浅谈聚氨酯的结构与性能
聚氨酯分子结构与性能的关系
![聚氨酯分子结构与性能的关系](https://img.taocdn.com/s3/m/11c54d9bdaef5ef7ba0d3c3b.png)
聚氨酯分子结构与性能的关系聚氨酯由长链段原料与短链段原料聚合而成,是一种嵌段聚合物。
一般长链二元醇构成软段,而硬段则是由多异氰酸酯和扩链剂构成。
软段和硬段种类影响着材料的软硬程度、强度等性能。
2.3.1 影响性能的基本因素聚氨酯制品品种繁多、形态各异,影响各种聚氨酯制品性能的因素很多,这些因素之间相互有一定的联系。
对于聚氨酯弹性体材料、泡沫塑料,性能的决定因素各不相同,但有一些共性。
2.3.1.1 基团的内聚能聚氨酯材料大多由聚酯、聚醚等长链多元醇与多异氰酸酯、扩链剂或交联剂反应而制成。
聚氨酯的性能与其分子结构有关,而基团是分子的基本组成成分。
通常,聚合物的各种性能,如力学强度、结晶度等与基团的内聚能大小有关。
聚氨酯分子中,除含有氨基甲酸酯基团外,不同的聚氨酯制品中还有酯基、醚基、脲基、脲基甲酸酯基、缩二脲、芳环及脂链等基团中的一种或多种。
各基团对分子内引力的影响可用组分中各不同基团的内聚能表示,有关基团的内聚能(摩尔内能)见表2-11。
酯基的内聚能高,极性强。
因此聚酯型聚氨酯的强度高于聚醚型和聚烯烃型,聚氨酯-脲的内聚力、粘附性及软化点比聚氨酯的高。
聚氨酯材料的结晶性、相分离程度等与大分子之间和分子内的吸引力有关,这些与组成聚氨酯的软段及硬段种类有关,也即与基团种类及密集程度有关。
2.3.1.2 氢键氢键存在于含电负性较强的氮原子、氧原子的基团和含H原子的基团之间,与基团内聚能大小有关,硬段的氨基甲酸酯或脲基的极性强,氢键多存在于硬段之间。
据报道,聚氨酯中的多种基团的亚胺基(NH)大部分能形成氢键,而其中大部分是NH与硬段中的羰基形成的,小部分与软段中的醚氧基或酯羰基之间形成的。
与分子内化学键的键合力相比,氢键是一种物理吸引力,极性链段的紧密排列促使氢键形成;在较高温度时,链段接受能量而活动,氢键消失。
氢键起物理交联作用,它可使聚氨酯弹性体具有较高的强度、耐磨性。
氢键越多,分子间作用力越强,材料的强度越高。
聚氨酯-11 结构-概述说明以及解释
![聚氨酯-11 结构-概述说明以及解释](https://img.taocdn.com/s3/m/612807e3d0f34693daef5ef7ba0d4a7303766c5e.png)
聚氨酯-11 结构-概述说明以及解释1.引言1.1 概述聚氨酯-11(Polyurethane-11)是一种聚合物材料,由聚氨酯单元和较长的碳链组成。
它具有许多优异的性质和广泛的应用领域。
聚氨酯-11具有良好的弹性、耐磨性、耐高温性和耐候性,因此在工业、建筑、医疗、日用品等领域都有重要应用。
聚氨酯-11的化学结构由聚氨酯基团和长链碳酸酯组成。
聚氨酯基团由异氰酸酯与醇反应生成,而长链碳酸酯则由二元酸与二元醇反应得到。
这两个基团的不同组合方式可以调节聚氨酯-11的性质和用途。
聚氨酯-11的物理性质也很独特。
它可以通过改变聚氨酯基团和长链碳酸酯的比例来调节材料的硬度、弹性和耐磨性。
此外,聚氨酯-11还具有良好的拉伸强度、耐化学性和电绝缘性能。
聚氨酯-11在汽车零部件、电缆护套、鞋类、运动器材等领域有广泛的应用。
由于其优异的特性,聚氨酯-11在未来的发展前景非常广阔。
随着科技的进步和人们对功能性材料需求的增加,聚氨酯-11有望在更多领域展现其独特的优势。
综上所述,聚氨酯-11作为一种重要的聚合物材料,具有丰富的化学结构和独特的物理性质。
其在各个领域的广泛应用以及未来的发展前景显示出它的巨大潜力。
在接下来的内容中,我们将详细介绍聚氨酯-11的化学结构和物理性质,以及它在不同领域的应用前景和发展趋势。
1.2 文章结构文章结构部分主要介绍了本文的组织排列和内容安排。
通过良好的文章结构,可以使读者更好地理解和把握文章的主要内容和思路。
本文的结构主要分为三个部分:引言、正文和结论。
在引言部分,我们首先进行了概述,介绍了聚氨酯-11的相关信息和背景。
随后,我们明确了文章的结构和目的,使读者对本文将要讨论和阐述的内容有一个整体的了解和预期。
接下来是正文部分,正文内容主要包括两个方面:聚氨酯-11的化学结构和物理性质。
在这一部分,我们将详细介绍聚氨酯-11的化学组成和分子结构,以及其主要的物理性质和特点。
通过对聚氨酯-11的化学结构和物理性质的深入探讨,读者可以更好地了解这种材料的性质和应用领域。
聚氨酯的结构与性能解析
![聚氨酯的结构与性能解析](https://img.taocdn.com/s3/m/d560d3957375a417876f8f0b.png)
郝文涛,合肥工业大学化工学院
8
通过微相分离形态结构研究,可有助于深入了解材料 结构与性能间的关系,有助于原材料选择、改性,有 助于新型助剂的开发以及配方设计和工艺条件的确定。
有效地掌握微相分离测试和表征方法,则有可能合理 利用或控制微相分离,以改进聚氨酯最终产品性能。
郝文涛,合肥工业大学化工学院
27
郝文涛,合肥工业大学化工学院
28
2.2.5
郝文涛,合肥工业大学化工学院
29
2.2.6
郝文涛,合肥工业大学化工学院
30
在PUE 分子链上引入热稳定性好的杂环基团(如异氰脲酸 酯、噁唑烷酮、聚酰亚胺环等)能够显著提高PUE的耐热
性能与TDI-80反应得到改性异氰酸酯
郝文涛 合肥工业大学化工学院
2010-3-14
2.0 影响PU性能的因素综述 2.1 耐寒性能 2.2 耐热性能 2.3 耐水解性能 2.4 耐老化性能 2.5 耐光性能
郝文涛,合肥工业大学化工学院
2
郝文涛,合肥工业大学化工学院
3
2.0.1 影响因素
基础原料组分的化学结构和物理特性 线性链的相对分子质量 聚合物的相结构 合成、加工方法与工艺条件
20
水分散有机硅-聚氨酯嵌段共聚物的合成
郝文涛,合肥工业大学化工学院
21
氨基有机硅能够改善PU热性能
郝文涛,合肥工业大学化工学院
22
2.2.3
郝文涛,合肥工业大学化工学院
23
郝文涛,合肥工业大学化工学院
WPSUR – 以氨基有 机硅为扩链剂制备
的水性聚氨酯
MMT – 蒙脱土
该曲线为TG的 微分曲线 (DTG)
聚氨酯简介
![聚氨酯简介](https://img.taocdn.com/s3/m/b7a6257d7e21af45b307a8f3.png)
聚氨酯的性能
• 聚氨酯的性能取决于链的化学组成,长度,刚性,
交联程度以及连段间的相互作用 • 线性结构的聚氨酯具有热塑性、强度高、伸长率大 、回弹性好、耐磨、耐油、耐老化、耐低温等性能 好的优点,制成的薄膜制品耐油、易热封,又无毒 、无异味,可用于食品包装。由于强度高、耐油脂 因此仅用0.025毫米厚的聚氨酯即可满足金属防锈 包装的要求。 • 体型结构的聚氨酯是热固性的强度很高、弹性极佳 、化学稳定性好等,多用于生产硬聚质泡沫塑料、 弹性体、粘合剂及涂料等。
全球聚氨酯发展现状
2001年到2006年,世界聚氨酯产能年平均增长率为4%,消费量年平均增长率 为3.4%。2006年世界聚氨酯的产品产量达1165万吨,聚氨酯消耗量达979万吨。
美国是世界上最大的聚氨酯生产国,其产 量占世界的40%左右,也是最大的聚氨酯 消费国
中国聚氨酯发展现状
20世纪90年 代至新世纪初,聚 氨酯弹性体的适用 范围进一步扩大, 产品品种及产量稳 步增长,原材料、 新技术、先进设备 正在协调配套生产 成为新世纪初的一 个朝阳产业。
•
三、交联的影响 聚氨酯弹性体基本上属于具有线性分子特征的热塑性树脂,但也可由多 官能团扩链剂或脲基等方式引入一定程度的交联。适当交联可以改善材料的 物理机械性能,提高聚氨酯的耐水性和耐候性。但也有研究表明,高交联度导 致处于橡胶态的聚氨酯弹性体模量下降,原因是硬链段微区里的交联会阻碍 链段的最佳堆砌和降低玻璃态或次晶微区的含量。 • 四、微相分离结构的影响 聚氨酯的特殊性能来源于其明显的微相分离结构,不同大分子链的硬段 聚集成晶区,起到了物理交联的作用,提高了体系的强韧性、耐温性和耐磨性 能。硬段微区与软段基质存在氢键等形式的结合,因此起到活性填料的作用, 是材料强韧化的根源。影响聚氨酯微相分离的因素很多,包括软硬嵌段的极 性、分子量、化学结构、组成配比、软硬段间相互作用倾向及热力史、样品 合成方法等。相互分离的微相中也存在链段之间的混合,从而导致软段玻璃 化温度的提高和硬段玻璃化温度的减小,缩小了材料的使用温度范围,并使材 料耐热性能下降 • 五、氢键的影响 聚氨酯弹性体在硬段与硬段之间和硬段与软段之间都能形成氢键,室温 下聚氨酯分子中大约75%~95%的NH基都形成了氢键。氢键的作用在于能使聚 氨酯耐受更高的使用温度,使聚氨酯弹性体在较高温度时可以保持橡胶态时 的模量。
聚氨酯的结构与性能
![聚氨酯的结构与性能](https://img.taocdn.com/s3/m/56e24820a5e9856a561260e1.png)
2.4.3
郝文涛,合肥工业大学化工学院
50
氮丙啶基团可在酸存在下开环,与 水性聚氨酯形成交联结构
郝文涛,合肥工业大学化工学院
51
2.4.4
郝文涛,合肥工业大学化工学院
52
2.4.5
郝文涛,合肥工业大学化工学院
53
在聚氨酯的耐老化研究中,
① 使用了紫外线吸收剂、抗氧剂; ② 以羟基硅油为改性剂,以硅烷偶联剂为交联剂; ③ 在分子结构中引入交联结构;
线性链的相对分子质量 聚合物的相结构
合成、加工方法与工艺条件
郝文涛,合肥工业大学化工学院
4
①软硬段尺寸 ②微相分离程度 ③形成分子链间共价键和氢键的能力 ④链段中和区域结构中凝聚链段间形成范德华力 相互作用的趋势 ⑤所用异氰酸酯组分中芳香族环或脂环族环结构 的尺寸和对称性 ⑥分子链的连接程度 ⑦经受加工受热过程后链段的定向作用 ⑧结晶相的类型和含量
郝文涛,合肥工业大学化工学院
36
②
聚合工艺条件对弹性体耐热性影响
控制缩二脲与脲基甲酸酯的生成 预聚法和半预聚法就要好一些
③
纳米粒子和填料复合对弹性体耐热性的影响
聚氨酯-蒙脱土 聚氨酯-纳米二氧化硅 碳酸钙、炭黑、石英石、碳纤维、玻璃纤维、尼龙、 固化树脂颗粒等填料
郝文涛,合肥工业大学化工学院
郝文涛,合肥工业大学化工学院
14
2010.1
2.2.1
郝文涛,合肥工业大学化工学院
15
制备过程
首先将自制的聚氨酯预聚体和环氧树脂按质量比为2:1
的比例混合。 加入固化剂,搅拌均匀。 再将磨料和稀土抛光剂按比例加入并充分搅拌均匀,浇 注到模具中,最后加热固化成型。
聚氨酯的性能及其改进
![聚氨酯的性能及其改进](https://img.taocdn.com/s3/m/69670446be1e650e52ea996e.png)
聚氨酯的性能及其改进1. 聚氨酯的性能主链含—NHCOO—重复结构单元的一类聚合物。
英文缩写PU。
由异氰酸酯(单体)与羟基化合物聚合而成。
由于含强极性的氨基甲酸酯基,不溶于非极性基团,具有良好的耐油性、韧性、耐磨性、耐老化性和粘合性。
用不同原料可制得适应较宽温度范围(-50-150℃)的材料,包括弹性体、热塑性树脂和热固性树脂。
高温下不耐水解,亦不耐碱性介质。
聚氨酯和其他高分子材料一样,其性能受多方面因素的影响。
主链分子结构的基本构成、分子量、分子间的作用力、结晶倾向、支化和交联,以及取代基的性能、位置和体积大小。
所以,由不同的原材料制得的聚氨酯在性能上存在着一定的差异。
选用不同的扩链剂和交联方法对性能都将产生不同程度的影响。
采用低分子二胺做扩链剂,在基体内生成强极性、耐水解的脲基,使得制品表现出优良的抗拉伸强度和抗撕裂强度,但扯断伸长率和耐候性却比较差。
而二醇扩链剂则能同时赋予PU 优良的耐候、抗拉伸和抗撕裂性能。
在工业生产过程中,催化剂的选用对产品的性能也存在着重要的影响。
常用的催化剂有两类:叔胺类和有机锡类。
不同类型的催化剂在反应过程中所起到的作用存在着差异。
叔胺类催化剂主要催化水与异氰酸酯的反应,有机锡类化合物主要对醇与异氰酸酯的反应起作用,而对水的催化作用较小。
在工业中由于用水做发泡剂用,所以经常同时选用叔胺和有机锡类作为混合催化体系。
2. 水性聚氨酯(PU)性能改进传统方法制备的水性PU结构中有—COOH、—SO —、—OH、—O —等亲水基团,这些基团的存在使水性PU产品耐水性、耐溶剂性、耐热性等性能降低,为了弥补传统方法的不足,研究人员进行了很多改性工作。
由于物理共混方法改性对材料性能改良的局限性,人们越来越多地采用化学改性的方法。
秦玉军等以端羟基液体聚丁二烯(嘞)、氨乙基氨丙基聚二甲基硅氧烷(PS)、异氟二酮二异氰酸酯(IPDL)为原料制备预聚体,利用多元胺(MOCA)为固化剂,合成一系列氨基硅油改性的聚氨酯.通过对材料的力学性能、动态力学性能、表面水接触角和对材料进行的ESCA表面分析表明,HTPB - IPDI型聚氨酯具有优良的力学性能;改性后的聚氨酯硅氧烷在表面富集,具有较低的表面张力,而其力学性能受影响较小。
聚氨酯结构与性能关系
![聚氨酯结构与性能关系](https://img.taocdn.com/s3/m/fb0a9d677fd5360cba1adbc7.png)
l 常见基团的内聚能:
NHCONH>NHCOO>NHCO>OH>COOH>AR>COO>CO>醚键
l 结晶性
结构规整、含极性基团多的线性聚氨酯,分子间氢键多,材料结晶程度就高。
材料的强度、硬度和软化点随着结晶程度的增加而增加,伸长率和溶解性则随之降低。
链段的极性越高,越有利于材料的结晶性。
在线性聚氨酯中引入支链和侧基,增加体系的交联密度,这些都会使结晶性降低。
有时,结晶性好,粘度和透明度会变差,这时需要降低结晶性。
l 分子量
分子量一定程度上决定材料的状态和基本性能。
一定程度上分子量增大,材料的强度、伸长率和硬度都增加,粘度增大。
l 软硬段含量
这里我们将分子中氨基甲酸酯、脲键部分和含苯环的部分都定义为硬段,将其他如脂肪链段和聚醚链段定义为软段。
软段对材料的柔顺性和伸长率有帮助。
硬段对材料的机械性能、硬度和模量有较大的决定性。
l 交联度
分子内的交联可以使材料的硬度、软化温度和模量增加,伸长率和溶解性变差。
常见的交联剂:小分子醇如1,4-丁二醇(BDO)、二乙二醇、甲基丙二醇等,MOCA、E-300,HQEE,HER等
MOCA
l 3,3′-二氯-4,4′-二氨基-二苯基甲烷
精MOCA(含量98%以上)为白色粉末,粗MOCA(纯MOCA含量约80%左右,其余为多苯基多胺基化合物)为黄色粉末或颗粒。
二者在一般用途中可以通用。
如果需要在室温下固化,需将其溶解在聚醚和增塑剂中使用。
聚氨酯共聚物结构
![聚氨酯共聚物结构](https://img.taocdn.com/s3/m/584b7c0a326c1eb91a37f111f18583d049640fd1.png)
聚氨酯共聚物结构
聚氨酯(简称PUR和PU)是由氨基甲酸酯连接的有机单元组成的聚合物。
这些有机单元由异氰酸酯、小分子多元醇及其他扩链剂组成。
聚氨酯的分子结构示意图如下:
由异氰酸酯、小分子多元醇及其他扩链剂组成的硬段,在常温下玻璃化转变温度高于室温,分子链的构象不易改变;而由低聚物多元醇等组成的软段,在常温下玻璃化转变温度远远低于室温,分子链较为柔顺,呈现无规卷曲状态,分子链的构象容易改变。
聚氨酯的硬段赋予聚氨酯一定的强度和耐热性,软段赋予聚氨酯的应变和耐低温性。
硬段由于极性较强,相互作用力较大,与软段的热力学不相容性,促使聚氨酯的硬段与软段自发分离,硬段可以形成独立的微区,软段可以形成独立的微区,同时,硬段与软段会出现部分嵌合现象,这种特殊的结构称为“微相分离”,这种结构使得聚氨酯具有优异的力学性能、耐化学性能、耐磨性、耐低温性和粘附性等特性。
胶黏剂个人总结
![胶黏剂个人总结](https://img.taocdn.com/s3/m/a82fa0ca7375a417876f8f05.png)
胶粘剂的设计是以获得最终使用性能为目的,对聚氨酯胶粘剂进行配方设计,要考虑到所制成的胶粘剂的施工性(可操作性),固化条件及粘接强度,耐热性,耐化学品性,耐久性等性能要求。
一、聚氨酯分子设计——结构与性能聚氨酯由于其原料品种及组成的多样性,因而可合成各种各样性能的高分子材料,例如从其本体材料(即不含溶剂)的外观性严主讲,可得到由柔软至坚硬的弹性体,泡沫材料,聚氨酯从其本体性质(或者说其固化物)而言,基本上届弹性体性质,它的一些物理化学性质如粘接强度,机械性能,耐久性,耐低温性,耐药品性,主要取决于所生成的聚氨酯固化物的化学结构,所以,要对聚氨酯胶粘剂进行配方设计,首先要进行分子设计,即从化学结构及组成对性能的影响来认识,有关聚氨酯原料品种及化学结构与性能的关系。
二、从原料角度对PU胶粘剂制备进行设计聚氨酯胶粘剂配方中一般用到三类原料:一类为NCO类原料(即二异氰酸酯或其改性物、多异氰酸酯),一类为oH类原料(即含羟基的低聚物多元醇、扩链剂等,广义地说,是含活性氢的化合物,故也包括多元胺、水等),另有一类为溶剂和催化剂等添加剂,从原料的角度对聚氨酯胶粘剂进行配方设计,其方法有下述两种:(1)由上述原料直接配制最简单的聚氨酯胶粘剂配制法是0H类原料和NCO类原料(或及添加剂)简单地混合,直接使用,这种方法在聚氨酯胶粘剂配方设计中不常采用,原因是大多数低聚物多元醇分子量较低(通常聚醚Mr<6000,聚酯Mr<3000),因而所配制的胶粘剂组合物粘度小,初粘力小,有时即使添加催化剂, 固化速度仍较慢,并且固化物强度低,实用价值不大,并且未改性的TDI 蒸气压较高,气味大,挥发毒性大,而MDI常温下为固态,使用不方便,只有少数几种商品化多异氰酸酯如PAPlDesmodur RDesmodur RFCoronate L等可用作异氰酸酯原料。
不过,有几种情况可用上述方法配成聚氨酯胶粘剂例如:由高分子量聚酯(Mr5000-50000)的有机溶液与多异氰酸酯溶液(如Coronate L)组成的双组分聚氨酯胶粘剂,可用于复合层压薄膜等用途,性能较好,这是因为其主成分高分子量聚酯本身就有较高的初始粘接力,组成的胶粘剂内聚强度大;由聚醚(或聚酯)或及水,多异氰酸酯,催化剂等配成的组合物,作为发泡型聚氨酯胶粘剂,粘合剂,用于保温材料等的粘接制造等,有一定的实用价值。
聚氨酯的性能和优缺点
![聚氨酯的性能和优缺点](https://img.taocdn.com/s3/m/940687ee988fcc22bcd126fff705cc1755275f79.png)
Powerpoint Tem能
制成的薄膜制品耐油、易热封,又无毒、 无异味,可用于食品包装。由于强度高、耐 油脂因此仅用0.025毫米厚的聚氨酯即可满足 金属防锈包装的要求
聚氨酯是由聚酯(或聚醚)与二异睛酸酯 类化合物聚合而成的,耐磨性能好、其次是 弹性好、硬度高、耐油、耐溶剂。
具有良好的耐氧、耐臭氧及抗紫外线 辐 射作用的能力;还具有较好的耐寒性能。
Powerpoint Templates
Page 8
聚氨酯的缺点
• 由于聚氨酯橡胶的二次交联作用在高温下 被破坏,所以其拉伸强度、撕裂强度、耐 油性能都随温度的升高而明显地下降。该 橡胶长时间连续工作的温度范围一般为8090℃,而短时间使用的温度可达120℃。聚 氨酯橡胶虽然弹性很好,但滞后损失却较 大, 在多次变形状态下,其生热量较高。 此外,该橡胶的耐水性差,也不耐酸碱, 长时间与水作用会发生水解。
Powerpoint Templates
Page 3
结构对性能的影响
• 任何高分子材料的性能均由其结构决定, 聚氨酯结构包含化学结构和聚集结构两方 面。化学结构即分子链结构,是合成之初配 方设计中需要着重考虑的因素;聚集结构是 指大分子链段的堆积状态,受分子链结构、 合成工艺、使用条件等的影响
Powerpoint Templates
Powerpoint Templates
Page 6
交联的影响
• 聚氨酯弹性体基本上属于具有线性分子 特征的热塑性树脂,但也可由多官能团扩链 剂或脲基等方式引入一定程度的交联。适 当交联可以改善材料的物理机械性能,提高 聚氨酯的耐水性和耐候性
聚氨酯的结构
![聚氨酯的结构](https://img.taocdn.com/s3/m/b1953ec3760bf78a6529647d27284b73f24236b8.png)
聚氨酯的结构聚氨酯是一种重要的聚合物材料,由于其独特的化学结构和优良的性能,被广泛应用于各个领域。
聚氨酯的结构是由聚酯、聚醚或聚氨酯醚的主链上交替排列的酯或醚交联剂构成的。
下面将从聚氨酯的结构特点、制备方法、性能及应用等方面介绍聚氨酯。
聚氨酯的结构特点主要体现在其分子链的构成上。
聚氨酯的主链由聚酯、聚醚或聚氨酯醚组成,这三类材料中的每一种都有不同的特性和应用领域。
聚酯聚氨酯具有较高的耐热性和耐候性,适用于制备耐久性要求较高的材料;聚醚聚氨酯具有较好的弹性和耐磨性,适用于弹性体和密封材料;聚氨酯醚具有较好的耐油性和耐溶剂性,适用于制备涂料和粘合剂。
聚氨酯的制备方法多种多样,常见的方法有聚合反应和预聚体法。
聚合反应方法一般是将聚酯、聚醚或聚氨酯醚与异氰酸酯或多异氰酸酯进行反应,生成聚氨酯。
预聚体法是将聚酯、聚醚或聚氨酯醚与异氰酸酯或多异氰酸酯进行反应,得到聚氨酯预聚体,再与二元醇或多元醇反应,形成交联结构。
聚氨酯具有许多优良的性能,其中包括机械性能、热性能、化学稳定性和耐候性等。
聚氨酯具有较高的强度和韧性,可以制备出各种硬度的材料;具有较好的耐热性和耐寒性,可在较宽的温度范围内使用;具有较好的耐腐蚀性和耐溶剂性,可以在各种化学环境下使用;具有较好的耐候性,可以在户外环境中长时间使用而不受损害。
聚氨酯由于其独特的结构和性能,被广泛应用于各个领域。
在建筑行业中,聚氨酯可以制备保温材料和隔音材料,提高建筑物的能源利用效率和舒适性。
在汽车行业中,聚氨酯可以制备汽车座椅、车身覆盖件等,提高汽车的安全性和舒适性。
在家具行业中,聚氨酯可以制备沙发、床垫等,提高家具的舒适性和耐用性。
在医疗行业中,聚氨酯可以制备人工关节、医用胶带等,提高医疗器械的性能和可靠性。
聚氨酯是一种重要的聚合物材料,其结构特点、制备方法、性能和应用都具有独特的优势。
通过合理的材料选择和制备工艺,可以制备出满足不同需求的聚氨酯材料,推动各个领域的发展和进步。
聚氨酯的结构
![聚氨酯的结构](https://img.taocdn.com/s3/m/1251d4cb4793daef5ef7ba0d4a7302768f996f62.png)
聚氨酯的结构聚氨酯是一种重要的高分子材料,其结构由聚合物链和酯基组成。
聚合物链由有机多元醇和有机多元酸通过酯交换反应形成,而酯基则是由酸与醇通过酯化反应形成。
聚氨酯的聚合物链是由有机多元醇和有机多元酸通过酯交换反应形成的。
有机多元醇是一种含有多个醇基的有机化合物,能与有机多元酸反应生成酯键。
有机多元酸是一种含有多个羧酸基的有机化合物,能与有机多元醇反应生成酯键。
聚氨酯的酯基是由酸与醇通过酯化反应形成的。
酸是一种含有羧酸基的有机化合物,醇是一种含有醇基的有机化合物。
酯化反应是一种酸催化的反应,通过酸与醇之间的酯化反应,生成酯键。
聚氨酯的结构中含有酯键,这种键是由酸与醇之间的酯化反应形成的。
酯键是一种共价键,具有较强的化学稳定性和热稳定性。
聚氨酯的酯键可以使其具有较好的力学性能和耐候性能。
聚氨酯的结构中还含有聚合物链,聚合物链是由有机多元醇和有机多元酸通过酯交换反应形成的。
聚合物链的长度和分子量决定了聚氨酯的物理性质和化学性质。
聚氨酯的聚合物链可以使其具有较高的强度和韧性。
聚氨酯的结构决定了其在工业和生活中的广泛应用。
聚氨酯可以用于制备各种塑料制品,如塑料薄膜、塑料板材和塑料泡沫等。
聚氨酯还可以用于制备涂料、胶粘剂和弹性体等。
此外,聚氨酯还可以用于制备纤维和皮革等。
聚氨酯的结构中的酯键和聚合物链的特性使其具有一些特殊的性质。
聚氨酯具有较好的耐磨性、耐腐蚀性和耐热性。
聚氨酯还具有较好的弹性和可塑性,可以在一定的应力下发生形变而不会断裂。
此外,聚氨酯还具有较好的绝缘性能和吸声性能。
聚氨酯是一种重要的高分子材料,其结构由聚合物链和酯基组成。
聚氨酯的结构决定了其具有较好的力学性能、耐候性能和化学稳定性。
聚氨酯在工业和生活中有着广泛的应用,可以用于制备各种塑料制品、涂料、胶粘剂和纤维等。
聚氨酯的特殊性质使其成为一种重要的功能材料,对于推动经济社会的发展起到了重要的作用。
聚氨酯主要官能团
![聚氨酯主要官能团](https://img.taocdn.com/s3/m/300ea57fb207e87101f69e3143323968011cf438.png)
聚氨酯主要官能团1. 引言聚氨酯是一种重要的高分子材料,具有广泛的应用领域。
它由聚合物和氨基甲酸酯组成,其中氨基甲酸酯是聚氨酯的主要官能团。
本文将详细介绍聚氨酯主要官能团的结构、性质以及在不同领域中的应用。
2. 聚氨酯主要官能团的结构聚氨酯的主要官能团是由二异氰酸酯与多元醇反应形成的尿素链和尿素交联体。
其中,二异氰酸酯分子中含有两个异氰基(NCO)基团,而多元醇分子中含有两个或多个羟基(OH)基团。
通过异氰基与羟基之间的加成反应,形成了尿素链和尿素交联体。
3. 聚氨酯主要官能团的性质3.1 物理性质•热稳定性:聚氨酯具有良好的热稳定性,可以在较高温度下保持其结构完整性和力学性能。
•机械性能:聚氨酯具有优异的机械性能,包括高强度、高韧性和耐磨损性。
•透明度:聚氨酯具有良好的透明度,可用于制备透明产品。
•耐化学腐蚀性:聚氨酯对一些溶剂和化学品具有较好的耐腐蚀性。
3.2 化学性质•反应活性:聚氨酯主要官能团中的异氰基(NCO)和羟基(OH)基团具有较高的反应活性,可以与其他官能团进行加成反应,形成交联结构或与其他材料进行粘接。
•水解稳定性:聚氨酯对水分敏感,在潮湿环境中容易发生水解反应而降低其物理和力学性能。
•可溶解性:聚氨酯在一些有机溶剂中具有良好的可溶解性。
4. 聚氨酯主要官能团的应用聚氨酯的主要官能团在各个领域中有广泛的应用。
以下是一些典型的应用:4.1 聚氨酯泡沫聚氨酯泡沫是聚氨酯主要官能团的一种重要应用形式。
它具有轻质、隔热、吸音等性质,广泛应用于建筑、家具、汽车等领域。
4.2 聚氨酯涂料和胶粘剂由于聚氨酯主要官能团具有良好的反应活性和可溶解性,聚氨酯涂料和胶粘剂成为了重要的工业材料。
它们可以用于涂装、粘合、密封等多个方面。
4.3 聚氨酯弹性体聚氨酯主要官能团可以通过调整反应条件和配方来控制其硬度和弹性。
因此,聚氨酯弹性体被广泛应用于制作橡胶制品、印刷辊、悬挂系统等领域。
4.4 聚氨酯薄膜聚氨酯薄膜具有良好的透明度、柔韧性和耐磨性,常用于制备保护膜、光学膜和电子器件等。
聚氨酯
![聚氨酯](https://img.taocdn.com/s3/m/e333dce6e009581b6bd9eb84.png)
1.1.2 聚氨酯弹性体的结构和性能特点聚氨酯英文缩写为PU,是由二元或多元异氰酸酯与二元或多元羟基化合物作用而成的高分子化合物的总称,聚氨酯PU根据应用不同填料,有CPU、TPU、MPU等简称。
聚氨酯全称为聚氨基甲酸酯,是主链上含有重复氨基甲酸酯基团的大分子化合物的统称。
其原材料可分为异氰酸酯类(如MDI和TDI)、多元醇类(如PO和PTMEG)和助剂类(如DMF)。
聚氨酯橡胶(UR)是由聚酯(或聚醚)与二异氰酸脂类化合物聚合而成的。
它的化学结构比一般弹性聚合物复杂,除反复出现的氨基甲酸酯基团外,分子链中往往还含有酯基、醚基、芳香基等基团。
UR分子主链由柔性链段和刚性链段镶嵌组成。
柔性链段又称软链段,由低聚物多元醇(如聚酯、聚醚、聚丁二烯等)构成;刚性链段又称硬链段,由二异氰酸酯(如TDI、MDI等)与小分子扩链剂(如二元胺an-元醇等)的反应产物构成。
软链段所占比例比硬链段多。
软、硬链段的极性强弱不同,硬链段极性较强,容易聚集在一起,形成许多微区分布于软链段相中,称为微相分离结构,它的物理机械性能与微相分离程度有很大关系。
UR 分子主链之间由于存在由氢键的作用力,因而具有高强度高弹性。
聚氨酯橡胶具有硬度高、强度好、高弹性、高耐磨性、耐撕裂、耐老化、耐臭氧、耐辐射、耐化学药品性好及良好的导电性等优点,是一般橡胶所不能比的;耐磨性能是所有橡胶中最高的,实验室测定结果表明,UR的耐磨性是天然橡胶的3~5倍,实际应用中往往高达l0倍左右;在邵尔A60至邵尔A70硬度范围内强度高、弹性好;缓冲减震性好,室温下,UR减震元件能吸收10 ~20 振动能量,振动频率越高,能量吸收越大;耐油性和耐药品性良好,UR与非极性矿物油的亲和性较小,在燃料油(如煤油、汽油)和机械油(如液压油、机油、润滑油等)中几乎不受侵蚀,比通用橡胶好得多,可与丁腈橡胶媲美;耐低温、耐臭氧、抗辐射、电绝缘、粘接性能良好。
缺点是在醇、酯、酮类及芳烃中的溶胀性较大;摩擦系数较高,一般在0.5以上。
聚氨酯的微相分离结构调控、性能和应用
![聚氨酯的微相分离结构调控、性能和应用](https://img.taocdn.com/s3/m/439bc49751e2524de518964bcf84b9d528ea2c83.png)
聚氨酯的微相分离结构调控、性能和应用一、本文概述聚氨酯(Polyurethane,PU)作为一种重要的高分子材料,以其独特的微相分离结构和优异的性能,在各个领域中都得到了广泛的应用。
本文旨在探讨聚氨酯的微相分离结构调控、性能及其在各种实际应用中的表现。
我们将首先概述聚氨酯的基本结构和微相分离现象,然后深入探讨调控微相分离结构的方法和手段,接着分析这种调控对聚氨酯性能的影响,并最后展望聚氨酯在各种实际应用中的潜力和挑战。
通过本文的阐述,我们期望能够为聚氨酯的进一步研究与应用提供有益的参考和指导。
二、聚氨酯微相分离结构的基础理论聚氨酯(PU)是一种由异氰酸酯与多元醇反应生成的聚合物,因其独特的结构和性能,在多个领域有广泛的应用。
而聚氨酯的微相分离结构,指的是在聚氨酯中,硬段和软段在分子水平上的分离,这种分离不仅影响聚氨酯的宏观性能,还对其应用产生深远影响。
因此,调控聚氨酯的微相分离结构,对于优化其性能,拓展其应用领域具有重要意义。
微相分离结构的基础理论主要基于软硬段的相容性和相互作用。
在聚氨酯中,硬段主要由异氰酸酯和扩链剂组成,具有较高的内聚能和玻璃化转变温度,赋予聚氨酯强度、硬度、模量等物理性能。
而软段则主要由多元醇组成,具有较低的玻璃化转变温度,赋予聚氨酯柔韧性、耐低温性能等。
软硬段的相容性主要取决于其化学结构、分子量、分子链的极性等因素。
当软硬段之间的相容性较差时,聚氨酯在固化过程中会发生微相分离,形成硬段和软段分别聚集的微观结构。
这种微相分离结构可以显著提高聚氨酯的力学性能和耐热性能,但同时也可能影响其耐低温性能和加工性能。
因此,通过调控聚氨酯的合成条件,如原料种类、配比、反应温度、时间等,可以实现对微相分离结构的调控。
例如,改变硬段和软段的比例,可以影响微相分离的程度和形态;选择不同的扩链剂,可以改变硬段的长度和刚性,从而影响微相分离的结构和性能。
聚氨酯的微相分离结构是其性能和应用的重要影响因素。
聚氨酯弹性体的结构与力学性能
![聚氨酯弹性体的结构与力学性能](https://img.taocdn.com/s3/m/5587b35b804d2b160b4ec0b6.png)
第21卷 第2期Vol 21 No 2材 料 科 学 与 工 程 学 报Journal of Materials Science &Engineering总第82期Feb.2003文章编号:1004 793X (2003)02 0211 04收稿日期:2002 07 05;修订日期:2002 10 11基金项目:中国工程物理研究院科学基金资助项目(990563)作者简介:钟发春(1970 ),男,博士,四川简阳人,中国工程物理研究院化工材料研究所助研,从事互穿聚合物网络阻尼材料研究工作。
聚氨酯弹性体的结构与力学性能钟发春,傅依备,尚 蕾,田春蓉,王晓川,赵晓东(中国工程物理研究院化工材料研究所,四川绵阳 621900)摘 要 室温催化合成了一系列不同结构的聚氨酯弹性体,研究了软硬链段的化学结构对聚氨酯弹性体形态结构和力学性能的影响规律,结果表明,由MDI 合成的PU 弹性体的力学性能和阻尼性能优于相应的由TDI 合成的PU 弹性体,对称结构的MDI 易规整排列,提高了力学强度,软硬链段之间的相容性和较强的相互作用有利于提高弹性体的力学性能。
关键词 聚氨酯;弹性体;力学性能;形态结构中图分类号:TQ334 文献标识码:AStructure and Mechanical Properties of Polyurethane ElastomersZHONG Fa chun,FU Yi bei,SHANG Lei,TIAN Chun rong,WANG Xiao chuan,ZHAO X iao dong(Institute of C hem ical M aterials,Chinese Academ y of Eng ineering and Physics,Mianyang 621900,China)Abstract A serials of polyurethane (PU )elastomers with 4,4 methylene diphenyl dii socynat(MDI),tolyene 2,4 diisocyanate(TDI)as hard segments and poly(tetramethylene glycol)(PTMG)with different molecular weight as soft segments were synthesized by cat alyst at room temperature,and the chemical structures of soft segments and hard segments that affected the mechanical properties were also studied.The resul t demonstrated that the mechanical performance and damping properties of MDI PU elastomers were superior to that of TDI PU,because of MDI has symmetrical s tructure and arranged regularly that enhanced the compatibility and in teraction between hard segments and soft segments,and improved the mechanical dampi ng performance.Key w ords polyurethane;elastomer;mechanical performance;structure1 前 言聚氨酯弹性体(polyurethane elastomer)可以看作是一种介于一般橡胶与塑料之间的材料,其最大特点是硬度范围宽而富有弹性,耐磨性卓越,有良好的机械强度、耐油性和耐臭氧性,低温性能也很出色,因此,其用途十分广泛[1~4]。
聚氨酯 氢键
![聚氨酯 氢键](https://img.taocdn.com/s3/m/31270f39b42acfc789eb172ded630b1c58ee9b4b.png)
聚氨酯氢键
聚氨酯是一种重要的高分子材料,具有优异的物理性能和化学性能,广泛应用于建筑、汽车、电子、医疗等领域。
其中,聚氨酯的氢键结构是其性能优异的重要原因之一。
氢键是一种分子间相互作用力,是由氢原子与电负性较强的原子(如氧、氮、氟等)之间的相互作用形成的。
在聚氨酯中,氢键主要是由聚酯或聚醚段上的羟基与异氰酸酯基团之间的相互作用形成的。
这种氢键结构使得聚氨酯具有以下优异性能:
1. 高强度和高韧性:聚氨酯的氢键结构使其分子间结合紧密,从而使得聚氨酯具有高强度和高韧性,能够承受较大的拉伸和压缩力。
2. 耐热性和耐寒性:聚氨酯的氢键结构使其分子间结合紧密,从而使得聚氨酯具有较高的熔点和玻璃转化温度,能够在高温或低温环境下保持稳定性能。
3. 耐化学性:聚氨酯的氢键结构使其分子间结合紧密,从而使得聚氨酯具有较好的耐化学性,能够抵抗酸、碱、溶剂等化学物质的侵蚀。
4. 生物相容性:聚氨酯的氢键结构使其分子间结合紧密,从而使得聚氨酯具有较好的生物相容性,能够被人体组织所接受,广泛应用于医疗领域。
聚氨酯的氢键结构是其性能优异的重要原因之一。
在聚氨酯的制备和应用中,需要充分考虑氢键结构对其性能的影响,以实现更好的性能和应用效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 8・
科技 论坛
浅谈聚氨酯 的结构 与性 能
周 静
( 湖南化 工职业技 术学院 化工 系, 湖南 株洲 4 1 2 0 0 4 )
摘 要: 随着聚氨 酯科 学的迅速发展 , 聚氨酯的应用越 来越广 , 如塑料 、 橡胶 、 纤维 、 涂料 、 粘结剂 、 复合 材料 和具有特 殊功能的功能 高 分子等等 , 在人们的生活中起 着举足轻重的作 用。
.
2 低 聚 物 链 结 构 对 聚 氨酯 材 料 性 能 的 影 响
聚氨酯是 由多元醇( 包括 带羟基的小分子物 质 ) 和多异氰 酸酯 反应 而来的 , 其 大分 子结 构 中不仅含有 大量 的氨基 甲酸酯键 , 还 含 有醚键 、 酯键 、 油脂的不饱和键 、 以及低聚物多元醇所含有的各种特 殊结构 ( 包括取代基 ) 等 。在大分子键之 间还存在氢键。所 以可 以通 过选用不 同结构的多异氰酸酯和多元醇来改变长链 的结构 。 低聚物 多元 醇的结构具有很大的可调节性 , 从类型上讲 , 可 以选用 聚酯 、 聚 醚、 聚 s一己内酯多 元醇 等 ; 从单体 种类 上讲 , 有环氧 乙烷 、 环氧丙 烷、 四氢呋喃等。选用各种低聚物多元醇或者几种低聚物多元醇一 起使用 , 可 以使聚氨酯材 料的软锻部分 的结构 多样化 , 从而可 以在 很大 的范同改变其使用性能 , 以满足不 同的使用场合 的要求 。 3低聚物 的分子量对聚 氨酯材料的- 眭能的影响 低聚物是聚氨酯材料 的软段部分 , 是呈无规卷曲状态的柔性链
关键词 : 聚氨酯 ; 结构 ; 性 能
是聚氨酯材料弹性的来 聚氨酯 , 全称 聚氨基 甲酸酯 ( p o l y u r e t h a n e ) , 是主链上 含有很 多 段 。软段的玻璃化温度低 于常温呈高弹态 , 软段的分子链越 短 , 柔韧性差 , 而且这种聚 氨基 甲酸酯基 的一类聚合物。聚氨酯的主要 原料有三大类 , 即低 聚 源 。低聚物分子量越低 , 物多元醇 、 扩链剂和多异氰酸酯 。另外 , 在具体应用中 , 为了提高 反 氨酯材料 中的软段含量也相对较低 ,并且整体 的交联密度 变大 , 使 应速率 , 改进加_ 丁特性 和聚氨酯材料 的性能 , 减小成本等 目的 , 需要 得聚氨酯材料的弹性 下降, 杨氏模量增大 , 强度变 大。 另外低聚物 的 加入某些助剂。 分子量的不同 , 也会影响聚氨酯材料 的软化温度 、 溶解性能 、 耐老化 聚氨酯材料 由于其 性能优越 , 易于成型加工 , 在 国民经济 中得 性能等 。 低 聚物 的分子量 , 很大程度上决定了聚氨酯材料 的性能 。 分 到 了广泛的应用 。聚氨酯 材料是世界六大合成材料 之一 。到 目前 为 子量较大 的低聚物多用于制造 聚氨酯 弹性体 , 分子量较小的低聚物 止, 聚氨酯在塑料 、 橡胶 、 合成纤维 、 涂料 、 粘接剂 、 建筑填充材料 、 以 合成 的聚氨酯材料能做工程塑料使 用。所 以 , 不 同分子量 的低 聚物 及 防水 灌浆材料等 各个方 面取得 了广 泛 的应 用 。据 R e s e a r c h a n d 合成 的聚氨酯材料性能相差大 , 用途 也不一样 。 Ma r k e t s 公司研究报告显示 , 2 0 1 0 年全球 聚氨酯市场需求为 1 3 6 5万 我们 可 以利 用不同的反应条 件来调节低 聚物 的分子量 的大小 吨, 预计 到 2 0 1 6年将达到 1 7 9 4 . 6万吨 , 复合年增长率为 4 . 7 %。 按价 和分 布, 嵌段链 的长度 和分布等 因素 , 进 一步调节交联密度 , 就能在 值计算 , 2 0 1 0年估计 为 3 3 0 . 3 3 亿 美元 ,到 2 0 1 6年将达到 5 5 4 . 8 亿 很大 的范 围内改变聚氨酯材料 的性能 , 以满足不 同使用场合要求 。 美元 , 复合年增长率为 6 . 8 %。 而因国内聚氨酯关键原料 MD I 、 T D I 产 随着聚氨酯科 学的迅速发展 , 聚氨酯 的应用越来 越广 , 如塑料 、 能产量 出现过剩 , 聚氨酯下游制品需求增大 , 以及众 跨 国公 司将 业 橡胶 、 纤维、 涂料 、 粘结剂 、 复合材 料和具有特殊功能 的功能高分 子 务重点和研发中心转至亚洲甚 至中国市场 , 未来国 内聚氨酯产业将 等等 , 在人们的生活中起着举足轻重的作用。 现实中 , 聚氨酯 制品往 迎来黄金期 。 往是具有某一特定 的功能 , 只能应 用在一个具体 的领域 , 有 的已经 1聚 氨 酯 的结 构 及 - 陛能 特 点 应用的聚氨酯甚至还有许多不足 , 这些都制约 了聚氨酯材料 的推 广 聚氨 酯化 学结构的特征是其 大分 子主链上 重复含有氨基 甲酸 和应用。为了研究 出性能更优越的聚氨酯材料 , 或 者改善现有材料 酯链段 。 的性 能 , 人们做出了巨大的努力 。聚氨酯 的主要原材料是 聚醚多元 醇。近年来在 聚醚多元醇的合成方面 , 新 的单体 , 新 的聚合方法 , 新 的加工成 型工 艺等成果 的出现 , 改变 了聚醚 多元 醇的结构 , 提升了 R, . O— C. NH. R. NH— e. O— R, 现有聚氨酯 的性能 , 具有很 大的社会价值 。 聚氨酯 的聚集态结构特征是微 相分 离 , 这种结构特征对聚氨酯 性能有很大影响。聚氨酯是由低 聚物多元醇 、 小分子扩链剂和多异 氰酸酯加 聚而成 。低聚物多元 醇一 般是 直链 烷烃 , 由于其 中碳碳单 键的可旋转性 , 分子链具有很大 的柔性 , 存在 多种 构象 , 是聚氨酯大 分子链的软段或软链段 ;而小分子扩链 剂和多异氰酸酯反应后 , 处 在交联点 的位置 , 不易运动 , 是聚氨酯大分子链的硬段或硬链段 。 软 链段 与软链段之间作用力小 , 玻璃化温度低于常温 , 易卷曲和运动 , 室温呈橡胶态 ; 硬链段 含有很多 刚性基 团如氨基 甲缩酯 、 芳环等 , 极 性大 , 相互之间作用力 大, 玻璃 化温度高于常温 , 室温呈玻璃态 。软 链段 的橡胶态 是聚氨酯 中的连续相 , 是聚氨酯 弹性 的来源 ; 硬链段 的玻璃态容易聚集在聚氨酯 中的分散相 ,起着物理交联的作用 , 是 聚氨酯刚性的来源 。 微相分离的存在使得聚氨酯材料具有优异的性 能 。聚氨 酯材 料的特点是 : 优异的弹性 , 弹性模量在 塑料和橡胶 之 间; 良好 的耐磨性 ; 耐氧性和耐臭氧性能优 良; 耐油脂及 耐化学 品性 能优 良; 耐疲 劳f 生及抗振动性好 ; 抗冲击性强等 。 但是材料聚氨酯耐 高温和耐水性较差 , 这阻碍了聚氨酯在一些场所的应用 。