几何概型-课件ppt
合集下载
《高二数学几何概型》课件
感谢观看
进阶习题
进阶习题1
一个半径为10cm的圆,随机选择一个面积 为4π cm²的扇形,求扇形弧长大于圆周长 1/4的概率。
进阶习题2
一个边长为10cm的正六边形,随机选择一 个面积为30cm²的子多边形,求子多边形完 全位于正六边形的内部的概率。
答案解析
在此添加您的文本17字
基础习题答案解析
在此添加您的文本16字
04
常见题型解析
长度型几何概型题型解析
总结词
涉及线段的长度比较,通过比例关系求解概率。
详细描述
这类题目通常给定两个线段或点的长度,要求比较它们的长度或计算某线段长度所占的 比例,从而得出概率。解题时需要仔细分析长度之间的关系,利用比例关系进行计算。
面积型几何概型题型解析
总结词
涉及面积的比较,通过面积比例关系 求解概率。
几何概型
每个基本事件的发生都具有等可 能性,但试验的所有可能结果通 常是无限多个,且对应于一个可 度量的几何区域。
02
几何概型的概率计算公式
公式推导
几何概型的概率计算公式是基于面积和体积的等可能性和对 称性推导出来的。
通过将试验的全部结果所构成的区域长度、面积或体积分别 除以满足条件的结果构成的区域长度、面积或体积,得到概 率的长度型公式、面积型公式和体积型公式。
详细描述
这类题目通常给定两个图形的面积, 要求比较它们的面积或计算某面积所 占的比例,从而得出概率。解题时需 要利用几何图形的面积公式和性质, 进行面积的计算和比较。
体积型几何概型题型解析
总结词
涉及三维空间的体积比较,通过体积比 例关系求解概率。
VS
详细描述
这类题目通常给定两个三维空间的体积, 要求比较它们的体积或计算某体积所占的 比例,从而得出概率。解题时需要利用几 何体的体积公式和性质,进行体积的计算 和比较。
进阶习题
进阶习题1
一个半径为10cm的圆,随机选择一个面积 为4π cm²的扇形,求扇形弧长大于圆周长 1/4的概率。
进阶习题2
一个边长为10cm的正六边形,随机选择一 个面积为30cm²的子多边形,求子多边形完 全位于正六边形的内部的概率。
答案解析
在此添加您的文本17字
基础习题答案解析
在此添加您的文本16字
04
常见题型解析
长度型几何概型题型解析
总结词
涉及线段的长度比较,通过比例关系求解概率。
详细描述
这类题目通常给定两个线段或点的长度,要求比较它们的长度或计算某线段长度所占的 比例,从而得出概率。解题时需要仔细分析长度之间的关系,利用比例关系进行计算。
面积型几何概型题型解析
总结词
涉及面积的比较,通过面积比例关系 求解概率。
几何概型
每个基本事件的发生都具有等可 能性,但试验的所有可能结果通 常是无限多个,且对应于一个可 度量的几何区域。
02
几何概型的概率计算公式
公式推导
几何概型的概率计算公式是基于面积和体积的等可能性和对 称性推导出来的。
通过将试验的全部结果所构成的区域长度、面积或体积分别 除以满足条件的结果构成的区域长度、面积或体积,得到概 率的长度型公式、面积型公式和体积型公式。
详细描述
这类题目通常给定两个图形的面积, 要求比较它们的面积或计算某面积所 占的比例,从而得出概率。解题时需 要利用几何图形的面积公式和性质, 进行面积的计算和比较。
体积型几何概型题型解析
总结词
涉及三维空间的体积比较,通过体积比 例关系求解概率。
VS
详细描述
这类题目通常给定两个三维空间的体积, 要求比较它们的体积或计算某体积所占的 比例,从而得出概率。解题时需要利用几 何体的体积公式和性质,进行体积的计算 和比较。
几何概型(优秀课件)
例2.甲、乙二人约定在下午12点到17点之间在某地会面, 先到者等一个小时后即离去,设二人在这段时间内的各时刻 到达是等可能的,且二人互不影响。求二人能会面的概率。
解: 以 X , Y 分别表示甲、乙二人到达的时刻,
于是 0 X 5, 0 Y 5.
y
即 点 M 落在图中的阴影部
分.所有的点构成一个正 方形,即有无穷多个结果. 由于每人在任一时刻到达 都是等可能的,所以落在正 方形内各点是等可能的.
3.3.1几何概型
问创题设情情境境3:
下图是卧室和书房地板的示意图,图中 每一块方砖除颜色外完全相同,小猫分别在 卧室和书房中自由地走来走去,并随意停留 在某块方砖上。在哪个房间里,小猫停留在 黑砖上的概率大?
卧室
书房
几何图形
思考:上述问题的概率与什么有关? 这是古典概型问题吗?
古典概型的两个基本特点: (1)所有的基本事件只有有限个; (2)每个基本事件发生都是等可能的.
那么对于有无限多个试验结果的情况 相应的概率应如果求呢?
问题
1.取一根长度为30cm的绳子,拉直后在任意位 置剪断,那么剪得两段的长度都不小于10cm的 概率有多大?
基本事件: 从30cm的绳子上的任意一点剪断.
解:记“剪得两段绳长都不小于10cm”为事件A. 把绳子三等分,于是当剪断位置处在中间一段上时, 事件A发生.由于中间一段的长度等于绳长的1/3.
练一练:
4.有一杯1升的水,其中含有1个大肠杆 菌,用一个小杯从这杯水中取出10毫升, 求小杯水中含有这个细菌的概率.
思 考:
国家安全机关监听录音机记录了两个间谍的谈话, 发现30min的磁带上,从开始30s处起,有10s长的一段 内容包含间谍犯罪的 信息.后来发现,这段谈话的部分被 某工作人员擦掉了,该工作人员声称他完全是无意中按 错了键,使从此后起往后的所有内容都被擦掉了.那么 由于按错了键使含有犯罪内容的谈话被部分或全部擦掉 的概率有多大?
《高一数学几何概型》课件
几何概型的发展可以追溯到古代数学,最初用于解 决面积和体积问题。随着数学的发展,几何概型逐 渐成为概率论的一部分,用于研究随机现象。
几何概型的现代发展
在现代概率论中,几何概型的应用更加广泛,涉及 到各种不同的领域,如统计学、物理、工程等。几 何概型的理论也在不断完善和发展。
几何概型与其他数学知识的联系
02
在日常生活中,几何概型的应用可以帮助我们更好地理解和预测事物发生的可能 性,从而做出更明智的决策。
在概率统计中的应用
01
几何概型是概率统计中的重要概 念,它可以用来计算一些复杂事 件的概率,例如计算几何形状内 随机点的数量等。
02
在概率统计中,几何概型的应用 可以帮助我们更好地理解和分析 数据,从而得出更准确的结论。
示例
在一条直线上随机取一段长度,观察该长度是否大于等于1。所取长度大于等于 1的概率即为长度型的几何概型。
体积型的几何概型的概率计算
总结词
通过比较基本事件所对应的体积与试 验全部结果所对应的体积来计算概率 。
示例
在一个立方体中随机取一个点,观察 该点是否位于立方体的内部。该点位 于立方体内部的概率即为体积型的几 何概型。
几何概型的特点在于其概率计算依赖于几何量的大小和 比例,而不是具体的数量值。
几何概型的特点
几何概型具有无限性
几何概型具有直接性
由于基本事件是无限的,因此无法通 过列举所有基本事件来计算概率。
在某些情况下,可以通过直接测量或 计算几何量的大小来得到概率。
几何概型具有等可能性
每个基本事件的发生概率是相等的, 这使得概率的计算依赖于几何量的大 小和比例。
《高一数学几何概型》ppt课件
目录
• 几何概型的定义 • 几何概型的概率计算 • 几何概型的应用 • 几何概型的扩展知识 • 练习与巩固
几何概型的现代发展
在现代概率论中,几何概型的应用更加广泛,涉及 到各种不同的领域,如统计学、物理、工程等。几 何概型的理论也在不断完善和发展。
几何概型与其他数学知识的联系
02
在日常生活中,几何概型的应用可以帮助我们更好地理解和预测事物发生的可能 性,从而做出更明智的决策。
在概率统计中的应用
01
几何概型是概率统计中的重要概 念,它可以用来计算一些复杂事 件的概率,例如计算几何形状内 随机点的数量等。
02
在概率统计中,几何概型的应用 可以帮助我们更好地理解和分析 数据,从而得出更准确的结论。
示例
在一条直线上随机取一段长度,观察该长度是否大于等于1。所取长度大于等于 1的概率即为长度型的几何概型。
体积型的几何概型的概率计算
总结词
通过比较基本事件所对应的体积与试 验全部结果所对应的体积来计算概率 。
示例
在一个立方体中随机取一个点,观察 该点是否位于立方体的内部。该点位 于立方体内部的概率即为体积型的几 何概型。
几何概型的特点在于其概率计算依赖于几何量的大小和 比例,而不是具体的数量值。
几何概型的特点
几何概型具有无限性
几何概型具有直接性
由于基本事件是无限的,因此无法通 过列举所有基本事件来计算概率。
在某些情况下,可以通过直接测量或 计算几何量的大小来得到概率。
几何概型具有等可能性
每个基本事件的发生概率是相等的, 这使得概率的计算依赖于几何量的大 小和比例。
《高一数学几何概型》ppt课件
目录
• 几何概型的定义 • 几何概型的概率计算 • 几何概型的应用 • 几何概型的扩展知识 • 练习与巩固
几何概型课件(公开课)(28张PPT)
1比赛靶面直径为122cm,靶心直径为12.2cm,随机射箭,
假设每箭都能中靶,射中黄心的概率
P( A)
A对应区域的面积 试验全部结果构成区域的面积
1 100
2 500ml水样中有一只草履虫,从中随机取出2ml水样放
在显微镜下观察,发现草履虫的概率
P(
A)
A对应区域的体积 试验全部结果构成区域的体积
= A C '= A C = 2 AB AB 2
则AM小于AC的概率为2
2
解:如图,当P所在的区域为正方形ABCD的内部(含边界), 满足x2+y2≥4的点的区域为以原点为圆心,2为半径的圆的外 部(含边界). 故所求概率
练习 5.在半径为1的圆上随机地取两点,连成一条线,则
其长超过圆内等边三角形的边长的概率是多少?
2 500
1 250
某人在7:00-8:00任一时刻随机到达单位, 问此人在7:00-7:10到达单位的概率?
设“某人在7:10-7:20到达单位”为事件A
P( A)
A对应区域的长度 试验全部结果构成区域的长度
1 6
不是古典概 型!
问此人在7:50-8:00到达单位的概率?
类比古典概型,这些实验有什么特点? 概率如何计算?
2a
解: 记“豆子落在圆内”为事件A,
P(A)
圆的面积 πa2 正方形面积 4a2
π 4
答 豆子落入圆内的概率为π4 .
应用巩固:
(1)在区间(0,10)内的所有实数中随机.
(2) 在1万平方千米的海域中有40平方千米的与大面陆积架成储比藏例 着石油,如果在海域中任意点钻探,钻到油层面的概率 .
F
E B
P=2/9
假设每箭都能中靶,射中黄心的概率
P( A)
A对应区域的面积 试验全部结果构成区域的面积
1 100
2 500ml水样中有一只草履虫,从中随机取出2ml水样放
在显微镜下观察,发现草履虫的概率
P(
A)
A对应区域的体积 试验全部结果构成区域的体积
= A C '= A C = 2 AB AB 2
则AM小于AC的概率为2
2
解:如图,当P所在的区域为正方形ABCD的内部(含边界), 满足x2+y2≥4的点的区域为以原点为圆心,2为半径的圆的外 部(含边界). 故所求概率
练习 5.在半径为1的圆上随机地取两点,连成一条线,则
其长超过圆内等边三角形的边长的概率是多少?
2 500
1 250
某人在7:00-8:00任一时刻随机到达单位, 问此人在7:00-7:10到达单位的概率?
设“某人在7:10-7:20到达单位”为事件A
P( A)
A对应区域的长度 试验全部结果构成区域的长度
1 6
不是古典概 型!
问此人在7:50-8:00到达单位的概率?
类比古典概型,这些实验有什么特点? 概率如何计算?
2a
解: 记“豆子落在圆内”为事件A,
P(A)
圆的面积 πa2 正方形面积 4a2
π 4
答 豆子落入圆内的概率为π4 .
应用巩固:
(1)在区间(0,10)内的所有实数中随机.
(2) 在1万平方千米的海域中有40平方千米的与大面陆积架成储比藏例 着石油,如果在海域中任意点钻探,钻到油层面的概率 .
F
E B
P=2/9
几何概型课件
角度型的几何概型的概率计算
总结词:基于角度
详细描述:角度型的几何概型是以角度作为概率测度的概率 模型。例如,在等可能的角度分布情况下,某事件发生的角 度越大,其发生的概率就越大。
03
几何概型的应用
在日常生活中的应用
交通信号灯
天气预报
几何概型可以用于计算不同方向的车 流等待时间。
几何概型可以用于预测降雨、降雪等 天气事件。
随机过程
几何概型可以用于研究随 机过程的变化和趋势。
统计学
几何概型可以用于统计分 析,如回归分析和方差分 析等。
04
几何概型的实际案例
掷骰子问题
总结词
等可能性和有限性
详细描述
掷一颗骰子,观察出现的点数,因为骰子有六个面,每个面上的点数都是等可 能的,所以这是一个几何概型问题。
转盘游戏问题
总结词
详细描述
数形结合思想在几何概型中主要体现在将概 率问题转化为几何图形问题,通过图形的性 质和变化来研究概率的变化规律。例如,在 几何概型中,等可能事件可以通过几何图形 来表示,概率的大小可以通过图形的面积或
体积来度量。
等可能性的思想方法
总结词
等可能性是几何概型中的一个基本思想,它认为在相 同的条件下,各个事件发生的可能性是相等的。
总结词:基于Байду номын сангаас积
详细描述:面积型的几何概型是以面积作为概率测度的概率模型。例如,在等可能的点分布情况下,某事件发生的区域面积 越大,其发生的概率就越大。
体积型的几何概型的概率计算
总结词:基于体积
详细描述:体积型的几何概型是以空间体积作为概率测度的概率模型。例如,在等可能的点分布情况 下,某事件发生的空间体积越大,其发生的概率就越大。
精品课件:几何概型
(2)先求点 P 到点 O 的距离小于或等于 1 的概率,圆柱的体积 V 圆柱
=π×12×2=2π,以 O 为球心,1 为半径且在圆柱内部的半球的体积
2 V 半球=12×43π×13=32π.则点 P 到点 O 的距离小于或等于 1 的概率为32ππ
=13,故点 P 到点 O 的距离大于 1 的概率为 1-13=23.
无限多
• 2.特点:
均匀
• (1)无限性:试验中所有可能出现的结果
(P基(A)本= 事试验件的构全)成有部事结件果A所的构区成域的长区度域个面长积度.或面体积积或 体积 . • (2)等可能性:试验结果在每一个区域内
• 几何概型是与古典概型最为接近的一种概 率模型,两者的共同点是基本事件的发生 是等可能的,不同点是基本事件的个数前 者是无限的(基本事件可以抽象为点),后 者是有限的.对于几何概型而言,这些点 尽管是无限的,但它们所占据的区域是有 限的,可以利用相关几何知识求概率.
• (1)与三角形、矩形、圆等平面图形面积有 关的问题.
• (2)与线性规划知识交汇命题的问题. • (3)与平面向量的线性运算交汇命题的问
题.
• 角度一 与三角形、矩形、圆等平面图形 面积有关的问题
• 1.如图,在圆心角为直角的扇形OAB中, 分别以OA,OB为直径作两个半圆.在扇 形OAB内随机取一点,则此点取自阴影部 分的概率是( )
如图,S1=01exdx=ex|10=e1-e0=e-1. ∴S 总阴影=2S 阴影=2(e×1-S1)=2[e-(e-1)]=2, 故所求概率为 P=e22.
答案:e22
规律方法 数形结合为几何概型问题的解决提供了简捷直观的解 法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域, 由题意将已知条件转化为事件 A 满足的不等式,在图形中画出事件 A 发 生的区域,通用公式:P(A)=试验的构全成部事结件果A所的组区成域的的区测域度的测度.
高中数学人教版必修3课件:3.3几何概型(共26张PPT)
个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有着太多不为人知的痛苦尽量充实自己。不要停止学习。 不管学习什么,语言,厨艺,各种技能。注意自己的修养,你就是孩子的第一位老师。孝顺父母。不只是嘴上说说,即使多打几个电话也是很好的。爱父母,因为他们给了你生命,同时也是爱你爱的最 无私的人。
的长度(面积或体积)成比例,则称这样的概率模型为 几何概率模型,简称为几何概型.
问题5 几何概型有哪些特点 ?
问题6 古典概型与几何概型有何异同?
异 古典概型的特征
几何概型的特征
(1)试验中所有可 (1)试验中所有可
能出现的基本事件 能出现的基本事件
有有限个;
有无限个;
同
(2)每个基本事件出 (2)每个基本事件出 现的可能性相等. 现的可能性相等.
解1
解2
变式 解
A 20m
2m
30m
解题步骤
记事件
构造几何图形
计算几何度量
下结论
求概率
如图,在正方形中随机撒一把豆子,用随机摸拟
的方法估计圆周率的值. 解
知识点3 与体积有关的几何概型 解
变式 解
作业
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性格会影响人生!习惯不加以抑 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你到哪里去。当你在埋头工作的 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去方向,就永远不会失去自己! 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移山之术,惟一能移山的方法就
的长度(面积或体积)成比例,则称这样的概率模型为 几何概率模型,简称为几何概型.
问题5 几何概型有哪些特点 ?
问题6 古典概型与几何概型有何异同?
异 古典概型的特征
几何概型的特征
(1)试验中所有可 (1)试验中所有可
能出现的基本事件 能出现的基本事件
有有限个;
有无限个;
同
(2)每个基本事件出 (2)每个基本事件出 现的可能性相等. 现的可能性相等.
解1
解2
变式 解
A 20m
2m
30m
解题步骤
记事件
构造几何图形
计算几何度量
下结论
求概率
如图,在正方形中随机撒一把豆子,用随机摸拟
的方法估计圆周率的值. 解
知识点3 与体积有关的几何概型 解
变式 解
作业
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性格会影响人生!习惯不加以抑 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你到哪里去。当你在埋头工作的 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去方向,就永远不会失去自己! 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移山之术,惟一能移山的方法就
人教版高中数学必修三第三章第3节 3.3.1 几何概型 课件(共17张PPT)
【变式2】:圆O是边长为2的正方
形的内切圆 , 向这个正方形中随机
地投一点M,设M落在正方形中任一
点的可能性是相同的,试求点M落圆
O中的概率.
O
4
•M
知识探究(二):几何概型的概率
【变式3】一只小虫在一个棱长为20cm盛满 水的正方体容器中游动, 假设小虫出现在容 器中的任意一个位置均为等可能的, 记“它 所在的位置距离正方体中心不超过10cm”为 事件A, 那么事件A发生的概率是多少?
B
N
N
B
B
N
BB
N
N
B
知识探究(一):几何概型的概念
思考 3:上述每个扇形区域对应的圆弧的长度(或 扇形的面积)和它所在位置都是可以变化的,从 结论来看,甲获胜的概率与字母 B 所在扇形区域 的哪个因素有关?
B
N
N
B
B
N
BB
N
N
B
与扇形的弧长(或面积)有关.
知识探究(一):几何概型的概念 思考 4:如果每个事件发生的概率只与构成该事 件区域的长度(面积或体积)成比例,则称这样 的概率模型为几何概型. 参照古典概型的特性, 几何概型有哪两个基本特征?
所有基本事件构成 的区域是什么?
事件A构成的区域 是什么?
在线段AB上任取一
3m
点
A
B
3m
取到线段AB上某一点 A
B
3m
线段AB(除两端外) A
B
线段CD
1m
AC DB
知识探究(二):几何概型的概率
【变式1】:在等腰直角三角形 ABC中,在斜边AB上任取一点M,
求AM的长大于AC的长的概率.
知识探究(二):几何概型的概率
人教A版高中数学必修3课件:3.3.1几何概型(共15张PPT)
3.公共汽车在0~5分钟内随机地到达车站,求汽车在1~3分 钟之间到达的概率.
2 5
4.假设车站每隔 10 分钟发一班车,随机到达车站,问等车时 间不超过 3 分钟的概率 .
0.3
当一个人用工作去迎接光明,光明很快就会来照耀着他。人在身处逆境时,适应环境的能力实在惊人。人可以忍受不幸,也可以战胜不幸,因为人有着惊人的 挥它,就一定能渡过难关。倘若你想达成目标,便得在心中描绘出目标达成后的景象;那么,梦想必会成真。心等待,就可以每一个人都具有特殊能力的电路, 知道,所以无法充分利用,就好像怀重宝而不知其在;只要能发掘出这项秘藏的能力,人类的能力将会完全大改观,也能展现出超乎常人的能力我这一生不曾 和伟大的著作都来自于求助潜意识心智无穷尽的宝藏。那些最能干的人,往往是那些即使在最绝望的环境里,仍不断传送成功意念的人。他们不但鼓舞自己, 成功,誓不休止。灵感并不是在逻辑思考的延长线上产生,而是在破除逻辑或常识的地方才有灵感。真正的强者,善于从顺境中找到阴影,从逆境中找到光亮 进的目标。每一种挫折或不利的突变,是带着同样或较大的有利的种子。什么叫做失败?失败是到达较佳境地的第一步。失败是坚忍的最后考验。对于不屈不 失败这回事。一次失败,只是证明我们成功的决心还够坚强。失败也是我需要的,它和成功对我一样有价值。我们关心的,不是你是否失败了,而是你对失败 失败?失败是到达较佳境地的第一步。没有人事先了解自己到底有多大的力量,直到他试过以后才知道。对于不屈不挠的人来说,没有失败这回事。要成功不 能,只要把你能做的小事做得好就行了。成功的唯一秘诀——坚持最后一分钟。只有胜利才能生存,只有成功才有代价,只有耕耘才有收获。只有把抱怨环境 的力量,才是成功的保证。不要为已消尽之年华叹息,必须正视匆匆溜走的时光。 当许多人在一条路上徘徊不前时,他们不得不让开一条大路,让那珍惜时间 面去。 敢于浪费哪怕一个钟头时间的人,说明他还不懂得珍惜生命的全部价值。成功=艰苦劳动+正确的方法+少说空话。合理安排时间,就等于节约时间。
2 5
4.假设车站每隔 10 分钟发一班车,随机到达车站,问等车时 间不超过 3 分钟的概率 .
0.3
当一个人用工作去迎接光明,光明很快就会来照耀着他。人在身处逆境时,适应环境的能力实在惊人。人可以忍受不幸,也可以战胜不幸,因为人有着惊人的 挥它,就一定能渡过难关。倘若你想达成目标,便得在心中描绘出目标达成后的景象;那么,梦想必会成真。心等待,就可以每一个人都具有特殊能力的电路, 知道,所以无法充分利用,就好像怀重宝而不知其在;只要能发掘出这项秘藏的能力,人类的能力将会完全大改观,也能展现出超乎常人的能力我这一生不曾 和伟大的著作都来自于求助潜意识心智无穷尽的宝藏。那些最能干的人,往往是那些即使在最绝望的环境里,仍不断传送成功意念的人。他们不但鼓舞自己, 成功,誓不休止。灵感并不是在逻辑思考的延长线上产生,而是在破除逻辑或常识的地方才有灵感。真正的强者,善于从顺境中找到阴影,从逆境中找到光亮 进的目标。每一种挫折或不利的突变,是带着同样或较大的有利的种子。什么叫做失败?失败是到达较佳境地的第一步。失败是坚忍的最后考验。对于不屈不 失败这回事。一次失败,只是证明我们成功的决心还够坚强。失败也是我需要的,它和成功对我一样有价值。我们关心的,不是你是否失败了,而是你对失败 失败?失败是到达较佳境地的第一步。没有人事先了解自己到底有多大的力量,直到他试过以后才知道。对于不屈不挠的人来说,没有失败这回事。要成功不 能,只要把你能做的小事做得好就行了。成功的唯一秘诀——坚持最后一分钟。只有胜利才能生存,只有成功才有代价,只有耕耘才有收获。只有把抱怨环境 的力量,才是成功的保证。不要为已消尽之年华叹息,必须正视匆匆溜走的时光。 当许多人在一条路上徘徊不前时,他们不得不让开一条大路,让那珍惜时间 面去。 敢于浪费哪怕一个钟头时间的人,说明他还不懂得珍惜生命的全部价值。成功=艰苦劳动+正确的方法+少说空话。合理安排时间,就等于节约时间。
3.3.1 几何概型(共36张PPT)
.
几何概型的概率计算公式中的“长度”并不是实际意义上 的长度,它的意义取决于试验的全部结果构成的区域,当区域分别是 线段、平面图形和几何体时,相应的“长度”分别是线段的长度、平 面图形的面积和几何体的体积.
【做一做 1】一个红绿灯路口,红灯亮的时间为 30 秒,黄灯亮的 时间为 5 秒,绿灯亮的时间为 45 秒.当你到达路口时,恰好看到黄灯亮 的概率是( ) A.
题型一
长度型的几何概型
【例题 1】一只蚂蚁在三边边长分别为 3,4,5 的三角形的边上爬行, 某时刻该蚂蚁距离三角形的三个顶点的距离均超过 1 的概率 为 .
解析:如图所示,△ABC 中,AB=3,AC=4,BC=5, 则△ABC 的周长为 3+4+5=12.设某时刻该蚂蚁距离三角形的三 个顶点的距离均超过 1 为事件 A, 则
1 答案:2 ������������ +������������+������������ P(A)= ������������ +������������+������������
=
3+2+1 12
=
1 . 2
如果试验的结果所构成的区域的几何度量能转化为实际意义 上的线段长度,这种概率称为长度型的几何概型,可按下列公式来计 算其概率: P(A)=
几何概型 ①基本事件无限个 ②P (A)=0⇐A 为不可能事件 ③P (B)=1⇐B 为必然事件
因此判断一个概率模型属于古典概型还是属于几何概型的步骤是: (1)确定一次试验中每个结果(基本事件)的可能性(概率)是否均 等, 如果不均等, 那么既不属于古典概型也不属于几何概型; (2)如果试验中每个结果出现的可能性是均等的, 再判断试验结 果的有限性. 当试验结果有有限个时, 这个概率模型属于古典概型;当 试验结果有无限个时, 这个概率模型属于几何概型.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
下面我们来求解“引入新课”中的问题;
解:设“飞船在主着陆场内着陆”为事件A,
1202 9
P( A)
2002
. 25
P(A)
构成事件A的区域面积 试验的全部结果所构成的区域面积
.
在1L高产小麦种子中混入了一粒带麦锈病的种子,从中随 机取出10 mL,含有麦锈病种子的概率是多少? 解:设取出10 mL麦种,其中“含有麦锈病种子”这一事件为 A,
P( A) 10 1 . 1 000 100
P(A)
构成事件A的区域体积 试验的全部结果所构成的区域体积
.
在几何概型中,事件A的概率的计算公式:
P(A)=
构成事件A的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积)
例1 某人午觉醒来,发现表停了,他打开收音机,想
听电台报时,求他等待的时间不多于10分钟的概率.
A 3B 4C 2D 1
5
5
5
解:试验的全部结果构成的区域长度为5,所求事件的区
域长度为2,故所求概率为 P 2 . 5
2.如图所示,边长为2的正方形中有一封闭
曲线围成的阴影区域,在正方形中随机撒
一粒豆子,它落在阴影区域内的概率为 2 ,
则阴影区域的面积为( B )
3
(A) 4
(B) 8
3
(C) 2
取一根长度为3米的绳子,拉直后在任意位置随机剪断, 那么剪得的两段的长度都不小于1米的概率有多大?
M
E
F
N
解:设A=“剪得两段的长度都不小于1”,用线段MN表示3 m 的绳子,E、F为MN的两个三等分点. ∵EF=1 m,∴P(A)= 1 .
3
P(A)
构成事件A的区域长度 试验的全部结果所构成的区域长度
2.下图是卧室和书房地板的示意图,图中所有方砖除颜色外 完全相同,甲壳虫分别在卧室和书房中自由地飞来飞去,并 随意停留在某块方砖上,问在哪个房间里,甲壳虫停留在黑 砖上的概率大?
卧室
书房
在卧室里,甲壳虫停留在黑砖上的概率大.
事实上,甲壳虫停留在黑砖上的概率与 黑砖的总面积有关.
3.用大小两个玻璃盆分别去捞鱼缸中红白相间的金鱼, 哪个捞到金鱼的概率大?
3.3.1 几何概型
1.正确理解几何概型的概念;(重点) 2.掌握几何概型的概率公式;(难点) 3.会根据古典概型与几何概型的区别与联系来判别
某种概型是古典概型还是几何概型.(难点)
2008年9月28日,是“神七” 回家的日子,它在内蒙古四子王 旗着陆.假设着陆场为方圆200 km,而主着陆场为方圆120 km的 区域.飞船在着陆场内任何一个 地方着陆的可能性是均等的.你 能计算出飞船在主着陆场内着陆 的概率吗?
3
(D)无法计算
3
解:由几何概型知:
S阴
2.
故
S阴
2 3
22
8. 3
S正方形
3
3.(2011·西城模拟)一只小蜜蜂在一个棱长为3的正方 体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体 6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂 “安全飞行”的概率为( B )
A 8 B 1 C 26D 15
4
1.古典概型与几何概型的区别 相同:两者基本事件的发生都是等可能的; 不同:古典概型要求基本事件有有限个,几何概型要求 基本事件有无限多个. 2.几何概型的概率公式
P(A) 试验的构全成部事结件果A所的构区成域的长区度域(长面度积(或面体积积或)体积).
分析:
0
50
60
解:设A={等待的时间不多于10分钟},事件A恰好是打开
收音机的时刻位于[50,60]时间段内,因此由几何概型
的求概率的公式得
P( A) 60 50 1 . 60 6
即“等待报时的时间不超过10分钟”的概率为 1 .
6
(2012·东城模拟)某人向一个半径为6的圆形标靶射击,假
设他每次射击必定会中靶,且射中靶内各点是随机的,则
此人射击中靶点与靶心的距离小于2的概率为( B )
A 1 B 1C 1D 1
13
9
4
2
解:靶点与靶心的距离小于2的区域是以靶心为圆心以2为 半径的圆的内部,故所求概率为 P 4 1 .
36 9
1.某路公共汽车每5分钟发车一次,某乘客到乘车点的时 刻是随机的,则他候车时间不超过2分钟的概率是( C )
大的.
事实上,捞到金鱼的概率与盆的体积有关.
如果每个事件发生的概率只与构成该事件区域的长度 (面积或体积)成比例,则称这样的概率模型为几何概率模 型,简称为几何概型.
(1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等.
古典概型与几何概型的区别
相同:两者基本事件发生的可能性都是相等的; 不同:古典概型要求基本事件有有限个,几何概型要求 基本事件有无限多个.
27
27
27
27
解:蜜蜂安全飞行的空间是棱长为1的正方体,故所求
概率为
P
13 33
1. 27
4. 取一个边长为2a的正方形及其内切圆,随机地向正方
形内丢一粒豆子,求豆子落入圆内的概率.
解:记“豆子落在圆内”为事件A,
2a
P( A)
圆的面积 a2
正方形的面积 = 4a2
4
.
答:豆子落入圆内的概率为 .
1.图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B
区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的
概率是多少?
以转盘(1)为游戏工具时,
甲获胜的概率为
1 .
2
以转盘(2)为游戏工具时,
甲获胜的概率为 3 .
5
(1)
(2)
事实上,甲获胜的概率与字母B所在扇形区 域的圆弧的长度有关,而与字母B所在区域的位 置无关.因为转转盘时,指针指向圆弧上哪一点 都是等可能的.不管这些区域是相邻,还是不相 邻,甲获胜的概率是不变的.