工程材料及成形技术基础复习重点完整版

合集下载

工程材料与成型基础复习

工程材料与成型基础复习

工程材料与成型技术基础第一个内容:工程材料的结构与性能1、合金:由两种或两种以上的金属元素组成,或者由金属元素和非金属元素组成的能体现金属性质的物质。

其独立、基本的单元叫做组元。

两元合金、三元合金、多元合金。

组元可以是纯元素和稳定的化合物。

2、合金的相:合金中具有相同的物理、化学性能的并与合金中其他部分以界分开的集合。

合金的相结构有固溶体和化合物。

3、合金的组织:是合金的微观形态,它是由合金中涉及到的相的形态所构成的。

这两个与合金的性质密切相关。

4、固溶体:顾名思义即可。

它有两种种类,置换固溶体和间隙固溶体。

顾名思义既可。

当溶质溶剂原子直径之比为不足以0.59时才能形成间隙固溶体。

5、化合物:若新相的晶体结构不同于任何一个组元的时候,就成了化合物(产生了化学反应)固溶体之所以称为是固溶体就是没有发生化合,能找得到与旧组元相同的晶体结构。

有三种类型:正常价化合物、电子化合物、间隙化合物。

6、合金性能:固溶强化:固溶体的塑性和韧性得到了强化,同等条件下,间隙固溶体比置换固溶体的硬度大。

第二相强化:针对于化合物来讲的,化合物本身具有高硬度,高脆性、高熔点、常常加在固溶体上面以增强合金性能。

7、工程材料的性能:硬度:材料抵抗外力变形的能力。

布氏硬度、维氏硬度、洛氏硬度三种分类。

第二个内容:金属材料的凝固与固态相变1、晶体的结晶:广义上来讲,物质的原子从一种排列状态变成另一种排列状态的过程就叫做结晶。

通常把液体变为固体结晶成为一次结晶,固态晶体结晶为另一种固态晶体成为二次结晶。

2、一次结晶的分析过程:在某一点温度下,液态和固态状态下物质的能量相等,处于动态平衡,可以长期共存,这点就是理论结晶温度也叫熔点(T0)T0上液态,T0下固态,所以要结晶得冷却到T0温度以下,这种现象叫过冷。

理论结晶温度与实际结晶温度之差为冷却度,冷却度的大小决定了结晶所需的驱动力的大小,成正比关系,△T=T0-Tn,所以直接的结晶的必要且充分条件是具有一定的冷却度。

工程材料及成型基础知识点整理重点

工程材料及成型基础知识点整理重点

工程材料及成型基础知识点整理重点PPT 填空题和简答题1 一、填空题1、金属结晶包括形核与长大两个过程。

3、晶粒和晶粒之间的界面称为晶界。

4、在结晶过程中,细化晶粒的措施有提高冷却速度、变质处理、振动。

5、由于溶质原子的溶入,固溶体发生晶格畸变,变形抗力增大,使金属的强度、硬度升高的现象称为固溶强化。

6、常见的金属晶格类型体心立方、面心立方和密排立方。

7、在晶体缺陷中,点缺陷主要有空位、间隙原子、置换原子,线缺陷主要有刃型位错、螺型位错,面缺陷主要有晶界、亚晶界8、金属结晶时,实际结晶温度必须低于理论结晶温度,结晶过冷度主要受冷却速度影响。

9、当金属化合物呈细小颗粒均匀分布在固溶体基体上时,将使合金的强度、硬度及耐磨性明显提高,这一现象称为固溶强化。

10、再结晶退火的前提是冷变形+足够高的温度,它与重结晶的区别在于无晶体结构转变。

1.奥氏体的晶格类型是面心立方 2. 铁素体的晶格类型是_ 体心立方 11、亚共析钢的室温组织是 F+P 。

1.钢的淬透性是指钢淬火时所能达到的最高硬度值。

23.渗碳钢渗碳后的热处理包括淬火和低温回火,以保证足够的硬度。

24. 在光学显微镜下观察,上贝氏体显微组织特征是羽毛状,下贝氏体显微组织特征呈针状。

5. 零件失效的基本类型为 _表面损伤、过量变形、断裂。

2.线型无定型高聚物的三种力学状态为玻璃态、高弹态、粘流态。

1、一个钢制零件,带有复杂形状的内腔,该零件毛坯常用铸造方法生产。

2、金属的流动性主要决定于合金的成分 3、流动性不好的铸件可能产生冷隔和浇不足缺陷。

4、铸造合金充型能力不良易造成冷隔和浇不足等缺陷, 12、过共析钢的室温组织是 P+Fe3C 。

13、共晶反应的产物是 Ld I. 20钢齿轮、45钢小轴、T12钢锉的正火的目的分别是:提高硬度,满足切削加工的要求作为最终热处理,满足小轴的使用要求______________ 、消除网状渗碳体2、在正火态的20钢、45钢、T8钢;、T13钢中, T8 钢的厅b 值最高。

《工程材料及成型技术基础》期末考试重点总结

《工程材料及成型技术基础》期末考试重点总结

1、金属三种晶格类型:体心立方晶格、面心立方晶格、密排六方晶格。

2、晶体缺陷:点缺陷、线缺陷、面缺陷。

位错属于线缺陷。

3、材料抵抗外物压入其表面的能力称为硬度。

HRC表示洛氏硬度,HB表示布氏硬度,HV维氏硬度4、金属塑性加工性能用塑性和变形抗力衡量。

5、铸造应力分为:热应力和机械应力。

其中热应力属于残余应力。

6、单相固溶体压力加工性能好,共晶合金铸造加工性能好。

7、金属经过冷塑性变形后强度提高,塑性降低的现象称为形变强化。

8、铸造性能是指:流动性和收缩性。

9、板料冲压成形基本工序:分离工序和成形工序两大类。

10、工艺选择四条基本原则:①使用性能足够原则②工艺性能良好原则③经济性能合理原则④材料、成形工艺、零件结构相适应原则。

11、HT200是灰铸铁材料,其中200表示:最低抗拉强度为200MPa。

12、确定钢淬火加热温度的基本依据是:Fe-3C相图。

13、为保证铸造质量,顺序凝固适合于:缩孔倾向大的铸造合金。

14、锤上锻模时,锻件最终成型是在终锻模膛中完成的,切边后才符合要求。

15、材料45钢、T12、20钢、20Gr.中,焊接性能最好的是20钢(含碳量越高,焊接性能越差)16、机床床身用灰铸铁铸造成型17、固溶体分为:置换固溶体和间隙固溶体18、金属件化合物:正常价化合物、电子化合物、间隙化合物。

19、塑性衡量:伸长率和断面收缩率。

20、晶粒大小:①常温下晶粒越小,金属的强度、硬度越高,塑性、韧性越好。

②晶粒大小与形核率和长大速度有关③影响因素:过冷度和难溶杂质④细化晶粒:增大过冷度,变质处理。

机械搅拌21、单相固溶体合金塑性好,变形抗力好,变形均匀,不易开裂,加工性能好22、单相固溶体塑性变形形式:滑移和孪生23、退火:目的:1,、降低硬度,改善切削加工性2、消除残余应力,稳定尺寸,减少变形与开裂倾向3、细化晶粒,调整组织,消除组织缺陷。

完全退火:适用于亚共析钢,锻件及焊接件。

加热到Ac3以上使奥氏体化,作用:使加热过程中造成的粗大不均匀组织均匀细化,降低硬度,提高塑性,改善加工性能,消除内应力。

工程材料及成形技术基础课程复习

工程材料及成形技术基础课程复习

(0)绪论材料的分类及在机械工程技术中的应用、材料科学的发展、本课程的目的、任务和学习方法。

(一)金属材料的力学性能1、了解相关力学性能;2、理解强度、刚度、弹性、塑性、硬度、冲击韧性、疲劳强度的概念;3、理解σb、σs、σ0.2、HBS(W)、HRC、HRA、HV、δ、δ5、ψ、σ-1等的含义。

(二)金属及合金的晶体结构与结晶1、晶体与非晶体,及其特点;掌握晶格、晶胞、晶格常数、晶面和晶向。

2、掌握晶体的3种类型:体心、面心、密排六方;及其相关知识,如原子个数、致密度、属于此类型的金属。

3、理解单晶体与多晶体;掌握晶体缺陷的3种类型:点缺陷、线缺陷、面缺陷;并能举例;位错(密度)。

4、金属结晶、过冷(度)现象、晶粒大小、金属结晶过程(形核与长大)、晶粒大小、细化晶粒的方法、铸锭组织(3个晶区)、同素异晶转变。

5、合金、组元、组织、相的基本概念、合金的相结构、固溶体(概念、种类(置换与间隙固溶体、有限与无限固溶体)、固溶强化)、金属化合物(概念、特点)、机械混合物。

6、冷、热变形加工的划分标志;实例。

(三)铁碳合金相图1、纯铁的同素异构转变、二元合金相图基本知识、匀晶相图、共晶相图分析;合金的组成与组织。

2、铁碳合金的基本组织:铁素体、奥氏体、渗碳体、珠光体、莱氏体;铁碳合金的基本相:铁素体、奥氏体、渗碳体。

3、铁碳合金相图(默画)分析:共晶反应、共析反应、相图中点、线的含义,特别是重要的点、线;铁碳合金的分类及室温组织。

4、典型合金结晶过程:共析钢、亚共析钢、过共析钢的结晶过程;共晶白口铁、亚共晶白口铁、过共晶白口铁的结晶过程。

5、铁碳合金成分、组织和性能之间的关系,相图的应用。

(四)钢的热处理1、热处理的概念、目的、种类。

2、钢加热时组织的转变:奥氏体化(以共析钢为例,其4个阶段)、晶粒的长大及控制(快速加热、短时间保温)。

3、钢冷却组织转变:过冷奥氏体的等温转变、C曲线及分析;过冷奥氏体连续冷却转变、马氏体转变。

材料成型基础复习重点

材料成型基础复习重点

A 未变形区B 剧烈变形区C 已变形区D 弹性区半熔化区过热区正火区部分相变区热影响区焊缝区热作用区1、零件的四种加工方法:成形加工:凝固成形、塑性成形、焊接成形、粉末压制、塑料成形;切削加工:车、铣、刨、钻、磨、电火花、电解、超声加工、激光加工等;表面成形加工:表面形变、淬火强化、化学强化、表面镀层、气相沉积镀膜;热处理加工:退、正、淬、回火;2、金属材料成型方法:液态金属铸造成型、固态金属塑性成型、金属材料焊接成型3、材料成型作用:使材料形状发生改变;达到合格的尺寸精度;达到合格的表面精度、形位精度等;达到零件的使用性能的要求4、材料成型特点:1)多在热态下通过模具成型,生产周期短,质量稳定,能一次成型外形和内腔复杂的制件2)材料利用率高3)生产效率高4)产品性能好5)成型加工零件的尺寸精度较切削加工低,表面粗糙度值大。

5、成型方法的选用原则:根据材料的种类选择成型方法;根据材料的力学性能选择成型方法;根据零件的结构形状选择成型方法;根据零件的生产批量选择毛坯的成型方法;尽量根据本企业的生产和设备条件,不同的成型工艺方案,需要不同的装备、模具、生产条件等,应对各种方法进行技术经济分析,选择性价比高的成型方法。

6、质量增加过程的特征是加工材料在过程结束时的质量比过程开始时的最终质量有所增加。

化学热处理:渗碳、渗氮、氰化处理、气相沉积、喷涂、电镀、刷镀等。

装配与连接:焊接,粘接等。

7、质量减少过程(材料的4种去除方法):1)切削过程2)磨料切割、喷液切割、热力切割与激光切割、化学腐蚀等;3)超声波加工、电火花加工和电解加工4)落料、冲孔、剪切等金属成形过程。

8、铸造的特点1)适应性广。

适应铸铁,碳钢,有色金属等材料;铸件大小,形状和重量几乎不受限制;壁厚1mm到1m ,质量零点几克到数百吨(三峡的水轮机叶轮重达430T)。

2)可复杂成形。

适合形状复杂,尤其是有复杂内腔的毛坯或零件。

3)成本较低。

工程材料及成形技术基础总复习.

工程材料及成形技术基础总复习.

几个重要概念 同素异晶转变 奥氏体 共析、共晶、包晶转变 杠杆定律 重点 铁碳相图 要求能对铁碳相图进行分析和解释 钢的A化和A的晶粒度 TTT和CCT曲线 过冷A转变产物(P,B,M)
第4章 金属材料热处理 基本概念
热处理基础:临界转变温度、奥氏体化、影响晶粒度 因素;冷却转变类型 普通热处理:四把火★(退火、正火、淬火+回火); 注意淬透性与回火脆性 表面热处理:表面淬火、渗碳、氮化的工艺特点与适 用性
钢的常规热处理工艺
正火的应用:
a.预先热处理 *钢材及铸件、锻件用正火细晶,消除组织缺陷,为后续热 处理作组织准备。 *过共析钢和渗碳零件用正火消除组织中网状渗碳体,为球 化退火和后一步热处理作组织准备。 b.最终热处理 细化组织,均匀组织,消除组织缺陷,提高强度、硬度和韧 性,对于普通结构件,机械性能要求不高时,可正火后使用。 C.改善低碳钢和低碳合金钢的切削加工性能。
第1章 工程材料的结构与性能
1.1 材料原子(或分子)的相互作用 1.2 晶体材料的原子排列
晶体结构:晶格、3种典型晶体结构(fcc bcc ,hcp,致密度 0.68/0.74/0.74)、3种缺陷(点、线、面),细晶强化 单晶体的各向异性 实际晶体中的各种缺陷及其对性能的影响(位错密度与强度的 关系)
下贝氏体转变(350~230℃): B下; 50~60HRC;
下贝氏体不仅具有较高的强度、硬度与耐磨性,同时具
有良好的塑性和韧性。
过饱和碳 α-Fe针叶状 Fe3C细片状 针叶状
B下 =过饱和碳 α-Fe针叶状 + Fe3C细片状
③马氏体型 ( M ) 转变 ( 230~ -50℃ )
1)定义:马氏体是一种碳在α– Fe中的过饱和间隙固 溶体。 2)转变特点: 在一个温度范围内连续冷却完成; 转变速度极快,即瞬间形核与长大;

工程材料及成形技术基础复习重点完整版

工程材料及成形技术基础复习重点完整版

一、二元相图的建立合金的结晶过程比纯金属复杂;常用相图进行分析;相图是用来表示合金系中各金在缓冷条件下结晶过程的简明图解;又称状态图或平衡图..合金系是指由两个或两个以上元素按不同比例配制的一系列不同成分的合金.. 组元是指组成合金的最简单、最基本、能够独立存在的物质..多数情况下组元是指组成合金的元素..但对于既不发生分解、又C..不发生任何反应的合物也可看作组元; 如Fe-C合金中的Fe3相图由两条线构成;上面是液相线;下面是固相线..相图被两条线分为三个相区;液相线以上为液相区L ;固相线以下为固溶体区;两条线之间为两相共存的两相区L+ ..3 枝晶偏析合金的结晶只有在缓慢冷却条件下才能得到成分均匀的固溶体..但实际冷速较快;结晶时固相中的原子来不及扩散;使先结晶出的枝晶轴含有较多的高熔点元素如Cu-Ni合金中的Ni; 后结晶的枝晶间含有较多的低熔点元素;如Cu-Ni合金中的Cu..在一个枝晶范围内或一个晶粒范围内成分不均匀的现象称作枝晶偏析..与冷速有关而且与液固相线的间距有关..冷速越大;液固相线间距越大;枝晶偏析越严重枝晶偏析会影响合金的力学、耐蚀、加工等性能..生产上常将铸件加热到固相线以下100-200℃长时间保温;以使原子充分扩散、成分均匀;消除枝晶偏析;这种热处理工艺称作扩散退火..2、二元共晶相图当两组元在液态下完全互溶;在固态下有限互溶;并发生共晶反应时所构成的相图称作共晶相图..以 Pb-Sn 相图为例进行分析..1 相图分析①相:相图中有L、、三种相; 是溶质Sn在 Pb中的固溶体; 是溶质Pb在Sn中的固溶体..②相区:相图中有三个单相区: L、、;三个两相区: L+ 、L+ 、+ ..③液固相线:液相线AEB;固相线ACEDB..A、B分别为Pb、Sn的熔点..④固溶线: 溶解度点的连线称固溶线..相图中的CF、DG线分别为Sn在 Pb中和 Pb在 Sn中的固溶线..固溶体的溶解度随温度降低而下降..⑤共晶线:水平线CED叫做共晶线..在共晶线对应的温度下183 ℃;E点成分的合金同时结晶出C点成分的固溶体和D点成分的固溶体;形成这两个相的机械混合物LE C+D在一定温度下;由一定成分的液相同时结晶出两个成分和结构都不相同的新固相的转变称作共晶转变或共晶反应..一、铁碳合金的组元和相C1. 组元:Fe、 Fe32. 相⑴铁素体——碳在-Fe中的固溶体称铁素体;用F或表示碳在–Fe中的固溶体用表示;体心立方间隙固溶体..铁素体的溶碳能力很低;在727℃时最大为0.0218%;室温下仅为0.0008%..铁素体的组织为多边形晶粒;性能与纯铁相似..2 奥氏体碳在 -Fe中的固溶体称奥氏体..用A或表示..是面心立方晶格的间隙固溶体..溶碳能力比铁素体大;1148℃时最大为2.11%..组织为不规则多面体晶粒;晶界较直..强度低、塑性好;钢材热加工都在区进行;碳钢室温组织中无奥氏体..3 渗碳体Fe3C含碳6.69%;用Fe3C或Cm表示..Fe3C硬度高、强度低 b35MPa;脆性大;塑性几乎为零..由于碳在 -Fe中的溶解度很小;因而常温下碳在铁碳合金中主要以Fe3C或石墨的形式存在..重要知识点五个重要的成份点: P、S、E、C、F四条重要的线: ECF、PSK、ES、GS三个重要转变: 共晶转变反应式、共析转变反应式、包晶转变本节略二个重要温度: 1148 ℃、727 ℃第一节退火和正火一般零件的工艺路线为:毛坯铸造或锻造→退火或正火→机械粗加工→淬火+回火或表面热处理→机械精加工..退火与正火常作为预备热处理;其目的是为消除毛坯的组织缺陷;或为以后的加工作准备;淬火和回火工艺配合可强化钢材;提高零件使用性能;作为最终热处理..一、退火将工件加热到适当温度;保温一定时间;缓慢冷却热处理工艺目的根据不同情况;退火的作为可归纳为降低硬度;改善钢的成形和切削加工性能;均匀钢的化学成分和组织;消除内应力等..①调整硬度以便进行切削加工;②消除残余内应力;以防止钢件在淬火时产生变形或开裂;③细化晶粒;改善组织;提高力学性能;为最终热处理作准备..1、退火类型1 完全退火完全退火是将工件完全奥氏体化后缓慢冷却;获得接近平衡组织的退火工艺..工艺加热温度为Ac3以上20℃~30℃;保温时间依工件的大小和厚度而定;使工件热透;保证全部得到均匀化的奥氏体;冷却方式可采用随炉缓慢冷却;实际生产时为提高生产率;退火冷却至600℃左右即可出炉空冷..2球化退火工艺球化退火的加热温度为Ac1以上20℃~30℃;采用随炉缓冷;至500℃~600℃后出炉空冷;3去应力退火去除工件塑性变形加工、切削加工或焊接造成的内应力及铸件内存在的残余内应力而进行的退火工艺..工艺去应力退火加热温度较宽;但不超过AC1点;一般在500℃~650℃之间;铸铁件去应力退火温度一般为500℃ ~ 550℃;焊接工件的去应力退火温度一般为500℃ ~600℃..去应力退火的保温时间也要根据工件的截面尺寸和装炉量决定..去应力退火后的冷却应尽量缓慢;以免产生新的应力..4扩散退火为减少铸件或锻坯的化学成分和组织不均匀性;将其加热到略低于固相线固相线以下 100℃~200℃的温度;长时间保温10h~15h;并进行缓慢冷却的热处理工艺;称为扩散退火或均匀化退火..二、正火1、正火的概念工艺正火处理的加热温度通常在Ac3或Accm以上30℃~50℃..对于含有V、Ti、Nb等碳化物形成元素的合金钢;采用更高的加热温度AC3 + 100℃~150℃..正火冷却方式常用的是将钢件从加热炉中取出在空气中自然冷却..对于大件也可采用吹风、喷雾和调节钢件堆放距离等方法控制钢的冷却速度;达到要求的组织和性能..第二节钢的淬火将亚共析钢加热到Ac3以上;共析钢与过共析钢加热到Ac1以上;低于Accm的温度;保温后以大于Vk的速度快速冷却;使奥氏体转变为马氏体或贝氏体的热处理工艺叫淬火..马氏体强化是钢的主要强化手段;因此淬火的目的就是为了获得马氏体;提高钢的机械性能..淬火是钢的最重要的热处理工艺也是热处理中应用最广的工艺之一..1、淬火温度的确定淬火温度即钢的奥氏体化温度;是淬火的主要工艺参数之一..选择淬火温度的原则是获得均匀细小的奥氏体组织..亚共析钢的淬火温度一般为Ac3以上30~50℃;淬火后获得均匀细小的马氏体组织..温度过高;奥氏体晶粒粗大而得到粗大的马氏体组织;而使钢的机械性能恶化;特别是塑性和韧性降低;淬火温度低于Ac3;淬火组织中会保留未溶铁素体;使钢的强度硬度下降..4、钢的淬透性1淬透性与淬硬性的概念钢的淬透性是指奥氏体化后的钢在淬火时获得马氏体的能力也称为淬透层深度;其大小用钢在一定条件下淬火获得的淬硬层深度来表示..淬硬层深度指由工件表面到半马氏体区50%M + 50%P的深度..淬硬性是指钢淬火后所能达到的最高硬度;即硬化能力..淬透性与淬硬层深度的关系同一材料的淬硬层深度与工件尺寸、冷却介质有关..工件尺寸小、介质冷却能力强;淬硬层深.. 淬透性与工件尺寸、冷却介质无关..它只用于不同材料之间的比较;通过尺寸、冷却介质相同时的淬硬层深度来确定的..2淬透性的测定及其表示方法同一材料的淬硬层深度与工件的尺寸;冷却介质有关;工件尺寸小、冷却能力强;淬硬层深;工件尺寸小、介质冷却能力强;淬硬层深;而淬透性与工件尺寸、冷却介质无关;它只用于不同材料之间的比较;是在尺寸、冷却介质相同时;用不同材料的淬硬层深度进行比较的..淬透性常用末端淬火法测定如下图所示;将标准化试样奥氏体化后;对末端进行喷水冷却..然后从水冷段开始;每隔一定距离测量一个硬度值;即可得到试样沿轴向的硬度分布曲线;称为钢的淬透性曲线..即用 表示J 表示末端淬透性;d 表示半马氏体区到水冷端的距离;HRC 为半马氏体区的硬度..3 影响淬透性的因素钢的淬透性取决于临界冷却速度V K ; V K 越小;淬透性越高..V K 取决于C 曲线的位置;C 曲线越靠右;V K 越小..凡是影响C 曲线的因素都是影响淬透性的因素;即除Co 外;凡溶入奥氏体的合金元素都使钢的淬透性提高;奥氏体化温度高、保温时间长也使钢的淬透性提高..影响淬硬层深度的因素淬透性 冷却介质 工件尺寸对于截面承载均匀的重要件;要全部淬透..如连杆、模具等..对HRC J d于承受弯曲、扭转的零件可不必淬透淬硬层深度一般为半径的1/2-1/3;如轴类、齿轮等..淬硬层深度与工件尺寸有关;设计时应注意尺寸效应..第三节钢的回火回火——将淬火钢加热到Ac1以下的某温度保温后冷却的热处理工艺..1、回火的目的消除或减少淬火内应力;防止工件变形或开裂;获得工艺所要求的力学性能;稳定工件尺寸..淬火马氏体和残余奥氏体都是非平衡组织;有自发向平衡组织铁素体加渗碳体转变的倾向..回火可使马氏体和残余奥氏体转变为平衡或接近平衡的组织;防止使用时变形..对于未经淬火的钢;回火是没有意义的;而淬火钢不经回火一般也不能直接使用;为避免淬火件在放置过程中发生变形或开裂;钢件经淬火后应及时回火..3、回火工艺1低温回火<250℃低温回火后得到回火马氏体组织..其目的是降低钢的淬火应力和脆性;回火马氏体具有高的硬度一般为58~64HRC、强度和良好耐磨性..低温回火特别适用于刀具、量具、滚动轴承、渗碳件及高频表面淬火等工求高硬度和耐磨性的工件..2中温回火350-500℃中温回火时发生如下变化;得到T回组织;即为在保持马氏体形态的铁素体基体上分布着细粒状渗碳体的组织..使钢具有高的弹性极限;较高的强度和硬度一般为35 ~ 50HRC;良好的塑性和韧性..中温回火主要用于各种弹性元件及热作模具..3高温回火>500℃高温回火后得到回火索氏体组织;即为在多边性铁素体基体上分布着颗粒状Fe3C的组织 ..工件淬火并高温回火的复合热处理工艺称为调质..高温回火主要适用于中碳结构钢或低合金结构钢制作的曲轴、连杆、螺栓、汽车半轴、等重要的机器零件..4、回火时的性能变化回火时力学性能变化总的趋势是随回火温度提高;钢的强度、硬度下降;塑性、韧性提高..5、回火脆性淬火钢的韧性并不总是随温度升高而提高..在某些温度范围内回火时;会出现冲击韧性下降的现象..1低温回火脆性淬火钢在250℃~350℃范围内回火时出现的脆性叫做低温回火脆性..几乎所有的钢都存在这类脆性..这是一种不可逆回火脆性;目前尚无有效办法完全消除这类回火脆性..所以一般都不在250℃~350℃这个温度范围内回火..2高温回火脆性淬火钢在500℃~650℃范围内回火时出现的脆性称为高温回火脆性;称为第二类回火脆性..这种脆性主要发生在含Cr、Ni、Si、Mn等合金元素的结构钢中..这种脆性与加热、冷却条件有关..加热至600℃以上后;以缓慢的冷却速度通过脆化温度区时;出现脆性;快速通过脆化区时;则不出现脆性..此类回火脆性是可逆的;在出现第二类回火脆性后;重新加热至600℃以上快冷;可消除脆性..第四节钢的表面淬火钢的表面热处理有两大类:一类是表面加热淬火热处理;通过对零件表面快速加热及快速冷却使零件表层获得马氏体组织;从而增强零件的表层硬度;提高其抗磨损性能..另一类是化学热处理;通过改变零件表层的化学成分;从而改变表层的组织;使其表层的机械性能发生变化..1、表面淬火表面具有高的强度、硬度和耐磨性;不易产生疲劳破坏;而心部则要求有足够的塑性和韧性..采用表面淬火可使钢的表面得到强化;满足工件这种“表硬心韧”的性能要求..1 表面淬火目的使表面具有高的硬度、耐磨性和疲劳极限;心部在保持一定的强度、硬度的条件下;具有足够的塑性和韧性..适用于承受弯曲、扭转、摩擦和冲击零件2 表面淬火用材料0.4-0.5%C的中碳钢..含碳量过低;则表面硬度、耐磨性下降含碳量过高;心部韧性下降;铸铁提高其表面耐磨性..3 预备热处理工艺对于结构钢为调质或正火..前者性能高;用于要求高的重要件;后者用于要求不高的普通件..目的①为表面淬火作组织准备②获得最终心部组织..表面淬火后的回火采用低温回火;温度不高于200℃..目的为降低内应力保留淬火高硬度耐磨性..表面淬火+低温回火后的组织:表层组织为M回;心部组织为S回调质或F+S正火..第五节化学热处理化学热处理是将钢件置于一定温度的活性介质中保温;使一种或几种元素渗入它的表面;改变其化学成分和组织;达到改进表面性能;满足技术要求热处理过程..目的1、提高渗层硬度和耐磨性;如渗碳、氮等;2、提高零件接触疲劳强度和提高抗擦伤能力;渗氮等;3、提高零件抗氧化、耐高温性能;如渗入铝、铬等;4、提高零件抗蚀性;如渗入硅、铬等..化学热处理基本过程1介质的分解—即加热时介质中的化合物分子发生分解并释放出活性原子;2工件表面的吸收—即活性原子向固溶体中溶解或与钢中某些元素形成化合物;3原子向内部扩散—即溶入的元素原子在浓度梯度的作用下由表层向钢内部的扩散..1、渗碳原理渗碳是指向钢表面渗入碳原子的过程..渗碳是为了使低碳钢工件含碳量为0.1%~0.25%表面获得高的碳浓度0.85%~1.05%;从而提高工件表面的硬度、耐磨性及疲劳强度;同时保持心部良好的韧性和塑性..若采用中碳以上的钢渗碳;则将降低工件心部的韧性..渗碳主要用于那些对耐磨性要求较高、同时承受较大冲击载荷的零件..2渗碳件用钢一般采用碳质量分数为0.1%~0.25%的低碳钢或低碳合金钢;20、20Cr、20CrMnTi等..可使渗碳件表面高硬度、耐磨;心部高强韧性、承受较大冲击..3渗碳后的热处理及性能渗碳缓冷后组织:表层为P+网状Fe3CⅡ; 心部为F+P;中间为过渡区..渗碳后必须经淬火+低温回火后才能满足使用性能的要求..热处理后使渗碳件表面具有马氏体和碳化物的组织;表面硬度58~64HRC..而心部根据采用钢材淬透性的大小和零件尺寸大小;获得低碳马氏体或其他非马氏体组织;具有心部良好强韧性..常用方法是渗碳缓冷后;重新加热到Ac1+30-50℃淬火+低温回火..表层:M回+颗粒状碳化物+A’少量; 心部:淬透时;M回+F..2、渗氮渗氮是在一定温度下于一定介质中使氮原子渗入工件表层的化学热处理工艺..方法主要有气体渗氮和离子渗氮等..1气体渗氮渗氮温度一般为500~560℃;时间一般为20~50小时;采用氨气NH3 作渗氮介质..氨气在450℃以上温度时即发生分解;产生活性氮原子: 2NH3——3H2+2N2渗氮的特点渗氮件的表面硬度高达;相当于65HRC~72HRC..并可保持到560~600℃而不降低..氮化后钢件不需其他热处理;渗氮件的变形小..渗氮后具有良好的耐腐蚀性能..这是由于渗氮后表面形成致密的氮化物薄膜;气体渗氮所需时间很长;渗氮层也较薄一般为0.3-0.6mm;38CrMoAl钢制压缩机活塞杆为获得0.4-0.6mm的渗氮层深度气体渗氮保温时间需60h左右..氮化缺点工艺复杂;成本高;氮化层薄..用于耐磨性、精度要求高的零件及耐热、耐磨及耐蚀件..第六节铸铁一、铸铁的成分、组织和性能特点1、铸铁的成分特点a. 含碳量理论上含C:2.11%~ 6.69% 的铁碳合金都属于铸铁; 但工业上常用铸铁的含碳量一般在:2.50%~4.00%之间..三、铸铁的分类1、灰口铸铁普通铸铁石墨呈片状;典型灰口铸铁;这类铸铁机械性能不高;但生产工艺简单;价格低廉;工业上所用铸铁几乎全部属于这类铸铁..灰口铸铁又根据第三阶段石墨化程度的不同分为:铁素体灰铁、 F+P灰铁、珠光体灰铁2、白口铸铁炼钢生铁第一、二、三阶段石墨化过程完全被抑制;Fe-C合金完全按照Fe-Fe3CC形式存在组织中存在莱氏体组织;断口呈白亮结晶而得到的铸铁;以Fe3色;故得名白口铸铁..白口铸铁硬脆;主要作为炼钢原料..3、可锻铸铁韧性铸铁;玛钢C分解而得到团石墨呈团絮状;用白口铸铁经长时间高温退火后;Fe3絮状石墨组织的铸铁..由于石墨呈团絮状;对基体的割裂作用比片状石墨小一些;故机械性能尤其冲击韧性高于灰口铸铁..可锻铸铁由于生产工艺复杂;成本较高;应用很少..4、球墨铸铁石墨组织呈球状;这种铸铁强度高;生产工艺比可锻铸铁简单;且可通过热处理进一步提高强度..球墨铸铁既保持了铸铁的特点;又具钢的高强度、高韧性;故应用越来越多..1球化处理与孕育处理Ⅰ球化处理铁水浇铸前;加入一定量的球化剂镁;硅铁-镁;铜-镁系;以促使石墨结晶时生长成为球状的工艺;称为球化处理..Ⅱ孕育处理变质处理球化处理只能在铁水中有石墨核心产生时;才能促使石墨生长成球状;而球化剂都是阻碍石墨化的元素;所以必须进行孕育处理变质处理;往铁水中加入变质剂75% Si-Fe..第七节铝及铝合金1性能特点纯铝银白色金属光泽;密度小2.72;熔点低660.4℃;导电导热性能优良..耐大气腐蚀;易于加工成形 ..具有面心立方晶格..铝合金一般具有有限固溶型共晶相图..可将铝合金分为变形铝合金和铸造铝合金两大类..3形变铝合金的牌号、性能变形铝及铝合金牌号表示方法;国标规定;变形铝及铝合金可直接引用国际四位数字体系牌号或采用国标规定的四位字符牌号..GB 3190-82中的旧牌号表示方法为防锈铝合金:LF +序号硬铝合金: LY +序号超硬铝合金:LC +序号锻铝合金: LD +序号4铸造铝合金牌号、分类Al- Si系:代号为ZL1+两位数字顺序号Al-Cu系:代号为ZL2+两位数字顺序号Al-Mg系:代号为ZL3+两位数字顺序号Al-Zn系:代号为ZL4+两位数字顺序号二、铜及铜合金1性能特点纯铜呈紫红色;又称紫铜;具有面心立方晶格;无同素异构转变;无磁性..纯铜具有优良的导电性和导热性;在大气、淡水和冷凝水中有良好的耐蚀性..塑性好..2黄铜以Zn为主要合金元素的铜合金称为黄铜..黄铜按化学成分可分为普通黄铜和特殊黄铜..按工艺可分为加工黄铜和铸造黄铜..单相黄铜塑性好;常用牌号有H80、H70、H 68..适于制造冷变形零件;如弹壳、冷凝器管等..三七黄铜两相黄铜热塑性好; 强度高..常用牌号有H59、H62..适于制造受力件;如垫圈、弹簧、导管、散热器等..四六黄铜3青铜青铜主要是指Cu-Sn合金..加工青铜的牌号为:Q +主加元素符号及其平均百分含量 + 其他元素平均百分含量.. QSn4-3含4%Sn 3%Zn 常用青铜有锡青铜、铝青铜、铍青铜、硅青铜、铅青铜等..常用牌号有:QSn4-3、QSn6.5-0.4、ZCuSn10Pb1轴承合金制造滑动轴承的轴瓦及其内衬的耐磨合金称为轴承合金..滑动轴承是许多机器设备中对旋转轴起支撑..由轴承体和轴瓦两部分组成..与滚动轴承相比滑动轴承具有承载面积大;工作平稳;无噪音及拆装方便等优点..一、组织性能要求速旋转时;轴瓦与轴颈发生强烈摩擦;承受轴颈施加的交变载荷和冲击力..⑴足够的强韧性;承受交变冲击载荷;⑵较小的热膨胀系数;良好的导热性和耐蚀性;以防止轴与轴瓦之间咬合;⑶较小的摩擦系数;良好的耐磨性和磨合性;以减少轴颈磨损;保证轴与轴瓦良好的跑合..为满足上述性能要求;轴承合金的组织应是软的基体上分布着硬的质点..当轴旋转时;软的基体或质点被磨损而凹陷;减少了轴颈与轴瓦的接触面积;有利于储存润滑油..软基体或质点还能起嵌藏外来硬杂质颗粒的作用;以避免擦伤轴颈..这类组织承受高负荷能力差;属于这类组织的有锡基和铅基轴承合金;又称为巴氏合金babbitt alloy1、锡基轴承合金以锡为主并加入少量锑、铜等元素组成的合金熔点较低;是软基体硬质点组织类型的轴承合金..锡基轴承合金具有较高的耐磨性、导热性、耐蚀性和嵌藏性;摩擦系数和热膨胀系数小;但疲劳强度较低;工作温度不超过150 ℃;价格高..广泛用于重型动力机械;如气轮机、涡轮机和内燃机等大型机器的高速轴瓦..2、铅基轴承合金以铅为主加入少量锑、锡、铜等元素的合金;软基体硬质点型轴承合金;ZChPbSb16Sn16Cu2..铅基轴承合金的强度、硬度、耐蚀性和导热性都不如锡基轴承合金;但其成本低;高温强度好;有自润滑性..常用于低速、低载条件下工作的设备;如汽车、拖拉机曲轴的轴承等..。

材料成形技术基础知识点总结

材料成形技术基础知识点总结

铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。

1、铸造的实质利用了液体的流动形成。

2、铸造的特点A 适应性大(铸件分量、合金种类、零件形状都不受限制);B 成本低C 工序多,质量不稳定,废品率高D 力学性能较同样材料的锻件差。

力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松, 成份不均匀3、铸造的应用铸造毛胚主要用于受力较小,形状复杂(特别是腔内复杂)或者简单、分量较大的零件毛胚。

1、铸件的凝固(1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程.它由晶核的形成和长大两部份组成。

通常情况下,铸件的结晶有如下特点:A 以非均质形核为主B 以枝状晶方式生长为主.结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒. 晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或者混合组织等.(2)铸件的凝固方式逐渐的凝固方式有三种类型:A 逐层凝固B 糊状凝固C 中间凝固2、合金的铸造性能(1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。

它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。

生产上改善合金的充型能力可以从一下各方面着手:A 选择挨近共晶成份的趋于逐层凝固的合金,它们的流动性好;B 提高浇注温度,延长金属流动时间;C 提高充填能力D 设置出气冒口,减少型内气体,降低金属液流动时阻力。

(2)收缩性A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中.对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。

适当控制凝固顺序,让铸件按远离冒口部份最先凝固,然后朝冒口方向凝固, 最后才是冒口本身的凝固(即顺序凝固方式) ,就把缩孔转移到最后凝固的部位—- 冒口中去,而去除冒口后的铸件则是所要的致密铸件。

材料成型技术基础复习提纲整理

材料成型技术基础复习提纲整理

第一章绪论1、现代制造过程的分类(质量增加、质量不变、质量减少)。

2、那几种机械制造过程属于质量增加(不变、减少)过程.(1)质量不变的基本过程主要包括加热、熔化、凝固、铸造、锻压(弹性变形、塑性变形、塑性流动)、浇灌、运输等。

(2)质量减少过程材料的4种基本去除方法:切削过程;磨料切割、喷液切割、热力切割与激光切割、化学腐蚀等;超声波加工、电火花加工和电解加工;落料、冲孔、剪切等金属成形过程.(3)材料经过渗碳、渗氮、氰化处理、气相沉积、喷涂、电镀、刷镀等表面处理及快速原型制造方法属于质量增加过程.第二章液态金属材料铸造成形技术过程1、液态金属冲型能力和流动性的定义及其衡量方法液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属充填铸型的能力,简称液态金属的充型能力。

液态金属的充型能力通常用铸件的最小壁厚来表示.液态金属自身的流动能力称为“流动性".液态金属流动性用浇注流动性试样的方法来衡量。

在生产和科学研究中应用最多的是螺旋形试样.2、影响液态金属冲型能力的因素(金属性质、铸型性质、浇注条件、铸件结构)(1)金属的流动性:流动性好的液态金属,充型能力强,易于充满薄而复杂的型腔,有利于金属液中气体、杂质的上浮并排除,有利于对铸件凝固时的收缩进行补缩。

流动性不好的液态金属,充型能力弱,铸件易产生浇不足、冷隔、气孔、夹杂、缩孔、热裂等缺陷。

(2)铸型性质:铸型的蓄热系数b(表示铸型从其中的金属液吸取并储存在本身中热量的能力)愈大,铸型的激冷能力就愈强,金属液于其中保持液态的时间就愈短,充型能力下降。

(3)浇注条件:浇注温度对液态金属的充型能力有决定性的影响。

浇注温度越高,充型能力越好。

在一定温度范围内,充型能力随浇注温度的提高而直线上升,超过某界限后,由于吸气,氧化严重,充型能力的提高幅度减小。

液态金属在流动方向上所受压力(充型压头)越大,充型能力就越好。

但金属液的静压头过大或充型速度过高时,不仅发生喷射和飞溅现象,使金属氧化和产生”铁豆”缺陷,而且型腔中气体来不及排出,反压力增加,造成“浇不足”或“冷隔”缺陷。

材料成型技术基础总复习知识点归纳

材料成型技术基础总复习知识点归纳

材料成型技术基础总复习知识点归纳二、铸造1.零件结构分析:筒壁过厚;圆角过渡,易产生应力集中。

2.铸造方法:砂型铸造(手工造型)及两箱造型。

3.选择浇注位置和分型面4.确定工艺参数(1) 铸件尺寸公差:因精度要求不高,故取CT15(2) 要求的机械加工余量(RMA ):余量等级取H 级。

参考表2-6,余量值取5mm ,标注为GB/T 6414-CT15-RMA5(H)(3) 铸件线收缩率:因是灰铸铁件及受阻收缩,取0.8%(4) 起模斜度:因铸件凸缘端为机加工面,增加壁厚式,斜度值1°(5) 不铸出的孔:该铸件6个φ18孔均不铸出(6) 芯头形式:参考图2-39,采用水平芯头零件结构的铸造工艺性:1、基本原则:1) 铸件的结构形状应便于造型、制芯和清理2) 铸件的结构形状应利于减少铸造缺陷3) 对铸造性能差的合金其铸件结构应从严要求2、铸造性能要求:1) 铸件壁厚应均匀、合理(外壁>内壁>肋(筋))2) 铸件壁的连接(圆角过渡、避免交叉和锐角、避免壁厚突变)3) 防止铸件变形(结构尽量对称)4) 避免较大而薄的水平面5) 减少轮形铸件的内应力(避免受阻收缩)3、铸造工艺要求:1)外形铸件外形分型面应尽量少而平;避免局部凸起或凹下侧凹和凸台不应妨碍起模;垂直于分型面的非加工面应具有结构斜度2)内腔尽量采用开放式、半开放式结构;应利于型芯的固定、排气和清理3)大件和形状复杂件可采用组合结构三、塑性成形金属塑性成形的方法:锻造、冲压、挤压、轧制、拉拔自由锻1、零件结构分析2、绘制锻件图(余块、余量、公差)3、确定变形工序(镦粗、冲孔、芯轴、拔长、弯曲、切肩、锻台阶)4、计算坯料质量(mo= (md+mc+mq) (1+δ))和尺寸(首工序镦粗:D0≥0.8 拔长:D0≥ 零件结构的自由锻工艺性1)应避免锥形或楔形,尽量采用圆柱面和平行面,以利于锻造2)各表面交接处应避免弧线和曲线,尽量采用直线或圆,以利于锻制3)应避免肋板或凸台,以利于减少余块和简化锻造工艺4)大件和形状复杂的锻件,可采用锻—焊,锻—螺纹联接等组合结构模锻1、零件结构分析(分模面、结构斜度、圆角过渡、腹板厚度)2、绘制锻件图(余块、机械加工余量、锻件公差、模锻斜度、模锻圆角)3、确定变形工步(镦粗、拔长、滚压、弯曲、预锻、终锻)4、修整工序选择(切边、冲连皮、校正、热处理(正火或退火)、清理) 30V max Dy零件结构的模锻工艺性1)应有合理的分模面,以保证锻件从模膛中取出又利于金属填充、减少余块和易于制模2)与分模面垂直的非加工面应有结构斜度,以利于从模膛中取出锻件(圆角过渡,利金属流动,防应力集中)3)应避免肋的设置过密或高宽比过大,利于金属充填模膛4)应避免腹板过薄,以减小变形抗力以及利于金属填充模膛5)应尽量避免深孔或多孔结构,以利于制模和减少余块6)形状复杂性件宜采用锻—焊、锻—螺纹联接等组合结构,以利于模具和减少余块冲压(冲裁、弯曲、拉深、缩口、起伏和翻孔)冲裁:落料模:D凹≈(Dmin)D凸≈(D凹-Zmin)冲孔模:d凸≈(dmax)d凹≈(d凸+Zmin)弯曲:工件内侧圆角半径≥凸模圆角半径、弯曲件毛坯长度拉伸:拉深间隙、拉伸模尺寸、毛坯直径、拉深次数冲压工序:1)带孔平板件:单工序:先落料后冲孔,连续模:先冲孔后落料2)带孔的弯曲件或拉深件:热处理、拉深/弯曲、冲孔3)形状复杂的弯曲件:先弯两端、两侧,后弯中间模具:单工序模、复合模、连续模1、零件结构分析:孔边距过小,宜加大2、冲裁间隙:取大间隙Z/2=(10%~12.5%)δ故Z=0.30~0.38mm模具刃口尺寸:落料模:D凹≈(Dmin)=33.2 D凸≈(D凹-Zmin)=32.9冲孔模:d凸≈(dmax)=26.7 d凹≈(d凸+Zmin)=273、冲压工序选择工序类型:平板件,冲孔和落料工序工序顺序:大批量,先冲孔后落料4、模具类型:精度要求不高且为大批量生产,采用连续模零件结构的冲压工艺性1)材料:尽量选用价格较低的材料2)精度和表面质量:3)冲压件的形状和尺寸1)冲裁件:①形状尽可能简单、对称②圆弧过渡、避免锐角③注意孔形、孔径、孔位2)弯曲件:①形状②h、a、c≥2δ、l≥r+(1~2)δ、R/r≥0.5δ③冲孔槽防止孔变形④位置3)拉深件:①形状②转角l≥R/r+0.5δ、R≥2~4δ、r≥2δ③位置④组合工艺、切口工艺四、连接成形焊接头力学性能:相变重结晶区、焊缝金属区、母材、不完全重结晶区、熔合区、过热区焊接残余应力:调节1)设:减少焊缝的数量和尺寸并避免焊缝密集和交叉;采用刚性较小的接头2)工:合理的焊接顺序(先内后外、先短后长、交叉处不起头收尾)、降低焊接接头的刚性、加热减应区、锤击焊缝、预热和后热2、消除:1)去应力退火2)机械拉伸法3)温差拉伸法4)振动法3、焊接残余变形控制和矫正:(收缩变形、角变形、弯曲变形、扭曲变形、失稳变形)1)设:尽量减少焊缝的数量和尺寸,合理选用焊缝的截面形状2、合理安排焊缝位置2)工:反变形法、刚性固定法、合理选用焊接方法和焊接规范、选用合理的装配焊接顺序材料的焊接性:(材料的化学成分、焊接方法、焊接材料、焊件结构类型、服役要求)焊接性评价:碳当量、冷裂纹敏感系数公式金属材料的焊接:1、碳钢:(①淬硬组织、裂纹;②预热和后热;③低氢型焊条、碱度较高的焊剂;④去应力退火或高温回火)1)低碳钢、强度低的低合金结构钢:各种方法,无需采用任何工艺措施方便施焊2)中碳钢:①易②③④小电流、低焊速和多层焊。

材料成型技术基础复习重点

材料成型技术基础复习重点

1.11.常用的力学性能判据各用什么符号表示?它们的物理含义各是什么?塑性,弹性,刚度,强度,硬度,韧性1.2金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。

细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。

合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。

固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。

1.3铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体1.4钢的牌号和分类影响铸铁石墨化的因素主要有化学成分和冷却速度1.5塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。

热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。

热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。

橡胶橡胶是可改性或已被改性为某种状态的弹性体。

1.6复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。

通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。

1.8工程材料的发展趋势据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。

今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。

2.0材料的凝固理论凝固:由液态转变为固态的过程。

结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。

粗糙界面:微观粗糙、宏观光滑;将生长成为光滑的树枝;大部分金属属于此类光滑界面:微观光滑、宏观粗糙;将生长成为有棱角的晶体;非金属、类金属(Bi、Sb、Si)属于此类偏析:金属凝固过程中发生化学成分不均匀的现象宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象2.1铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固组织是由合金的成分和铸造条件决定的。

工程材料及成型技术基础考试重点概念1

工程材料及成型技术基础考试重点概念1

1、 常见体心立方晶体:α-Fe ,铬Gr ,钼Mo ,钒V ,钨W 等
2、 常见面心立方晶体:γ-Fe ,铝Al ,铜Cu ,银Ag,金Au 等
3、 六方柱体(6原子):12×16 +2×12
+3=6 镁Mg 锌Zn,铍Be 等 4、 晶体致密度:晶胞中原子体积与晶胞体积之比
5、 单晶体:结晶方位完全一致
各向异性:单晶体在不同晶面和晶向上的力学性能不同
各向同性:由多晶粒构成的晶体结构称为多晶体,其表现出的性质称为各向同性
间隙原子
6、点缺陷 置换原子 使周围原子队列变形(晶格畸变)
空位
线缺陷:在一个方向上缺陷较大,成线性分布
面缺陷:在两个方向上有较大缺陷,而在另一个方向上只有很小的缺陷的晶格
7、 由于结晶放出的热量补偿了冷却散失的热量所以在冷却线上会出现凸台,即晶体的熔点
8、 过冷度:实际结晶温度Tn 与理论结晶温度Tm 的差值:ΔT =Tm -Tn
冷却速度越大过冷度越大形成的晶格越细
ΔT :液态金属的冷却速度
增大过冷度
细化液态金属结晶晶粒的措施 变质处理(加入高熔点难溶解物质粉末)
附加振动
9、 同素异构转变:在高温状态下的晶体冷却过程中晶格结构发生变化的现象
10、 相变应力:晶格结构、致密度、和晶体体积的变化使金属材料内部产生内应力的现

11、 固溶体:合金在固态下组元间相互溶解形成的均匀相
间隙固溶体:溶质原子溶入溶剂原子晶格,各节点间的间隙形成的固溶体,
有:d 质d 剂
≤0.59 置换固溶体:溶质原子溶入溶剂晶格并占据溶剂原子的晶格的某些节点位置 固溶体特性:强度、硬度均有提高,塑性韧性略有下降,即固溶强化现象。

(完整版)工程材料及材料成型技术基础

(完整版)工程材料及材料成型技术基础
17
§1-1 材料原子(或分子)的相互作用
1、离子键 当正电性金属原子与负电性非金属
原子形成化合物时,通过外层电子的重 新分布和正、负离子间的静电作用而相 互结合,故称这种结合键为离子键。
离子晶体硬度高,强度大,脆性大。 如氯化钠,陶瓷。
18
2、共价键 当两个相同的原子或性质相差不大的
原子相互接近时,它们的原子间不会有电 子转移。此时原子间借共用电子对所产生 的力而结合,这种结合方式称为共价键。
14
3.陶瓷材料 ① 普通陶瓷—主要为硅、铝氧化物的硅酸盐材料. ② 特种陶瓷—高熔点的氧化物、碳化物、氮化物
等烧结材料。 ③ 金属陶瓷—用生产陶瓷的工艺来制取的金属与
碳化物或其它化合物的粉末制品。 4.复合材料 是由两种或两种以上的材料组合而成的材料。 ①按基体相种类分:聚合物基、金属基、 陶瓷基、 石墨基等。 ②按用途分:结构、功能、智能复合材料。
15
本部分重点
1)工程材料的概念
– 制造工程结构和机器零件使用的材料
2)工程材料的分类
• 金属材料
钢铁材料 有色金属及其合金
• 有机高分子材料
塑料 橡胶等
• 陶瓷材料 • 复合材料
16
第一章 工程材料的结构与性能
§1-1 材料原子(或分子)的相互作用
当大量原子(或分子)处于聚集状态时, 它们之间以键合方式相互作用。由于组成 不同物质的原子结构各不相同,原子间的 结合键性质和状态存在很大区别。
8
绪论
一、材料的发展史
材料(metals) 是人类用来制作各种产品的物质,是 先于人类存在的,是人类生活和生产的物质基础。 反映人类社会文明的水平。
1 . 石器时代 :古猿到原始人的漫长进化过程。原料: 燧石和石英石。 2. 新石器时代:原始社会末期开始用火烧制陶器。 3. 青铜器时代:夏(公元前2140年始)以前就开始了 4. 铁器时代:春秋战国时期(公元前770~221年)开始 大量使用铁器

工程材料及成型技术基础复习要点

工程材料及成型技术基础复习要点

《工程材料及成型技术基础》复习要点第一章(铁碳合金的)刚度、强度、塑性、硬度的基本测量方法、表示方法及影响因素。

选材的依据。

第二章常见金属的晶格类型;实际金属的晶体缺陷;什么叫结晶?合金的结晶过程(形核、长大);铁碳合金的两个典型反应:共晶、共析反应的表达式及意义;铁的同素异构体;铁碳合金固态常见的相及性能;常见铁碳合金的组织性能及代号;室温下钢的平衡组织组成及显微组织示意图;铁碳合金状态图的作用。

第三章结晶时细化晶粒的途径;C曲线图的作用;热处理的工艺组成(热处理过程)、热处理的目的、钢的“四把火”的定义及处理后的组织、性能(尤其是淬火及回火);共析钢三种等温转变产物及特性;淬透性概念及影响因素;淬硬性概念及影响因素;马氏体的特性及奥氏体向马氏体转变的特点;(注意三个图:P61图3-28、P67图3-42、P72图3-48)第四章钢的主要分类方法;钢中常存杂质有哪几种?对钢性能有什么影响?合金元素对钢的性能的影响。

掌握以下几类钢的编号、成分特点、性能特点、热处理特点、应用场合:碳素结构钢、优质碳素结构钢、碳素工具钢(含合金工具钢,主要是高速钢,尤其注意P119图4-9多次回火的目的)、合金调质钢、合金渗碳钢、合金弹簧钢、滚动轴承钢。

灰口铸铁种类及石墨形状、性能特点(另外注意灰铸铁及球墨铸铁的牌号表示法、热处理特点、应用场合)、铸铁与铸钢的性能的比较。

第六章铸造生产的特点及应用;铸造工艺性的概念,影响因素及如何影响。

铸造工艺性不好会出现哪些铸造缺陷?两种凝固原则的应用;,浇注系统的组成及作用;为什么要规定铸件的合理壁厚?铸件的结构工艺性要求;铸件与锻件的性能比较。

第七章锻造生产的特点及应用;锻造工艺性的概念,影响因素及如何影响。

自由锻的基本工序有哪些?锻造坯料加热时易出现哪些加热缺陷?自由锻锻件的结构工艺性要求。

你所学过的金属材料中,哪些适合锻造?哪些不适合锻造?会定性评价常见碳钢的锻造性。

第八章焊接生产的特点及应用;焊接电弧的形成过程;什么叫正接:什么叫反接?焊接冶金过程特点;焊接接头的组成;低碳钢焊接热影响区的组织及性能;焊接应力与变形的产生原因及预防、矫正方法;焊接变形的形式;焊条电弧焊的焊条组成及其作用、焊条酸碱性的概念及其特性;焊条电弧焊的特点;焊接(工艺)性的概念,影响因素及如何影响;会定性评价常见碳钢的焊接性。

工程材料及成形技术基础复习题

工程材料及成形技术基础复习题

材料复习题一.解释下列名词1.过冷度:理论结晶温度与实际结晶温度之差。

2. 临界冷却速度:钢淬火时获得马氏体的最小速度。

3.淬硬性: 是指钢在淬火时所能获得的最高硬度, 淬硬性大小主要决定于马氏体的含碳量。

马氏体含碳量越高则淬硬性越高。

(反映钢材在淬火时的硬化能力)。

4.调质处理: 淬火+高温回火得到回火索氏体的热处理工艺。

5.淬透性: 是在规定的淬透条件下, 决定钢材淬硬深度和硬度分布的特性。

6.共析转变:两种以上的固相新相, 从同一固相母相中一起析出, 而发生的相变。

7.时效强化: 是合金工件经固溶热处理后在室温和稍高于室温保温,以达到沉淀硬化的目的,这时在金属的过饱和固溶体中形成溶质原子偏聚区和由之脱溶出微粒弥散分布于基体中而导致硬化,提高材料的性能。

8. 固溶强化:由于溶质原子溶入而使金属强硬度升高的现象。

9. 同时凝固原则: 铸件时使金属按规定一起凝固的原则。

10.顺序凝固原则:铸件时使金属按规定从一部分到另一部分逐渐凝固的原则。

二.判断正误1.珠光体的片层间距越小,其强度越高,其塑性越差。

错2.普通钢和优质钢是按其强度等级来区分的。

错3.金属凝固时,过冷度越大,晶体长大速度越大,因而其晶粒粗大。

错4.金属的晶粒越细小,其强度越高,但韧性变差。

错5.凡能使钢的C曲线右移的合金元素均能增加钢的淬透性。

对6.感应加热表面淬火的淬硬深度与该钢的淬透性没有关系。

对7.对灰铸铁不能进行强化热处理。

对8.钢的临界冷却速度Vk越大,则其淬透性越好。

错9.工件经渗碳处理后,随后应进行淬火及低温回火。

对10.马氏体的硬度主要取决于淬火时的冷却速度。

错11.钢的临界冷却速度Vk越大,则其淬透性越好。

错12.钢的淬透性,随零件尺寸的增大而减小。

错13.确定铸件的浇注位置的重要原则是使其重要受力面朝上。

错14.钢的碳当量越高,其焊接性能越好。

错15.表面淬火主要用于高碳钢。

错16.过共析钢的正常淬火一般均为不完全淬火。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程材料及成形技术基础复习重点完整版一、二元相图的建立合金的结晶过程比纯金属复杂,常用相图进行分析,相图是用来表示合金系中各金在缓冷条件下结晶过程的简明图解,又称状态图或平衡图。

合金系是指由两个或两个以上元素按不同比例配制的一系列不同成分的合金。

组元是指组成合金的最简单、最基本、能够独立存在的物质。

多数情况下组元是指组成合金的元素。

但对于既不发生分解、又不发生任何反应的合物也可看作组元,如Fe-C合金中的Fe3C。

相图由两条线构成,上面是液相线,下面是固相线。

相图被两条线分为三个相区,液相线以上为液相区L,固相线以下为α固溶体区,两条线之间为两相共存的两相区(L+α)。

(3)枝晶偏析合金的结晶只有在缓慢冷却条件下才能得到成分均匀的固溶体。

但实际冷速较快,结晶时固相中的原子来不及扩散,使先结晶出的枝晶轴含有较多的高熔点元素(如Cu-Ni合金中的Ni),后结晶的枝晶间含有较多的低熔点元素,如Cu-Ni合金中的Cu)。

在一个枝晶范围内或一个晶粒范围内成分不均匀的现象称作枝晶偏析。

与冷速有关而且与液固相线的间距有关。

冷速越大,液固相线间距越大,枝晶偏析越严重枝晶偏析会影响合金的力学、耐蚀、加工等性能。

生产上常将铸件加热到固相线以下100-200℃长时间保温,以使原子充分扩散、成分均匀,消除枝晶偏析,这种热处理工艺称作扩散退火。

2、二元共晶相图当两组元在液态下完全互溶,在固态下有限互溶,并发生共晶反应时所构成的相图称作共晶相图。

以Pb-Sn相图为例进行分析。

(1)相图分析①相:相图中有L、α、β三种相,α是溶质Sn在Pb中的固溶体,β是溶质Pb在Sn中的固溶体。

②相区:相图中有三个单相区:L、α、β;三个两相区:L+α、L+β、α+β。

③液固相线:液相线AEB,固相线ACEDB。

A、B分别为Pb、Sn 的熔点。

④固溶线:溶解度点的连线称固溶线。

相图中的CF、DG线分别为Sn在Pb中和Pb在Sn中的固溶线。

固溶体的溶解度随温度降低而下降。

⑤共晶线:水平线CED叫做共晶线。

在共晶线对应的温度下(183℃),E点成分的合金同时结晶出C点成分的α固溶体和D点成分的β固溶体,形成这两个相的机械混合物L E?(αC+βD)在一定温度下,由一定成分的液相同时结晶出两个成分和结构都不相同的新固相的转变称作共晶转变或共晶反应。

一、铁碳合金的组元和相1.组元:Fe、Fe3C2.相⑴铁素体——碳在α-Fe中的固溶体称铁素体,用F或α表示碳在α–Fe中的固溶体用α表示,体心立方间隙固溶体。

铁素体的溶碳能力很低,在727℃时最大为0.0218%,室温下仅为0.0008%。

铁素体的组织为多边形晶粒,性能与纯铁相似。

(2)奥氏体碳在γ-Fe中的固溶体称奥氏体。

用A或γ表示。

是面心立方晶格的间隙固溶体。

溶碳能力比铁素体大,1148℃时最大为2.11%。

组织为不规则多面体晶粒,晶界较直。

强度低、塑性好,钢材热加工都在γ区进行,碳钢室温组织中无奥氏体。

(3)渗碳体(Fe3C)含碳6.69%,用Fe3C或C m表示。

Fe3C硬度高、强度低(σb≈35MPa),脆性大,塑性几乎为零。

由于碳在α-Fe中的溶解度很小,因而常温下碳在铁碳合金中主要以Fe C或石墨的形式存在。

重要知识点◆五个重要的成份点:P、S、E、C、F◆四条重要的线:ECF、PSK、ES、GS◆三个重要转变:共晶转变反应式、共析转变反应式、包晶转变(本节略)◆二个重要温度:1148℃、727℃第一节退火和正火一般零件的工艺路线为:毛坯(铸造或锻造)→退火或正火→机械(粗)加工→淬火+回火(或表面热处理)→机械(精)加工。

退火与正火常作为预备热处理,其目的是为消除毛坯的组织缺陷,或为以后的加工作准备;淬火和回火工艺配合可强化钢材,提高零件使用性能,作为最终热处理。

一、退火将工件加热到适当温度,保温一定时间,缓慢冷却热处理工艺【目的】根据不同情况,退火的作为可归纳为降低硬度,改善钢的成形和切削加工性能;均匀钢的化学成分和组织;消除内应力等。

①调整硬度以便进行切削加工;②消除残余内应力,以防止钢件在淬火时产生变形或开裂;③细化晶粒,改善组织,提高力学性能,为最终热处理作准备。

1、退火类型(1)完全退火完全退火是将工件完全奥氏体化后缓慢冷却,获得接近平衡组织的退火工艺。

【工艺】加热温度为Ac3以上20℃~30℃,保温时间依工件的大小和厚度而定,使工件热透,保证全部得到均匀化的奥氏体,冷却方式可采用随炉缓慢冷却,实际生产时为提高生产率,退火冷却至600℃左右即可出炉空冷。

(2)球化退火【工艺】球化退火的加热温度为Ac1以上20℃~30℃,采用随炉缓冷,至500℃~600℃后出炉空冷;(3)去应力退火去除工件塑性变形加工、切削加工或焊接造成的内应力及铸件内存在的残余内应力而进行的退火工艺。

【工艺】去应力退火加热温度较宽,但不超过AC1点,一般在500℃~650℃之间,铸铁件去应力退火温度一般为500℃~550℃;焊接工件的去应力退火温度一般为500℃~600℃。

去应力退火的保温时间也要根据工件的截面尺寸和装炉量决定。

去应力退火后的冷却应尽量缓慢,以免产生新的应力。

(4)扩散退火为减少铸件或锻坯的化学成分和组织不均匀性,将其加热到略低于固相线(固相线以下100℃~200℃)的温度,长时间保温(10h~15h),并进行缓慢冷却的热处理工艺,称为扩散退火或均匀化退火。

二、正火1、正火的概念【工艺】正火处理的加热温度通常在Ac3或Accm以上30℃~50℃。

对于含有V、Ti、Nb等碳化物形成元素的合金钢,采用更高的加热温度(AC3+100℃~150℃)。

正火冷却方式常用的是将钢件从加热炉中取出在空气中自然冷却。

对于大件也可采用吹风、喷雾和调节钢件堆放距离等方法控制钢的冷却速度,达到要求的组织和性能。

第二节钢的淬火将亚共析钢加热到Ac3以上,共析钢与过共析钢加热到Ac1以上,低于Accm的温度,保温后以大于Vk的速度快速冷却,使奥氏体转变为马氏体或贝氏体的热处理工艺叫淬火。

马氏体强化是钢的主要强化手段,因此淬火的目的就是为了获得马氏体,提高钢的机械性能。

淬火是钢的最重要的热处理工艺也是热处理中应用最广的工艺之一。

1、淬火温度的确定淬火温度即钢的奥氏体化温度,是淬火的主要工艺参数之一。

选择淬火温度的原则是获得均匀细小的奥氏体组织。

亚共析钢的淬火温度一般为Ac3以上30~50℃,淬火后获得均匀细小的马氏体组织。

温度过高,奥氏体晶粒粗大而得到粗大的马氏体组织,而使钢的机械性能恶化,特别是塑性和韧性降低;淬火温度低于Ac3,淬火组织中会保留未溶铁素体,使钢的强度硬度下降。

4、钢的淬透性(1)淬透性与淬硬性的概念钢的淬透性是指奥氏体化后的钢在淬火时获得马氏体的能力(也称为淬透层深度),其大小用钢在一定条件下淬火获得的淬硬层深度来表示。

淬硬层深度指由工件表面到半马氏体区(50%M+50%P)的深度。

淬硬性是指钢淬火后所能达到的最高硬度,即硬化能力。

淬透性与淬硬层深度的关系同一材料的淬硬层深度与工件尺寸、冷却介质有关。

工件尺寸小、介质冷却能力强,淬硬层深。

淬透性与工件尺寸、冷却介质无关。

它只用于不同材料之间的比较,通过尺寸、冷却介质相同时的淬硬层深度来确定的。

(2)淬透性的测定及其表示方法同一材料的淬硬层深度与工件的尺寸,冷却介质有关,工件尺寸小、冷却能力强,淬硬层深,工件尺寸小、介质冷却能力强,淬硬层深,而淬透性与工件尺寸、冷却介质无关,它只用于不同材料之间的比较,是在尺寸、冷却介质相同时,用不同材料的淬硬层深度进行比较的。

淬透性常用末端淬火法测定(如下图所示),将标准化试样奥氏体化后,对末端进行喷水冷却。

然后从水冷段开始,每隔一定距离测量一个硬度值,即可得到试样沿即用表示J表示末端淬透性;d表示半马氏体区到水冷端的距离;HRC为半马氏体区的硬度。

(3)影响淬透性的因素钢的淬透性取决于临界冷却速度V K,V K越小,淬透性越高。

V K取决于C曲线的位置,C曲线越靠右,V K越小。

凡是影响C曲线的因素都是影响淬透性的因素,即除Co外,凡溶入奥氏体的合金元素都使钢的淬透性提高;奥氏体化温度高、保温时间长也使钢的淬透性提高。

◆影响淬硬层深度的因素淬透性冷却介质工件尺寸对于截面承载均匀的重要件,要全部淬透。

如连杆、模具等。

对于承受弯曲、扭转的零件可不必淬透(淬硬层深度一般为半径的1/2-1/3),如轴类、齿轮等。

淬硬层深度与工件尺寸有关,设计时应注意尺寸效应。

第三节钢的回火回火——将淬火钢加热到Ac1以下的某温度保温后冷却的热处理工艺。

1、回火的目的◆消除或减少淬火内应力,防止工件变形或开裂;◆获得工艺所要求的力学性能;◆稳定工件尺寸。

淬火马氏体和残余奥氏体都是非平衡组织,有自发向平衡组织铁素体加渗碳体转变的倾向。

回火可使马氏体和残余奥氏体转变为平衡或接近平衡的组织,防止使用时变形。

对于未经淬火的钢,回火是没有意义的,而淬火钢不经回火一般也不能直接使用,为避免淬火件在放置过程中发生变形或开裂,钢件经淬火后应及时回火。

3、回火工艺(1)低温回火(<250℃)低温回火后得到回火马氏体组织。

其目的是降低钢的淬火应力和脆性,回火马氏体具有高的硬度(一般为58~64HRC)、强度和良好耐磨性。

低温回火特别适用于刀具、量具、滚动轴承、渗碳件及高频表面淬火等工求高硬度和耐磨性的工件。

(2)中温回火(350-500℃)中温回火时发生如下变化,得到T回组织,即为在保持马氏体形态的铁素体基体上分布着细粒状渗碳体的组织。

使钢具有高的弹性极限,较高的强度和硬度(一般为35~50HRC),良好的塑性和韧性。

中温回火主要用于各种弹性元件及热作模具。

(3)高温回火(>500℃)高温回火后得到回火索氏体组织,即为在多边性铁素体基体上分布着颗粒状Fe3C的组织。

工件淬火并高温回火的复合热处理工艺称为调质。

高温回火主要适用于中碳结构钢或低合金结构钢制作的曲轴、连杆、螺栓、汽车半轴、等重要的机器零件。

4、回火时的性能变化回火时力学性能变化总的趋势是随回火温度提高,钢的强度、硬度下降,塑性、韧性提高。

5、回火脆性淬火钢的韧性并不总是随温度升高而提高。

在某些温度范围内回火时,会出现冲击韧性下降的现象。

(1)低温回火脆性淬火钢在250℃~350℃范围内回火时出现的脆性叫做低温回火脆性。

几乎所有的钢都存在这类脆性。

这是一种不可逆回火脆性,目前尚无有效办法完全消除这类回火脆性。

所以一般都不在250℃~350℃这个温度范围内回火。

(2)高温回火脆性淬火钢在500℃~650℃范围内回火时出现的脆性称为高温回火脆性,称为第二类回火脆性。

这种脆性主要发生在含Cr、Ni、Si、Mn等合金元素的结构钢中。

这种脆性与加热、冷却条件有关。

相关文档
最新文档