八年级上册数学 三角形填空选择易错题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学三角形填空选择易错题(Word版含答案)

一、八年级数学三角形填空题(难)

1.已知如图,BQ平分∠ABP,CQ平分∠ACP,∠BAC=α,∠BPC=β,则∠BQC=

_________.(用α,β表示)

【答案】1

2

(α+β).

【解析】【分析】

连接BC,根据角平分线的性质得到∠3=1

2

∠ABP,∠4=

1

2

∠ACP,根据三角形的内角和得

到∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,求出∠3+∠4=1

2

(β-α),根据

三角形的内角和即可得到结论.【详解】

解:连接BC,

∵BQ平分∠ABP,CQ平分∠ACP,

∴∠3=1

2

∠ABP,∠4=

1

2

∠ACP,

∵∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,

∴∠3+∠4=1

2

(β-α),

∵∠BQC=180°-(∠1+∠2)-(∠3+∠4)=180°-(180°-β)-1

2

(β-α),

即:∠BQC=1

2

(α+β).

故答案为:1

2

(α+β).

【点睛】

本题考查了三角形的内角和,角平分线的定义,连接BC构造三角形是解题的关键.

2.如图,Rt △ABC 中,∠C=90°,∠BAC 的角平分线AE 与AC 的中线BD 交于点F ,P 为CE 中点,连结PF ,若CP=2,15BFP S ∆=,则AB 的长度为_______.

【答案】15

【解析】

【分析】

作辅助线EH AB ⊥交AB 于H ,再利用等量关系用△BFP 的面积来表示△BEA 的面积,利用三角形的面积公式来求解底边AB 的长度

【详解】

作EH AB ⊥

∵AE 平分∠BAC

BAE CAE ∴∠=∠

EC EH ∴=

∵P 为CE 中点

4EC EH ==∴

∵D 为AC 中点,P 为CE 中点

=x =y PEF PCF CDF ADF S S S S ==△△△△∴设,

15x BEF S =-△∴

15+x+y BCD BDA S S ==△△∴

y=15+x+y-y=15+x BFA BDA S S =-△△∴

15x+15+x=30BEA BEF BFA S S S =+=-△△△∴

1=302

BEA S AB EH ⨯=△∵ =15AB ∴

【点睛】

本题考查了辅助线的运用以及三角形的中线平分三角形的面积,解题的关键在于如何利用△BFP 的面积来表示△BEA 的面积

3.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()

A.144°B.84°C.74°D.54°

【答案】B

【解析】

正五边形的内角是∠ABC=()

52180

5

-⨯

=108°,∵AB=BC,∴∠CAB=36°,正六边形的内角

是∠ABE=∠E=()

62180

6

-⨯

=120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–

120°–120°–36°=84°,故选B.

4.一个多边形的内角和是外角和的7

2

倍,那么这个多边形的边数为_______.

【答案】9

【解析】

【分析】

根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】

解:设这个多边形是n边形,

根据题意得,(n-2)•180°=7

2

×360°,

解得:n=9.

故答案为:9.

【点睛】

本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.

5.如图是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥面断裂处夹角∠BCD=__________.

【答案】119°

【解析】

【分析】

连接BD,构△BCD根据对顶角相等和三角形内角和定理即可求出∠BCD的度数.

【详解】

如图所示,连接BD,

∵∠4=∠1=38°,∠3=∠2=23°,

∴∠BCD=180°-∠4-∠3=180°-38°-23°=119°.

故答案为:119°.

【点睛】

本题考查了对顶角的性质与三角形内角和定理. 连接BD,构△BCD是解题的关键.

6.已知一个三角形的三边长为3、8、a,则a的取值范围是_____________.

【答案】5<a<11

【解析】

【分析】

根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得8-3<a<8+3,再解即可.

【详解】

解:根据三角形的三边关系可得:8-3<a<8+3,

解得:5<a <11,

故答案为:5<a<11.

【点睛】

此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.

7.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.

【答案】240.

【解析】

【详解】

试题分析:∠1+∠2=180°+60°=240°.

考点:1.三角形的外角性质;2.三角形内角和定理.

相关文档
最新文档