高中数学对数与对数函数知识点及例题讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数与对数函数
1.对数
(1)对数的定义:
如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .
(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质:
①log a (MN )=log a M +log a N .
②log a
N
M
=log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)
④对数换底公式:log b N =
b
N
a a log log (a >0,a ≠1,
b >0,b ≠1,N >0).
2.对数函数
(1)对数函数的定义
函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).
注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1
对数函数的底数为什么要大于0且不为1呢?
在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象
a <11))
底数互为倒数的两个对数函数的图象关于x 轴对称.
(3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0.
④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.
基础例题
题型1(对数的计算)
1.求下列各式的值. (1)35
5log +
21
2
log 1505
log -14
5log ; (2)log 2
1
25
×log 318×log 519.
练习题 1.计算:lg 12-lg 5
8
+lg12.5-log 89·log 278;
2.log 535+
21
2
log -log 5
150-log 514; 3.log 21
25
×log 318×log 519.
4. 3991
log log 4log 32
+-. 5. 4lg 2lg 5lg 22+-
221(6).log 24lg log lg 2log 32+-- 7.
2lg 2lg3
111lg 0.36lg823
+++
例2.已知实数x 、y 、z 满足3x =4y =6z
>1. (1)求证:
2x +1y =2z
; (2)试比较3x 、4y 、6z 的大小.
练习题.已知log 189=a ,18b
=5,用a 、b 表示log 3645.
题型二:(对数函数定义域值域问题)
例1.已知函数()22log 1
x f x x -=-的定义域为集合A ,关于x 的不等式22a a x
--<的解集为B ,若A B ⊆,求实数a 的取值范围.
2.设函数2
2log (22)y ax x =-+定义域为A .
(1)若A R =,求实数a 的取值范围;
(2)若2
2log (22)2ax x -+>在[1,2]x ∈上恒成立,求实数a 的取值范围.
练习题1.已知函数()()
2lg 21f x ax x =++
(1)若()f x 的定义域是R ,求实数a 的取值范围及()f x 的值域; (2)若()f x 的值域是R ,求实数a 的取值范围及()f x 的定义域
2 求函数y =2lg (x -2)-lg (x -3)的最小值.
题型三(奇偶性及其单调性)
例题1.已知定义域为R 的函数f(x)为奇函数,且满足f(x +2)=-f(x),当x ∈[0,1]时,f(x)=2x
-1. (1)求f(x)在[-1,0)上的解析式; (2)求f(12
log 24)的值.
2. 已知f (x )=log 3
1[3-(x -1)2],求f (x )的值域及单调区间.
3.已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.
4.已知函数()lg(2)lg(2)f x x x =++-. (Ⅰ)求函数()y f x =的定义域; (Ⅱ)判断函数()y f x =的奇偶性;
(Ⅲ)若(2)()f m f m -<,求m 的取值范围.
练习题1.已知函数f(x)=log a (x +1)-log a (1-x)(a >0,a≠1) (1)求f(x)的定义域;
(2)判断f(x)的奇偶性,并给出证明;
(3)当a >1时,求使f(x)>0的x 的取值范围
2.函数()f x 是定义在R 上的偶函数,(0)0f =,当0x >时,12
()log f x x =.
(1)求函数()f x 的解析式; (2)解不等式2
(1)2f x ->-;