同. 不识庐山真面目,只缘身在此山中.从数学的角度来理解是什么意思呢? 二、自主学习(一)从三个方向看立体图形1.说一说:分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(出示实物)2.画一画:长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(出示实物)这样,我们将立体图形转化成了平面图形.3.探究活动1:从正面、左面、上面观察得到的平面图形,你能画出来吗?小组合作学习,动手画一画,并进行展示.探究:分别从正面、左面、上面观察课本P117图4.1-7这个图形,分别画出观察得到的平面图形.(二)立体图形的展开图1.试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2.剪一剪、画一画:动手把一个正方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来.以上画出了部分展开图,除此之外还有5种,共有11种,请你画出其余5种.(三)立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?凭想象回答,回答不出来的,就把它画在纸片上,剪下来折叠.正方体圆柱四棱柱三棱柱圆锥做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字吗?四棱锥四棱柱正方体三棱柱课本P118练习题.1.我知道了什么?2.我学会了什么?3.我发现了什么?4.1.2点、线、面、体1.了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面;2.了解几何图形构成的基本元素是点、线、面、体,能正确判定由点、线、面经过运动变化形成的简单的几何图形.重点:正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系;难点:探索点、线、面、体运动变化后形成的图形.一、温故知新1.出示一个长方体模型,请同学们认真观察.2.回答问题:这个长方体有几个面?面与面相交成了几条线?线与线相交成几个点?二、自主学习1.经过学生的独立思考,然后在小组中进行交流,在小组讨论中,评价并修正自己的结论.(教师进行巡视,及时给予指导,教师对学生公布的答案作鼓励性评价) 2.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?3.面的分类通过对上面问题的解决,得出面的分类:__平__面和__曲__面.面与面相交成线,线有__直__线和__曲__线;线与线相交成__点__.4.点、线、面、体教师指导学生看课本P119~P120内容,观察图片能发现什么结论?点、线、面、体的关系:点动成__线__,线动成__面__,面动成__体__.请你再举出生活中的一些实例:5.点、线、面、体与几何图形关系.指导学生阅读课本P120内容,总结出点、线、面、体与几何图形的关系几何图形都是由点、线、面、体组成的,__点__是构成图形的基本元素.课本P120练习1,2.1.本节课我们主要学习了什么?2.本节课我们有哪些收获?4.2直线、射线、线段(一)1.能在现实情境中,经历画图的过程,理解并掌握直线的性质,能用几何语言描述直线性质;2.会用字母表示直线、射线、线段,会根据语言描述画出图形.重点:理解并掌握直线性质;难点:会用字母表示图形和根据语言描述画出图形.一、温故知新1.在小学已经学过了直线、射线、线段.请你画出一条直线、一条射线、一条线段?直线射线线段2.填写下列表格:二、自主学习1.直线的性质(1)如果你想将一根细木条固定在墙上,至少需要几个钉子?操作一下,试试看.答:至少需2个钉子.(2)经过一个已知点可以画多少条直线?请画图说明.O·答:无数条.(3)经过两个已知点画直线,可以画多少条直线?请画图试试.··A B答:有且只有一条.猜想:如果将细木条抽象成直线,将钉子抽象为点,你可以得到什么结论?直线的基本性质:经过两点有__一__条直线,并且只有一条直线;简述为:两点确定一条直线.举例说明直线的性质在日常生活中的应用:(1)在挂窗帘时,只要在两边钉两颗钉子扯上线即可,这是因为两点确定一条直线.(2)建筑工人在砌墙时拉参照线,木工师傅锯木板时,用墨盒弹墨线,都是根据两点确定一条直线.(3)你还能从生活中举出应用直线的基本性质的例子吗?试试看:如:栽树时先把两端栽好,再拉上线沿着线栽.2.直线有两种表示方法:①用一个小写字母表示;②用两个大写字母表示.平面上一个点与一条直线的位置有什么关系?①点在直线上;②点在直线外.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点.3.射线和线段的表示方法,如图:显然,射线和线段都是直线的一部分.图①中的线段记作线段AB或线段a;图②中的射线记作射线OA或射线m.注意:用两个大写字母表示射线时,表示端点的字母一定要写在前面.思考:直线、射线和线段有什么联系和区别?1.下列表示线段正确的是(B)A.线段M B.线段mC.线段Mm D.线段mn2.如图,若射线AB上有一点C,下列与射线AB是同一条射线的是(B)A.射线BA B.射线ACC.射线BC D.射线CB3.下列语句中正确的个数有(C)①直线MN与直线NM是同一条直线;②射线AB与射线BA是同一条射线;③线段PQ 与线段QP是同一条线段;④直线上一点把这条直线分成的两部分都是射线.A.1个B.2个C.3个D.4个4.课本P126练习.通过本节课的学习,你有什么收获?4.2直线、射线、线段(二)1.会用尺规画一条线段等于已知线段;2.会比较两条线段的长短;3.理解线段中点的概念,了解“两点之间,线段最短”的性质.重点:线段的中点概念,“两点之间,线段最短”的性质;难点:画一条线段等于已知线段.一、温故知新1.过A,B,C三点作直线,小明说有三条,小颖说有一条,小林说不是一条就是三条,你认为__小林的说法是对的.二、自主学习问题:现有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长?上面的实际问题可以转化为下面的数学问题:1.作一条线段等于已知线段,现在我们来解决这个问题.作法:(1)作射线AM;(2)在AM上截取AB=a.则线段AB即为所求.应用:已知线段a,b,求作线段AB=a+b.解:(1)作射线AM;(2)在AM上顺次截取AC=a,CB=b.则AB=a+b即为所求.做一做:作线段AB=a-b.2.比较两条线段的长短两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?我们先来回答下面的问题.怎样比较两个同学的身高?一是用尺子测量;二是站在一起比(脚在同一高度).如果把两个同学看成两条线段,那么比较两条线段就有两种方法:(1)度量法:用刻度尺分别量出两条线段的长度,从而进行比较.(2)叠合法:把一条线段移到另一条线段上,使一端对齐,从而进行比较.(如图)AB<CD AB>CD AB=CD3.线段的中点及等分点如图(1),点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点;记作AM=MB或AM=MB=12AB或2AM=2MB=AB.如图(2),点M,N把线段AB分成相等的三段AM,MN,NB,点M,N叫做线段AB的三等分点.类似地,还有四等分点,等等.4.线段的性质请同学们阅读课本P128的思考.结论:两点的所有连线中,线段最短.简单地说成:两点之间,线段最短.你能举出这条性质在生活中的一些应用吗?两点的距离的定义:连接两点间的线段的长度.注意:距离是用“数”来衡量的,它是线段的长度,而不是线段本身.1.课本P128练习1,2,3.2.在直线上顺次取A,B,C三点,使AB=4 cm,BC=3 cm,点O是线段AC的中点,则线段OB的长度是(C)A.2 cm B.1.5 cm C.0.5 cm D.3.5 cm3.已知线段AB=5 cm,C是直线AB上一点,若BC=2 cm,则线段AC的长为7_cm 或3_cm.1.画一条线段等于一条已知线段.2.怎样比较两条线段的长短?3.线段的性质是什么?4.什么是两点的距离?4.3.1角1.在现实情景中,理解角的概念,掌握角的表示方法;2.认识角的度量单位:度、分、秒,学会进行简单的换算和角度的计算.重点:角的表示和角度的计算;难点:有关角度的计算.一、温故知新观察课本P132图4.3-1,思考问题:如图,时钟的时针与分针,棱锥相交的两条棱,直尺相交的两条边,给我们什么平面图形的形象?二、自主学习1.角的定义1:有公共端点的两条射线组成的图形叫做角.这个公共端点是角的顶点,这两条射线是角的两条边.2.角的表示:①用三个大写字母表示,表示顶点的字母写在中间:∠AOB;②用一个大写字母表示:∠O;③用一个希腊字母表示:∠a;④用一个阿拉伯数学表示:∠1.思考:用适当的方法表示下图中的每个角:(1)∠B或∠ABC(2)∠AOB,∠BOC,∠AOC.(不能用∠O表示)演示:把一条射线由OA的位置绕点O旋转到OB的位置,如图(1)射线开始的位置OA 与旋转后的位置OB组成了什么图形?3.角的定义2:角也可以看作由一条射线绕着它的端点旋转而形成的图形.如图(2),当射线旋转到起始位置OA与终止位置OB在一条直线上时,形成__平__角;如图(3),继续旋转,OB与OA重合时,又形成__周__角.思考:平角是一条直线吗?周角是一条射线吗?为什么?4.角的度量阅读课本P133,填空:1周角=__360__°,1平角=__180__°,1°=__60__′,1′=__60__′′.如∠a的度数是48度56分37秒,记作∠a=48°56′37′′.度、分、秒是常用的角的度量单位,以度、分、秒为单位的角的度量制,叫做角度制.注意:角的度、分、秒与时间的时、分、秒一样,都是60进制,计算时,借1当成60,满60进1.例计算:(1)53°28′+47°35′;解:原式=100°63′=101°3′;(2)17°27′+3°50′.(学生自己完成)解:原式=20°77′=21°17′.课本P134练习1,2题.1.什么是角、平角、周角?2.怎么表示角?3.角的度量单位是什么?它们是如何换算的?4.3.2角的比较与运算1.会比较两个角的大小,能分析图中角的和差关系;2.理解角平分线的概念,会画角的平分线.重点:角的大小比较和角平分线的概念;难点:从图形中观察角的和差关系.一、温故知新回顾线段大小的比较,怎样比较图中线段AB,BC,CA的长短?(1)度量法;(2)叠合法.AB<AC<BC那么怎样比较∠A,∠B,∠C的大小呢?二、自主学习1.比较角的大小(1)度量法:用量角器量出角的度数,然后比较它们的大小.(2)叠合法:把两个角叠合在一起比较大小.教师演示:(1)∠AOB <∠AOB ′;(2)∠AOB =∠AOB ′;(3)∠AOB >∠AOB ′. 2.认识角的和差思考:如图,图中共有几个角?它们之间有什么关系?图中共有3个角:∠AOB ,∠AOC ,∠BOC .它们的关系是: ∠AOC =∠AOB +∠BOC ; ∠BOC =∠AOC -∠AOB ; ∠AOB =∠AOC -∠BOC . 3.用三角板拼角探究:借助三角尺画出15°,75°的角. 一副三角板的各个角分别是多少度? 90°,60°,30°,45°学生尝试画角. 你还能画出哪些角?有什么规律吗? 还能画出120°,105°,150°等规律是:凡是__15__的倍数的角都能画出. 4.角平分线在一张纸上画出一个角并剪下,将这个角对折,使其两边重合.想想看,折痕与角两边所成的两个角的大小有什么关系?如图(1)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.类似地,还有角的三等分线等.如图(2)中的OB ,OC .OB 是∠AOC 的角平分线,可以记作:∠AOC =2∠AOB =2∠BOC 或∠AOB =∠BOC =12∠AOC .5.例题学习例1 如图,O 是直线AB 上一点,∠AOC =53°17′,求∠BOC 的度数. ∠BOC =180°-53°17′=126°43′.例2 把一个周角7等分,每一份是多少度的角?(精确到分) 解:360°÷7=51°+3°÷7 =51°+180′÷7 ≈51°26′. 答:每份是51°26′的角.课本P 136练习1,2,3.1.角的大小比较的方法和角的和差关系;2.用一副三角板画角;3.角的平分线及表示.4.3.3余角和补角1.在具体的现实情境中,认识一个角的余角和补角;2.掌握余角和补角的性质;3.了解方位角,能确定具体物体的方位.重点:掌握余角和补角的性质;难点:正确求出一个角的余角和补角.一、温故知新思考:(1)在一副三角板中,同一块三角板的两个锐角和等于多少度?(2)如图1,已知∠1=61°,∠2=29°,那么∠1+∠2=__90°__.(3)如图2,已知点A,O,B在一直线上,∠COD=90°,那么∠1+∠2=__90°__.二、自主学习1.互为余角的定义:如果两个角的和等于90°,那么这两个角互为余角.思考:(1)如图3,已知∠1=62°,∠2=118°,那么∠1+∠2=180°.(2)如图4,A,O,B在同一直线上,∠1+∠2=180°.2.互为补角的定义:如果两个角的和等于180°,那么这两个角互为补角.问题1:以上定义中的“互为”是什么意思?问题2:若∠1+∠2 +∠3 =180°,那么∠1,∠2,∠3互为补角吗?三、新知应用例1若一个角的补角等于它的余角的4倍,求这个角的度数.解:设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°.180-x=4(90-x),3x=180x=60.答:这个角的度数为60°.例2如图,∠AOC=∠COB=90°,∠DOE=90°,A,O,B三点在一直线上.(1)写出∠COE的余角,∠AOE的补角;(2)找出图中一对相等的角,并说明理由.解:(1)∠COE的余角为∠COD,∠BOE;∠AOE的补角为∠BOE,∠COD.(2)∠AOD=∠COE,∠DOC=∠BOE.一、师生合作1.探究补角的性质:例3如图,∠1与∠2互补,∠3与∠4互补,∠1=∠3,那么∠2与∠4相等吗?为什么?分析:(1)∠1与∠2互补,∠2等于什么?∠2=180-__∠1__,∠3与∠4互补,∠4等于什么?∠4=180°-__∠3__.(2)当∠1=∠3时,∠2与∠4有什么关系?为什么?∠2=∠4(等量减等量,差相等).上面的结论,用文字怎么叙述?补角的性质:同角(等角)的__补角__相等.2.探究余角的性质:如图,∠1与∠2互余,∠3与∠4互余,如果∠1=∠3,那么∠2与∠4相等吗?为什么?余角性质:同角(等角)的__余角__相等.二、跟踪练习课本P139练习1,2,3,4.6.方位角:(1)认识方位:正东、正南、正西、正北、东南、西南、西北、东北.(2)找方位角:乙地对甲地的方位角;甲地对乙地的方位角例4如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上.同时,在它北偏东40°、南偏西10°、西北(即北偏西45°)方向上又分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出表示客轮B,货轮C和海岛D方向的射线.(师生共同完成)1.∠α和∠β都是∠AOB的补角,则∠α__=__∠β.2.如果∠1+∠2=90°,∠1+∠3=90°,则∠2与∠3的关系是相等,理由是同角的余角相等.3.A看B的方向是北偏东21°,那么B看A的方向(D)A.南偏东69°B.南偏西69°C.南偏东21°D.南偏西21°4.在点O的北偏西60°的某处有一点A,在点O的南偏西20°的某处有一点B,则∠AOB 的度数是(A)A.100°B.70°C.180°D.140°1.余角、补角的定义;2.余角的性质,补角的性质;3.方位角的画法.第四章几何图形初步复习1.直观认识立体图形,掌握平面图形(线段、射线、直线)的基本知识;2.掌握角的基本概念,能利用角的知识解决一些实际问题.重点:线段、射线、直线、角的性质和运用;难点:角的运算与应用、空间观念的建立和发展、几何语言的认识与运用.一、知识结构几何图形⎩⎪⎪⎨⎪⎪⎧立体图形⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫从不同方向看立体图形展开立体图形平面图形平面图形⎩⎪⎨⎪⎧直线、射线、线段⎩⎪⎨⎪⎧线段长短的比较两点确定一条直线两点之间,线段最短角⎩⎪⎨⎪⎧角的度量角的比较与运算——角的平分线余角和补角⎩⎪⎨⎪⎧等角的补角相等等角的余角相等二、回顾与思考1.下面是我们学习过的一些数学名词,你能用自己的语言简短地描述它们吗? 立体图形 平面图形 展开图 两点间的距离 余角 补角2.与以前相比,你对直线、射线、线段和角有什么新的认识? 3.直线的性质经过两点有一条直线,并且只有一条直线.即:两点确定一条直线. 4.线段的性质和两点间的距离(1)线段的性质:两点之间,线段最短.(2)两点的距离:连接两点的线段的长度,叫做两点的距离. 5.线段的中点及等分点的意义(1)若点C 把线段AB 分为相等的两条线段AC 和BC ,则点C 叫做线段AB 的中点. 角的概念1.角的定义和表示(1)有公共端点的两条射线组成的图形叫做角.这是从静止的角度来定义的.由一条射线绕着它的端点旋转而形成的图形叫做角.这是从运动的角度来定义的. (2)角的表示:①用三个大写字母表示;②用一个大写字母表示;③用阿拉伯数字或希腊字母表示. 2.角的度量 1°=60′;1′=60′′. 3.角的比较比较角的方法:度量法和叠合法.4.角的平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线. 表示为∠AOC =∠COB 或∠AOC =∠COB =12∠AOB 或2∠AOC =2∠COB =∠AOB5.余角和补角(1)定义:如果两个角的和等于__90°__,就说这两个角互为余角. 如果两个角的和等于__180°__,就说这两个角互为补角.注意:余角和补角是两个角之间的关系,只与数量有关,而与位置无关.(2)余角和补角的性质: 同角(等角)的余角相等. 同角(等角)的补角相等. 6.方位角 三、例题导引1.如右图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,画出从不同方向看到的平面图形.2.(1)如图,点C 在线段AB 上,AC =8 cm ,CB =6 cm ,点M ,N 分别是AC ,BC 的中点,求线段MN 的长;MN =7 cm.(2)若C 为线段AB 上任一点,满足AC +CB =a cm ,其他条件不变,你能猜想MN 的长度吗?并说明理由.MN =12a .(3)若C 在线段AB 的延长线上,且满足AC -BC =b cm ,M ,N 分别为AC ,BC 的中点,你能猜想MN 的长度吗?请画出图形,并说明理由.MN =12b .3.如图,∠AOB 是直角,∠AOC =50°,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线.(1)求∠MON 的大小;(2)当∠AOC =α时,∠MON 等于多少度?(3)当锐角∠AOC 的大小发生改变时,∠MON 的大小也会发生改变吗?为什么? 解:(1)∠MON =45°.(2)∠MON =45°.(3)不发生变化,∠MON =12∠AOB =45°.一、选择题1.下列说法正确的是( D )A.射线AB与射线BA表示同一条射线B.连接两点的线段叫做两点之间的距离C.平角是一条直线D.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠32.5点整时,时钟上时针与分针之间的夹角是(C)A.210°B.30°C.150°D.60°3.如图,射线OA表示(B)A.南偏东70°B.北偏东30°C.南偏东30°D.北偏东70°4.下列图形不是正方体展开图的是(C)5.若∠A=20°18′,∠B=20°15′30″,∠C=20.25°,则(A)A.∠A>∠B>∠C B.∠B>∠A>∠CC.∠A>∠C>∠B D.∠C>∠A>∠B二、填空题6.38°41′的余角等于51°19′,123°59′的补角等于56°1′.7.根据下列多面体的平面展开图,填写多面体的名称.(1)长方体(2)三棱柱(3)三棱锥8.互为余角的两个角之差为35°,则较大角的补角是117.5°.9.45°52′48″=45.88°,126.31°=126°18′36″;25°18′÷3=8°26′.10.如图,已知CB=4,DB=7,D是AC的中点,求AC的长度.解:AC=6.11.如图,直线l表示一条笔直的公路,在公路两旁有两个村庄A和B,要在公路边修建一个车站C,使车站C到村庄A和B的距离之和最小,请找出村庄C点的位置,并说明理由.解:连接AB交l于C,点C即为所求,理由:两点之间,线段最短.。
新人教版七年级上册数学 第一课时 认识几何图形 教学课件
![新人教版七年级上册数学 第一课时 认识几何图形 教学课件](https://img.taocdn.com/s3/m/ba04dfed10a6f524cdbf85e1.png)
柱 圆柱
体
三棱柱
棱柱 四棱柱:(长方体、正方体等)
五棱柱
球
六棱柱
体
……
锥 圆锥 三棱锥
体
四棱锥
棱锥 五棱锥
六棱锥
台 圆台 ……
体 棱台
四边形(长方形、正方形等) 、梯形、三角
形、圆
五边形、六边形……
布置作业
P121 习题4.1 第1,2,3题
探究新知
长方体
正方形 长方形
•
线段 点
我们把从实物中抽象出的各种 图形统称为几何图形.
探究新知
从刚才多姿多彩的图形世界中,我们抽象出 来的几何图形有:
三角形
长方形
正方体
圆柱
长方体
五边形
圆台
圆锥
球
圆形
正方形
四棱体、圆柱、圆锥、球等) 的各部分不都在同一平面内,这样的几何图形叫做立体图形.
所有这些,都需要我们知 道更多的图形知识.
探究新知
各种各样的物体除了具有颜色、质量、 材质等性质外,还具有形状(如方的、圆的 等)、大小(如长度、面积、体积等)和位 置关系(如相交、垂直、平行等),物体的 形状、大小和位置关系是几何研究的内容.
探究新知
类似地观察罐头、足球或篮球的外形,可以得圆 柱、球、圆等.长方体、圆柱、球、长(正)方形、圆、 线段、点等,以及小学学过的三角形、四边形等,都 是从物体外形中得出的.
长方体
正方体
圆柱
球
圆锥
圆台
说一说下面这些几何图形又有什么共同特点?
探究新知
棱柱、棱锥也是常见的立体图形. 你能再举出一些棱柱、棱锥的实例吗?
六棱柱
四棱锥
七年级数学上册第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时几何图形课件新版新人教版
![七年级数学上册第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时几何图形课件新版新人教版](https://img.taocdn.com/s3/m/427742ea6137ee06eff918a1.png)
仅供学习交流!
答案:
学前温故
新课早知
2. 立体图形 和 平面图形 是两类不同的几何图形,且立体 图形的各部分不都在 同一平面 内,平面图形的各部分都在 同一平面 内. 3.下图中的平面图形有长方形、直角梯形、圆 .
常见几何图形的识别 【例题】 下图中哪些图形是立体图形,哪些图形是平面图形?分 别说出它们的名称.
第四章
几何图形初步
4.1
几何图形
4.1.1
立体图形与平面图形
第1课时
几何图形
学前温故
新课早知
小学里认识的平面图 形: 三角形 、 正方形 、 长方形 、 平行四边形 、 梯形 等;立体图 圆 、 形: 正方体 、 长方体 、 圆柱 、 圆锥 、 球 .
学前温故
新课早知
1.把下列物体与其相似的图形连接起来.
分析①是由6个面组成的,所以它是一个立体图形,是一个正方体. ②是由1个面组成的,是一个平面图形,是长方形. ③是由1个面组成的,是一个平面图形,是三角形. ④是由3个面组成的,2个平面1个曲面,是一个立体图形,是圆柱. ⑤是由1个曲面组成的,是一个立体图形,是球. ⑥是由1个曲面和1个平面组成的,是一个立体图形,是圆锥. ⑦是由4个平面组成的,是一个立体图形,是棱锥. 解:①④⑤⑥⑦是立体图形,名称分别为正方体、圆柱、球、圆 锥、三棱锥;②③是平面图形,名称分别为长方形、三角形.
1
2
3
4
5
1.下列图形都是平面图形的一组是( C ) A.三角形、圆、球、圆锥 B.点、线、面、体 C.角、三角形、四边形、圆 D.点、相交线、线段、圆柱
1
2
3
4
5
2.在下面四个物体中,最接近圆柱的是(
山东省济南实验初级中学人教版数学七年级上册4.1几何图形课件(共57张PPT)
![山东省济南实验初级中学人教版数学七年级上册4.1几何图形课件(共57张PPT)](https://img.taocdn.com/s3/m/9c12e805763231126edb11ef.png)
“中国竹乡”安吉县有着丰富的毛竹资源,某企业 已收购52.5吨。根据市场信息,将毛竹直接销售, 每吨可获利100元;如果对毛竹进行粗加工,每天 可加工8吨,每吨可获利1000元;如果进行精加工, 每天可加工0.5吨,每吨可获利5000元。由于受条 件限制,在同一天中只能采用一种加工方式,并且 必须在一个月(30天)内将这批毛竹全部销售, 为此研究了三种方案:(1)将毛竹全部粗加工后 销售;(2)30天时间都进行精加工,未来得及加 工的毛竹,在市场上直接销售。(3)一部分粗加 工,一部分精加工恰好在30天完成。你会为企业 选择哪种方案? 说明理由 。
探究一:常见的几何图形 生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
长方体 正方体
圆柱
球
探究一:常见的几何图形 生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
长方体
正方体
圆柱
球
圆锥
有些几何图形(长方体、正方体、圆柱、圆锥、球等) 的各部分不都在同一平面内,它们是立体图形。
明晰概念
俯视图
左视图
9/21/2014
主视图
俯视图 左视图
主视图
9/21/2014
俯视图
左视图
主视图
9/21/2014
从你所在的位置看这组几何体,看到的是什么 样子?能否把你所看到的样子画下来?
9/21/2014
9/21/2014
正视图
左视图
俯视图
正视图
9/21/2014
左视图
俯视图
从上面看
第四类,两排各三个,只有一种。
9/21/2014
正方体展开11种,找规律很好记。 中间4个一连串,两边各一随便放。 二三紧连错一个,三一相连一随便。 两两相连各错一。三个两排一对齐。 要找两个相对面,切记相隔一个面。
七年级数学上册第四章几何图形初步4.1几何图形4.1.2点、线、面、体课件(新版)新人教版
![七年级数学上册第四章几何图形初步4.1几何图形4.1.2点、线、面、体课件(新版)新人教版](https://img.taocdn.com/s3/m/6eeb30ff360cba1aa811dac0.png)
图4-1-2-2
图4-1-2-3 解析 A是由4旋转得到的,B是由2旋转得到的,C是由1旋转得到的,D是 由3旋转得到的. 点拨 利用面动成体这一性质解题.
题型二 探索几何体的顶点、棱、面之间的关系 例2 新年晚会会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立 体图形,多面体是其中的一部分,多面体中围成立体图形的每一个面都 是平的,没有曲的,如棱柱、棱锥等,如图4-1-2-4.
)
答案 B
5.如图,第二行的图形绕虚线旋转一周,便形成第一行的某个图形(几何 体),将对应的两个图末)圆柱是由长方形绕着它的一边所在直线旋 转一周得到的,那么图4-1-2-1是以下四个图形中的哪一个绕着直线旋转 一周得到的 ( )
图4-1-2-1
初中数学(人教版)
七年级 上册
第四章 几何图形初步
知识点 点、线、面、体
重要提示 (1)几何图形都是由点、线、面、体组成的,点是构成图形 的基本元素.点、线、面、体经过运动变化,就能组合成各种各样的几 何图形,形成多姿多彩的图形世界. (2)一般地,有曲面的几何体都可以由某个平面图形旋转得到.将一个平 面图形旋转成立体图形,既与平面图形的形状有关,也与平面图形旋转 时所绕的轴有关,因此在分析平面图形旋转后得到的立体图形时,要综 合分析平面图形的形状和旋转轴两个因素.
解析 分三种情况进行讨论. ①以8 cm长的边所在直线为轴,旋转得到的圆锥的体积V1= ×π×62×8=9 6π(cm3). ②以6 cm长的边所在直线为轴,旋转得到的圆锥的体积V2= ×π×82×6=1
1 3 1 3
28π(cm3).
③以10 cm长的边所在直线为轴,旋转得到的几何体是由两个同底面的 圆锥组成的,设圆锥底面的半径为r cm,则有 ×6×8= ×10×r,解得r=4.8.
4.1 几何图形(第2课时)(课件)七年级数学上册(人教版)
![4.1 几何图形(第2课时)(课件)七年级数学上册(人教版)](https://img.taocdn.com/s3/m/f2573f9788eb172ded630b1c59eef8c75fbf959f.png)
4.1 几何图形
4.1.2 从不同的方向看立体图形
和立体图形的展开图
新课导入
讲授新课
当堂检测
课堂小结
学习目标
1、了解立体图形与平面图形之间的联系;
2、能画出简单立体图形从不同方向看得到的平面图形;
3、了解研究立体图形的方法,体会一个立体图形按照不同方式展
开可得到不同的平面展开图;
4、通过展开与折叠,了解棱柱、棱锥、圆柱、圆锥、长方体、正
方体的表面展开图或根据展开图判断立体图形;
从不同方向看山可看到
“峰”,看到“岭”,那么从
不同方向看几何体又能看到什
么呢?你想知道吗?
现在就让我们一起来学习
今天的“从三个方向看物体的
形状”.
想一想:这是为什么呢?
思考:为什么他们会对同一个物体产生不同的看法?
(1)写出这个几何体的名称;
三棱柱
(2)画出它的一种表面展开图;
(3)若从正面看的高为4cm,从上面看三角形的边长都为3 cm,求这个几何体
的侧面积.
(3)3×4×3=36cm2,
∴这个几何体的侧面积为36 cm2
课堂总结
各类图形的表面展开图
底面形 侧面形
状
状
侧面展开
图的形状
正方体
正方形 正方形
正方形
1
2
3
x
y
7、如图是一个几何体的三视图,若这个几何体的体积是30,则它的表
面积是________.
【详解】∵由主视图得出长方体的长是5,宽是3,这个几何体
的体积是30,
∴设高为h,则5×3×h=30,解得:h=2,
∴它的表面积是:5×3×2+5×2×2+3×2×2=30+20+12=62.
人教版七年级数学上册《几何图形》课件
![人教版七年级数学上册《几何图形》课件](https://img.taocdn.com/s3/m/84d6ea51571252d380eb6294dd88d0d233d43c2b.png)
巩固练习
展开
链接中考
1.如图是某个几何体的展开图,该几何体是( A ) A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
2.小明从正面观察如图所示的两个物体,看到的是( C )
A.
B.
C.
D.
课堂检测
基础巩固题
1. 右图是一块带有圆形空洞和方形空洞的小木板,则下 列物体中既可以堵住圆形空洞,又可以堵住方形空洞的 是( B )
以上立体图形都是几何体,简称体.
1. 你知道这些几何体是由什么围成的吗? 2. 下图中的图形分别有哪些面?这些面有什么不同吗?
探究新知
1. 几何体是由面围成的. 2. 面分为平的面和曲的面.
探究新知
实际生活中的平面与曲面
平平面面
曲面ቤተ መጻሕፍቲ ባይዱ曲面
探究新知
说一说
如下图,围成这些立体图形的各个面中哪 些面是平的?哪些面是曲的?
A.
B.
C.
D.
课堂小结
几 何 图 形
点
交动 成成
线
交动 成成
面
围动 成成
体
构成图形的基本元素 无大小
直线 无粗细 曲线 平面 无厚薄 曲面
物体的图形
探究新知 知识点 1 从不同方向看同一个物体
他们为什么会出现争执?
这是数字“9”。 这是数字“6”。
探究新知 如图,把茶壶放在桌面上,那么下面五幅图片分别
是从哪个方向看得到的?
从正面看 从右面看 从左面看 从后面看 从上面看
探究新知 试一试 下面的五幅图分别是从什么方向看的?
1
背面
2
顶部
3
4
正面
素养目标
2.了解几何图形构成的基本元素是点、线、面、 体及其关系,能正确判定由点、线、面、体经 过运动变化形成的简单的几何图形.
人教版七年级数学上册第四章 几何图形初步全章课件汇总
![人教版七年级数学上册第四章 几何图形初步全章课件汇总](https://img.taocdn.com/s3/m/38772a791611cc7931b765ce0508763231127430.png)
注意:几何中的点只有位置,没有大小;
线只有长短,没有粗细;
面只有大小,没有厚薄.
新知探究 跟踪训练
例1 观察如图所示的立体图形,说出它们各有几个面.
是什么样的面?面和面相交的地方形成了几条线?线
和线相交的地方形成了几个点?
解:图(1)是正方体,它有6个面,这些面都是平面,面
绕较短直角边所在直线旋转一周
绕斜边所在直线旋转一周
A
D
B
更多解法见《教材帮》数学RJ七上4.1节方法帮
直线、射线、线段
1、掌握直线、射线、线段的表达,了解相交和交点的概念;
2、探究直线、射线、线段三者间的联系与区别。
重点
掌握直线、射线、线段的表达方法。
难点
探究直线、射线、线段三者间的联系。
小学阶段就已经学习过线段、射线和直线,你能说一说它们得练
经过思考,我们得出:
经过两点有一条直线,并且只有一条直线.
简单说成:两点确定一条直线。
下列直线怎么用字母表示出来?
l
A
B
直线 AB 或直线 l
因为两点确定一条直线,所以除了用一个小写字母表示直线(如
直线 l )外,我们经常用一条直线上的两点来表示这条直线。
说一说点O与点P与直线 l 的关系。
l
面内,它们是立体图形.
思考
你能找出一些立体图形的实例吗?
思考 它们对应的立体图形是什么?
三棱柱
六棱柱
四棱锥
做一做 把相应的实物与图形用线连接起来.
正方体
球
六棱柱
圆锥
长方体
四棱锥
观察 下面这些几何图形又有什么共同特点?
各部分都在同一平面内.
人教版七年级数学上册 4.1几何图形 课件(共30张PPT)
![人教版七年级数学上册 4.1几何图形 课件(共30张PPT)](https://img.taocdn.com/s3/m/a1ed021b19e8b8f67d1cb959.png)
4、友情提醒:不是所有立体图形都有平面展 开图,比如球体。
谢谢大家
再见
考考你
1、如果“你”在前面,那么谁在后面?
了!
太棒
你们
KEY: 棒
2、“坚”在下,“就”在后,胜利在哪里?
坚 持就是
胜 利
“胜”在上, “利”在前!
下图是一个正方体的展开图,标注了字母 A的面是值.
-2
3 -4 1
A 3x-2
比一比 猜一猜
把下列立体图形展开后,猜猜 看它的平面展开图是什么。
圆柱
长方体
五棱柱
圆锥
圆 柱
展开
长方体
展开
棱柱
展开
圆锥
展开
做一做 想一想
用剪刀把桌上的正方体纸盒按任意方式沿 棱展开,你能得到哪些不同的展开图?比 比哪一小组的展开图更与众不同。
第一类,中间四连方,两侧各一 个,共六种。
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/122021/8/122021/8/122021/8/128/12/2021 ▪14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月12日星期四2021/8/122021/8/122021/8/12 ▪15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月2021/8/122021/8/122021/8/128/12/2021 ▪16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/8/122021/8/12August 12, 2021 ▪17、儿童是中心,教育的措施便围绕他们而组织起来。2021/8/122021/8/122021/8/122021/8/12
2024年数学:4.1几何图形课件(人教新课标七年级上)
![2024年数学:4.1几何图形课件(人教新课标七年级上)](https://img.taocdn.com/s3/m/a8b4f47f4a73f242336c1eb91a37f111f0850d70.png)
8、下面的图形中,是三棱柱的展开图的为 ()
9、如图,从上面看得到的图形是______, 从左面看得到的图形是_____,从正面看 得到图形是______。
都二
能分
运浇
用灌
好,ห้องสมุดไป่ตู้
“八
二分
八等
定待
律;
”二
,分
我管
们教
一,
起八
,分
静放
待手
花;
开二
。分
成
➢ Pure of heart, life is full of sweet and joy!
4、小明从正面观察下图所示的两个物体, 看到的是( )
5、如图,从上面看到的图形是____,从 左面看到的图形是_____,从正面看得到 的图形是________
6、分别将下列四个物体与其相应的从上面 看到的图形连接起来:
A
B
C
D
E
F
G
H
7、桌面上放着一个圆柱形茶叶盒与一盒餐 巾盒,那么从上面看得到的平面图像应 该是( )
绩 ,
八
分
方
法
。
愿
全
天
下
所
有
父
母
我们,还在路上……
常见的几何体:
棱柱
柱体
棱锥
锥体 球体
圆柱 圆锥
请回答: 一、柱体与锥体之间的区别?
二、棱柱与圆柱之间的区别?
三、棱柱与圆锥之间的区别?
练习: 1、请写出下列几何体的名称:
2、如图所示的三棱锥从上面看得到的图形 可能是( )
3、从三个方向看一个立方体(如图),则 A、B、E对面分别是字母________
最新人教版七年级数学上册《第四章 几何图形初步》优质PPT公开课件
![最新人教版七年级数学上册《第四章 几何图形初步》优质PPT公开课件](https://img.taocdn.com/s3/m/88fadba3866fb84ae55c8d41.png)
2、建筑工人在砌墙时,这样拉出的参照线就是直 的(如图所示);木工师傅用墨盒弹出的墨线也是 直的,你能用刚才学过的几何知识解释来他们这样 做的道理吗?
首页
3、射击的时候,你知道是如何瞄准目标的吗?
首页
探究点二 直线、射线、线段的区别与联系
你发现直线、射线、线段有哪些联系与区别?
A
B
A
B
A
B
首页
首页
绷紧的琴弦、人行横道都可以近 似地看做线段。
将线段向一个方向无限延长就形 成了射线。
将线段向两个方向无限延长就形 成了直线。
首页
生活中有哪些事物可以作为直线、射线、 线段的原型?试举例说明.
线段:灯管、桌子的边沿……. 射线:把灯泡看成一点,光线射向远方…….. 直线:笔直的公路、数轴…….
b
AD B
b
a
ι AD=a-b
如图(1),点C 落在线段AB的延长线(即以A为端点,方向为A 到B的射线)上,设AB=a ,BC=b, 则线段AC就是线段a与线 段b的和,记做AC = a + c ;
如图(2)线段AD就是线段a与线段b的差,记做AD =a- b.
注意! 画出正确的展开图是关键.
首页
典例精析
例1.把相应的立体图形与它的平面展开图用线连起来.
首页
例2.(1)如图,右面哪一个图形是左面正方体的展开图?
答:选择—D——AD—
B
C
(2)如图,右面哪一个图形是左面正方体的展开图?
A
B
答:选择——C——
C
D
首页
例3 .小壁虎的选择:
如图:一只圆桶的下方有一只壁虎,上方有一只蚊 子,壁虎要想尽快吃到蚊子,应该走哪条路?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形
梯形
圆形
五边形
六边形
八边形
下面各立体图形的表面中包含哪些平面图形?试指 出这些平面图形在立体图形中的位置。
从上面看
从正面看
从上面看
从左面看
从正面看
从上面看
从左面看
从正面看
从正面看
从左面看
从上面看
利用正方体,摆成下面的图形,分别从正 面、左面、上面观察这个图形,各能得到什么 平面图形?
平面图形:长方形、正方形、三角形、圆、五边形、六边形· · · · · ·
从正面看、从左面看、从上面看· · · · · ·
……..
4.1点、线、面、体(第2课时)
1.点、线、面构成图形
2.面和面相交得到线. 线和线相交得到点. 3.点动成线、线动成面、面动成体.
[例]下列图形绕虚线旋转一周,能形成一个什么样的几何体.
正方体
圆锥
长 方 体
圆 台
找一找:有哪些熟悉的平面图形?
下列实物与给出的哪个立体图形相似?
三 棱 锥
图1
三 棱 柱
图2
六 棱 柱
图3
1.1.1 平面图形与立体图形
常见的立体图形(各部分不在同一个平面内)
长方体
正方体 圆柱
圆锥
球
常见立体图形的归类
圆柱 柱体 棱柱
立体图形 三棱柱 四棱柱 五棱柱 六棱柱 ……
§4.1 几何图形
下列图形中有你认识的几何图形吗?请指出来。
图中有:
球、棱锥、圆柱、 长方体、三角形、 长方形(矩形)、 线段、点· · · · · ·
这些都是几何图形
几何图形指:从实物中抽象出来的各种图形。
几何图形可分为立体图形和平面图形两类。
生活中你会常见很多实物,由下列实物能想象出你 熟悉的立体图形(几何体)吗? 球
球体 圆锥 锥体 棱锥 三棱锥 四棱锥 五棱锥 六棱锥 ……
它们具有如下特征: 圆柱:由两个互相平行的圆面和一个曲面组成
棱柱:由两个互相平行的多边形的面和几个四边形组成
圆锥:由一个圆面和一个曲面组成 棱锥:由一个多边形和几个有公共顶点的三角形组成
你知道常见的平面图形有哪些吗?请举例。
· · · · 点 线段
3. 6 3 2 平 曲
从正面看
从上面看
从左面看
例1:下面是一些立体图形 的三视图,请根据视图说出立 体图形的名称.
解:(1)该立体图形是长方体, 如图:
(2)该立体图形是圆锥, 如图:
下面是一个物体的三视图, 试说出物体的形状.
思考:下列图形能拼成立方体 的有哪些?还有别的图形吗?
2(1)
3(2)
3(3)
3(4)
3(1)\4(4)3(5)3(6)Fra bibliotek4(1)
4(2)
4(3)
立体图形的展开图
操作:把一个包装盒剪开铺平,看看它由哪些平面 图形组成?再把展开的纸板复原为包装盒体会立体 图形与平面图形的关系。
探究:用下列图形能拼成怎样的立 体图形?
C
A
B
棱柱
圆柱
圆锥
你有收获吗?
立体图形:长方体、正方体、球、圆柱、圆锥、棱柱、棱锥· · · · · ·
解:图(1)可形成上面是圆锥,
下面是圆柱的上下底面重合的几何体. 图(2)可形成一个圆柱. 图(3)可形成一个球. 图(4)可形成一个圆锥. 图(5)可形成两个底面重合的圆锥.
1.几何图形是由_____、_____、_____构 成,面有_____面和_____面之分. 2.点动成_____、线动成_____、面动 成_____. 3.长方体是由_____个面围成的,圆柱是由 _____个面围成的,圆锥是由_____个面围 成的.其中围成圆锥的面有_____面,也有 _____面. 解:1.点 线 面 曲 平 2.线 面 体