示范教案一回顾与思考
第二章实数回顾与思考(教案)
在今后的教学中,我会继续努力,寻求更多有效的方法,帮助学生克服学习难点,提高实数这一章节的教学效果。同时,注重培养学生的数学思维和实际应用能力,使他们在学习数学的过程中,既能掌握知识,又能体会到数学的乐趣。
4.情感与态度:激发学生对实数学习的兴趣,形成积极主动的学习态度,体会数学的严谨性和美感,增强数学学习的自信心。
5.合作与交流:培养学生团队协作精神,通过小组讨论、交流,提高学生的沟通能力和集体智慧。
本章节的核心素养目标旨在全面提升学生的数学学科素养,为学生的终身发展奠定基础。
三、教学难点与重点
1.教学重点
-通过练习题让学生熟悉混合运算的顺序和法则
(3)实数与数轴的关系:学生可能难以理解实数与数轴之间的对应关系。
-通过数轴图示,让学生直观地感受实数与数轴的关系
-举例说明数轴上实数的运算规律
(4)实数在实际问题中的应用:学生可能不知道如何将实数知识应用于实际问题。
-创设实际情境,让学生体会实数在生活中的应用
4.实数在实际问题中的应用
-实数在生活中的应用实例
-实数在科学计算中的应用
5.实数的估算与近似
-近似数的概念
-四舍五入法
-有效数字
6.回顾与思考
-总结实数章节的知识点
-分析实数在实际问题中的应用
-思考实数学习的意义与价值
本章节内容旨在帮助学生巩固实数知识,提高解决实际问题的能力,同时培养学生的数学思维和估算意识。
北师大版七年级上册数学教案:第三章《整式加减》回顾与思考优秀教学案例
1.启发式教学:在教学过程中,我注重启发式教学,引导学生主动思考、积极探索。通过问题的引导和小组讨论,让学生思考和探索整式加减的运算规律,提高他们的思维能力和解题技巧。
2.情景创设:我运用情景创设法,将实际问题引入课堂,让学生感受到数学与生活的紧密联系。通过购物场景、图形面积计算等实际问题,激发学生的学习兴趣,提高他们解决实际问题的能力。
2.鼓励学生相互之间进行交流和分享,让他们在讨论中相互启发、相互学习。例如,在小组讨论中,我会要求每个学生分享自己的解题思路和方法,让其他成员进行评价和补充。通过这种方式,促进学生之间的思学过程中,我会引导学生进行自我反思,让他们思考自己的学习过程和方法。例如,在解答完一个例题后,我会提问:“你为什么选择这种方法来解答?还有没有其他更好的方法?”通过反思,培养学生的批判性思维和自我评价能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,让他们体验到数学的乐趣,激发他们学习数学的积极性和主动性。
2.培养学生严谨的思维态度,让他们养成认真、细致、逻辑清晰的解题习惯。
3.通过解决实际问题,让学生感受到数学与生活的紧密联系,培养他们的实践能力和创新精神。
三、教学策略
(一)情景创设
1.为了激发学生的学习兴趣和积极性,我会在课堂开始时创设一个与学生生活实际相关的情景。例如,通过一个购物场景,让学生思考如何计算两个商品的总价,从而引出整式加减的概念和运算规则。
2.设计一些具有挑战性的问题或例题,让学生独立思考和解决。例如,给出一个复杂的实际问题,要求学生运用整式加减的知识进行解答。通过解决这些问题,培养学生的问题解决能力和创新思维。
(三)小组合作
1.在课堂上,我会组织学生进行小组合作,让他们共同探讨和解决问题。例如,在讲解整式加减的规则时,我会给出一些例题,让学生以小组为单位进行讨论和解答。通过小组合作,培养学生的团队合作能力和沟通能力。
第三章概率的进一步认识回顾与思考(教案)
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《第三章概率的进一步认识回顾与思考》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断事件独立性或使用概率来帮助做决策的情况?”(如抛硬币、抽奖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解事件独立性、条件概率和贝叶斯定理的基本概念。事件独立性是指两个事件的发生与否互不影响;条件概率是在某一事件发生的条件下,另一事件发生的概率;贝叶斯定理则是用来在已知某一结果时,反推事件发生概率的公式。这些概念在数据分析、决策制定等方面具有重要意义。
在学生小组讨论环节,我发现大家对于概率在实际生活中的应用有很丰富的想法,但有些小组在分享成果时表达不够清晰。针对这个问题,我计划在接下来的课程中,加强学生的口头表达和逻辑思维能力训练,帮助他们更好地展示自己的思考过程。
此外,我还注意到,部分学生在课堂上的参与度不高。为了提高他们的积极性,我将在下一节课尝试采用更多互动性强的教学方法,如小组竞赛、角色扮演等,激发学生的学习兴趣,让他们更主动地参与到课堂中来。
2.提高学生的数据分析能力,学会从实际情境中提取信息,运用概率知识解决实际问题,培养解决复杂问题的能力。
3.培养学生的创新意识和应用意识,将概率知识与社会生活实际相结合,激发学生运用概率知识解决实际问题的兴趣。
4.增强学生的团队合作意识,通过小组讨论和合作完成习题,培养学生的沟通能出问题、分析问题,培养勇于探索的精神。
五、教学反思
在这节课中,我发现学生们对概率的基本概念有了较好的掌握,特别是事件独立性、条件概率和贝叶斯定理。在导入新课环节,通过提问同学们在日常生活中遇到的概率问题,成功引起了他们对本节课的兴趣。在新课讲授环节,我注意引导学生理解这些概念在实际生活中的应用,并尝试用生动的案例进行分析,让学生更好地理解这些抽象的概念。
北师大版九年级数学下册:第一章 1《回顾与思考》精品教案
北师大版九年级数学下册:第一章 1《回顾与思考》精品教案一. 教材分析北师大版九年级数学下册第一章《回顾与思考》是对整个初中数学知识的总结与回顾。
本章通过对之前学习的知识进行梳理,帮助学生建立知识体系,提高解决问题的能力。
本节课的内容包括数的开方与乘方、勾股定理、相似三角形的性质等,旨在让学生通过回顾与思考,对所学知识有更深入的理解和掌握。
二. 学情分析九年级的学生已经掌握了初中阶段的大部分数学知识,对于数的开方与乘方、勾股定理、相似三角形的性质等概念和性质有一定的了解。
但部分学生在应用这些知识解决问题时,可能会出现混淆和错误。
因此,在教学过程中,需要关注学生的知识掌握情况,针对性地进行引导和讲解。
三. 教学目标1.帮助学生回顾和总结初中阶段的数学知识,建立知识体系。
2.提高学生运用数学知识解决实际问题的能力。
3.培养学生的逻辑思维能力和创新能力。
四. 教学重难点1.数的开方与乘方、勾股定理、相似三角形的性质等知识的运用。
2.学生对于实际问题进行分析,运用所学知识解决问题的能力。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动回顾和总结所学知识。
2.通过实例分析,让学生运用所学知识解决实际问题。
3.采用小组合作学习的方式,培养学生的团队合作能力和沟通能力。
六. 教学准备1.准备相关知识点的PPT,用于呈现和讲解。
2.准备一些实际问题,用于引导学生运用所学知识解决。
3.准备黑板和粉笔,用于板书和标注。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实际问题,引导学生运用所学知识解决。
例如,计算一个房间的面积,或者计算一个三角形的周长等。
通过这些问题,激发学生的学习兴趣,并引出本节课的内容。
2.呈现(10分钟)利用PPT呈现本的回顾与思考的内容,包括数的开方与乘方、勾股定理、相似三角形的性质等。
在呈现过程中,引导学生主动回顾和总结所学知识,并与同学进行交流。
3.操练(10分钟)针对每个知识点,设计一些练习题,让学生独立完成。
北师大版七年级上册数学教案:第三章《整式加减》回顾与思考说课稿
五、板书设计与教学反思
(一)板书设计
我的板书设计将注重布局的合理性和内容的条理性。板书分为三个部分:标题区、内容区和总结区。标题区位于黑板顶部,清晰地标明课程标题和日期;内容区是板书的核心部分,按照教学进程依次呈现知识点,包括整式的定义、整式加减的法则、例题演示和注意事项;总结区位于黑板底部,用于总结课程要点和强调重点。
4.游戏活动:设计一些数学游戏,如数学接龙、速算比赛等,让学生在游戏中巩固所学知识,同时增加学习的趣味性。
(四)总结反馈
在总结反馈阶段,我会引导学生进行自我评价,让他们回顾本节课所学内容,总结自己在学习过程中的收获和困惑。我会提出一些问题,如:“今天我们学习了哪些知识点?”,“你在整式加减方面有哪些进步?”,“还存在哪些疑问?”等,鼓励学生积极思考并回答。同时,我会根据学生在课堂上的表现和练习情况,给予他们有效的反馈和建议,指出他们的优点和需要改进的地方,帮助他们明确下一步的学习目标。
(2)通过实际问题的探讨,培养学生分析问题和解决问题的能力;
(3)通过课堂练习,提高学生的运算速度和准确性。
3.情感态度与价值观:
(1)培养学生对数学的兴趣,提高学习的积极性;
(2)培养学生独立思考、合作交流的良好习惯;
(3)培养学生勇于挑战困难、不断追求进步的精神。
湖南省益阳市第六中学七年级数学上册 第一章 本章回顾
第一章 本章回顾与思考教案(1)第18课时一、教学目标:回顾本章内容,梳理本章知识,建立一定的知识体系。
掌握有理数有关概念,熟练进行有理数加、减、乘、除、乘方运算及混合运算,并会利用运算律简化运算。
二、教材分析重点:梳理本章知识,建立知识体系。
难点:将新旧知识结合成一个有机的整体。
三、教学方法师生双主互动法 四、自主学习方案 回顾本章内容,思考下列问题(1)什么样的数叫正数、负数?0呢? (2)什么叫做有理数?有理数有几种分类方法?(3)什么样的直线叫做数轴?什么是相反数、绝对值、倒数?(4)如何比较两个有理数的大小?(5)有理数的运算有哪几种?运算的法则各是什么?有哪些运算律? (6)有理数的混合运算顺序是什么?五、教学过程(一)复习感知 教师活动:鼓励学生独立思考回答以上问题。
组织学生讨论交流,梳理本章内容。
(二)合作交流,解读探究先组织学生独立尝试,再师生共同解答。
1、在数轴上画出表示下列各数的点,并用“<”连接: )+(-, ),+,-(--, , ,-332.53422145.3解:,- )-(-)+(- -435.22335.3214<<+<<<-<2、比较下列各数的大小(1) 5465与-- (2)3243与--解:(1)因为54653024302530245454,30256565--==-==-<,所以,>, 3、计算:))+(--(-)--(-617.22312.2865引导学生把加减运算化为加法运算,并注意加法交换律的运用,经便简化运算。
解: 3110103122.72.28613165617.22312.2865 =+ =)+)+(-- =(-+-+原式=4、计算:87)12787431(÷--(三)精导精讲,运用提升P50复习题一A 组第1、2、3、4题(四)总结反思师生共同建立本章知识结构表(板书)⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧分配律结合律交换律运算律乘方乘除加减运算法则有理数的运算有理数的大小比较绝对值相反数数轴有关概念有理数(五)课堂作业: P50复习题一B 组、 (六)教学反思。
北师大版八年级数学上册第1章回顾与思考(教案)
突破方法:讲解分解因式的方法,指导学生如何识别同类项并进行合并。
(3)实际应用中的方程与不等式:学生在将方程与不等式应用于解决实际问题时,容易感到困惑。
突破方法:通过具体实例,引导学生如何从问题中提取信息,构建方程与不等式模型。
(4)几何图形的性质与计算:学生对几何图形的性质理解不够深入,导致计算错误。
4.几何图形的性质:回顾三角形、四边形的性质,掌握周长、面积的计算方法,以及图形的相似、全等关系。
5.数据的分析:对数据进行整理、描述、分析,掌握平均数、中位数、众数、方差等统计量的计算方法。
二、核心素养目标
1.培养学生的逻辑思维能力:通过有理数混合运算、代数式简化等练习,提高学生逻辑推理、分析问题的能力。
(5)数据的分析:掌握统计量的计算方法,学会对数据进行整理、描述和分析。
举例:给出一组数据,要求学生计算平均数、中位数、众数和方差。
2.教学难点
(1)有理数混合运算中的符号判断和运算顺序:学生在进行混合运算时,容易在符号判断和运算顺序上出错。
突破方法:通过举例讲解,强化练习,让学生熟练掌握运算规则。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们回顾了有理数混合运算、代数式简化、方程与不等式解法、几何图形性质以及数据分析等基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
这节课我们探讨了北师大版八年级数学上册第1章“回顾与思考”的内容。通过这节课的教学,我发现学生们在有理数混合运算、代数式简化、方程与不等式解法、几何图形性质以及数据分析等方面有不错的表现,但同时也存在一些问题。
七年级数学上册丰富的图形世界回顾与思考教案北师大
点线面及其关系从正面看从上面看从左面看底面侧面截面及其形状从不同方向看展开与折叠切截长方体正方体球 圆锥圆柱棱柱生活中的立体图形丰富的现实背景第一章教学目标1, 会辨认基本几何体(直棱柱,圆柱,圆锥,球等)2, 了解直棱柱,圆柱,圆锥的侧面展开图,能根据展开图判断制作立体图形3, 能想象基本几何体的截面形状4, 会画基本几何体的形状图,会判断简单物体的形状图5, 掌握几何体与平面图形的相互转换重点 点,线,面等最基本的图形与基本几何体的相互转换。
难点 在面与体的变化中如何抓住特征。
教学用具多媒体,PPT教学环节 说 明二次备课课 程 讲 授 第一环节 创设情境,回顾思考内容: 首先,请同学们根据第一章所学的知识来回答下面几个问题:1. 生活中有哪些你熟悉的几何体?举例说明2. 举出生活中的物体,使它尽可能多的包含不同的几何体。
3. 用自己的语言说一说棱柱的特征。
4. 生活中哪些常见的物体可以由平面图形旋转得到?5. 找出两种几何体,使得分别用一个平面去截他们,可以得到三角形形状的截面。
6. 举出一种几何体,使得它从正面看,左面看,上面看所看到的平面图形都一样。
7. 用你自己喜欢的方式梳理本章的知识。
第二环节梳理归纳合作探究专题1:图形特征内容:1.你能否将下列几何体进行分类?并说出分类依据。
2.如图所示的几何体各有几个面围成的?面与面相交成几条线?他们是直的还是曲的?专题2:展开与折叠;切截几何体内容:1.归纳棱柱的特性。
2.如何判断平面图形是否可以经过折叠围城棱柱。
3.正方体表面展开图有几种?哪几种?4.圆柱和圆锥的侧面展开图。
5.用一个平面去截正方体,可能出现哪几种情况?专题3:几何体的视图内容:【例】如图所示,是由几个小立方块所搭几何体的从上面看到的形状图,请画出这个几何体的从正面和从左面看到的这个几何体的形状图。
第三环节巩固应用,提高能力例1:下列四个图形中能折叠成正方体的是那些图形?例2:下面是由几个相同立方块组成的几何体的从上面看到的形状图,小正方形上的数字表示在该位置的小立方块的个数,请画出这个几何体的从正面和从左面看到的形状图。
幼儿活动教案示范解读与反思
幼儿活动教案示范解读与反思在幼儿教育中,活动教案扮演着重要的角色。
通过设计和实施活动教案,教师能够帮助幼儿学习和发展各种技能和能力。
本文将对一份幼儿活动教案进行解读与反思,探讨其有效性和教育意义。
第一部分:活动目标与背景这份活动教案的目标是培养幼儿的动手能力和创造力,通过制作手工艺品来激发幼儿对艺术的兴趣。
活动的背景是学校即将举办一场艺术展览,希望幼儿能参与其中并展示自己的创作作品。
第二部分:活动内容与安排教案中详细提供了活动的内容和安排。
首先,幼儿们将学习不同的手艺技巧,如剪纸、折纸、画画等。
然后,他们将运用所学技巧制作自己的手工艺品。
最后,教师会组织一次小型艺术展览,让幼儿们展示自己的作品。
第三部分:教学方法与手段教案中列举了一系列的教学方法和手段,以帮助幼儿达到活动目标。
比如,教师将通过示范和指导来展示不同的手艺技巧;通过提供材料和工具来支持幼儿的创作过程;通过展览来提供展示作品的机会等等。
第四部分:适应性与个性化教案中强调了适应性和个性化的重要性。
教师会根据每个幼儿的兴趣和能力来选择不同的手工艺品和技巧,以满足他们的发展需求。
同时,教师也会提供不同的挑战和支持,以促进幼儿在创作过程中的成长。
第五部分:评估与反馈教案中没有具体提及评估与反馈的内容,这是一个值得深思的地方。
在活动结束后,教师可以通过观察幼儿的作品和参与度来评估他们的学习成果,并给予相应的反馈和鼓励。
第六部分:师生互动与合作该教案鼓励师生互动与合作。
教师在教学过程中与幼儿进行亲密接触,与他们分享艺术知识和技巧。
同时,教师还鼓励幼儿之间的交流和合作,让他们互相学习和帮助。
第七部分:教育意义与价值这份教案具有一定的教育意义和价值。
首先,通过制作手工艺品,幼儿能够培养动手能力和创造力,提高他们的艺术欣赏和表达能力。
其次,通过展览,幼儿能够获得自豪感和成就感,同时也能够学会分享和欣赏他人的作品。
第八部分:教师角色与能力教师在这个教学活动中扮演着导师和引导者的角色。
北师大版九年级数学下册:第一章《直角三角形的边角关系——回顾与思考》教案
北师大版九年级数学下册:第一章《直角三角形的边角关系——回顾与思考》教案一. 教材分析北师大版九年级数学下册第一章《直角三角形的边角关系——回顾与思考》主要介绍了直角三角形的性质,包括锐角三角函数的概念、直角三角形的边角关系等。
本章内容是初中数学的重要知识点,为后续学习三角形相似、解直角三角形等知识打下基础。
二. 学情分析九年级的学生已经掌握了三角形的基本概念和性质,具备了一定的逻辑思维能力和空间想象能力。
但学生在学习过程中,可能对锐角三角函数的理解和应用存在困难,因此需要通过本章内容的学习,帮助学生巩固直角三角形的性质,提高解题能力。
三. 教学目标1.理解直角三角形的性质,掌握锐角三角函数的概念。
2.学会运用直角三角形的性质解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.重点:直角三角形的性质,锐角三角函数的概念。
2.难点:锐角三角函数的应用,解直角三角形。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生主动探究、积极思考,提高学生的学习兴趣和参与度。
六. 教学准备1.教学课件:制作直角三角形性质、锐角三角函数的课件。
2.教学素材:提供相关案例,如实际问题、例题等。
3.学习工具:准备好直角三角形、锐角三角函数的相关资料。
七. 教学过程1.导入(5分钟)利用生活中的实例,如测量身高、测距等,引出直角三角形的性质和锐角三角函数的概念。
激发学生的学习兴趣,引导学生思考直角三角形在实际生活中的应用。
2.呈现(15分钟)呈现直角三角形的性质和锐角三角函数的定义,通过动画、图片等形式展示,帮助学生直观地理解。
同时,给出相关案例,让学生体会直角三角形性质和锐角三角函数在实际问题中的作用。
3.操练(15分钟)针对直角三角形的性质和锐角三角函数,设计一系列练习题。
让学生独立完成,巩固所学知识。
教师及时批改、讲解,解答学生的疑问。
4.巩固(10分钟)通过小组合作学习,让学生运用直角三角形的性质和锐角三角函数解决实际问题。
北师大版数学七年级上册《回顾与思考》教案1
北师大版数学七年级上册《回顾与思考》教案1一. 教材分析《回顾与思考》是北师大版数学七年级上册的一章总结性内容,本章主要目的是帮助学生复习和巩固前面所学知识,提高学生的综合运用能力。
本章内容涵盖了整数、实数、代数式、方程、不等式等基础知识,以及简单的几何知识。
通过本章的学习,学生能够对前面的知识有一个全面、系统的认识,为后续的学习打下坚实的基础。
二. 学情分析学生在进入七年级之前,已经初步掌握了小学数学的基本知识,但存在着知识掌握不扎实、运用不灵活的问题。
此外,学生的学习习惯、学习方法、学习态度等方面也存在一定的问题。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生的实际情况进行有针对性的教学。
三. 教学目标1.知识与技能:使学生对七年级上册所学知识有一个全面、系统的认识,提高学生的综合运用能力。
2.过程与方法:通过复习和巩固,培养学生自主学习、合作学习、探究学习的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学的魅力。
四. 教学重难点1.重点:七年级上册所学知识的全面回顾和巩固。
2.难点:如何引导学生自主复习,提高学生的综合运用能力。
五. 教学方法1.自主学习法:引导学生自主复习,培养学生独立思考的能力。
2.合作学习法:小组讨论,共同解决问题,提高学生的团队协作能力。
3.探究学习法:引导学生深入探究,发现知识之间的联系,提高学生的创新能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生学情,制定合理的教学计划。
2.学生准备:带上笔记本,准备好七年级上册的数学课本。
七. 教学过程1.导入(5分钟)教师通过简单的提问,引导学生回顾七年级上册所学知识,激发学生的学习兴趣。
2.呈现(10分钟)教师呈现本节课的主要内容,包括整数、实数、代数式、方程、不等式等基础知识,以及简单的几何知识。
3.操练(10分钟)学生自主复习,对照教材,梳理和巩固所学知识。
北师大版数学七年级上册《回顾与思考》教案
北师大版数学七年级上册《回顾与思考》教案一. 教材分析北师大版数学七年级上册《回顾与思考》教案主要是对前面所学知识进行回顾和思考,通过复习和总结,使学生对前面的知识有一个更加深入的理解和掌握。
本节课的内容包括有理数的乘方、整式的加减、分式的加减、函数的性质等,这些都是七年级数学的重要内容。
通过本节课的学习,学生可以对前面的知识有一个全面的回顾和思考,为接下来的学习打下坚实的基础。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方、整式的加减、分式的加减、函数的性质等知识。
他们对这些知识有一定的理解和掌握,但可能存在一些疑问和困惑。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的疑问和困惑进行解答和引导。
三. 教学目标1.回顾和总结前面的知识,使学生对前面的知识有一个更加深入的理解和掌握。
2.提高学生的复习和总结能力,培养学生的自主学习能力。
3.通过对前面的知识的回顾和思考,为学生接下来的学习打下坚实的基础。
四. 教学重难点1.有理数的乘方、整式的加减、分式的加减、函数的性质等知识的回顾和总结。
2.学生对前面知识的疑问和困惑的解答和引导。
五. 教学方法1.讲解法:教师通过讲解,引导学生回顾和总结前面的知识。
2.问答法:教师通过提问,引导学生思考和解答问题。
3.讨论法:学生之间进行讨论,共同解决问题。
六. 教学准备1.教材:北师大版数学七年级上册。
2.教案:教师根据自己的教学目标和重难点,编写详细的教案。
3.课件:教师根据教案,制作相应的课件。
七. 教学过程1.导入(5分钟)教师通过提问,引导学生回顾和思考前面的知识,激发学生的学习兴趣。
2.呈现(10分钟)教师通过课件,呈现本节课的内容,包括有理数的乘方、整式的加减、分式的加减、函数的性质等。
引导学生对这些知识进行回顾和总结。
3.操练(10分钟)教师通过提问和解答,引导学生对前面的知识进行巩固。
可以设置一些题目,让学生进行解答,然后教师进行讲解和解析。
《整式及其加减》回顾与思考教学设计
《整式及其加减》回顾与思考教学设计教学目标:1.理解整式的基本概念,掌握整式的加减运算规则;2.能够熟练运用整式的加减运算规则解决实际问题;3.培养学生的逻辑思维能力和运算技巧。
教学重点:1.整式的基本概念;2.整式的加减运算规则。
教学难点:1.整式的加减运算步骤的理解与应用;2.实际问题的转化和计算。
教学准备:1.教师准备:教学反思与教案制作;2.学生准备:课前预习及完成课堂练习。
教学过程:一、导入(10分钟)1.利用一个小故事引出整式的概念,并与学生共同总结出整式的基本特点;2.提问:你们知道整式的加减运算规则吗?请回忆并与同桌讨论。
二、概念讲解与讲练结合(30分钟)1.整式的概念讲解:给出整式的定义和示例,要求学生注意整式的各个部分的含义;2.整式的加减运算规则的讲解与示范:先从简单的例子开始,逐步引导学生理解整式的加减运算规则;3.学生进行练习:教师出示一些整式的加减运算题目,学生试做,然后互相核对答案;4.学生展示与讨论:教师选择几道学生解答正确的题目进行展示,并让学生解释自己的思路。
三、拓展延伸(20分钟)1.教师设计一些拓展题目,要求学生运用整式的加减运算规则解决实际问题;2.学生进行练习:学生独立完成拓展题目,并按要求给出解答过程;3.学生展示与讨论:教师选择几位学生展示自己的解答过程,并与学生一同讨论解答的合理性和可行性。
四、归纳总结(10分钟)1.整理整式的概念和加减运算规则,要求学生进行归纳总结;2.学生进行小结,回顾自己在学习中的收获和困惑。
五、课后作业(5分钟)1.布置一些整式的加减运算习题,要求学生完成并检查答案;2.提醒学生复习与准备下节课内容。
教学反思:通过这节课的教学设计与实施,学生对整式的概念和加减运算规则有了更深入的了解,并能够灵活运用。
在教学过程中,我注重以学生为主体,通过让学生进行练习和展示,培养了他们的自主学习和合作学习能力。
但是,在教学设计时,我没有考虑到不同层次学生的需求,导致学生中存在一定程度的困惑。
北师大版八年级上册第一章勾股定理回顾与思考(教案)
一、教学内容
本节课我们将回顾北师大版八年级上册数学第一章“勾股定理”的内容。具体包括:
1.勾股定理的概念理解:通过复习勾股定理,使学生掌握直角三角形两个直角边的平方和等于斜边的平方这一性质。
2.勾股定理的证明:回顾教材中给出的勾股定理证明方法,包括几何拼贴法和代数推导法。
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天这节课中,我们一同探讨了勾股定理的奥秘。回顾整个教学过程,我发现有几个地方值得深思和改进。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用尺子和绳子实际测量并计算某个直角三角形的边长。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-掌握勾股定理的证明:强调几何拼贴法和代数推导法的证明过程,确保学生能够理解并复述证明步骤。
-应用勾股定理解决问题:培养学生能够将勾股定理应用于解决实际问题,如计算边长、验证直角三角形等。
-记忆特殊直角三角形的性质:学生需要熟练记忆30°-60°-90°和45°-45°-90°直角三角形的比例关系。
-实际问题的转化:将现实问题转化为数学模型,特别是涉及到勾股定理的应用时,学生可能会难以理解如何将问题转化为直角三角形的问题。
-特殊直角三角形的记忆与运用:学生需要通过记忆和练习来熟练掌握特殊直角三角形的性质,这对于一些学生来说可能是一个挑战。
北师大版数学八年级下册:3章回顾与思考(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们回顾了分式、函数和几何图形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
5.章节综合练习:
a.分式的化简与求值
b.函数解析式的求解与应用
c.几何图形的绘制与性质分析
d.实际问题中的函数与几何应用题
二、核心素养目标
1.培养学生的逻辑推理能力:通过回顾分式、函数、几何图形的性质与判定,使学生掌握严密的逻辑推理方法,提高解决问题的能力。
2.培养学生的数据分析能力:让学生在解决实际问题时,能够运用所学函数知识进行数据整理、分析,并得出结论。
3.培养学生的空间想象能力:通过几何图形的绘制与分析,激发学生的空间想象力,为后续几何学习奠定基础。
4.培养学生的数学建模能力:引导学生利用所学知识解决实际问题,建立数学模型,提高解决实际问题的能力。
5.培养学生的数学抽象能力:让学生在探讨函数性质、几何图形性质的过程中,学会从具体实例中抽象出一般性规律,形成数学抽象思维。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要回顾分式、函数和几何图形的基本概念。分式是表示两个整式之间除法关系的表达式,它在比例计算、化学方程式等领域有重要应用。函数是描述两个变量之间依赖关系的数学模型,它在日常生活和科学技术中无处不在。几何图形则是我们认识世界、构建空间的基础。
2.案例分析:接下来,我们来看一个具体的案例。例如,通过分析一次函数图像,我们可以了解商品价格与销售量之间的关系,为商家制定销售策略提供依据。
北师版数学八年级上册第一章《勾股定理》回顾与思考教案
学法指
导
二次备课【知识回顾】
1、探索勾股定理:分割法
2、勾股定理的内容:直角三角形等于。
3、直角三角形的判别条件:如果一个三角形的三边长a,b,c满足:
那么这个三角形是直角三角形。
4、应用:在直角三角形中已知两边长求第三边长;求几何体表面上两点间的最短
距离
【例题精讲】
一、勾股定理及验证
1、如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,
(1)这个梯子的顶端距离地面有多高?
(2)如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了多少米?
2、据传当年毕达哥拉斯借助如图所示的两个图验证了勾股定理,你能说说其中的道理吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八课时
●课题
§3.5 回顾与思考
●教学目标
(一)教学知识点
1.用分式表示生活中的一些量.
2.分式的基本性质及分式的有关运算法则.
3.分式方程的概念及其解法.
4.列分式方程,建立现实情境中的数学模型.
(二)能力训练要求
1.使学生有目的的梳理知识,形成这一章完整的知识体系.
2.进一步体验“类比”与“转化”在学习分式的基本性质、分式的运算法则及其分式方程解法过程中的重要作用.
3.提高学生的归纳和概括能力,形成反思自己学习过程的意识.
(三)情感与价值观要求
使学生在总结学习经验和活动经验的过程中,体验因学习方法的大力改进而带来的快乐,成为一个乐于学习的人.
●教学重点
1.分式的概念及其基本性质.
2.分式的运算法则.
3.分式方程的概念及其解法.
4.分式方程的应用.
●教学难点
1.分式的运算及分式方程的解法.
2.分式方程的应用.
●教学方法
讨论——交流法
讨论交流本章学习过程中的经验和收获,在反思过程中建立知识体系.
●教具准备
投影片两张,实物投影仪
第一张:问题串,(记作§3.5 A)
第二张:例题分析,(记作§3.5 B)
●教学过程
Ⅰ.提出问题,回顾本章的知识.
(教师可参与于学生的讨论中,注意扫除他们学习中常犯的错误)
米.
[生]我们组来回答此问题,此人晨练时平均每分钟行
m+
n
我们组也举出一个例子:长方形的面积为8 m2,长为p m,宽为____________ m.
[生]应为p
8 m. [师]同学们举的例子都很有特色,谁还能举.
[生]如果某商品降价x %后的售价为a 元,那么该商品的原价为多少元? [生]原价为
%
1x a -元.…… [师]n m bn am ++,p 8,%
1x a -都是分式.分式有什么特点?和整式有何区别? [生]整式A 除以整式B ,可表示成B A 的形式,如果除式B 中含有字母,则称B A 是分式.而整式分母中不含字母.
法老师很欣赏.
[生]我们组来回答第三个问题吧.先看第一问.解分式方程分三步:第一步,去分母,把分式方程转化为整式方程;第二步,解这个整式方程;第三步,将整式方程的根代入最简公分母,如果使最简公分母为零,则此根为原方程的增根,若最简公分母不为零,则此根是原方程的解.
[生]我认为从解分式方程的步骤就可以看出分式方程是通过去分母转化为一元一次
方程后完成的.但解分式方程必须检验,这就是和一元一次方程的区别.因为在把分式方程转化为整式方程时,方程两边同乘以含未知数的最简公分母,若解出的整式方程(这里通常是一元一次方程)的根使最简公分母为零,则原分式方程无意义,所以分式方程必须验根.
(1)解方程
2
1
-
x
=
x
x
-
-
2
1
-3
方程两边同乘以x-2,得1=-(1-x)-3
x=5
[错因分析与解题指导]在方程两边同乘(x-2)时,右边-3项漏乘了.去分母时,特别要当心原方程中原来“没有分母”(其实是分母为1)的项,不要漏乘.
正确解法:
方程两边同乘以(x-2),得1=-(1-x)-3(x-2)
解,得x=2
检验:将x=2代入x-2=0.
所以x=2是原方程的增根,原方程无解.
(在学生回忆、反思的过程中,建立知识结构图)
[师生共析]
Ⅲ.课时小结
这节课我们通过回顾与思考,更进一步体会到了分式和分式方程这样的数学模型如何去解决生活中的实际问题,并且提高了运算的能力和对算理的进一步理解.
Ⅳ.课后作业
1.课本复习题A组、B组,学有余力的同学可完成C组.
2.独立完成一份小结,谈一谈学习本章后的收获及遇到的困难等.
Ⅴ.活动与探究
甲、乙两个小商贩每次都去同一批发商场买进白糖.甲进货的策略是:每次买1000元钱的糖;乙进货的策略是每次买1000斤糖,最近他俩同去买进了两次价格不同的糖,问两人中谁的平均价格低一些?
[过程]平均价格是为两次买的总糖量除总价钱.由于两次买糖的价格不一样,可设两次的价格分别为x、y(单位:元/斤),只要列出代数式表示甲、乙两人买糖的平均价格,用作差的方法即可.
[结果]设两次买糖的进价分别为x、y(单位:元/斤),A、B分别是甲、乙两人买糖的平均进价.则:
A=
y
x
1000
1000
1000
2
+
⨯
=
y
x
xy
+
2
B=
1000
2
1000
1000
⨯
+y
x
=
2
y
x+
B-A=
2
y
x+
-
y
x
xy
+
2
=
)
(2
2
)
(2
y
x
xy
y
x
+
-
+
=)(22
2y x y x ++>0 所以乙的平均价格高.按甲的进货策略进货更合理. §3.5 回顾与思考。