上海初三中考数学第23题专项复习

合集下载

上海中考数学23题专题

上海中考数学23题专题

中考数学试题一、单项选择题(共12分)1.一个由相同正方体堆积而成的几何体如图所示,从正面看,这个几何体的形状是()。

A.B.C.D.2.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3D.x1=0,x2=33.已知m3=n4,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=124.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是()A.过图象上任一点P作x轴、y轴的垂线,垂足分别A,B,则矩形O APB 的面积为kB.若点(2,4)在其图象上,则(−2,4)也在其图象上C.反比例函数的图象关于直线y=x和y=−x成轴对称D.当k>0时,y随x的增大而减小5.如图,以A、B、C为顶点的三角形与以D、E、F为顶点的三角形相似,则这两个三角形的相似比为()A.2:1 B.3:1 C.4:3 D.3:26.如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()7.已知反比例函数y=kx(k≠0),当x<0时,y随x的增大而增大,那么一次函数y=kx−k的图象经过()。

A.第一,二,三象限B.第一,二,四象限C.第一,三,四象限D.第二,三,四象限8.在同一平面直角坐标系中,函数y=x﹣1与函数y=1x的图象可能是()A.B. C.D.9.已知m3=n4,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=12二、填空题(共24分)10.小明和小红在阳光下行走,小明身高1.75米,他的影长2.0米,小红比小明矮7厘米,此刻小红的影长是()米。

11.已知△ABC,若有|sinA−12|与(tanB−√3)2互为相反数,则∠C的度数是。

12.已知方程x2+mx﹣6=0的一个根为﹣2,则另一个根是。

2020届中考数学总复习(23)尺规作图-精练精析(2)及答案解析

2020届中考数学总复习(23)尺规作图-精练精析(2)及答案解析

图形的性质——尺规作图2一.选择题(共9小题)1.用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A.边边边B.边角边C.角边角D.角角边2.下列作图语句正确的是()A.延长线段AB到C,使AB=BC B.延长射线ABC.过点A作AB∥CD∥EF D.作∠AOB的平分线OC3.下列语句()正确.A.射线比直线短一半B.延长AB到CC.两点间的线叫做线段D.经过三点A,B,C不一定能画出直线来4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP 并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③点D在AB的垂直平分线上④AB=2AC.A.1 B.2 C.3 D.45.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据图形全等的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.AAS6.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1 C.y=2x﹣1 D.y=1﹣2x7.如图,已知线段AB,分别以点A、点B为圆心,以大于AB的长为半径画弧,两弧交于点C和点D,作直线CD,在CD上取两点P、M,连接PA、PB、MA、MB,则下列结论一定正确的是()A.PA=MA B.MA=PE C.PE=BE D.PA=PB8.如图,已知∠AOB,按照以下步骤画图:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M、N为圆心,大于MN的长半径画弧,两弧在∠AOB内部相交于点C.(3)作射线OC.则判断△OMC≌△ONC的依据是()A.SAS B.SSS C.ASA D.AAS9.如图,七年级(下)教材第4页给出了利用三角尺和直尺画平行线的一种方法,能说明AB∥DE的条件是()A.∠CAB=∠FDE B.∠ACB=∠DFE C.∠ABC=∠DEF D.∠BCD=∠EFG二.填空题(共6小题)10.∠AOB如图所示,请用直尺和圆规作出∠AOB的平分线(要求保留作图痕迹,不写作法)._________11.如图,点A是直线l外一点,在l上取点B、C.按下列步骤作图:分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D.则四点A、B、C、D可组成的图形是_________ .12.如图,是格点(横、纵坐标都为整数的点)三角形,请在图中画出与全等的一个格点三角形.13.在如图所示的方格纸上过点P画直线AB的平行线.14.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出_________ 个.15.如图,网格中有△ABC和点D,请你找出另外两点E、F,在图中画出△DEF,使△ABC≌△DEF,且顶点A、B、C分别与D、E、F对应.三.解答题(共6小题)16.如图,△ABC中,AB=AC,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC)(1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是_________ 度和_________ 度;(2)在图2中画2条线段,使图中有4个等腰三角形;(3)继续按以上操作发现:在△ABC中画n条线段,则图中有_________ 个等腰三角形,其中有_________ 个黄金等腰三角形.17.如图,Rt△ABC的直角边BC=8,AC=6(1)用尺规作图作AB的垂直平分线l,垂足为D,(保留作图痕迹,不要求写作法、证明);(2)连结D、C两点,求CD的长度.18.如图①,将一张直角三角形纸片△ABC折叠,使点A与点C重合,这时DE为折痕,△CBE 为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.(1)如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;(2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A 在格点上,且△ABC折成的“叠加矩形”为正方形;(3)若一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?19.如图,在△ABC中,AB=AC,AD⊥BC,AE∥BC.(1)作∠ADC的平分线DF,与AE交于点F;(用尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=2,求DF的长.20.如图,已知矩形OABC的A点在x轴上,C点在y轴上,OC=6,OA=10.(1)在BC边上求作一点E,使OE=OA;(保留作图痕迹,不写画法)(2)求出点E的坐标.21.如图,在△ABC中,BC=AC,且CD∥AB,设△ABC的外心为O.(1)用尺规作出△ABC的外接圆O.(不写作法,保留痕迹)(2)在(1)中,连接OC,并证明OC是AB的中垂线;(3)直线CD与⊙O有何位置关系,试证明你的结论.图形的性质——尺规作图2参考答案与试题解析一.选择题(共9小题)1.用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A.边边边B边角边C角边角D.角角边考点:作图—基本作图;全等三角形的判定.专题:压轴题.分析:通过分析作图的步骤,发现△OCD与△O′C′D′的三条边分别对应相等,于是利用边边边,判定△OCD≌△O′C′D′,根据全等三角形对应角相等得出∠A′O′B′=∠AOB.解答:解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②作射线O′B′,以O′为圆心,OC长为半径画弧,交O′B′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′A′.所以∠A′O′B′就是与∠AOB相等的角.在△O′C′D′与△OCD中,,∴△O′C′D′≌△OCD(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是边边边.故选A.点评:此题是一道综合题,不但考查了学生对作图方法的掌握,也是对全等三角形的判定的方法的考查.2.下列作图语句正确的是()A.延长线段AB到C,使AB=BC B.延长射线ABC.过点A作AB∥CD∥EF D.作∠AOB的平分线OC考点:作图—尺规作图的定义.分析:根据基本作图的方法,逐项分析,从而得出正确的结论.解答:解:A、应为:延长线段AB到C,BC=AB,故本选项错误;B、射线本身是无限延伸的,不能延长,故本选项错误;C、过点A作只能作CD或EF的平行线,CD不一定平行于EF,故本选项错误;D、作∠AOB的平分线OC,正确.故选D.点评:此题主要考查图形中延长线、平行线、角平分线的画法,是基本题型,特别是A选项,应该是作出的等于原来的,顺序不能颠倒.3.下列语句()正确.A.射线比直线短一半B.延长AB到CC.两点间的线叫做线段D.经过三点A,B,C不一定能画出直线来考点:作图—尺规作图的定义.专题:推理填空题.分析:根据直线、射线、线段有关知识,对每个选项注意判断得出正确选项.解答:解:A、直线和射线都没有长短,所以射线比直线短一半错误,故本选项错误;B、延长AB到C,正确的说法是延长线段AB到C,故本选项错误;C、两点间的线叫做线段,不符合线段的定义,故本选项错误;D、若三点A,B,C在一条直线上,则经过三点A,B,C能画出直线来;若三点A,B,C不在一条直线上,则经过三点A,B,C不能画出直线来.所以说经过三点A,B,C不一定能画出直线来,故本选项正确.故选:D.点评:此题考查的知识点是作图﹣﹣尺规作图的定义,熟练掌握概念是解题的关键.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP 并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③点D在AB的垂直平分线上④AB=2AC.A. 1 B.2 C.3 D.4考点:作图—基本作图.分析:根据角平分线的做法可得①正确,再根据三角形内角和定理和外角与内角的关系可得∠ADC=60°,再根据线段垂直平分线的性质逆定理可得③正确.根据直角三角形中30°角所对的直角边等于斜边的一半可得④正确.解答:解:①AD是∠BAC的平分线,说法正确;②∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠DAB=30°,∴∠ADC=30°+30°=60°,因此∠ADC=60°正确;③∵∠DAB=30°,∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故③说法正确,④∵∠C=90°,∠B=30°,∴AB=2AC,故选:D.点评:此题主要考查了角平分线的做法以及垂直平分线的性质,熟练根据角平分线的性质得出∠ADC度数是解题关键.5.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据图形全等的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.A AS考点:作图—基本作图;全等三角形的判定.分析:根据作图过程可知O′C′=OC,O′D′=OD,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.解答:解:根据作图过程可知O′C′=OC,O′D′=OD,C′D′=CD,在△OCD与△O′C′D′中,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB.故选:A.点评:本题考查基本作图“作一个角等于已知角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等.从作法中找已知,根据已知条件选择判定方法.6.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1 C.y=2x﹣1 D.y=1﹣2x考点:作图—基本作图;坐标与图形性质.分析:根据角平分线的性质以及第二象限点的坐标特点,进而得出答案.解答:解:由题意可得出:P点在第二象限的角平分线上,∵点P的坐标为(2x,y+1),∴2x=﹣(y+1),∴y=﹣2x﹣1.故选:B.点评:此题主要考查了角平分线的性质以及坐标与图形的性质,得出P点位置是解题关键.7.如图,已知线段AB,分别以点A、点B为圆心,以大于AB的长为半径画弧,两弧交于点C和点D,作直线CD,在CD上取两点P、M,连接PA、PB、MA、MB,则下列结论一定正确的是()A.PA=MA B.MA=PE C.PE=BE D.P A=PB考点:作图—基本作图;线段垂直平分线的性质.分析:根据作图的过程可知PD是线段AB的垂直平分线,利用垂直平分线的性质即可得到问题的选项.解答:解:由题意可知:PD是线段AB的垂直平分线,所以PA=PB,故选D.点评:本题考查了基本作图﹣作已知线段的垂直平分线以及考查了线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离线段.8.如图,已知∠AOB,按照以下步骤画图:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M、N为圆心,大于MN的长半径画弧,两弧在∠AOB内部相交于点C.(3)作射线OC.则判断△OMC≌△ONC的依据是()A.SAS B.SSS C.ASA D.A AS考点:作图—基本作图;全等三角形的判定.分析:根据角平分线的作图方法解答.解答:解:根据角平分线的作法可知,OM=ON,CM=CN,又∵OC是公共边,∴△OMC≌△ONC的根据是“SSS”.故选:B.点评:本题考查了全等三角形的判定,熟悉角平分线的作法,找出相等的条件是解题的关键.9.如图,七年级(下)教材第4页给出了利用三角尺和直尺画平行线的一种方法,能说明AB∥DE的条件是()A.∠CAB=∠FDE B.∠ACB=∠DFE C.∠ABC=∠DEF D.∠BCD=∠EFG考点:作图—基本作图;平行线的判定.分析:根据同位角相等,两直线平行可得,∠CAB=∠FDE可以说明AB∥DE.解答:解:利用三角尺和直尺画平行线,实际就是画∠CAB=∠FDE,故答案为:A.点评:此题主要考查了画平行线的方法,关键是掌握平行线的判定定理:同位角相等,两直线平行.二.填空题(共6小题)10.∠AOB如图所示,请用直尺和圆规作出∠AOB的平分线(要求保留作图痕迹,不写作法).参见解答考点:作图—基本作图.分析:∵只要在OB上取C,以O为圆心,OC为半径画圆,交OA于点D,连接CD,再分别以大于CD为半径,C,D,为圆心画圆,两圆相交于P,D,连接OP,则OP即为∠AOB 的平分线.解答:解:作法如下:(1)在OB上取C,以O为圆心,OC为半径画圆,交OA于点D,连接CD;(2)再分别以大于CD为半径,C,D,为圆心画圆,两圆相交于P,D,连接OP,则OP即为∠AOB的平分线.点评:本题考查了运用三角形全等的判定与性质,结合圆的性质作等角的方法,需同学们熟练掌握.11.如图,点A是直线l外一点,在l上取点B、C.按下列步骤作图:分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D.则四点A、B、C、D可组成的图形是平行四边形或梯形.考点:作图—复杂作图.分析:根据题意画出图形,可得两弧有两个交点,连接可得答案.解答:解:如图所示:,四点A、B、C、D可组成的图形是平行四边形或梯形.故答案为:平行四边形或梯形.点评:此题主要考查了复杂作图,关键是根据题意画出图形,找到D点位置.12.如图,是格点(横、纵坐标都为整数的点)三角形,请在图中画出与全等的一个格点三角形.考点:作图—复杂作图.专题:作图题.分析:本题答案不唯一,最简单的方法就是从点B所以在的纵坐标找一点,作BC 的平行线,且长度相等,然后再作AB的平行线且长度相等,最后连接,构成三角形.解答:解:点评:本题主要考查了利用网格画图的能力.13.在如图所示的方格纸上过点P画直线AB的平行线.考点:作图—基本作图.专题:网格型.分析:由题意可知应根据小正方形的格数及勾股定理作图,只要在直线找点A,B,D,P使其连接起来构成平行四边形即可.解答:解:作图如下:(1)连接PA,假设图中每个小方格的边长为1,则AP==,AB==;(2)找点D,使得AP=BD,AP∥BD,连接DP,即可.点评:本题考查的是平行四边形的性质,勾股定理的运用,利用图中每个小格的边长相等作图.14.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出 4 个.考点:作图—复杂作图.分析:能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个解答:解:如图,可以作出这样的三角形4个.点评:本题考查了学生利用基本作图来做三角形的能力.15.如图,网格中有△ABC和点D,请你找出另外两点E、F,在图中画出△DEF,使△ABC≌△DEF,且顶点A、B、C分别与D、E、F对应.考点:作图—复杂作图;全等三角形的性质;勾股定理.分析:若是三边对应相等的两个三角形互为全等三角形,根据此可画出图.解答:解:从图上可看出两个三角形的三条边对应相等.所以△DEF即为所求.点评:本题考查全等三角形的性质,三边对应相等,以及在表格中如何画出全等的三角形.三.解答题(共6小题)16.如图,△ABC中,AB=AC,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC)(1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是108 度和36 度;(2)在图2中画2条线段,使图中有4个等腰三角形;(3)继续按以上操作发现:在△ABC中画n条线段,则图中有2n 个等腰三角形,其中有n 个黄金等腰三角形.考点:作图—应用与设计作图;黄金分割.专题:作图题;探究型.分析:(1)利用等腰三角形的性质以及∠A的度数,进而得出这2个等腰三角形的顶角度数;(2)利用(1)种思路进而得出符合题意的图形;(3)利用当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形,进而得出规律求出答案.解答:解:(1)如图1所示:∵AB=AC,∠A=36°,∴当AE=BE,则∠A=∠ABE=36°,则∠AEB=108°,则∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108度和36度;故答案为:108,36;(2)如图2所示:(3)如图3所示:当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形;…∴在△ABC中画n条线段,则图中有2n个等腰三角形,其中有n个黄金等腰三角形.故答案为:2n,n.点评:此题主要考查了应用作图与设计以及等腰三角形的性质,得出分割图形的规律是解题关键.17.如图,Rt△ABC的直角边BC=8,AC=6(1)用尺规作图作AB的垂直平分线l,垂足为D,(保留作图痕迹,不要求写作法、证明);(2)连结D、C两点,求CD的长度.考点:作图—基本作图;线段垂直平分线的性质;直角三角形斜边上的中线.分析:(1)根据垂直平分线的作法得出答案即可;(2)根据垂直平分线的性质以及直角三角形的性质得出AB进而得出CD即可.解答:解;(1)如图.直线DE即为所求作的图形.(2)连接CD,∵DE是AB的垂直平分线,∠C=90°,∴AD=B D=CD,∵AC=6,BC=8,∴AB=10,∴CD是Rt△ABC斜边上的中线等于斜边的一半,∴CD=5.点评:此题主要考查了垂直平分线的作法以及直角三角形的性质,根据Rt△ABC斜边上的中线等于斜边的一半得出是解题关键.18.如图①,将一张直角三角形纸片△ABC折叠,使点A与点C重合,这时DE为折痕,△CBE 为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.(1)如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;(2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A 在格点上,且△ABC折成的“叠加矩形”为正方形;(3)若一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?考点:作图—应用与设计作图.专题:新定义;开放型.分析:(1)应先在三角形的格点中找一个矩形,折叠即可;(2)根据正方形的边长应等于底边及底边上高的一半可得所求三角形的底边与高相等;(3)由(2)可得相应结论.解答:解:(1);(2);(3)由(2)可得,若一个三角形所折成的“叠加矩形”为正方形,那么三角形的一边长与该边上的高相等的直角三角形或锐角三角形.点评:解决本题的关键是得到相应矩形的边长等于所给三角形的底边与底边上的高的一半的关系.19.如图,在△ABC中,AB=AC,AD⊥BC,AE∥BC.(1)作∠ADC的平分线DF,与AE交于点F;(用尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=2,求DF的长.考点:作图—基本作图;等腰三角形的性质;勾股定理.分析:(1)利用角平分线的作法得出DF即可;(2)首先得出∠DAF=90°,即可得出∠ADF=45°,进而利用勾股定理求出即可.解答:解:(1)如图所示,DF就是所求作;(2)∵AD⊥BC,AE∥BC,∴∠DAF=90°,又∵DF平分∠ADC,∴∠ADF=45°,∴AD=AF,.点评:此题主要考查了基本作图以及等腰三角形的性质和勾股定理等知识,熟练掌握角平分线的做法是解题关键.20.如图,已知矩形OABC的A点在x轴上,C点在y轴上,OC=6,OA=10.(1)在BC边上求作一点E,使OE=OA;(保留作图痕迹,不写画法)(2)求出点E的坐标.考点:作图—复杂作图;坐标与图形性质;勾股定理;矩形的性质.分析:(1)利用EO=AO,以O为圆心AO为半径画弧得出E即可;(2)首先过点E作EF⊥OA,垂足为F,得出B点坐标,进而求出FO的长,即可得出E点坐标.解答:解:(1)如图所示:E点即为所求;(2)过点E作EF⊥OA,垂足为F.∵矩形OABC中OC=6,OA=10,∴B点坐标为(10,6).∴E F=6.又∵OE=OA,∴OF==8.∴点E的坐标为(8,6).点评:此题主要考查了基本作图以及勾股定理和矩形的性质,得出B点坐标是解题关键.21.(如图,在△ABC中,BC=AC,且CD∥AB,设△ABC的外心为O.(1)用尺规作出△ABC的外接圆O.(不写作法,保留痕迹)(2)在(1)中,连接OC,并证明OC是AB的中垂线;(3)直线CD与⊙O有何位置关系,试证明你的结论.考点:作图—复杂作图;线段垂直平分线的性质;直线与圆的位置关系.分析:(1)首先作出三角形两边的中垂线进而得出圆心求出△ABC的外接圆O;(2)利用等腰三角形的性质得出答案即可;(3)利用切线的判定方法求出∠OCG=90°,进而得出答案.解答:解:(1)如图所示:(2)方法一:连接BO、CO、OA,∵OB=OA,AC=BC,∴OC是AB的中垂线;方法二:在⊙O中,∵AC=BC,∴=,∴∠BOC=∠AOC,∵OB=OA,1 ∴OC是AB的中垂线;(3)直线CD与⊙O相切,证明:∵CD∥AB,CO是AB的垂线,∴∠OCG=90°,∴直线CD与⊙O相切.点评:此题主要考查了切线的判定与性质以及三角形外接圆的作法等知识,熟练掌握等腰三角形的性质是解题关键.2。

上海中考数学23题解题技巧(一)

上海中考数学23题解题技巧(一)

上海中考数学23题解题技巧(一)上海中考数学23题解题技巧1. 题目背景在上海中考数学考试中,23题通常涉及到较为复杂的数学知识和解题方法。

解题时需要结合实际情境,运用所学的数学知识进行分析和计算。

2. 题目分析题目要求:已知一个长方体的体积为240cm³,它的底面长和宽的比是3∶2,高为6cm。

求长方体的底面积。

分析:根据题目给出的条件,我们可以得到以下信息: - 长方体的体积为240cm³ - 底面长和宽的比为3∶2 - 长方体的高为6cm3. 解题思路根据题目给出的条件,我们可以列出以下方程组: - 底面长为3x - 底面宽为2x - 底面面积为3x * 2x = 6x² - 长方体的体积为底面面积乘以高,即6x² * 6 = 240解题步骤如下: 1. 将方程6x² * 6 = 240转化为x² = 240 / 36 2. 计算得到x ≈ 2.449 3. 将x带入底面面积的表达式中,计算得到底面面积为6 * (2.449)² ≈ 37.22cm²4. 解题验证为了验证我们的解题结果是否准确,可以将底面长、宽和高代入体积的计算公式进行计算: - 长方体的体积为底面面积乘以高,即37.22 * 6 = 223.32cm³由于存在四舍五入的误差,我们得到的验证结果大约为223.32cm³,与题目给出的体积240cm³相差不大,可以认为解题结果正确。

5. 解题总结在解题过程中,我们运用了以下技巧: - 列出方程组,将问题转化为数学表达式 - 运用代数知识进行计算和化简 - 进行解题验证,确保解题结果正确综上所述,通过合理的分析和计算,我们成功解决了上海中考数学23题的问题,得出了正确的解题结果。

这个题目考察了学生对数学知识的掌握和运用能力,希望同学们能在备考中加强对这方面知识的学习和理解。

沪科版数学九年级上册 第23章 小结与复习

沪科版数学九年级上册  第23章 小结与复习

针对训练
1. 在 △ABC 中, ∠A、 ∠B 都是锐角,且 sin A = cos B, 那么 △ABC 一定是_直__角___三角形.
2. 如图,在网格中,小正方形的边
长均为 1,点 A,B,C 都在格点上,
1
则 ∠ABC 的正切值是__2__.
例2 矩形 ABCD 中 AB = 10,BC = 8,E 为 AD 边上一点,
考点一 求三角函数的值
例1 在 △ABC 中,∠C=90°,sin A= 4 ,则 tan B 的
5
值为
4
3
3
( B) 4
A. 3 B. 4
C. 5
D. 5
解析:根据 sin A= 4 ,可设三角形的两边长分别为
5
4k,5k,则第三边长为
3k,所以
tan
B=
3k
3.
4k 4
方法总结:求三角函数值方法较多,解法灵活,在具体 的解题中要根据已知条件采取灵活的计算方法,常用的 方法主要有: (1)根据特殊角的三角函数值求值; (2)直接运用三角函数的定义求值; (3)借助边的数量关系求值; (4)借助等角求值; (5)根据三角函数关系求值; (6)构造直角三角形求值.
西北
北 东北
45°
西
)
O
45°
B南
东西
45° O

西南
东南

(3) 坡度,坡角
如图:坡面的铅垂高度(h)和水平长度(l)
的比叫做坡面坡度.记作
i,即
i=
h l
.
坡面与水平面的夹角叫做坡角,记作 α,有 i = tan α.
坡度通常写成 1 : m 的形式,如 i =1 : 6.

上海中考数学23题解题技巧

上海中考数学23题解题技巧

上海中考数学23题解题技巧(最新版3篇)目录(篇1)1.上海中考数学 23 题概述2.解题技巧一:审题与分析3.解题技巧二:善于使用公式4.解题技巧三:逻辑思维与推理5.解题技巧四:熟练掌握解题方法6.解题技巧五:提高计算能力与速度7.总结正文(篇1)【上海中考数学 23 题概述】上海中考数学 23 题,作为中考数学压轴题,一直以来都是考生们关注的焦点。

这类题目不仅考察考生的数学知识储备,还涉及到解题技巧和速度。

因此,对于考生来说,掌握一定的解题技巧显得尤为重要。

【解题技巧一:审题与分析】要想成功解答上海中考数学 23 题,首先要做的就是仔细审题,理解题意。

审题时,要注意挖掘题目中的隐含条件,对题目进行分析,判断出题目涉及的知识点,为接下来的解题做好准备。

【解题技巧二:善于使用公式】中考数学 23 题往往涉及到复杂的计算,这时运用公式可以简化计算过程。

因此,考生在解题过程中要善于运用已掌握的公式,提高解题效率。

【解题技巧三:逻辑思维与推理】在解答这类题目时,逻辑思维与推理能力尤为重要。

考生需要根据题目条件进行逻辑推理,找出解题思路。

此外,遇到困难时,要尝试变换思路,寻找解题突破口。

【解题技巧四:熟练掌握解题方法】中考数学 23 题涉及多种解题方法,考生要想取得好成绩,就需要熟练掌握这些解题方法。

例如,代数法、几何法、逻辑法等。

在解题过程中,考生要根据题目要求灵活运用这些方法。

【解题技巧五:提高计算能力与速度】要想在有限的时间内完成中考数学 23 题,考生需要具备较强的计算能力和速度。

为此,考生在平时的学习中要加强计算能力的训练,提高解题速度。

【总结】总之,要想成功解答上海中考数学 23 题,考生需要掌握一定的解题技巧。

目录(篇2)1.上海中考数学 23 题概述2.解题技巧一:审题与分析3.解题技巧二:选择题的解题方法4.解题技巧三:填空题的解题方法5.解题技巧四:解答题的解题方法6.总结正文(篇2)【上海中考数学 23 题概述】上海中考数学 23 题,是上海市初中毕业生学业考试数学科目中分值较高、难度较大的一部分。

秋沪科版九年级数学上册习题课件:第23章 整理与复习(共23张PPT)

秋沪科版九年级数学上册习题课件:第23章 整理与复习(共23张PPT)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/192021/9/192021/9/192021/9/199/19/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月19日星期日2021/9/192021/9/192021/9/19 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/192021/9/192021/9/199/19/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/192021/9/19September 19, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/192021/9/192021/9/192021/9/19
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
)上册
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/192021/9/19Sunday, September 19, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/192021/9/192021/9/199/19/2021 3:45:54 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/192021/9/192021/9/19Sep-2119-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/192021/9/192021/9/19Sunday, September 19, 2021

上海初三中考数学第23题专项复习

上海初三中考数学第23题专项复习

上海初三中考数学第23题〔几何证明、计算题〕专题复习一、历年上海中考真题2021:23.梯形ABCD中,AD∥BC,AB=AD〔如下图〕,∠BAD的平分线AE交BC于点E,连接DE.〔1〕在图中,用尺规作∠BAD的平分线AE〔保存作图痕迹,不写作法〕,并证明四边形ABED是菱形;〔2〕∠ABC=60°,EC=2BE,求证:ED⊥DC.2021:23.〔此题总分值12分,每题总分值各6分〕如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.联结BF、CD、AC.〔1〕求证:四边形ABFC是平行四边形;〔2〕如果DE2=BE·CE,求证四边形ABFC是矩形.ADEBF2021:23.〔此题总分值12分,第〔1〕小题总分值5分,第〔2〕小题总分值7分〕己知:如图,在菱形ABCD 中,点E 、F 分别在边BC 、CD ,∠BAF =∠DAE ,AE 与BD 交于点G .〔1〕求证:=BE DF 〔2〕当要DF FC =ADDF时,求证:四边形BEFG 是平行四边形.2021:23.如图8,在△ABC 中, 90=∠ACB , B A ∠>∠,点D 为边AB 的中点,DE BC ∥交AC 于点E ,CF AB ∥交DE 的延长线于点F .〔1〕求证:DE EF =;〔2〕联结CD ,过点D 作DC 的垂线交CF 的 延长线于点G ,求证:B A DGC ∠=∠+∠.2021:22.〔此题总分值10分,每题总分值各5分〕如图,Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH =2CH . 〔1〕求sinB 的值;〔2〕如果CD =5,求BE 的值.GFDEBCA FE D A图823.〔此题总分值12分,每题总分值各6分〕:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .二、历年金山区模拟考真题〔15一模〕23.〔此题总分值12分〕如图,⊙O 与⊙1O 外离,OC 与D O 1分别是⊙O 与⊙1O 的半径,OC ∥D O 1.直线CD 交1OO 于点P ,交⊙O 于点A ,交⊙1O 于点B . 求证:〔1〕OA ∥B O 1;〔2〕BDACBP AP =〔15二模〕23.〔此题总分值12分〕:如图,在中ABC Rt ∆中,︒=∠90ACB ,BC AC =,点E 在边AC 上,延长BC 至D 点,使CD CE =,延长BE 交AD 于F ,过点C 作CG //BF ,交AD 于点G ,在BE 上取一点H ,使DCG HCE ∠=∠. 〔1〕求证:ACD BCE ∆≅∆; (2) 求证:四边形FHCG 是正方形.[注:假设要用1∠、2∠等,请不要标在此图,要标在答题纸的图形上]G FE D BAC第23题图HO ACPDO 1B〔09二模〕23〔此题总分值10分〕如图,等腰梯形ABCD 中,AD ∥BC ,点E 是AD 延长线上一点,DE = BC. 〔1〕求证:∠E =∠DBC ;〔2〕假设等腰梯形ABCD 的中位线长为6,∠E =︒30,求等腰梯形ABCD 的对角线的长。

中考数学专卷2020届中考数学总复习(23)尺规作图-精练精析(1)及答案解析

中考数学专卷2020届中考数学总复习(23)尺规作图-精练精析(1)及答案解析

图形的性质——尺规作图1一.选择题(共8小题)1.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)2.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS3.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③B.①②④C.①③④D.②③④4.如图,分别以线段AC的两个端点A,C为圆心,大于AC的长为半径画弧,两弧相交于B,D两点,连接BD,AB,BC,CD,DA,以下结论:①BD垂直平分AC;②AC平分∠BAD;③AC=BD;④四边形ABCD是中心对称图形.其中正确的有()A.①②③B.①③④C.①②④D.②③④5.观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.PA=PB C.点A、B到PQ的距离不相等D.∠APQ=∠BPQ6.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.6条B.7条C.8条D.9条7.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP的根据是()A.SAS B.ASA C.AAS D.SSS8.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧二.填空题(共6小题)9.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为_________ .10.如图,在△ABC中,AC=BC,∠B=70°,分别以点A、C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,作直线MN,分别交AC、BC于点D、E,连结AE,则∠AED的度数是_________ °.11.用直尺和圆规作△ABC,使BC=a,AC=b,∠B=35°,若这样的三角形只能作一个,则a,b间满足的关系式是_________ .12.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=120°,则∠MAB的度数为_________ .13.如图,图中的两条弧属于同心圆,你认为是否存在一条也属于此同心圆的能平分此阴影部分的面积_________ (填写“存在”或“不存在”);若你认为存在,请你将图中的阴影部分分为面积相等但不全等的两部分,简要说明作法;若你认为不存在,请说明理由._________ .14.如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE= _________ .三.解答题(共6小题)15.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).16.如图,在Rt△ABC中,∠B=90°,分别以点A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.(1)求∠ADE;(直接写出结果)(2)当AB=3,AC=5时,求△ABE的周长.17.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.18.如图,在△ABC中,利用尺规作图,画出△ABC的外接圆或内切圆(任选一个.不写作法,必须保留作图痕迹)19.已知△ABC中,∠A=25°,∠B=40°.(1)求作:⊙O,使得⊙O经过A、C两点,且圆心O落在AB边上.(要求尺规作图,保留作图痕迹,不必写作法)(2)求证:BC是(1)中所作⊙O的切线.20.如图,在Rt△ABC中,∠ACB=90°.(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中AB与⊙O的位置关系,并证明你的结论.图形的性质——尺规作图1参考答案与试题解析一.选择题(共8小题)1.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)考点:作图—基本作图;全等三角形的判定与性质.分析:我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.解答:解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:B.点评:本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.2.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.A AS考点:作图—基本作图;全等三角形的判定.分析:根据作图的过程知道:OE=OD,OC=OC,CE=CD,所以由全等三角形的判定定理SSS可以证得△EOC≌△DOC.解答:解:如图,连接EC、DC.根据作图的过程知,在△EOC与△DOC中,,△EOC≌△DOC(SSS).故选:C.点评:本题考查了全等三角形的判定定理的应用,注意:三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.3.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③B.①②④C.①③④D.②③④考点:作图—基本作图;线段垂直平分线的性质.专题:几何图形问题.分析:根据作图过程得到PB=PC,然后利用D为BC的中点,得到PD垂直平分BC,从而利用垂直平分线的性质对各选项进行判断即可.解答:解:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确;∵∠ABC=90°,∴PD∥AB,∴E为AC的中点,∴EC=EA,∵EB=EC,∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确,故正确的有①②④,故选:B.点评:本题考查了基本作图的知识,解题的关键是了解如何作已知线段的垂直平分线,难度中等.4.如图,分别以线段AC的两个端点A,C为圆心,大于AC的长为半径画弧,两弧相交于B,D两点,连接BD,AB,BC,CD,DA,以下结论:①BD垂直平分AC;②AC平分∠B AD;③AC=BD;④四边形ABCD是中心对称图形.其中正确的有()A.①②③B.①③④C.①②④D.②③④考点:作图—基本作图;线段垂直平分线的性质;中心对称图形.分析:根据线段垂直平分线的作法及中心对称图形的性质进行逐一分析即可.解答:解:①∵分别以线段AC的两个端点A,C为圆心,大于AC的长为半径画弧,∴AB=BC,∴BD垂直平分AC,故此小题正确;②在△ABC与△ADC中,∵,∴△ABC≌△ADC(SSS),∴AC平分∠BAD,故此小题正确;③只有当∠BAD=90°时,AC=BD,故本小题错误;④∵AB=BC=CD=AD,∴四边形ABCD是菱形,∴四边形ABCD是中心对称图形,故此小题正确.故选C.点评:本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.5.观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B. PA=PB C.点A、B到PQ的距离不相等D.∠APQ=∠BPQ考点:作图—基本作图.分析:根据角平分线的作法进行解答即可.解答:解:∵由图可知,PQ是∠APB的平分线,∴A,B,D正确;∵PQ是∠APB的平分线,PA=PB,∴点A、B到PQ的距离相等,故C错误.故选C.点评:本题考查的是作图﹣基本作图,熟知角平分线的作法及性质是解答此题的关键.6.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.6条B.7条C.8条D.9条考点:作图—应用与设计作图;等腰三角形的判定.专题:压轴题.分析:利用等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.解答:解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时,都能得到符合题意的等腰三角形.故选:B.点评:此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.7.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP的根据是()A.SAS B.ASA C.AAS D.S SS考点:作图—基本作图;全等三角形的判定.分析:认真阅读作法,从角平分线的作法得出△OCP与△ODP的两边分别相等,加上公共边相等,于是两个三角形符合SSS判定方法要求的条件,答案可得.解答:解:∵以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;在△OCP和△ODP中,,∴△OCP≌△ODP(SSS).故选D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角8.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧考点:作图—基本作图.分析:运用作一个角等于已知角可得答案.解答:解:根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.故选:D.点评:本题主要考查了作图﹣基本作图,解题的关键是熟习作一个角等于已知角的方法.二.填空题(共6小题)9.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为105°.考点:作图—基本作图;线段垂直平分线的性质.分析:首先根据题目中的作图方法确定MN是线段BC的垂直平分线,然后利用垂直平分线的性质解题即可.解答:解:由题中作图方法知道MN为线段BC的垂直平分线,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°,∴∠ADC=50°,∵CD=AC,∴∠A=∠ADC=50°,∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°,故答案为:105°.点评:本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线的做法.10.如图,在△ABC中,AC=BC,∠B=70°,分别以点A、C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,作直线MN,分别交AC、BC于点D、E,连结AE,则∠AED的度数是50 °.考点:作图—基本作图;等腰三角形的性质.分析:由作图可知,MN是线段AC的垂直平分线,故可得出结论.解答:解:∵由作图可知,MN是线段AC的垂直平分线,∴CE=AE,∴∠C=∠CAE,∵AC=BC,∠B=70°,∴∠C=40°,∴∠AED=50°,故答案为:50.点评:本题考查的是线段垂直平分线的性质以及勾股定理的应用,熟知线段垂直平分线的性质是解答此题的关键.11.用直尺和圆规作△ABC,使BC=a,AC=b,∠B=35°,若这样的三角形只能作一个,则a,b间满足的关系式是sin35°=或b≥a.考点:作图—复杂作图;切线的性质;解直角三角形.专题:开放型.分析:首先画BC=a,再以B为顶点,作∠ABC=35°,然后再以点C为圆心、b为半径画圆弧交AB于点A,然后连接AC即可,①当AC⊥AB时,②当b≥a时三角形只能作一个.解答:解:如图所示:若这样的三角形只能作一个,则a,b间满足的关系式是:①当AC⊥AB时,即sin35°=;②当b≥a时.故答案为:sin35°=或b≥a.点评:此题主要考查了复杂作图,关键是掌握作一角等于已知角的方法.12如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=120°,则∠MAB的度数为30°.考点:作图—基本作图;平行线的性质.分析:根据AB∥CD,∠ACD=120°,得出∠CAB=60°,再根据AM是∠CAB的平分线,即可得出∠MAB的度数.解答:解:∵AB∥CD,∴∠ACD+∠CAB=180°,又∵∠ACD=120°,∴∠CAB=60°,由作法知,AM是∠CAB的平分线,∴∠MAB=∠CAB=30°.故答案为:30°.点评:此题考查了作图﹣复杂作图,用到的知识点是平行线的性质、角平分线的性质等,解题的关键是得出∠MAB=∠CAB.13.如图,图中的两条弧属于同心圆,你认为是否存在一条也属于此同心圆的能平分此阴影部分的面积存在(填写“存在”或“不存在”);若你认为存在,请你将图中的阴影部分分为面积相等但不全等的两部分,简要说明作法;若你认为不存在,请说明理由.作OD的垂线OM,取OM=OA,连接MD,以MD为斜边作等腰直角三角形△MND,以O为圆心,以MN为半径作弧,交BC于Q,交AD于P,弧PQ即为所求..考点:作图—应用与设计作图;扇形面积的计算.分析:利用已知作MO⊥OD,连接MD,再以MD为斜边作等腰直角三角形△MND,进而以MN为半径作弧,即可得出答案.解答:解:作OD的垂线OM,取OM=OA,连接MD,以MD为斜边作等腰直角三角形△MND,以O为圆心,以MN为半径作弧,交BC于Q,交AD于P,弧PQ即为所求.点评:此题主要考查了应用作图与设计以及扇形面积公式应用,得出MN的长是解题关键.14.如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE= 8 .考点:作图—复杂作图;线段垂直平分线的性质;含30度角的直角三角形.专题:压轴题.分析:根据垂直平分线的作法得出PQ是AB的垂直平分线,进而得出∠EAB=∠CAE=30°,即可得出AE的长.解答:解:由题意可得出:PQ是AB的垂直平分线,∴AE=BE,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=AE=4,∴AE=8.故答案为:8.点评:此题主要考查了垂直平分线的性质以及直角三角形中,30°所对直角边等于斜边的一半,根据已知得出∠EAB=∠CAE=30°是解题关键.三.解答题(共6小题)15.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).考点:作图—基本作图;平行线的判定.专题:作图题.分析:(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDC,再根据同位角相等两直线平行可得结论.解答:解:(1)如图所示:(2)D E∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.点评:此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.16.如图,在Rt△ABC中,∠B=90°,分别以点A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.(1)求∠ADE;(直接写出结果)(2)当AB=3,AC=5时,求△ABE的周长.考点:作图—基本作图;线段垂直平分线的性质;勾股定理的应用.分析:(1)根据题意可知MN是线段AC的垂直平分线,由此可得出结论;(2)先根据勾股定理求出BC的长,再根据线段垂直平分线的性质即可得出结论.解答:解:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是线段AC的垂直平分线,∴AE=CE,∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=7.点评:本题考查的是作图﹣基本作图,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.17.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.考点:作图—复杂作图;线段垂直平分线的性质.专题:作图题;证明题.分析:(1)分别以A、B为圆心,以大于AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD平分∠CBA.解答:(1)解:如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.点评:本题考查了线段垂直平分线的作法以及线段垂直平分线上的点到线段两端点的距离相等的性质,难度不大,需熟练掌握.18.如图,在△ABC中,利用尺规作图,画出△ABC的外接圆或内切圆(任选一个.不写作法,必须保留作图痕迹)考点:作图—复杂作图;三角形的外接圆与外心;三角形的内切圆与内心.专题:作图题.分析:分别利用三角形外心的确定方法以及内心的确定方法得出圆心位置,进而得出即可.解答:解:如图所示:点评:此题主要考查了复杂作图,正确把握三角形内心和外心位置确定方法是解题关键.19.已知△ABC中,∠A=25°,∠B=40°.(1)求作:⊙O,使得⊙O经过A、C两点,且圆心O落在AB边上.(要求尺规作图,保留作图痕迹,不必写作法)(2)求证:BC是(1)中所作⊙O的切线.考点:作图—复杂作图;切线的判定.专题:作图题;证明题.分析:(1)作出线段AC的垂直平分线进而得出AC垂直平分线与线段AB的交点O,进而以AO为半径做圆即可;(2)连接CO,再利用已知得出∠OCB=90°,进而求出即可.解答:解:(1)作图如图1:(2)证明:如图2,连接OC,∵OA=OC,∠A=25°∴∠BOC=50°,又∵∠B=40°,∴∠BOC+∠B=90°∴∠OCB=90°∴OC⊥BC∴BC是⊙O的切线.点评:此题主要考查了复杂作图以及切线的判定利用线段垂直平分线的性质得出圆心位置是解题关键.20.如图,在Rt△ABC中,∠ACB=90°.(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中AB与⊙O的位置关系,并证明你的结论.考点:作图—复杂作图;直线与圆的位置关系.专题:作图题.分析:(1)根据角平分线的作法求出角平分线BO;(2)过O作OD⊥AB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案.解答:解:(1)如图:(2)AB与⊙O相切.证明:作OD⊥AB于D,如图.∵BO平分∠ABC,∠ACB=90°,OD⊥AB,∴OD=OC,∴AB与⊙O相切.点评:此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.。

中考数学 第23章 奇数与偶数复习题 试题

中考数学 第23章 奇数与偶数复习题 试题

第23章奇数与偶数★ 23.1 在2021个自然数1,2,3,…,2021的每一个数前面任意添上“+〞号或者“-〞号,其代数和一定是〔〕.〔A〕奇数〔B〕偶数〔C〕负整数〔D〕非负整数★23.2 为偶数,q为奇数,方程组200820093x y px y q=⎧⎨+=⎩-的解是整数,那么〔〕.〔A〕x是奇数,y是偶数〔B〕x是偶数,y是奇数〔C〕x是偶数,y是偶数〔D〕x是奇数,y是奇数★23.3 假如a、b、c是正整数,a和b是奇数,那么3a+(b-c)2·c〔〕.〔A〕对于c的所有选择都是奇数〔B〕对于c的所有选择都是偶数〔C〕当c为偶数时,为奇数;当c为奇数时,为偶数〔D〕当c为奇数时,为奇数;当c为偶数时,为偶数★★23.4 假设n是大于1的整数,那么1(1)22(1)np n n=+---的值〔〕.〔A〕一定是偶数〔B〕一定是奇数〔C〕是偶数但不是2 〔D〕可以是偶数也可以是奇数★23.5 设d= a2+b2+c2,其中a、b是相邻的整数,且c= ab〔〕.〔A〕总是偶数〔B〕有时是奇数〔C〕总是奇数〔D〕有时是有理数★★23.6 最初罐子里有黑、白弹子各100个,重复下面的操作,每次从罐子里取出3个弹子,并从另外一堆弹子中拿一定数目的弹子放回罐中,详细数目和颜色如下表:经过一定次数后,最终罐子里所剩的弹子可能是〔 〕.〔A 〕2个黑色弹子〔B 〕 2个白色弹子〔C 〕1个黑色弹子〔D 〕1个黑色和1个白色弹子★23.7 4个连续奇数的和等于1992,那么其中最大数与最小数的平方差是 . ★★23.8 求满足2x·9y=29x y 的x 和y 值.23.9 将3个连续正整数的和记作A ,将紧接它们之后的3个连续正整数的和记作B ,试问:乘积A×B 能否等于111111111〔一共9个1〕?23.10 是否存在正整数a 和b ,使得ab(a+5b)=15015?23.11 ,1=421713121+++,但是1不能分解成偶数个奇数的倒数之和.试证明之. 23.12 将某个正整数的数字重新排列,求证:所得的数与原数之和不等于个1997999. 23.13将某个正整数的数字重新排列,且与原来的数加在一起,试证:假设和等于1010,那么原来的数一定能被10整除.1,A 2,…,A 6六个码头,相邻两个码头间的间隔 相等.早晨有甲、乙两船从A 1出发,各自在这些码头间屡次往返运送货物.黄昏,甲船停泊在A 6码头,而乙船返回到A 1码头.求证:两船的航程不等〔假定在两码头间航行时,中途不改变航向〕.23.15 设自然数n>1,试证:2n-1不是任何整数的平方,也不是任何整数的立方.23.16求证:在任何一群人中,认识这一群人中奇数个人的人有偶数个.23.17甲、乙两人玩纸牌游戏,甲持全部“红桃〞1~13张,乙持全部“黑桃〞1~13张.两人轮轮流出牌,每次每人出一张,直至出完.一共得13对牌,每对牌彼此相减,问:这13个差的乘积是奇数还是偶数?23.18 设6421,,a a a 是自然数1,2,…,64的任意种排列.211a a b -=,432a a b -=,…,646332a a b -=, 211b b c -=,432b b c -=,…,323116b b c -=, 211c c d -=,…,16158c c d -=,…这样一直做下去,最后得到一个整数x.求证:x 为偶数.23.19 从0,1,2,…,n 这n+1个数中取n个数并适当排列n a a a ,,21,使得21a a -,32a a -,…,1a a n -恰为0,1,2,…,n 的一个排列,称n a a a ,,21为n 的一个“愉快排列〞,求证:假设存在的“愉快排列〞,那么n=4k 或者4k+3〔k 为整数〕.23.20 少年科技组制成一台单项功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x 1,只显示不运算,接着再输入整数x 2后,那么显示的21x x -结果,此后每输入一个整数都是与前次显示的结果进展求差取绝对值的运算,现小明将1到1991这1991个整数随意地一个一个地输入,全部输入完毕之后显示的最后结果设为P.试求出P 的最大值,并说明理由.23.21 你能找到三个整数a 、b 、c 使得关系式))()()((a c b c b a c b a c b a -+-++-++=3388成立吗?假如能找到,请举一例;假如找不到,请说明理由.23.22 试问:是否存在正整数a 、b 、c 使得关系式340))()((=+++c a c b b a ?23.23 设O 点在正1000边形A 1,A 2,…,A 1000内部,用整数1,2,…,1000把它的各边任意编号,又用这些整数把线段OA 1,OA 2,…,OA 1000任意编号,问:能否给出这样一种编号法,使△A 1OA 2,△A 2OA 3,…,△A 1000OA 1各边上号码之和都相等?23.24 闭折线一共由N 段组成,折线与自己的每一段都刚好相交P 次,问:对于奇数N 和P ,是否存在这样的折线?23.25 在9×17方格表中填写上正整数,使得任何3×1矩形中的数的和都是奇数.试确定方格表中所有数的和的奇偶性,并说明理由.23.26 如下图,给定两张3×3方格纸,并且在每一方格内填上“+〞号或者“-〞号.如今对方格纸中任何一行或者一列作全部变号的操作,问:可否经过假设干次操作,使图a 变成图b?a 图b 图23.27 国际象棋棋盘的左下角方格a 1中有一只“车〞,每挪动一次,“车〞可沿程度方向或者竖直方向挪动一格.试问:“车〞能否到遍棋盘的所有方格,且到过某个方格刚好一次.到过另一个方格刚好两次,到过第3个方格刚好三次,到过第64个方格刚好64次,并且又回到原先的方格a 1〔在方格a 1中的最初情况,也处算成是到过该方格1次〕?23.28 一种游戏机的“方块〞中一共有7种图形.每种都由4个面积为1的小方格组成.请你证明,用这7种“方块〞〔每种用1个〕不能拼成7×4的矩形.+ + - + + - --+- - + + - - --+×2的“日形块〞一共18块,以任何方式完全覆盖6×6的棋盘,那么〔1〕沿任意一条棋盘线一定切割偶数块“日形块〞,请说明理由.〔2〕一定存在一条棋盘线不穿过任意“日形块〞,请说明理由.23.30 设有一张8×8的方格表,在表中任意填上64个非负整数〔每格一数〕.允许从表中任选一个3×3或者4×4的子方格表〔所取的各行、各列必须是相连的〕.并将这个子方格表中的9个或者16个数都加上1,这称为进展了一次操作.问:是否可经有限次操作后,一定能把表中的64个数全变成10的倍数?证明你的结论.23.31 在下面的乘法竖式中,每个数字被纸片盖住,纸片上只标出盖住的数字的奇偶,请写出该乘法竖式.23.32 有20个容量为1L的容器,它们分别装有1mL,2mL,…,20mL的水.可将容器A中的局部水倒入容器B中,所倒的量与B中所有的量一样〔这时要求A中的水不少于B中的水〕.经过假设干次互相倒入之后,是否可以做到〔1〕有5个容器含有3mL的水,其余容器含有6mL,7mL…20mL 的水?〔2〕将所有的水装在一个容器中?23.33 某电影院一共有1985个座位.某天,这家电影院上、下午各演一场电影.看电影的是甲、乙两所中学的各1985名学生〔同一所的学生有的看上午场,有的看下午场〕.试证明:电影院一定有这样的座位,这天看电影时,上、下午在这个座位上坐的是两所不同的学生.23.34 在一次象棋比赛中,每个选手恰好比赛一局,每局赢者记2分,输者记0分.平局每个选手各记1分,今有4个人统计了这次比赛中全部得分总数,由于有的人粗心,其数据各不一样,分别为1979、1980、1984、1985.经核实,其中有一人统计无误.问:这次比赛一共有多少名选手参加?23.35 在某次竞赛中,一共有15支队伍参赛.每一队都与其他各队恰好比赛一次.每次赛局开场之前,先计算预备参加这次赛局的两支队伍已赛过的场数之和,假设其和为奇数,那么称此赛局为“奇赛局〞.〔1〕试证:在这次竞赛的所有赛局中,至少有一次赛局为“奇赛局〞.〔2〕在这次竞赛的所有赛局中,是否可能恰好只有一次“奇赛局〞?23.36 置于暗室中的一只抽屉内装有100只红祙子,80只绿祙子,60只蓝祙子,40只黑祙子.一个人从抽屉中选取祙子,但他无法看到所取祙子的颜色.为了确保取出的祙子中至少含有10双〔一双祙子是指两只一样颜色的祙子且每只祙子只能一次用在一双中〕,问:至少要取多少只祙子?23.37 在三角形阵列中〔除顶上的1以外〕,每个数x都是三个数a、b、c的和a+b+c,其中a是x上方紧靠x的数,而b、c分别是a左右紧靠a的数,缺数的视作0.试证:第二行之后的每一行都含有偶数.23.38 在立方体的每一个顶点标上+1或者-1,每个面上标上一个数,它等于这个面的4个顶点处数的乘积.求这14个数的所有可能的和.23.39 现有11块铁,每块的重量都是整数.任取其中10块,都可以分成重量相等等两组.每组有5块.试证:这11块铁的重量都相等.23.40 有2n+1个正整数,任取其中2n个,都可分成和相等的两组,且每组有n个.证明:这2n+1个正整数都相等.23.41 设2n 〔n ≥2)个整数n a a a 221,, 具有性质:从这些数中任意地删除一个数a i ,剩下的2n-1个数可以分成和相等的两组.求证:0221====n a a a .23.42 〔1〕假设有n 个整数,其积为n ,其和为0.求证:4|n. 〔2〕假设4|n ,求证:可以找到n 个整数,使其积为n ,其和为0.23.43 一群幼儿园的孩子一对跟着一对地排成两列,在每列中男孩和女孩的数目一样;一男一女组成的对与其余的对〔即全由男孩或者女孩组成的对〕个数一样.求证:这群孩子的总数被8整除.23.44 能否把前2021个自然数打乱顺序排在圆周上,使每个数都能被它的两个相邻数之差所整除?23.45 沿着圆周写着100个正整数.对于每个正整数都计算出按顺时针方向放在其后面的50个数的和.然后擦去所写各数,分别写上所计算出的和数.证明:经过屡次这种操作,一定可以把100个数都变为偶数.23.46 沿圆周排列有2021个自然数.证明:总能找到两个相邻的数,使得在删掉它们以后,剩下的2021个数是无法分成总和相等的两组.23.47 用假设干个由4个1×1的正方形组成的“L 〞形硬纸片无重叠地拼成一个m ×n(长为m 个单位,宽为n 个单位)的棋盘.试证:8|mn23.48 设n x x x ,,,21 均取值+1或者-1,且032154324321=++x x x x x x x x x x x x n .试证:4|n. 23.49 设n x x x ,,,21 ;n y y y ,,,21 ;n z z z ,,,21 都是+1或者-1,且02211=+++n n y x y x y x ,02211=+++n n z y z y z y ,0221=+++n n z x z x z x z ,求证:4|n.★★★23.50 假设a 、b 、c 、d 是整数,且数ac 、bc +ad 、bd 都能被某整数u 整除.求证:数bc 和ad 也都能被u 整除.★★★23.51 设有2n枚大小一样的硬币,分成了许多堆.从中任取甲、乙两堆,并对它们进展调整.调整的法那么是:假设甲堆硬币的枚数p大于或者等于乙堆硬币的枚数q,那么可从甲堆中取出q枚硬币放到乙堆中去.这就叫“完成了一次调整〞(完成上述调整之后,甲堆中的硬币变成了(p-q)枚,而乙堆中的硬币变成了2q枚.其余各堆中硬币的枚数没有变化〕.求证:经过有限次调整之后,可以把这2n枚硬币并成一堆.★★★23.52 在一个国家里,国王要建n个城,并在它们之间建n-1条道路,使得从每个城可走到其他各个城〔每条道路连结两个城,道路不相交也不经过其他城〕,国王要求每两个城之间沿道路网的最短间隔分别等于1km,2km,3km,…,1(1)2n km,这样的要求能否做到?〔1〕n=6时.〔2〕n=1993时.。

上海中考数学23题解题技巧

上海中考数学23题解题技巧

上海中考数学23题解题技巧在上海中考数学考试中,题目数量不多但题目难度较大,需要考生具备较强的解题技巧和数学思维能力。

以下是针对上海中考数学23题的解题技巧。

题目要求分析上海中考数学23题通常是一道较难的综合题,要求考生使用多个知识点和解题方法来解答。

首先,仔细阅读题目,理解题意和要求。

然后,将题目要求进行分类归纳,分析需要用到的知识点和解题方法。

理清思路数学题解题的关键是理清思路。

对于上海中考数学23题,可以采取以下思路:1.分析题目给出的条件和要求,找出相关的数学知识点。

2.将题目进行分解,将复杂的问题拆分成多个简单的小问题,逐步解决。

3.使用已掌握的数学工具和解题技巧,遵循从已知到未知的思路,逐步推导求解。

4.注意运算的准确性和步骤的清晰性,避免出错。

数学知识点应用上海中考数学23题通常涉及到多个数学知识点,包括代数、几何、概率等。

在解题过程中,要根据题目的要求,合理应用相关的数学知识点。

举例来说,如果题目要求求解一个多边形的面积,就需要用到几何知识中的面积计算公式。

如果题目涉及到概率,就需要用到概率的计算方法。

解题技巧总结下面总结几个解题技巧,有助于解决上海中考数学23题:1.画图辅助思考:对于几何题,可以画出示意图,帮助理清题目的要求和求解思路。

2.独立思考:在解题过程中,尽量减少参考答案或其他同学的做法,保持独立思考,培养自己的解决问题的能力。

3.巧用已知条件:利用题目给出的已知条件,推导出更多有用的信息,缩小求解范围。

4.注意单位转换:题目中给出的单位可能与所需要的单位不一致,要注意进行单位转换。

5.多种方法求解:如果遇到复杂的问题,可以尝试多种解题方法,比较不同方法的优劣,并选择最合适的方法进行求解。

实战演练为了更好地掌握解题技巧,考生可以进行实战演练。

找到类似的综合题目进行练习,通过实际操作来提高解题能力。

总结反思在解答上海中考数学23题过程中,要注重细节和思路的整理。

每个题目解答完后,及时总结反思,找到解题过程中的不足之处,并及时纠正。

2021上海中考23题解法汇总及错因分析

2021上海中考23题解法汇总及错因分析

2021上海中考23题解法汇总及错因分析
上海中考的23题⼀直重点考察平⾏四边形和特殊四边形的判定和性质,是⼀道分值为12分的结合证明题,重点考察了特殊四边形和全等三⾓形、相似三⾓形、⽐例线段及圆的性质或判定的综合应⽤。

1、平⾏四边形的判定:
2、平⾏四边形的性质:
平⾏四边形的两组对边分别平⾏且相等,两组对⾓相等,对⾓线互相平分。

3、矩形和菱形的判定:
4、矩形和菱形的性质:
解法分析:本题的已知条件中出现了等弦以及弦的中点,因此联想到圆中的四等定理以及垂径定理。

本题的证明问题中的第(1)问是证明线段的垂直,根据图形特点,由此我们可以联想到等腰三⾓形的三线合⼀定理或者线段的垂直平分线的性质定理。

第(2)增设了AF//OP的条件,利⽤(1)的结论,我们可以很容易得到∠PFE=90°,因此将问题转化为如何证明AFEC为平⾏四边形,通过联想平⾏四边形的判定定理,找到对应的条件和⽅法进⾏佐证。

2021上海中考23-1具体解法分析:
解法3主要利⽤了拓展内容中的圆周⾓的性质,结合全等三⾓形的相关性质定理进⾏证明。

2021上海中考23-1具体错因分析:
2021上海中考23-2具体解法分析:
说明:除了上述的三种办法外,也可以利⽤类似的办法证明三个⾓是直⾓的四边形是矩形;同时也可以利⽤AP=CP,EP=PF,利⽤⽐例线段的性质证明AC//EF。

2021上海中考23-2具体错因分析:
纵观2016、2019、2021年圆背景下的上海中考23题的,主要还是围绕着四等定理和垂径定理展开,结合特殊四边形的判定和性质,再利⽤全等三⾓形和相似三⾓形作为⼯具,进⾏线段或⾓的转化,达到证明的⽬的。

上海中考数学第23题解题方法(一)

上海中考数学第23题解题方法(一)

上海中考数学第23题解题方法(一)上海中考数学第23题解题题目描述23.两个正整数的商是10,余数是2,被除数小于20,求这两个数。

方法一:列举法1.假设被除数为x,除数为y,商为z,余数为r;2.根据题目中的条件列出方程式:x = y * z + r;3.根据题目中的条件,列出另外一个方程式:z = 10 且 r = 2;4.将第3步中的z和r代入第2步中的方程式,得到x = y * 10 +2;5.由于被除数小于20,所以可以假设y的范围在1至19之间;6.将y的取值从1至19代入第4步的方程式,计算出对应的x;7.通过列举法找到x和y满足条件的组合,即为题目所求的答案。

方法二:代数法1.假设被除数为x,除数为y,商为z,余数为r;2.根据题目中的条件列出方程式:x = y * z + r;3.根据题目中的条件,列出另外两个方程式:z = 10 且 r = 2;4.将第3步中的z和r代入第2步中的方程式,得到x = 10y + 2;5.将方程式中的x代入第4步中的方程式,得到10y + 2 = y * 10+ 2;6.化简上述方程式,得到10y = y * 10;7.由于y不等于0,可以将上述方程式两边除以y,得到10 = 10;8.由于上述方程式恒成立,说明y可以取任意正整数;9.代入y的取值,计算出对应的x;10.通过代数法找到满足条件的x和y的组合,即为题目所求的答案。

方法三:数学推理法1.假设被除数为x,除数为y,商为z,余数为r;2.根据题目中的条件列出方程式:x = y * z + r;3.根据题目中的条件,列出另外两个方程式:z = 10 且 r = 2;4.将第3步中的z和r代入第2步中的方程式,得到x = 10y + 2;5.根据题目中的条件,可以推导出x的范围在12至192之间;6.从范围内依次取x的值,计算出对应的y,判断是否满足题目中的条件;7.找到满足条件的x和y的组合,即为题目所求的答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海初三中考数学第23题(几何证明、计算题)专题复习一、历年上海中考真题2010:23.已知梯形ABCD中,AD∥BC,AB=AD(如图所示),∠BAD的平分线AE交BC于点E,连接DE.(1)在图中,用尺规作∠BAD的平分线AE(保留作图痕迹,不写作法),并证明四边形ABED是菱形;(2)∠ABC=60°,EC=2BE,求证:ED⊥DC.2011:23.(本题满分12分,每小题满分各6分)如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.联结BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE·CE,求证四边形ABFC是矩形.2012:23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)己知:如图,在菱形ABCD中,点E、F分别在边BC、CD,∠BAF=∠DAE,AE与BD交于点G.(1)求证:=BE DF(2)当要DFFC =ADDF时,求证:四边形BEFG是平行四边形.DEB2013:23.如图8,在△ABC中, 90=∠ACB,B A∠>∠,点D为边AB的中点,DE BC∥交AC于点E,CF AB∥交DE的延长线于点F.(1)求证:DE EF=;(2)联结CD,过点D作DC的垂线交CF的延长线于点G,求证:B A DGC∠=∠+∠.2014:22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.FEDAB C图823.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .二、历年金山区模拟考真题(15一模)23.(本题满分12分)如图,已知⊙O 与⊙1O 外离,OC 与D O 1分别是⊙O 与⊙1O 的半径,OC ∥D O 1.直线CD 交1OO 于点P ,交⊙O 于点A ,交⊙1O 于点B . 求证:(1)OA ∥B O 1;(2)BDACBP AP =(15二模)23.(本题满分12分)已知:如图,在中ABC Rt ∆中,︒=∠90ACB ,BC AC =,点E 在边AC 上,延长BC 至D 点,使CD CE =,延长BE 交AD 于F ,过点C 作CG //BF ,交AD 于点G ,在BE 上取一点H ,使DCG HCE ∠=∠.G FE D CHOACPDO 1B(1)求证:ACD BCE ∆≅∆; (2) 求证:四边形FHCG 是正方形.[注:若要用1∠、2∠等,请不要标在此图,要标在答题纸的图形上](09二模)23(本题满分10分)如图,等腰梯形ABCD 中,AD ∥BC ,点E 是AD 延长线上一点,DE = BC. (1)求证:∠E =∠DBC ;(2)若等腰梯形ABCD 的中位线长为6,∠E =︒30,求等腰梯形ABCD 的对角线的长。

C(第23题图)三、2015年中考题型展望上海中考数学试卷的出题风格在23题上相对固定,旨在考察学生对于几何问题证明或者计算基本图形之间的综合掌握。

题目难度主要以中档层次题目为主,一般不存在找不到思路的情况。

若熟练掌握基本几何知识点,就能以不变应万变解答出此类中考问题。

几何证明及计算(1)特殊三角形的边、角计算(2)特殊三角形的边、角计算。

(3)特殊三角形、特殊四边形的性质应用(4)三角形中位线(5)全等三角形、相似三角形的判定和性质应用(6)正多边形的对称性问题(7)圆的垂径定理,圆的切线判定及性质(8)图形运动问题(平移、旋转、翻折)(9)几何图形与锐角三角比结合证明或计算(10)几何图形与函数结合证明或计算*相似三角形的性质的考察加大力度,主要考察学生的思维及能力解决。

全等三角形的判定:①边角边公理(SAS ) ②角边角公理(ASA ) ③角角边定理(AAS ) ④边边边公理(SSS )⑤斜边、直角边公理(HL ) 等腰三角形的性质:①等腰三角形的两个底角相等;②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一) 等腰三角形的判定:有两个角相等的三角形是等腰三角形; 直角三角形的性质:①直角三角形的两个锐角互为余角;②直角三角形斜边上的中线等于斜边的一半; ③直角三角形的两直角边的平方和等于斜边的平方(勾股定理); ④直角三角形中︒30角所对的直角边等于斜边的一半; 直角三角形的判定:①有两个角互余的三角形是直角三角形; ②如果三角形的三边长a 、b 、c 有下面关系222c b a =+,那么这个三角形是直角三角形(勾股定理的逆定理)。

(4)四边形多边形的内角和定理:n 边形的内角和等于︒⋅-180)2(n (n ≥3,n 是正整数); 平行四边形的性质:①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分; 平行四边形的判定:①两组对角分别相等的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形; ③对角线互相平分的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形。

矩形的性质:(除具有平行四边形所有性质外) ①矩形的四个角都是直角;②矩形的对角线相等;矩形的判定:①有三个角是直角的四边形是矩形;②对角线相等的平行四边形是矩形; 菱形的特征:(除具有平行四边形所有性质外①菱形的四边相等;②菱形的对角线互相垂直平分,并且每一条对角线平分一组对角; 菱形的判定:四边相等的四边形是菱形; 正方形的特征:①正方形的四边相等;②正方形的四个角都是直角;③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角; 正方形的判定:①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。

等腰梯形的特征:①等腰梯形同一底边上的两个内角相等 ②等腰梯形的两条对角线相等。

等腰梯形的判定:①同一底边上的两个内角相等的梯形是等腰梯形;②两条对角线相等的梯形是等腰梯形。

圆点与圆的位置关系(设圆的半径为r ,点P 到圆心O 的距离为d ):①点P 在圆上,则d=r ,反之也成立; ②点P 在圆内,则d<r ,反之也成立; ③点P 在圆外,则d>r ,反之也成立;圆心角、弦和弧三者之间的关系:在同圆或等圆中,圆心角、弦和弧三者之间只要有一组相等,可得到另外两组也相等圆的确定:不在一直线上的三个点确定一个圆;垂径定理(及垂径定理的推论):垂直于弦的直径平分弦,并且平分弦所对的两条弧; 平行弦夹等弧:圆的两条平行弦所夹的弧相等; 圆心角定理:圆心角的度数等于它所对弧的度数;圆心角、弧、弦、弦心距之间的关系定理及推论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等;推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦心距中有一组量相等,那么它们所对应的其余各组量分别相等;圆周角定理:圆周角的度数等于它所对的弧的度数的一半;圆周角定理的推论:直径所对的圆周角是直角,反过来,︒90的圆周角所对的弦是直径; 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线; 切线的性质定理:圆的切线垂直于过切点的半径;切线长定理:从圆外一点引圆的两条切线,这一点到两切点的线段相等,它与圆心的连线平分两切线的夹角;弧长计算公式:180Rn l π=(R 为圆的半径,n 是弧所对的圆心角的度数,l 为弧长) 扇形面积:2360R n S π=扇形(R 为半径,n 是扇形所对的圆心角的度数,l 为扇形的弧长) (6)尺规作图(基本作图、利用基本图形作三角形和圆)作一条线段等于已知线段,作一个角等于已知角;作已知角的平分线;作线段的垂直平分线;过一点作已知直线垂线;图形的相似比例的基本性质:如果dc b a =,则bc ad =,如果bc ad =,则)0,0(≠≠=d b dcb a 相似三角形的设别方法:①两组角对应相等;②两边对应成比例且夹角对应相等;③三边对应成比例 相似三角形的性质:①相似三角形的对应角相等;②相似三角形的对应边成比例;③相似三角形的周长之比等于相似比;④相似三角形的面积比等于相似比的平方;相似多边形的性质:①相似多边形的对应角相等;②相似多边形的对应边成比例; ③相似多边形的面积之比等于相似比的平方;口诀:人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

几何图形线段长度计算三大方法:“勾股定理”“相似比例计算”“直角三角形中的三角函数。

相关文档
最新文档