六安市汇文中学七年级(下)期末数学试卷及详细答案

合集下载

安徽省六安市七年级下学期期末测试数学试题

安徽省六安市七年级下学期期末测试数学试题

安徽省六安市七年级下学期期末测试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 4的算术平方根是A . 2B . -2C .D .2. (2分) (2016七下·青山期中) 下列各式正确的是()A . =±3B . =±4C . + =0D . ﹣ =13. (2分) (2017七下·东城期末) 象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A . (﹣3,3)B . (0,3)C . (3,2)D . (1,3)4. (2分)如图.在▱ABCD中,AB=6、AD=9,∠BAD的平分线交BC于点E,DC的延长线于点F, BG⊥AE,垂足为G,若BG=4,则△CEF的面积是()A . 2B .C . 3D . 45. (2分) (2018七下·瑞安期末) 在二元一次方程2x+y=6中,当时,的值是()A . 1B . 2C . -2D . -16. (2分)(2017·宁城模拟) 实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A . ac>bcB . |a﹣b|=a﹣bC . ﹣a<﹣b<cD . ﹣a﹣c>﹣b﹣c7. (2分) (2019八下·温州期中) 甲、乙、丙、丁四位选手各进行了10次射击,射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.09.09.09.0方差0.251.002.503.00则成绩发挥最不稳定的是()A . 甲B . 乙C . 丙D . 丁8. (2分)下列各数中,是无理数的是()A . ﹣2B . 0C .D .9. (2分) (2017八下·卢龙期末) 下列命题正确的是()A . 对角线相等的四边形是矩形B . 对角线垂直的四边形是菱形C . 对角线互相垂直平分的四边形是矩形D . 对角线相等的菱形是正方形10. (2分)如图,如果∠1+∠2=180°,那么()A . ∠2+∠4=180°B . ∠3+∠4=180°C . ∠1+∠3=180°D . ∠1=∠4二、填空题 (共6题;共16分)11. (2分) (2017七下·北京期中) 的平方根是________;27的立方根是________.12. (1分) (2019八下·东台月考) 计算 = ________.13. (10分) (2019七下·大名期中) 如图,E点为DF上的点,B为AC 上的点,∠1=∠2,∠C=∠D求证:DF∥AC证明:∵ ∠1=∠2(已知),∠1=∠3 ,∠2=∠4(________),∴ ∠3=∠4( ________),∴ ________∥________( ________ ).∴∠C=∠ABD( ________ ).∵∠C=∠D(________),∴ ∠D =________( ________).∴ DF∥AC(________).14. (1分)点P(m,m﹣2)在第四象限内,则m取值范围是________.15. (1分)(2018·舟山) 分解因式m2-3m=________。

安徽省六安市七年级下学期数学期末试卷

安徽省六安市七年级下学期数学期末试卷

安徽省六安市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·潍坊) 下列算式,正确的是()A . a3×a2=a6B . a3÷a=a3C . a2+a2=a4D . (a2)2=a42. (2分) (2019七下·醴陵期末) 下列说法正确的是()A . 同旁内角相等,两直线平行B . 两直线平行,同位角互补C . 相等的角是对顶角D . 等角的余角相等3. (2分)如图所示,观察下面的国旗,是轴对称图形的是()。

A . (1)(2)(3)B . (1)(2)(4)C . (2)(3)(4)D . (1)(3)(4)4. (2分) (2018七下·惠来开学考) 下列事件中,是必然事件的是()A . 掷一块石块,石块下落B . 射击运动员射击一次,命中10环C . 随意掷一块质地均匀的骰子,掷出的点数是1D . 在一个装满白球和黑球的袋中摸球,摸出红球5. (2分)(2019·南沙模拟) 如图,在直角坐标系中,有一等腰直角三角形OBA,∠OBA=90°,斜边OA在x 轴正半轴上,且OA=2,将Rt△OBA绕原点O逆时针旋转90°,同时扩大边长的1倍,得到等腰直角三角形OB1A1(即A1O=2AO).同理,将Rt△OB1A1逆时针旋转90°,同时扩大边长1倍,得到等腰直角三角形OB2A2……依此规律,得到等腰直角三角形OB2019A2019 ,则点B2019的坐标为()A .B .C .D .6. (2分) (2017八下·南江期末) 如图①,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A 停止.设点P运动的路程为,△ABP的面积为,如果关于的函数图象如图②所示,则△ABC的面积是()A . 10B . 16C . 18D . 207. (2分) (2019九下·宜昌期中) 如图,平行四边形ABCD中,AC,BD为对角线,BC=3,BC边上的高为2,则阴影部分的面积为()A . 3B . 4C . 6D . 128. (2分) (2020九上·杭州月考) 如图,有一圆盘,其中阴影部分的圆心角为30°,向圆盘内投镖,如果某人每次都投入圆盘内,那么他投中阴影部分的概率为()A .B .C .D .9. (2分) (2017八下·杭州开学考) 在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4 ,则S1+2S2+2S3+S4=()A . 5B . 4C . 6D . 1010. (2分)已知实数m,n在数轴上的对应点的位置如图所示,则下列判断正确的是()A . m>0B . n<0C . mn<0D . m-n>011. (2分) (2020八上·通辽期末) 已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D ,若△AGC的周长为31cm , AB=20cm ,则△ABC的周长为()A . 31cmB . 41cmC . 51cmD . 61cm12. (2分) (2019九上·重庆开学考) 如图,在▱中,,,将沿边折叠得到,交于,,则点到的距离为()A .B .C .D .二、填空题 (共6题;共7分)13. (1分)22•(﹣2)3=________;()0×3﹣2=________;(﹣0.25)2013×42014=________.14. (1分) (2020七下·南山期中) 是完全平方公式,则 ________.15. (2分) (2020八上·永嘉期中) 如图,两个三角形全等,图中的字母表示三角形的边长,则∠1=________。

六安市数学七年级下学期期末数学试题题

六安市数学七年级下学期期末数学试题题

六安市数学七年级下学期期末数学试题题一、选择题1.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )2.下列计算中正确的是( )A .2352a a a +=B .235a a a +=C .235a a a =D .236a a a = 3.计算:202020192(2)--的结果是( ) A .40392B .201932⨯C .20192-D .2 4.若一个多边形的每个内角都为108°,则它的边数为( )A .5B .8C .6D .10 5.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE ;④∠A+∠ADC=180°.其中,能推出AB ∥DC 的条件为( )A .①④B .②③C .①③D .①③④ 6.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( ) A .4种B .5种C .6种D .7种 7.若(x-2y)2 =(x+2y)2+M,则M= ( )A .4xyB .- 4xyC .8xyD .-8xy 8.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1C .11y x +=D .xy ﹣1=09.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .7210.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106 B .3.8×106C .3.8×105D .38×104 二、填空题11.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________.12.若分解因式221(3)()x mx x x n +-=++,则m =__________.13.若关于x 、的方程()2233b a ax b y -+++=是二元一次方程,则b a =_______14.若(2x +3)x +2020=1,则x =_____.15.三角形的周长为10cm ,其中有两边的长相等且长为整数,则第三边长为______cm .16.已知△ABC 中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.若直线CE 垂直于△ABC 的一边,则∠BEC =____°.17.已知2m+5n ﹣3=0,则4m ×32n 的值为____18.已知30m -=,7m n +=,则2m mn +=___________.19.某红外线波长为0.00000094米,数字0.00000094用科学记数法表示为_____.20.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.三、解答题21.如图,D 、E 、F 分别在ΔABC 的三条边上,DE//AB ,∠1+∠2=180º.(1)试说明:DF//AC ;(2)若∠1=120º,DF 平分∠BDE ,则∠C=______º.22.解方程或不等式(组)(1)24231x y x y +=⎧⎨-=⎩ (2)2151132x x -+-≥ (3)312(2)15233x x x x +<+⎧⎪⎨-≤+⎪⎩ 23.阅读下列材料,学习完“代入消元法”和“加减消元法“解二元一次方程组后,善于思考的小铭在解方程组2534115x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法: 解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③.把方程①代入③得:2×3+y =5,∴y =﹣1①得x =4,所以,方程组的解为41x y =⎧⎨=-⎩. 请你解决以下问题:(1)模仿小铭的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩. (2)已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩,求x 2+4y 2﹣xy 的值. 24.某公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量如表所示:体积(m 3/件) 质量(吨/件) A 两种型号0.8 0.5 B 两种型号 2 1(1)已知一批商品有A 、B 两种型号,体积一共是20m 3,质量一共是10.5吨,求A 、B 两种型号商品各有几件;(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m 3,其收费方式有以下两种:按车收费:每辆车运输货物到目的地收费900元;按吨收费:每吨货物运输到目的地收费300元.要将(1)中的商品一次或分批运输到目的地,该公司应如何选择运送方式,使所付运费最少,并求出该方式下的运费是多少元.25.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.26.已知:如图,直线BD 分别交射线AE 、CF 于点B 、D ,连接A 、D 和B 、C ,12180∠+∠=,A C ∠=∠,AD 平分BDF ∠,求证:()1//AD BC ;()2BC 平分DBE ∠.27.在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)画出△ABC 先向右平移5个单位长度,再向上平移2个单位长度所得的△A 1B 1C 1; (2)画出△ABC 的中线AD ;(3)画出△ABC 的高CE 所在直线,标出垂足E :(4)在(1)的条件下,线段AA 1和CC 1的关系是28.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•-【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A 、没有完全分解,还可以利用平方差公式进行;B 、正确;C 、不是因式分解;D 、无法进行因式分解.考点:因式分解2.C解析:C【分析】根据同底数幂的加法和乘法法则进行计算判断即可.【详解】解:A 、23a a +无法合并,故A 选项错误;B 、23a a +无法合并,故B 选项错误;C 、235a a a =,故C 选项正确;D 、235a a a =,故D 选项错误.故选:C【点睛】此题考查同底数幂的运算法则,同底数幂的加减必须是同类项才可以进行加减,同底数幂的乘除底数不变,指数相加减.3.B解析:B【分析】将原式整理成2020201922+,再提取公因式计算即可.【详解】解:202020192(2)--=2020201922+=20192(21)⨯+=201932⨯,故选:B .【点睛】此题考查提公因式法进行运算,理解幂是乘方运算的结果是解此题的关键.4.A解析:A【解析】已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.5.D解析:D【详解】解:①∵∠1=∠2,∴AB ∥CD ,故本选项正确;②∵∠3=∠4,∴BC ∥AD ,故本选项错误;③∵∠A=∠CDE ,∴AB ∥CD ,故本选项正确;④∵∠A+∠ADC=180°,∴AB ∥CD ,故本选项正确.故选D.6.B解析:B【分析】设1元和5元的纸币分别有x、y张,得到方程x+5y=20,然后根据x、y都是正整数即可确定x、y的值.【详解】解:设1元和5元的纸币分别有x、y张,则x+5y=20,∴x=20-5y,而x≥0,y≥0,且x、y是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5;y=4,x=0,共有5种换法.故选:B.【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.7.D解析:D【分析】根据完全平方公式的运算法则即可求解.【详解】∵(x-2y)2 =(x+2y)2+M∴M=(x-2y)2 -(x+2y)2=x2-4xy+4y2-x2-4xy-4y2=-8xy故选D.【点睛】此题主要考查完全平方公式的运算,解题的关键是熟知完全平方公式的运算法则.8.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.9.B解析:B【分析】设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意列出方程求解即可.【详解】解:设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意可列方程为22(1)6x x +-=, 解得52x =, ∴原正方形的边长为52. 故选:B .【点睛】 此题考查了完全平方公式,找到等量关系列方程为解题关键.10.C解析:C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:380000=3.8×105.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题11.【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】=故答案为.【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则. 解析:12019【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】20202019201920191112019=2019201920192019⎛⎫⨯-⨯⨯ ⎪⎝⎭=12019 故答案为12019. 【点睛】 此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.12.【分析】将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可.【详解】解:,∴,解得:,故答案为:.【点睛】此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关 解析:4-【分析】将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可.【详解】解:2(3)()(3)3x x n x n x n ++=+++,∴3321n m n +=⎧⎨=-⎩, 解得:74n m =-⎧⎨=-⎩, 故答案为:4-.【点睛】此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关键. 13.1【解析】根据题意得:,解得:b=3或−3(舍去),a=−1,故答案是:−1. 解析:1【解析】根据题意得:2121{30baab-=+=≠+≠,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.14.﹣2020或﹣1或﹣2【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.【详解】解:当2x+3=1时,解得x=﹣1,故x+2020=2019,此解析:﹣2020或﹣1或﹣2【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.【详解】解:当2x+3=1时,解得x=﹣1,故x+2020=2019,此时:(2x+3)x+2020=1,当2x+3=﹣1时,解得x=﹣2,故x+2020=2018,此时:(2x+3)x+2020=1,当x+2020=0时,解得x=﹣2020,此时:(2x+3)x+2020=1,综上所述,x的值为:﹣2020或﹣1或﹣2.故答案为:﹣2020或﹣1或﹣2.【点睛】此题主要考查了零指数幂的性质以及有理数的乘方,正确分类讨论是解题关键.【分析】可分相等的两边的长为1cm,2cm,3cm,4cm,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.【详解】解:相等的两边的长为1cm,则解析:或 2【分析】可分相等的两边的长为1cm,2cm,3cm,4cm,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.【详解】解:相等的两边的长为1cm,则第三边为:10-1×2=8(cm),1+1<8,不符合题意;相等的两边的长为2cm,则第三边为:10-2×2=6(cm),2+2<6,不符合题意;相等的两边的长为3cm,则第三边为:10-3×2=4(cm),3+3>4,符合题意;相等的两边的长为4cm,则第三边为:10-4×2=2(cm),2+4>4,符合题意.故第三边长为4或2cm.故答案为:4或2.【点睛】此题考查了三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边),等腰三角形的性质和周长计算,分类思想的运用是解题的关键.16.10°或50°或130°【分析】分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.【详解】解:①如图1,当CE⊥BC时,解析:10°或50°或130°【分析】分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.【详解】解:①如图1,当CE⊥BC时,∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠CBE=12∠ABC=40°,∴∠BEC=90°-40°=50°;②如图2,当CE⊥AB时,∵∠ABE=12∠ABC=40°,∴∠BEC=90°+40°=130°;③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-90°-40°-40°=10°;综上所述:∠BEC的度数为10°,50°,130°,故答案为:10°,50°,130°.【点睛】本题考查了垂直的定义和三角形的内角和,考虑全情况是解题关键.17.8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5解析:8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5n=23=8.故答案为8.【分析】由得,再将因式分解可得, 然后将、代入求解即可.【详解】解:∵,∴,又∵∴,故答案为:.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21【分析】由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.【详解】解:∵30m -=,∴3m =,又∵7m n +=∴2()3721m mn m m n +=+=⨯=,故答案为:21.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 19.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00 000 094=9.4×10﹣8,故答案是:9.4×10﹣8.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.20.7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x解析:7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x)场,由题意得,3x+(10-x)≥24,解得:x≥7,即甲队至少胜了7场.故答案是:7.【点睛】考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列出不等式求解.三、解答题21.(1)见解析;(2)60.【分析】(1)根据平行线的性质得出∠A=∠2,求出∠1+∠A=180°,根据平行线的判定得出即可.(2)根据平行线的性质解答即可.【详解】证明:(1)∵DE∥AB,∴∠A=∠2,∵∠1+∠2=180°.∴∠1+∠A=180°,∴DF∥AC;(2)∵DE∥AB,∠1=120°,∴∠FDE=60°,∵DF平分∠BDE,∴∠FDB=60°,∵DF ∥AC ,∴∠C=∠FDB=60°【点睛】本题考查了平行线的性质和判定定理,解题的关键是能灵活运用平行线的判定和性质定理进行推理.22.(1)21x y =⎧⎨=⎩;(2)1x ≤-;(3)13x -≤< 【分析】(1)根据加减消元法解答;(2)根据解一元一次不等式的方法解答即可;(3)先分别解两个不等式,再取其解集的公共部分即得结果.【详解】解:(1)对24231x y x y +=⎧⎨-=⎩①②, ①×2,得248x y +=③,③-②,得7y =7,解得:y =1,把y =1代入①,得x +2=4,解得:x =2,∴原方程组的解为:21x y =⎧⎨=⎩; (2)不等式两边同乘以6,得()()2216351x x --≥+,去括号,得426153x x --≥+,移项、合并同类项,得1111x -≥,不等式两边同除以﹣1,得1x ≤-;(3)对()312215233x x x x ⎧+<+⎪⎨-≤+⎪⎩①②, 解不等式①,得x <3,解不等式②,得1x ≥-,∴原不等式组的解集为13x -≤<.【点睛】本题考查了二元一次方程组、一元一次不等式和一元一次不等式组的解法,属于基本题型,熟练掌握解二元一次方程组和一元一次不等式的方法是关键.23.(1)32x y =⎧⎨=⎩;(2)15 【分析】(1)把9x ﹣4y =19变形为3x +2(3x ﹣2y )=19,再用整体代换的方法解题;(2)将原方程组变形为22223(4)2472(4)36x y xyx y xy⎧+-=⎨++=⎩①②这样的形式,再利用整体代换的方法解决.【详解】解:(1)解方程组325 9419 x yx y-=⎧⎨-=⎩①②把②变形为3x+2(3x﹣2y)=19,∵3x﹣2y=5,∴3x+10=19,∴x=3,把x=3代入3x﹣2y=5得y=2,即方程组的解为32 xy=⎧⎨=⎩;(2)原方程组变形为22223(4)247 2(4)36x y xyx y xy⎧+-=⎨++=⎩①②①+②×2得,7(x2+4y2)=119,∴x2+4y2=17,把x2+4y2=17代入②得xy=2∴x2+4y2﹣xy=17﹣2=15答:x2+4y2﹣xy的值是15.【点睛】本题考查了二元一次方程组的解法,属延伸拓展题,正确掌握整体代换的求解方法是解题的关键.24.(1)A种商品有5件,B种商品有8件;(2)先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元【分析】(1)设A、B两种型号商品各有x件和y件,根据体积一共是20m3,质量一共是10.5吨列出方程组再解即可;(2)分别计算出①按车收费的费用,②按吨收费的费用,③两种方式混合用的花费,进而可得答案.【详解】解:(1)设A、B两种型号商品各有x件和y件,由题意得,0.8220 0.510.5x yx y+=⎧⎨+=⎩,解得:58 xy=⎧⎨=⎩,答:A、B两种型号商品各有5件、8件;(2)①按车收费:10.5÷3.5=3(辆),但车辆的容积为:6×3=18<20,所以3辆车不够,需要4辆车,此时运费为:4×900=3600元;②按吨收费:300×10.5=3150元,③先用3辆车运送A商品5件,B商品7件,共18m3,按车付费3×900=2700(元).剩余1件B型产品,再运送,按吨付费300×1=300(元).共需付2700+300=3000(元).∵3000<3150<3600,∴先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.答:先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.【点睛】本题考查二元一次方程组的应用,关键是正确理解题意,找出题中的等量关系.25.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt△ACD中,根据两锐角互余得出∠DAC度数;△ABC中由内角和定理得出∠ABC度数,再根据AE,BF是角平分线可得∠BAO、∠ABO,最后在△ABO中根据内角和定理可得答案.解:∵AD是BC边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC中,∠ABC=180°-∠BAC-∠C=70°,又∵AE、BF分别是∠BAC 和∠ABC的平分线,∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°,∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°.26.(1)见解析;(2)见解析.【解析】【分析】()1求出1BDC∠=∠,根据平行线的判定得出//AB CF,根据平行线的性质得出C EBC∠=∠,求出A EBC∠=∠,根据平行线的判定得出即可;()2根据角平分线定义求出FDA ADB∠=∠,根据平行线的性质得出FDA C∠=∠,ADB DBC∠=∠,C EBC∠=∠,求出EBC DBC∠=∠即可.【详解】()12180BDC∠+∠=,12180∠+∠=,1BDC∴∠=∠,∴,//AB CF∴∠=∠,C EBCA C∠=∠,∴∠=∠,A EBC∴;//AD BC()2AD平分BDF∠,FDA ADB∴∠=∠,AD BC,//∠=∠,∴∠=∠,ADB DBCFDA C∠=∠,C EBCEBC DBC∴∠=∠,∴平分DBEBC∠.【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,考查了学生运用性质进行推理的能力,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.27.(1)见解析;(2)见解析;(3)见解析;(4)平行且相等【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1即可;(2)根据三角形中线的定义画出图形即可;(3)根据三角形高的定义画出图形即可;(4)根据平移的性质即可得出结论.【详解】解:(1)如图,△A1B1C1即为所作图形;(2)如图,线段AD即为所作图形;(3)如图,直线CE即为所作图形;(4)∵△A1B1C1是由△ABC平移得到,∴A和A1,C和C1是对应点,∴AA1和CC1的关系是:平行且相等.【点睛】本题考查了平移作图,平移的性质,三角形的高和中线的画法,熟练掌握平移的性质是解题的关键.28.(1)-2(2)12a【分析】(1)根据零指数幂和负指数幂的运算法则进行化简即可求解;(2)根据幂的运算法则即可求解.【详解】(1)0201711(2)(1)()2--+-- =1-1-2=-2(2)()()()3243652a a a +-•- =()126654a a a +•- =121254a a -=12a .【点睛】此题主要考查实数与幂的运算,解题的关键是熟知其运算法则.。

六安市七年级下册末数学试卷及答案

六安市七年级下册末数学试卷及答案

一、填空题1.若20212a -=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.答案:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵,且,均为整数,又∵,,∴可分为以下几种情况:①,,解得:,;②,,解得:或,;③,解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.2.将一副三角板中的两块直角三角板的顶点C 按如图方式放在一起,其中30A ∠=︒,45E ECD ∠=∠=︒,且B 、C 、D 三点在同一直线上.现将三角板CDE 绕点C 顺时针转动α度(0180α︒<<︒),在转动过程中,若三角板CDE 和三角板ABC 有一组边互相平行,则转动的角度α为__________.答案:或或【分析】分三种情况讨论,由平行线的性质可求解.【详解】解:若和只有一组边互相平行,分三种情况:①若,则;②若,则;③当时,,故答案为:或或.【点睛】本题考查了三角板的角度解析:30或45︒或90︒【分析】分三种情况讨论,由平行线的性质可求解.【详解】解:若CDE ∆和ABC ∆只有一组边互相平行,分三种情况:①若//DE AC ,则180********α=︒-︒-︒-︒=︒;②若//CE AB ,则180********α=︒-︒-︒-︒=︒;③当//DE BC 时,90α=︒,故答案为:30或45︒或90︒.【点睛】本题考查了三角板的角度运算,平行线的性质,掌握旋转的性质是本题的关键. 3.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()2,0,第3次接着运动到点()2,2-,第4次接着运动到点()4,2-,第5次接着运动到点()4,0,第6次接着运动到点()5,2.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________.答案:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-解析:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可.【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n +1到5n +5次运动横坐标分别为:4n +1,4n +2,4n +2,4n +4,4n +4,前五次运动纵坐标分别2,0,-2,-2,0,第6到10次运动纵坐标分别为2,0,-2,-2,0,…∴第5n +1到5n +5次运动纵坐标分别为2,0,-2,-2,0,∵2021÷5=404…1,∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2,∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2).故答案为:(1617,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.4.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→”的路线运动,设第n 秒运动到点n P (n 为正整数),则点2021P 的坐标是______.答案:【分析】通过观察可得,An 每6个点的纵坐标规律:,0,,0,-,0,点An 的横坐标规律:1,2,3,4,5,6,…,n ,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1解析:20213,22⎛⎫- ⎪ ⎪⎝⎭ 【分析】 通过观察可得,A n 每6个点的纵坐标规律:32,0,32,0,-32,0,点A n 的横坐标规律:1,2,3,4,5,6,…,n ,点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→…”的路线运动,1秒钟走一段,P 运动每6秒循环一次,点P 运动n 秒的横坐标规律: 12,1,32,2,52,3,…,2n ,点P 的纵坐标规律:32,0,32,0,032-,0,…,确定P 2021循环余下的点即可. 【详解】解:∵图中是边长为1个单位长度的等边三角形,∴113,22A ⎛⎫ ⎪ ⎪⎝⎭A 2(1,0)333,22A ⎛⎫ ⎪ ⎪⎝⎭A 4(2,0)553,22A ⎛⎫- ⎪ ⎪⎝⎭A 6(3,0)773,22A ⎛⎫ ⎪ ⎪⎝⎭…∴A n 中每6303030, 点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→…”的路线运动,1秒钟走一段,P 运动每6秒循环一次点P 的纵坐标规律:32,0,32,0,-32,0,…, 点P 的横坐标规律: 12,1,32,2,52,3,…,2n , ∵2021=336×6+5,∴点P 2021的纵坐标为32-, ∴点P 2021的横坐标为20212, ∴点P 2021的坐标2021322⎛⎫ ⎪ ⎪⎝⎭,-, 故答案为:2021322⎛⎫ ⎪ ⎪⎝⎭,-. 【点睛】本题考查点的规律,平面直角坐标系中点的特点及等边三角形的性质,确定点的坐标规律是解题的关键.5.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0),…,按这样的规律,则点A 2021的坐标为 ____________.答案:(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解解析:(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A 6的坐标及2021÷6所得的整数及余数,可计算出点A 2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵A 6(6,0),∴OA 6=6,∵2021÷6=336…5,∴点A 2021的位于第337个循环组的第5个,∴点A 2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A 2021的坐标为(2021,﹣2).故答案为:(2021,﹣2).【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解. 6.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,且CD 边的中点坐标为(2,0),AD 边的中点坐标为(0,2).点M ,N 分别从点(2,0)同时出发,沿正方形ABCD 的边作环绕运动.点M 按逆时针方向以1个单位/秒的速度匀速运动,点N 按顺时针方向以3个单位/秒的速度匀速运动,则M ,N 两点出发后的第2020次相遇地点的坐标是____.答案:(2,0)【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为N 和M 的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M 所走过的路程,则第二次和解析:(2,0)【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为N 和M 的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M 所走过的路程,则第二次和第三次相遇过程中M 所走过的路程和第一次是相同的,从而结合图形可求得第2020次相遇时的坐标.【详解】由图可知: ()()()()2,22,2,2,2,2,2,A B C D ----,∴正方形ABCD 的边长为4,周长为4 × 4= 16,∴点M 与点N 第一次相遇的时间为:16(1+3)= 4÷(秒)∴此时点M 所运动的路程为: 4×1 = 4即M 从(2, 0)到了(0,2),∴M 、N 第一次相遇的坐标为(0, 2),又∵M 、N 的速度比为1:3,时间相同,∵M 、N 的路程比为1:3,∴每次相遇时,M 点运动的路程均为1164,13⨯=+ ∴第二次相遇时,M 在(- 2,0), 即(-2, 0)为相遇地点的坐标,第三相遇时,M 在(0,-2),即(0, -2)为相遇地点的坐标,第四次相遇时,M 在(2, 0),即(2, 0)为相遇地点的坐标,第五相遇时,M 在(0,2),即(0, 2)为相遇地点的坐标,……∵20204505,=⨯∴M 和N 两点出发后的第2020次相遇在(2, 0).故答案为:(2, 0).【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.7.在数轴上,点M ,N 分别表示数m ,n ,则点M ,N 之间的距离为|m ﹣n |.(1)若数轴上的点M ,N 分别对应的数为2M ,N 间的距离为 ___,MN 中点表示的数是 ___.(2)已知点A ,B ,C ,D 在数轴上分别表示数a ,b ,c ,d ,且|a ﹣c |=|b ﹣c |=23|d ﹣a |=1(a ≠b ),则线段BD 的长度为 ___.答案:2【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c|=|b ﹣c|与a≠解析:2【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c |=|b ﹣c |与a ≠b 推出C 为AB 的中点,然后根据题意分类讨论求解即可.【详解】解:(1)由题意,M ,N 间的距离为(222==;∵2MN =, ∴112MN =, 由题意知,在数轴上,M 点在N 点右侧,∴MN 的中点表示的数为1;(2)∵1a c b c -=-=且a b ,∴数轴上点A 、B 与点C 不重合,且到点C 的距离相等,都为1,∴点C 为AB 的中点,2AB =,∵213d a -=, ∴32d a -=, 即:数轴上点A 和点D 的距离为32,讨论如下: 1>若点A 位于点B 左边: ①若点D 在点A 左边,如图所示:此时,37222BD AD AB =+=+=; ②若点D 在点A 右边,如图所示:此时,31222BD AB AD =-=-=; 2>若点A 位于点B 右边:①若点D 在点A 左边,如图所示:此时,31222BD AB AD =-=-=; ②若点D 在点A 右边,如图所示:此时,37222BD AD AB =+=+=; 综上,线段BD 的长度为12或72, 故答案为:2;21;12或72. 【点睛】本题考查数轴上两点间的距离,以及与线段中点相关的计算问题,理解数轴上点的特征以及两点间的距离表示方法,灵活根据题意分类讨论是解题关键.8.对于任意有理数a ,b ,规定一种新的运算a ⊙b =a (a +b )﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____答案:-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,解析:-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.9.若|x|=3,y2=4,且x>y,则x﹣y=_____.答案:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1或5.此题考查了代数式求值,熟练掌握运算法则是解本题的关键. 10.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示).答案:. 【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=. 解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=. “点睛”本题解析:21n n ++. 【详解】根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =21n n ++.解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=21n n ++. “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.11.观察等式:2111==,21342+==,213593++==,21357164+++==,……猜想13572019++++⋅⋅⋅+=______.答案:【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n 个奇数的和,据此可解. 【详解】 解:∵从解析:【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n 个奇数的和,据此可解. 【详解】解:∵从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…;∴从1开始的连续n 个奇数的和:1+3+5+7+…+(2n-1)=n 2; ∴2n-1=2019;∴1+3+5+7…+2019=10102;故答案是:10102.【点睛】此题主要考查学生对规律型题的掌握,关键是要对给出的等式进行仔细观察分析,发现规律,根据规律解题.12.如图,将面积为3的正方形放在数轴上,以表示实数1的点为圆心,正方形的边长为半径,作圆交数轴于点A、B,则点A表示的数为______.答案:.【分析】利用正方形的面积公式求出正方形的边长,再求出原点到点A的距离(即点A 的绝对值),然后根据数轴上原点左边的数为负数即可求出点A表示的数. 【详解】∵正方形的面积为3,∴正方形的边长为解析:13【分析】利用正方形的面积公式求出正方形的边长,再求出原点到点A的距离(即点A的绝对值),然后根据数轴上原点左边的数为负数即可求出点A表示的数.【详解】∵正方形的面积为3,∴3,∴A点距离031∴点A表示的数为13【点睛】本题考查实数与数轴,解决本题时需注意圆的半径即是点A到1的距离,而求A点表示的数时,需求出A点到原点的距离即A点的绝对值,再根据绝对值的性质和数轴上点的特征求解.13.如图所示为一个按某种规律排列的数阵:根据数阵的规律,第7行倒数第二个数是_____.答案:【分析】观察数阵中每个平方根下数字的规律特征,依据规律推断所求数字.【详解】观察可知,整个数阵从每一行左起第一个数开始,从左到右,从上到下,是连续的正整数的平方根,而每一行的个数依次为2、4解析:55【分析】观察数阵中每个平方根下数字的规律特征,依据规律推断所求数字.【详解】观察可知,整个数阵从每一行左起第一个数开始,从左到右,从上到下,是连续的正整数的平方根,而每一行的个数依次为2、4、6、8、10…则归纳可知,第7行最后一个数是56,则第7行倒数第二个数是55.【点睛】本题考查观察与归纳,要善于发现数列的规律性特征.14.在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点.已知点的终结点为,点的终结点为,点的终结点为,这样依次得到、、、、…、…,若点的坐标为,则点的坐标为__________.答案:-3,3【解析】【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(-3,3),点P4的坐标为(-2,-1),点P5的坐标为(2,0),…,从而得到每4次解析:【解析】【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(-3,3),点P4的坐标为(-2,-1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后利用2019=4×504+3可判断点P2019的坐标与点P3的坐标相同.【详解】解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(-3,3),点P4的坐标为(-2,-1),点P5的坐标为(2,0),…,而2019=4×504+3,所以点P2019的坐标与点P3的坐标相同,为(-3,3).故答案为(-3,3).【点睛】本题考查了几何变换:四种变换方式:对称、平移、旋转、位似.掌握在直角坐标系中各种变换的对应的坐标变化规律,是解决问题的关键.15.若()220a-=.则a b=______.答案:1【分析】根据平方数和算术平方根的非负性即可求得a、b的值,再带入求值即可.【详解】∵,∴,∴a-2=0, b+1=0,∴a=2,b=-1,∴=,故答案为:1【点睛】本题主要考解析:1【分析】根据平方数和算术平方根的非负性即可求得a、b的值,再带入a b求值即可.【详解】∵()2a-,20∴()2a-==,20∴a-2=0, b+1=0,∴a=2,b=-1,∴a b=2-=,(1)1故答案为:1【点睛】本题主要考查非负数的性质,解题的关键是掌握偶次乘方的非负性和算数平方根的非负性. 16.在平面直角坐标系中,对于P(x,y)作变换得到P′(﹣y+1,x+1),例如:A1(3,1)作上述变换得到A2(0,4),再将A2做上述变换得到A3___________,这样依次得到A1,A2,A3,…A n;…,则A2018的坐标为___________.答案:(﹣3,1) (0,4) 【分析】按照变换规则可以推出各点坐标每4次一个循环,则2018在一个循环的第二次变换. 【详解】解:按照变换规则,A3坐标为(﹣3,1),A4坐标(0,﹣解析:(﹣3,1) (0,4) 【分析】按照变换规则可以推出各点坐标每4次一个循环,则2018在一个循环的第二次变换. 【详解】解:按照变换规则,A 3坐标为(﹣3,1),A 4坐标(0,﹣2),A 5坐标(3,1)则可知,每4次一个循环, ∵2018=504×4+2, ∴A 2018坐标为(0,4), 故答案为:(﹣3,1),(0,4) 【点睛】本题为平面直角坐标系中的动点坐标探究题,考查了点坐标的变换,解答关键是理解变换规则.17.材料:一般地,n 个相同因数a 相乘:n a a a a a⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 答案:3; . 【分析】由可求出,由,可分别求出,,继而可计算出结果. 【详解】解:(1)由题意可知:, 则,(2)由题意可知: ,, 则,, ∴,故答案为:3;. 【点睛】 本题主解析:3; 1173.【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果. 【详解】解:(1)由题意可知:239=, 则2log 93=, (2)由题意可知:4216=,43=81, 则2log 164=,3log 814=,∴223141(log 16)log 811617333+=+=,故答案为:3;1173.【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键. 18.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______.答案:. 【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值. 【详解】 ∵, ∴,,,, ……∴,每三个数一个循环, ∵, ∴, 则 +--3 -3-++解析:1312. 【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值. 【详解】 ∵13a =-, ∴()211134a ==--,3441131a ,443131a ,()511134a ==--, ……∴1a ,2n a a ⋅⋅⋅每三个数一个循环, ∵202036731÷=⋅⋅⋅, ∴202013a a ==-,则12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+- 143343=--+++14-43-3-3-14+43+3 =-3-14+43+31312=. 故答案为:1312. 【点晴】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.19.一副直角三角只如图①所示叠成,含45︒角的三角尺ADE 固定不动,将含30角的三角尺ABC 绕顶点A 顺时针转动,使BC 与三角形ADE 的一边平行,如图②,当15BAD ∠=︒时,//BC DE ,则()90360BAD BAD ∠︒<∠<︒其他所有符合条件的度数为________.答案:105°、195°、240°和285° 【分析】根据题意画出图形,再由平行线的性质定理即可得出结论. 【详解】 解:如图,当BC ∥AE 时,∠EAB=∠B=60°, ∴∠BAD=∠DAE+∠EAB解析:105°、195°、240°和285°【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图,当BC∥AE时,∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当BC∥DE时,延长BA,交DE于F,则∠AFE=∠B=60°,∴∠DAF=∠AFE-∠D=60°-45°=15°,∴∠DAB=15°+180°=195°;如图,当BC∥AD时,∠CAD=∠C=30°,∴∠BAD=360°-30°-90°=240°;如图,当BC∥AE时,∠CAE=∠C=30°,∴∠CAD=45°-30°=15°,锐角∠DAB=90°-∠CAD=75°,∴旋转角∠DAB=360°-75°=285°,故答案为:105°、195°、240°和285°.【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.20.某段铁路两旁安置了两座可旋转探照灯,主道路是平行,即PQ∥MN.如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动_________秒,两灯的光束互相平行.答案:30或110【分析】分两种情况讨论:两束光平行;两束光重合之后(在灯B射线到达BQ之前)平行,然后利用平行线的性质求解即可.【详解】解:设灯转动t秒,两灯的光束互相平行,即AC∥BD,①当解析:30或110【分析】分两种情况讨论:两束光平行;两束光重合之后(在灯B射线到达BQ之前)平行,然后利用平行线的性质求解即可.【详解】解:设灯转动t秒,两灯的光束互相平行,即AC∥BD,①当0<t≤90时,如图1所示:∵PQ∥MN,则∠PBD=∠BDA,∵AC∥BD,则∠CAM=∠BDA,∴∠PBD=∠CAM有题意可知:2t=30+t解得:t=30,②当90<t<150时,如图2所示:∵PQ∥MN,则∠PBD+∠BDA=180°,∵AC∥BD,则∠CAN=∠BDA,∴∠PBD+∠CAN=180°,∴30+t+(2t-180)=180解得:t=110综上所述,当t=30秒或t=110秒时,两灯的光束互相平行.故答案为:30或110【点睛】本题主要考查补角、角的运算、平行线的性质的应用,解题的关键是熟练掌握平行线的性质,注意分两种情况谈论.21.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD恰好与边AB平行.答案:10或28【分析】作出图形,分①两三角形在点O的同侧时,设CD与OB相交于点E,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然解析:10或28【分析】作出图形,分①两三角形在点O的同侧时,设CD与OB相交于点E,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角∠AOD,再根据每秒旋转10°列式计算即可得解;②两三角形在点O的异侧时,延长BO与CD相交于点E,根据两直线平行,内错角相等可得∠CEO=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角度数,再根据每秒旋转10°列式计算即可得解.【详解】解:①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°-60°=30°,∴∠DOE=∠CEO-∠D=40°-30°=10°,∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°,∵每秒旋转10°,∴时间为100°÷10°=10秒;②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°-60°=30°,∴∠DOE=∠CEO-∠D=40°-30°=10°,∴旋转角为270°+10°=280°,∵每秒旋转10°,∴时间为280°÷10°=28秒;综上所述,在第10或28秒时,边CD恰好与边AB平行.故答案为10或28.【点睛】本题考查了平行线的判定,平行线的性质,旋转变换的性质,难点在于分情况讨论,作出图形更形象直观.22.如图①:MA1∥NA2,图②:MA11NA3,图③:MA1∥NA4,图④:MA1∥NA5,……,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1______.(用含n的代数式表示)答案:【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2解析:n180︒【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2×180∘,如图③中,∠A1+∠A2+∠A3+∠A4=540∘=3×180∘,…,第n个图, ∠A1+∠A2+∠A3+…+∠A n+1学会从=n180︒,故答案为180n︒.点睛:平行线的性质.23.如图,a∥b,∠2=∠3,∠1=40°,则∠4的度数是______度.答案:40【解析】试题分析:如图,分别作a 、b 的平行线,然后根据a ∥b ,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.解析:40【解析】试题分析:如图,分别作a 、b 的平行线,然后根据a ∥b ,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°. 故答案为:40.24.已知//AB CD ,ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,请直接写出α、β、γ的数量关系________.答案:(上式变式都正确)【分析】过点E 作,过点F 作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图解析:90γαβ+=︒+(上式变式都正确)【分析】过点E 作//EM AB ,过点F 作//FN AB ,可得出//////AB EM FN CD (根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图所示,过点E 作//EM AB ,过点F 作//FN AB ,∵//AB CD ,∴//////AB EM FN CD ,∵//AB EM ,∴ABE BEM ∠=∠,∵//EM FN ,∴MEF EFN ∠=∠,∵//NF CD ,∴NFC FCD ∠=∠,∴ABE EFN NFC BEM MEF FCD ∠+∠+∠=∠+∠+∠,∴ABE EFC BEF FCD ∠+∠=∠+∠,∵ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,∴90αγβ+=︒+,故答案为:90αγβ+=︒+.【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.25.如图,△ABC 沿AB 方向平移3个单位长度后到达△DEF 的位置,BC 与DF 相交于点O ,连接CF ,已知△ABC 的面积为14,AB =7,S △BDO ﹣S △COF =___.答案:2【分析】如图,连接CD ,过点C 作CG ⊥AB 于G .利用三角形面积公式求出CG ,再根据S △BDO ﹣S △COF =S △CDB ﹣S △CDF =求解即可.【详解】解:如图,连接CD ,过点C 作CG ⊥AB 于解析:2【分析】如图,连接CD ,过点C 作CG ⊥AB 于G .利用三角形面积公式求出CG ,再根据S △BDO ﹣S △COF =S △CDB ﹣S △CDF =1122DB CG CF CG ⋅⋅-⋅⋅求解即可. 【详解】解:如图,连接CD ,过点C 作CG ⊥AB 于G .∵S △ABC =12•AB •CG ,∴CG =2147⨯=4, ∵AD =CF =3,AB =7,∴BD =AB ﹣AD =7﹣3=4,∴S △BDO ﹣S △COF =S △CDB ﹣S △CDF =1111443422222DB CG CF CG ⋅-⋅⋅=⨯⨯-⨯⨯=, 故答案为:2.【点睛】本题考查三角形的面积,平移变换等知识,解题的关键是学会用转化的思想思考问题. 26.如图,将一张长方形纸片ABCD 沿EF 折叠,点D 、C 分别落在点D '、C ′的位置处,若∠1=56°,则∠EFB 的度数是___.答案:62°【分析】根据折叠性质得出∠DED′=2∠DEF ,根据∠1的度数求出∠DED′,即可求出∠DEF 的度数,进而得到答案.【详解】解:由翻折的性质得:∠DED′=2∠DEF,∵∠1=56°解析:62°【分析】根据折叠性质得出∠DED′=2∠DEF,根据∠1的度数求出∠DED′,即可求出∠DEF的度数,进而得到答案.【详解】解:由翻折的性质得:∠DED′=2∠DEF,∵∠1=56°,∴∠DED′=180°-∠1=124°,∴∠DEF=62°,又∵AD∥BC,∴∠EFB=∠DEF=62°.故答案为:62°.【点睛】本题考查了平行线的性质,翻折变换的性质,邻补角定义的应用,熟记折叠的性质是解题的关键.∠=︒则∠4的度数是___度.27.如图,a∥b,∠2=∠3,140,答案:40【分析】分别作a∥c,a∥d,则a∥b∥c∥d,由题可知根据平行线的性质得出再用等式的性质得出再根据平行线的性质由a∥c,b∥d,得出即可得出.【详解】如图,作a∥c,a∥d,则a∥b∥解析:40【分析】∠+∠=∠+∠根据平行线的性质得出分别作a∥c,a∥d,则a∥b∥c∥d,由题可知5678,67,∠=∠再根据平行线的性质由a∥c,b∥d,得出∠=∠再用等式的性质得出58,∠=∠∠=∠即可得出144015,48,∠=∠=︒.【详解】如图,作a∥c,a∥d,则a∥b∥c∥d,∵∠2=∠3,∠+∠=∠+∠∴5678,又∵c∥d,∠=∠∴67,∠=∠∴58,∵a∥c,b∥d,∠=∠∠=∠∴15,48,∠=∠=︒∴1440,故答案为:40.【点睛】本题考查平行线的判定与性质,解题关键是熟练掌握平行线的判定与性质;两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行.BC=,将长方形ABCD沿着BC方向平移得到28.如图,在长方形ABCD中,4AB=,6''''.若ABB A''是正方形,则四边形ABC D''的周长是______.长方形A B C D答案:28【分析】根据平移的性质求出,再由长方形的周长公式求解即可.【详解】解:由题意可知,四边形是正方形,∴,,又∵长方形由长方形平移得到,∴∵∴四边形的周长为:故答案为:28【点解析:28【分析】根据平移的性质求出10BC '=,再由长方形的周长公式求解即可.【详解】解:由题意可知,四边形ABB A ''是正方形,∴4BB AB '==,642B C BC '==-=,又∵长方形A B C D ''''由长方形ABCD 平移得到,∴6B C BC ''==∵4610BC BB B C ''''=+=+=∴四边形ABC D '的周长为:(104)228+⨯=故答案为:28【点睛】此题主要考查了平移的性质,求出10BC '=是解答此题的关键.29.一副三角板按如图所示(共定点A )叠放在一起,若固定三角板ABC ,改变三角板ADE 的位置(其中A 点位置始终不变),当∠BAD =___°时,DE ∥AB .答案:30或150【分析】分两种情况,根据ED ∥AB ,利用平行线的性质,即可得到∠BAD 的度数.【详解】解:如图1所示:当ED ∥AB 时,∠BAD=∠D=30°;如图2所示,当ED ∥AB 时,∠D解析:30或150【分析】分两种情况,根据ED ∥AB ,利用平行线的性质,即可得到∠BAD 的度数.【详解】解:如图1所示:当ED ∥AB 时,∠BAD =∠D =30°;如图2所示,当ED ∥AB 时,∠D =∠BAD =180°,∵∠D =30°∴∠BAD =180°-30°=150°;故答案为:30°或150°.【点睛】本题主要考查了平行线的判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由直线的平行关系来寻找角的数量关系.30.对于正整数a ,我们规定:若a 为奇数,则()f a 3a 1=+;若a 为偶数,则()a f a .2=例如()f 15315146=⨯+=,()8f 842==,若1a 16=,()21a f a =,()32a f a =,()43a f a =,⋯,依此规律进行下去,得到一列数1a ,2a ,3a ,4a ,⋯,n a ,(n ⋯为正整数),则1232018a a a a +++⋯+=______.答案:4728【分析】先求出,,,,寻找规律后即可解决问题.【详解】由题意,,,,,,, ,从开始,出现循环:4,2,1,,。

安徽省六安市汇文中学2023-2024学年七年级下学期期末数学试题

安徽省六安市汇文中学2023-2024学年七年级下学期期末数学试题

安徽省六安市汇文中学2023-2024学年七年级下学期期末数学试题一、单选题1.下列各数中:0,227π,0.2424424442,无理数有( ) A .1个 B .2个 C .3个 D .4个2.若a b <,0c <,则下列结论正确的是( )A .a b -<-B .a b c c <C .22ac bc <D .a c b c +>+ 3.据报道,中国医学研究人员通过研究获得了纯化灭活新冠病毒疫苗,该疫苗在低温电镜下呈椭圆形颗粒,最小直径约为90nm ,已知91nm 10m -=,则90nm 用科学记数法表示为( )A .60.0910m ⨯B .70.910m -⨯C .8910m -⨯D .99010m -⨯ 4.不等式232x x +>-的解集在数轴上表示正确的是( )A .B .C .D .5.下列运算正确的是( )A .()236a a -=B .824a a a ÷=C .336a a a +=D .55a a a ⋅= 6.化简111x x x+--的结果为( ) A .1- B .0 C .1± D .17.如()x m +与()3x +的乘积中不含x 的一次项,则m 的值为( )A .3-B .3C .0D .18.已知225x mx -+是完全平方式,则常数m 的值为( )A .10B .10±C .20-D .20±9.直线1l 和2l ,被直线3l 所截,形成的夹角如图所示,那么添加下列哪个条件后,可判定1l 2l ∥的是( )A .12∠=∠B .13180∠+∠=︒C .12180∠+∠=︒D .15180∠+∠=︒10.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(22831=-,221653=-,即8,16均为“和谐数”),在不超过2024的正整数中,所有的“和谐数”之和为( )A .257048B .257024C .255048D .255024二、填空题1112.因式分解:24mn m -=.13.若关于x 的一元一次不等式组231220x x a +>⎧⎨-≤⎩恰有3个整数解,则实数a 的取值范围是. 14.一张对边互相平行的纸条折成如图,EF 是折痕,若32EFB ∠=︒,则:①'32C EF ∠=︒;②148AEC ∠=︒;③64BGE ∠=︒;④116BFD ∠=︒.以上结论正确的有(填序号)三、解答题15.计算:()()12024011π334-⎛⎫--+--- ⎪⎝⎭ 16.已知一个正数x 的两个平方根分别是23a -和5a -,求a 和x 的值.17.解不等式组121123x x x x -<⎧⎪+⎨<+⎪⎩,并把它的解集表示在数轴上:18.先化简,再求值2222421121x x x x x x x ---÷+--+,其中2x =. 19.观察以下等式:第1个等式:11912412+=⨯-, 第2-个等式:11182291+=⨯-, 第3个等式:11125231612+=⨯-, 第4个等式:1111824251+=⨯-, ……按照以上规律,解决下列问题:(1)写出第5个等式:__________________;(2)写出你猜想的第n 个等式(用含n 的等式表示),并证明.20.在正方形网格中,每个小正方形的边长均为1个单位长度,ABC V 的三个顶点的位置如图所示,现将ABC V 平移,点A 平移到点D 的位置,B 、C 点平移后的对应点分别是E 、F .(1)画出平移后的DEF V ;(2)线段BE 、CF 之间关系是__________(3)DEF V 的面积是__________21.如图,已知12180AGF ABC ∠=∠∠+∠=︒,,(1)试判断BF 与DE 的位置关系,并说明理由;(2)若2135BF AC ⊥∠=︒,,求AFG ∠的度数.22.2023年,贵州省出台“引客人黔”团队旅游及营销奖励办法,助推旅游市场强劲复苏.某旅行社5月1日租住某景区A 、B 两种客房一天下面是有关信息:用6000元租到A 客房的数量与用4400元租到B 客房的数量相等.已知每间A 客房的单价比每间B 客房的单价多80元.(1)求A ,B 两种客房的单价分别是多少;(2)若租住A ,B 两种客房共30间,A 客房的数量不低于B 客房数量的12,且所花总费用不高于7600元,求有哪几种租住方案.23.(1)【问题】如图1,若AB CD ∥,25BEP ∠︒=,150PFC ∠=︒.求EPF ∠的度数;(2)【问题迁移】如图2,AB CD ∥,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)【联想拓展】如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示∠G 的度数.。

安徽省六安市2017_2018学年七年级数学下册期末试卷(含答案)

安徽省六安市2017_2018学年七年级数学下册期末试卷(含答案)

安徽省六安市2017-2018学年七年级数学下学期期末试题一、选择题(本题共10小题,每小题4分,满分40分)1.-8的立方根是( )A .±2B .-2C .0D .22.下列运算正确的是( )A .()532a a =B .842a a a =∙C .236a a a =÷D .()333b a ab = 3.不等式128>-x 的解集是( ) A .x <10 B .x >9 C .x >6 D .x >104.我们的生活离不开氧气,已知氧原子的半径大约是0.000000000074米,那么0.000000000074用科学记数法表示为( )A.101074.0-⨯B.11104.7-⨯C.121074-⨯D.11104.7⨯5.下列分解因式正确的是( )A .)4(42+-=+-x x x xB .)(2y x x x xy x+=++ C .2)()()(y x x y y y x x -=-+- D .)2)(2(442-+=+-x x x x6. 如图,AB//CD ,EG ⊥AB ,∠1=50°,则∠E 的度数等于( )A .30°B .40°C .50°D .60°7.化简a 2b -ab 2b -a的结果是( ) A .-ab B .ab C .a 2-b 2 D .b 2-a 28.已知x+y=-5,xy=3,则x ²+y ²=( )A .25B .-25C .19D .-199.下列说法:①两条直线被第三条直线所截,内错角相等;②过一点有且只有一条直线与已知直线垂直;③在连接直线外一点与直线上各点的线段中,垂线段最短;④如果两个角相等,那么这两个角是对顶角.其中正确的结论的个数是( )A .4个B .3个C .2个D .1个10.定义新运算“△”,a△b=ab a +b ,如:2△3=65,则:①a△a=a 2;②2△x=1的解是x =2;③若(x +1)△(x-1)的值为0,则x =1;④1a△1+2a△2+-3a△(-3)=3,上述结论中正确的是( )A .①②④B .①③④C .①②③D .①②③④二、填空题(本题共4小题,每小题5分,满分20分)11.比较大小:21-5 53;12.在实数范围内分解因式x 4 – 4 = ;13.若4x ²+kx+9是完全平方式,则k = ;14.已知关于x 的不等式组⎩⎨⎧≥->+023032x ax a 恰有3个整数解,则a 的取值范围是 .七年级数学学科期末考试答题卷 时间:120分钟 满分:150分一、选择题(本题有10小题,每小题 4分,共40分) 二、填空题(本题有4小题,每小题5分,共20分) 11.______________________ 12._________________________ 13.______________________ 14._________________________ 三、解答题(本题有9小题,共90分) 15.(8分)计算:20328)2(5-+⨯+-- 16.(8分)解方程:12111+-=-+x x x 17.(8分)解不等式组⎪⎩⎪⎨⎧≥2->21-51-x 43x x x ,并把解集在数轴上表示出来.。

2016-2017年安徽省六安市七年级(下)期末数学试卷(解析版)

2016-2017年安徽省六安市七年级(下)期末数学试卷(解析版)

2016-2017学年安徽省六安市七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)﹣8的立方根是()A.2B.﹣2C.±2D.﹣2.(4分)下列实数中是无理数的是()A.B.C.0.101001D.3.(4分)若实数x和y满足x>y,则下列式子中错误的是()A.2x﹣6>2y﹣6B.x+1>y+1C.﹣3x>﹣3y D.﹣<﹣4.(4分)如图,下列各组角中,是对顶角的一组是()A.∠1和∠2B.∠2和∠3C.∠2和∠4D.∠1和∠5 5.(4分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a66.(4分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a27.(4分)如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=58°,则下列结论错误的是()A.∠3=58°B.∠4=122°C.∠5=42°D.∠2=58°8.(4分)如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q =0,则m,n,p,q四个有理数中,绝对值最小的一个是()A.p B.q C.m D.n9.(4分)如图,以表示2的点为圆心,以边长为1的正方形的对角线长为半径画弧与数轴交于点A,则点A表示的数为()A.B.﹣1C.﹣2D.2﹣10.(4分)不等式组的整数解有4个,则a的取值范围是()A.﹣2≤a<﹣1B.﹣2<a<﹣1C.﹣2≤a≤﹣1D.﹣2<a≤﹣1二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)分解因式:3x2﹣3y2=.12.(5分)我们的生活离不开氧气.已知氧原子的半径大约是0.000000000074米,0.000000000074米用科学记数法表示为米.13.(5分)夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为800m,且桥宽忽略不计,则小桥的总长为m.14.(5分)有下列说法:①两条直线被第三条直线所截,内错角相等;②过一点有且只有一条直线与已知直线垂直;③在连接直线外一点与直线上各点的线段中,垂线段最短;④在同一平面中,两条直线不相交就平行.其中正确的结论是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.(8分)先化简,再求值:÷(a﹣),其中a=﹣8.16.(8分)如图,用相同的小正方形按照某种规律进行摆放.根据图中小正方形的排列规律解答下列问题:(1)第5个图中有个小正方形,第6个图中有个小正方形;(2)写出你猜想的第n个图中小正方形的个数是(用含n的式子表示).四、(本大题共2小题,每小题8分,满分16分)17.(8分)解不等式组.请结合题意填空,完成本题的解答.(1)解不等式①,得:;(2)解不等式②,得:;(3)把不等式①和②的解集在数轴上表示出来;(4)不等式组的解集为:.18.(8分)外商要买项链和发箍一共48个,项链每条10元,发箍每个13元,但总费用不能超过580元,发箍好卖,外商要买尽可能多的发箍,问外商最多能买到发箍多少个?五、(本大题共2小题,每小题10分,满分20分)19.(10分)已知实数m,n满足m+n=6,mn=﹣3.(1)求(m﹣2)(n﹣2)的值;(2)求m2+n2的值.20.(10分)甲、乙两名同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校;乙同学骑自行车去学校.已知乙骑自行车的速度是甲步行速度的2倍,公交车的速度是乙骑自行车的速度的2倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求甲步行的速度;(2)当甲到达学校时,乙同学离学校还有多远?六、(本题满分12分)21.(12分)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A 等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?七、(本题满分12分)22.(12分)如图a,点E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=22°,∠D=61°,则∠AED的度数为;②若∠A=32°,∠D=45°,则∠AED的度数为;③猜想图a中∠AED、∠EAB、∠EDC之间的关系并说明理由.(2)拓展应用:如图b,射线FE与长方形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的四个区域(不含边界,其中区域①②位于直线AB的上方,区域③④位于直线AB的下方、直线CD的上方),点P是位于以上四个区域内的点,连接PE,PF,猜想∠PEB、∠PFC、∠EPF之间的关系(不要求写出过程).八、(本题满分14分)23.(14分)如图①,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边的长为3.将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC的重叠部分(如图②中阴影部分)的面积记为S,设点A的移动距离AA′=x.(1)填空:数轴上点A表示的数为;(2)求当S=4时x的值;(3)长方形纸片平移到某一位置时,S恰好等于原长方形OABC面积的一半,求此时x的值和数轴上点A′表示的数;(4)若点D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.2016-2017学年安徽省六安市七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)﹣8的立方根是()A.2B.﹣2C.±2D.﹣【考点】24:立方根.【解答】解:﹣8的立方根是:=﹣2.故选:B.2.(4分)下列实数中是无理数的是()A.B.C.0.101001D.【考点】26:无理数.【解答】解:=3,=2,0.101001均为有理数,为无理数.故选:D.3.(4分)若实数x和y满足x>y,则下列式子中错误的是()A.2x﹣6>2y﹣6B.x+1>y+1C.﹣3x>﹣3y D.﹣<﹣【考点】C2:不等式的性质.【解答】解:A、∵x>y,∴2x﹣6>2y﹣6,故此选项正确,不合题意;B、∵x>y,∴x+1>y+1,故此选项正确,不合题意;C、∵x>y,∴﹣3x<﹣3y,故此选项错误,符合题意;D、∵x>y,∴﹣<﹣,故此选项正确,不合题意;故选:C.4.(4分)如图,下列各组角中,是对顶角的一组是()A.∠1和∠2B.∠2和∠3C.∠2和∠4D.∠1和∠5【考点】J2:对顶角、邻补角.【解答】解:由对顶角的定义可知:∠3和∠5是一对对顶角,∠2和∠4是一对对顶角.故选:C.5.(4分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a6【考点】46:同底数幂的乘法;47:幂的乘方与积的乘方.【解答】解:a•a5﹣(2a3)2=a6﹣4a6=﹣3a6.故选:D.6.(4分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a2【考点】66:约分.【解答】解:==﹣ab.故选:B.7.(4分)如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=58°,则下列结论错误的是()A.∠3=58°B.∠4=122°C.∠5=42°D.∠2=58°【考点】JA:平行线的性质.【解答】解:∵a∥b,∠1=58°,∴∠3=∠1=58°,∠2=∠1=58°,∠4=180°﹣∠3=180°﹣58°=122°,∵三角板为直角三角板,∴∠5=90°﹣∠3=90°﹣58°=32°.故选项A、B、D正确,故选:C.8.(4分)如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q =0,则m,n,p,q四个有理数中,绝对值最小的一个是()A.p B.q C.m D.n【考点】13:数轴;15:绝对值.【解答】解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最小的点M表示的数m,故选:C.9.(4分)如图,以表示2的点为圆心,以边长为1的正方形的对角线长为半径画弧与数轴交于点A,则点A表示的数为()A.B.﹣1C.﹣2D.2﹣【考点】29:实数与数轴.【解答】解:由勾股定理得:正方形的对角线为,设点A表示的数为x,则2﹣x=,解得x=2﹣.故选:D.10.(4分)不等式组的整数解有4个,则a的取值范围是()A.﹣2≤a<﹣1B.﹣2<a<﹣1C.﹣2≤a≤﹣1D.﹣2<a≤﹣1【考点】CC:一元一次不等式组的整数解.【解答】解:由不等式组有整数解知,不等式组的解集为a<x<3.又∵不等式组共有4个整数解,∴不等式组的整数解为﹣1,0,1,2,∴﹣2≤a<﹣1.故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)分解因式:3x2﹣3y2=3(x+y)(x﹣y).【考点】55:提公因式法与公式法的综合运用.【解答】解:原式=3(x2﹣y2)=3(x+y)(x﹣y),故答案为:3(x+y)(x﹣y)12.(5分)我们的生活离不开氧气.已知氧原子的半径大约是0.000000000074米,0.000000000074米用科学记数法表示为7.4×10﹣11米.【考点】1J:科学记数法—表示较小的数.【解答】解:0.000000000074米用科学记数法表示为7.4×10﹣11米,故答案为:7.4×10﹣11.13.(5分)夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为800m,且桥宽忽略不计,则小桥的总长为400m.【考点】Q1:生活中的平移现象.【解答】解:∵荷塘周长为800m,∴小桥总长为:800÷2=400(m).故答案为:400.14.(5分)有下列说法:①两条直线被第三条直线所截,内错角相等;②过一点有且只有一条直线与已知直线垂直;③在连接直线外一点与直线上各点的线段中,垂线段最短;④在同一平面中,两条直线不相交就平行.其中正确的结论是②③④(填序号).【考点】J2:对顶角、邻补角;J3:垂线;J4:垂线段最短;J6:同位角、内错角、同旁内角;JA:平行线的性质.【解答】解:①两条平行直线被第三条直线所截,内错角相等,故错误;②过一点有且只有一条直线与已知直线垂直,故正确;③在连接直线外一点与直线上各点的线段中,垂线段最短,故正确;④在同一平面中,两条直线不相交就平行,故正确.故答案为:②③④.三、(本大题共2小题,每小题8分,满分16分)15.(8分)先化简,再求值:÷(a﹣),其中a=﹣8.【考点】6D:分式的化简求值.【解答】解:原式=÷=÷=•=当a=﹣8时,原式==﹣.16.(8分)如图,用相同的小正方形按照某种规律进行摆放.根据图中小正方形的排列规律解答下列问题:(1)第5个图中有41个小正方形,第6个图中有55个小正方形;(2)写出你猜想的第n个图中小正方形的个数是n2+3n+1(用含n的式子表示).【考点】38:规律型:图形的变化类.【解答】解:(1)∵第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;∴第5个图形共有小正方形的个数为6×6+5=41,第6个图形共有小正方形的个数为7×7+6=55,故答案为:41、55;(2)由(1)知第n个图形共有小正方形的个数为(n+1)2+n=n2+3n+1,故答案为:n2+3n+1.四、(本大题共2小题,每小题8分,满分16分)17.(8分)解不等式组.请结合题意填空,完成本题的解答.(1)解不等式①,得:x<3;(2)解不等式②,得:x≥﹣4;(3)把不等式①和②的解集在数轴上表示出来;(4)不等式组的解集为:﹣4≤x<3.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【解答】解:(1)不等式①,得x<3;(2)不等式②,得x≥﹣4;(3)把不等式①和②的解集在数轴上表示出来,4)原不等式组的解集为﹣4≤x<3.故答案分别为:x<3,x≥﹣4,﹣4≤x<3.18.(8分)外商要买项链和发箍一共48个,项链每条10元,发箍每个13元,但总费用不能超过580元,发箍好卖,外商要买尽可能多的发箍,问外商最多能买到发箍多少个?【考点】C9:一元一次不等式的应用.【解答】解:设外商买了发箍x个,则买了项链(48﹣x)条.根据题意得10(48﹣x)+13x≤580,(3分)解得x≤.(6分)因为x为整数,所以x的最大值为33.(7分)答:外商最多能买到发箍33个.(8分)五、(本大题共2小题,每小题10分,满分20分)19.(10分)已知实数m,n满足m+n=6,mn=﹣3.(1)求(m﹣2)(n﹣2)的值;(2)求m2+n2的值.【考点】4C:完全平方公式.【解答】解:(1)因为m+n=6,mn=﹣3,所以(m﹣2)(n﹣2)=mn﹣2m﹣2n+4=mn﹣2(m+n)+4=﹣3﹣2×6+4=﹣11.(2)m2+n2=(m+n)2﹣2mn=62﹣2×(﹣3)=36+6=42.20.(10分)甲、乙两名同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校;乙同学骑自行车去学校.已知乙骑自行车的速度是甲步行速度的2倍,公交车的速度是乙骑自行车的速度的2倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求甲步行的速度;(2)当甲到达学校时,乙同学离学校还有多远?【考点】B7:分式方程的应用.【解答】解:(1)设甲步行的速度为x米/分,则乙骑自行车的速度为2x米/分,公交车的速度为4x米/分.根据题意得++2=,解得x=150.经检验,x=150是原分式方程的解.答:甲步行的速度为150米/分.(2)由(1)知乙骑自行车的速度为150×2=300(米/分),300×2=600(米).答:当甲到达学校时,乙同学离学校还有600米.六、(本题满分12分)21.(12分)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A 等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?【考点】9A:二元一次方程组的应用;C9:一元一次不等式的应用.【解答】解:(1)设孔明同学测试成绩为x分,平时成绩为y分,依题意得:解之得:答:孔明同学测试成绩为90分,平时成绩为95分;(2)由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.(3)设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a分,根据题意可得:20+80%a≥80,解得:a≥75答:他的测试成绩应该至少为75分.七、(本题满分12分)22.(12分)如图a,点E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=22°,∠D=61°,则∠AED的度数为83°;②若∠A=32°,∠D=45°,则∠AED的度数为77°;③猜想图a中∠AED、∠EAB、∠EDC之间的关系并说明理由.(2)拓展应用:如图b,射线FE与长方形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的四个区域(不含边界,其中区域①②位于直线AB的上方,区域③④位于直线AB的下方、直线CD的上方),点P是位于以上四个区域内的点,连接PE,PF,猜想∠PEB、∠PFC、∠EPF之间的关系(不要求写出过程).【考点】IK:角的计算;JA:平行线的性质.【解答】解:(1)③∠AED=∠EAB+∠EDC.理由如下:如图,过点E作EF∥AB.∵AB∥CD,∴AB∥EF∥CD,∴∠2=∠EDC,∠1=∠EAB,∴∠1+∠2=∠EAB+∠EDC,即∠AED=∠EAB+∠EDC.若∠A=22°,∠D=61°,则∠AED=22°+61°=83°;若∠A=32°,∠D=45°,则∠AED=32°+45°=87°.故答案为:①83°②77°(2)当点P位于区域①时,∠PEB=∠PFC+∠EPF.当点P位于区域②时,∠PEB=∠PFC﹣∠EPF.当点P位于区域③时,∠PEB+∠PFC+∠EPF=360°.当点P位于区域④时,∠EPF=∠PEB+∠PFC.八、(本题满分14分)23.(14分)如图①,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边的长为3.将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC的重叠部分(如图②中阴影部分)的面积记为S,设点A的移动距离AA′=x.(1)填空:数轴上点A表示的数为4;(2)求当S=4时x的值;(3)长方形纸片平移到某一位置时,S恰好等于原长方形OABC面积的一半,求此时x的值和数轴上点A′表示的数;(4)若点D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.【考点】LO:四边形综合题.【解答】解:(1)∵长方形OABC的面积为12,OC边长为3,∴OA=12÷3=4,∴数轴上点A表示的数为4,故答案为:4.(2)由图可得:S=3(4﹣x)=12﹣3x.当S=4时,即12﹣3x=4,解得x=.(3)∵S等于原长方形OABC面积的一半,∴S=6,即12﹣3x=6,解得x=2.当向左运动时,如图1,A′表示的数为2;当向右运动时,如图2,∵O′A′=AO=4,∴OA′=4+4﹣2=6,∴A′表示的数为6.(4)当长方形ABCD沿数轴正方向运动时,点D,E表示的数均为正数,不符合题意;当点D,E所表示的数互为相反数时,长方形ABCD沿数轴负方向运动,画出草图如下:∵点D所表示的数为4﹣x,点E所表示的数为﹣x,依题意得4﹣x﹣x=0,解得x=.。

六安市数学七年级下学期期末数学试题题

六安市数学七年级下学期期末数学试题题

六安市数学七年级下学期期末数学试题题一、选择题1.已知∠1与∠2是同位角,则( )A .∠1=∠2B .∠1>∠2C .∠1<∠2D .以上都有可能 2.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( )A .﹣4B .2C .3D .4 3.下列等式从左到右的变形属于因式分解的是( )A .a 2﹣2a+1=(a ﹣1)2B .a (a+1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .211()x x x x+=+ 4.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=-5.如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则E ∠=( )A .25︒B .65︒C .90︒D .115︒6.若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .67.计算a 10÷a 2(a≠0)的结果是( )A .5aB .5a -C .8aD .8a -8.将一副三角板如图放置,作CF //AB ,则∠EFC 的度数是( )A .90°B .100°C .105°D .110° 9.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .010.下列调查中,适宜采用全面调查方式的是( )A .考察南通市民的环保意识B .了解全国七年级学生的实力情况C .检查一批灯泡的使用寿命D .检查一枚用于发射卫星的运载火箭的各零部件 二、填空题11.多项式2412xy xyz +的公因式是______.12.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D '、C '的位置,ED '的延长线与BC 相交于点G ,若∠EFG =50°,则∠1=_______.13.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.14.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______.15.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________.16.如图,∠1、∠2是△ABC 的外角,已知∠1+∠2=260°,求∠A 的度数是______.17.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.18.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.19.()22x y --=_____.20.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=_____.三、解答题21.先化简,再求值:()()()()2212112,x x x x x --+---其中2230x x --=.22.已知a 6=2b =84,且a <0,求|a ﹣b|的值.23.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n (此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.…… ……(1)请直接写出(a +b )4=__________;(2)利用上面的规律计算:①24+4×23+6×22+4×2+1=__________;②36-6×35+15×34-20×33+15×32-6×3+1=________.24.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.25.如图,有一块长为(3)a b +米,宽为(2)a b +米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a 米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.26.已知下列等式:①32-12=8,②52-32=16,③72-52=24,…(1)请仔细观察,写出第5个式子;(2)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立.27.好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在ABC ∆中,点I 是ABC ∠、ACB ∠的平分线的交点,点D 是MBC ∠、NCB ∠平分线的交点,,BI DC 的延长线交于点E .(1)若50BAC ∠=︒,则BIC ∠= °;(2)若BAC x ∠=︒ (090x <<),则当ACB ∠等于多少度(用含x 的代数式表示)时,//CE AB ,并说明理由;(3)若3D E ∠=∠,求BAC ∠的度数.28.先化简,再求值:4(x ﹣1)2﹣(2x +3)(2x ﹣3),其中x =﹣1.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据同位角的定义和平行线的性质判断即可.【详解】解:∵只有两直线平行时,同位角才可能相等,∴当没有限定“两直线平行”时,已知∠1与∠2是同位角可以得出∠1=∠2或∠1>∠2或∠1<∠2,三种情况都有可能.故选:D.【点睛】本题考查了同位角的定义和平行线的性质,正确理解同位角的定义是解此题的关键,“两直线平行”这个前提条件易遗漏.2.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】解:(4x-a)(x+1),=4x2+4x-ax-a,=4x2+(4-a)x-a,∵积中不含x的一次项,∴4-a=0,解得a=4.故选D.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.3.A解析:A【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、是因式分解,故A正确;B、是整式的乘法运算,故B错误;C、是单项式的变形,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:A.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.4.A解析:A【分析】根据长方形的面积=长⨯宽,分别表示出甲乙两个图形的面积,即可得到答案.【详解】解:()()=S a b a b +-甲,()()2222==S a a b b a b a ab ab b a b -+-=-+--乙. 所以()()a b a b +-22=a b -故选A .【点睛】本题考查平方差公式,难度不大,通过计算两个图形的面积即可顺利解题.5.C解析:C【分析】先根据平行线的性质求出∠EFB 的度数,再利用三角形的外角性质解答即可.【详解】解:∵AB ∥CD ,115C ∠=︒,∴115EFB C ∠=∠=︒,∵EFB A E ∠=∠+∠,25A ∠=︒∴1152590E ∠=︒-︒=︒.故选:C .【点睛】本题考查了平行线的性质和三角形的外角性质,属于基础题型,熟练掌握上述基本知识是解题关键.6.C解析:C【分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x -<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a -<0, ∴0≤a <4; 解方程21236x a a x +++=+得:x=52a -, ∵方程的解为非负整数, ∴52a -≥0, ∴a ≤5,又∵0≤a <4,∴a=1, 3,∴1+3=4, ∴所有满足条件的整数a 的值之和为4.故选:C .【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.7.C解析:C【解析】【分析】根据同底数幂的除法法则即可得.【详解】1021028(0)a a a a a -÷==≠故选:C.【点睛】本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.8.C解析:C【分析】根据等腰直角三角形求出∠BAC ,根据平行线求出∠ACF ,根据三角形内角和定理求出即可.【详解】解:∵△ACB 是等腰直角三角形,∴∠BAC =45°,∵CF //AB ,∴∠ACF =∠BAC =45°,∵∠E =30°,∴∠EFC =180°﹣∠E ﹣∠ACF =105°,故选:C .【点睛】本题考查了三角形的内角和定理和平行线的性质,能求出各个角的度数是解此题的关键.9.D解析:D【分析】先将2变形为()31-,再根据平方差公式求出结果,根据规律得出答案即可.【详解】解:2416(31)(31)(31)(31)(31)-+++⋯+22416(31)(31)(31)(31)=-++⋯+4416(31)(31)(31)=-+⋯+3231=-133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,⋯∴3n 的个位是以指数1到4为一个周期,幂的个位数字重复出现,3248÷=,故323与43的个位数字相同即为1,∴3231-的个位数字为0,∴248162(31)(31)(31)(31)(31)⨯+++++的个位数字是0.故选:D .【点睛】本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键. 10.D解析:D【分析】调查方式的选择需要将全面调查的局限性和抽样调查的必要性结合起来,具体问题具体分析,全面调查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择全面调查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,全面调查就受到限制,这时就应选择抽样调查.【详解】解:A 、考察南通市民的环保意识,人数较多,不适合全面调查;B 、了解全国七年级学生的实力情况,人数较多,不适合全面调查;C 、检查一批灯泡的使用寿命,数量较多,且具有破坏性,不适合全面调查;D 、检查一枚用于发射卫星的运载火箭的各零部件,较为严格,必须采用全面调查, 故选D.【点睛】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果和普查得到的调查结果比较近似.二、填空题11.【分析】根据公因式的定义即可求解.【详解】∵=(y+3z ),∴多项式的公因式是,故答案为:.【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.解析:4xy【分析】根据公因式的定义即可求解.【详解】∵2412xy xyz +=4xy (y+3z ),∴多项式2412xy xyz +的公因式是4xy , 故答案为:4xy .【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.12.;【解析】分析:先根据平行线的性质得∠DEF=∠EFG=50°,∠1=∠GED,再根据折叠的性质得∠DEF=∠GEF=50°,则∠GED=100°,即可得到结论.详解:∵DE∥GC,∴∠DEF解析:100︒;【解析】分析:先根据平行线的性质得∠DEF =∠EFG =50°,∠1=∠GED ,再根据折叠的性质得∠DEF =∠GEF =50°,则∠GED =100°,即可得到结论.详解:∵DE ∥GC ,∴∠DEF =∠EFG =50°,∠1=∠GED .∵长方形纸片沿EF 折叠后,点D 、C 分别落在点D ′、C ′的位置,∴∠DEF =∠GEF =50°,即∠GED =100°,∴∠1=∠GED =100°. 故答案为100.点睛:本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了折叠的性质.13.105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BD解析:105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.14.8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为解析:8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.15.【分析】由是完全平方式,得到从而可得答案.【详解】解:方法一、方法二、由是完全平方式,则有两个相等的实数根,,故答案为:【点睛】本题考查的是完全平方式解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.【详解】解:方法一、 ()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=± 18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.±【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.16.80°【分析】先根据三角形外角性质得出∠A+∠ACB+∠A+∠ABC=260°,再根据三角形内角和定理得出∠A+∠ACB+∠ABC=180°,即得.【详解】解:∵∠1、∠2是△ABC的外角,解析:80°【分析】先根据三角形外角性质得出∠A+∠ACB+∠A+∠ABC=260°,再根据三角形内角和定理得出∠A+∠ACB+∠ABC=180°,即得.【详解】解:∵∠1、∠2是△ABC的外角,∠1+∠2=260°,∴∠A+∠ACB+∠A+∠ABC=260°,∵∠A+∠ACB+∠ABC=180°,∴∠A=80°,故答案为:80°.【点睛】本题考查了三角形内角和定理和三角形外角性质的应用,能根据三角形的外角性质得∠A+∠ACB+∠A+∠ABC=260°是解题关键.17.4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,解析:4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,y个B品牌足球,依题意,得:60x+75y=1500,解得:y=20−45 x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.18.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab=7,∴ab=1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.19.x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b)2=a2±2ab+b2.【详解】解:(﹣x﹣2y)2=x2+4xy+4y2.故答案为:x2+4xy+4y2解析:x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b)2=a2±2ab+b2.【详解】解:(﹣x ﹣2y )2=x 2+4xy +4y 2.故答案为:x 2+4xy +4y 2.【点睛】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.该题要求熟练掌握完全平方公式,并灵活运用.20.10cm【分析】依据AE 是△ABC 的边BC 上的中线,可得CE =BE ,再根据AE =AE ,△ACE 的周长比△AE B 的周长多2cm ,即可得到AC 的长.【详解】解:∵AE 是△ABC 的边BC 上的中线,解析:10cm【分析】依据AE 是△ABC 的边BC 上的中线,可得CE =BE ,再根据AE =AE ,△ACE 的周长比△AEB 的周长多2cm ,即可得到AC 的长.【详解】解:∵AE 是△ABC 的边BC 上的中线,∴CE =BE ,又∵AE =AE ,△ACE 的周长比△AEB 的周长多2cm ,∴AC−AB =2cm ,即AC−8cm =2cm ,∴AC =10cm ,故答案为10cm.【点睛】本题考查了三角形中线的有关计算,分析得到两个三角形的周长的差等于两边的差是解题的关键.三、解答题21.6【解析】试题分析:先根据乘法公式和单项式乘以多项式的法则计算化简,根据化简的结果,将2230x x --=变形后整体代入计算即可.试题解析:原式=()()222441212x x x x x -+---- 222441222x x x x x =-+-+-+223x x =-+∵2230x x --=,∴223x x -=,∴原式=3+3=6.22.16【分析】根据幂的乘方运算法则确定a 、b 的值,再根据绝对值的定义计算即可.【详解】解:∵(±4)6=2b =84=212,a <0,∴a =﹣4,b =12,∴|a ﹣b|=|﹣4﹣12|=16.【点睛】本题考查幂的乘方,难度不大,也是中考的常考知识点,熟练掌握幂的乘方运算法则是解题的关键.23.(1)++++432234a 4a b 6a b 4ab b ;(2)①81;②64【分析】(1)根据杨辉三角的数表规律解答即可;(2)由杨辉三角的数表规律和(1)题的结果可得所求式子=(2+1)4,据此解答即可; ②由杨辉三角的数表规律可得所求式子=(3-1)6,据此解答即可.【详解】解:(1)()4432234464a b a a b a b ab b +=++++;故答案为:++++432234a 4a b 6a b 4ab b ;(2)①24+4×23+6×22+4×2+1=(2+1)4=34=81;故答案为:81;②36-6×35+15×34-20×33+15×32-6×3+1=(3-1)6=26=64;故答案为:64.【点睛】本题考查了多项式的乘法和完全平方公式的拓展以及数的规律探求,正确理解题意、找准规律是解题的关键.24.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt △ACD 中,根据两锐角互余得出∠DAC 度数;△ABC 中由内角和定理得出∠ABC 度数,再根据AE ,BF 是角平分线可得∠BAO、∠ABO,最后在△ABO 中根据内角和定理可得答案.解:∵AD 是BC 边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD 中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC 中,∠ABC=180°-∠BAC-∠C=70°,又∵AE 、BF 分别是∠BAC 和∠ABC 的平分线,∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°, ∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°. 25.()2223a ab b ++平方米;40平方米. 【分析】(1)根据平移的原理,四块绿化面积可拼成一个长方形,其边长为原边长减去再减去道路宽为a 米,由此即可求绿化的面积的代数式;然后利用多项式乘多项式法则计算,去括号合并得到最简结果,将a 与b 的值代入计算即可求出值.【详解】解:根据题意得:22(3)(2)(2)()23a b a a b a a b a b a ab b +-+-=++=++(平方米).则绿化的面积是()2223a ab b ++平方米; 当3a =,2b =时,原式2223233240=⨯+⨯⨯+=(平方米).故当a =3,b =2时,绿化面积为40平方米.答:绿化的面积是()2223a ab b ++平方米;当a =3,b =2时,绿化面积为40平方米. 【点睛】此题考查整式的混合运算与代数式求值,掌握长方形的面积计算方法是解决问题的关键.26.(1) 112-92=40; (2) (2n+1)2-(2n -1)2=8n ,证明详见解析【分析】(1)根据所给式子可知:()()22223121121181-⨯+⨯-⨯-==,()()22225322122182-⨯+⨯-⨯-==,()()22227523123183-⨯+⨯-⨯-==,由此可知第5个式子;(2)根据题(1)的推理可得第n 个式子,利用完全平方公式可证得结果;【详解】(1)∵第1个式子为: ()()22223121121181-⨯+⨯-⨯-==第2个式子为: ()()22225322122182-⨯+⨯-⨯-==第3个式子为: ()()22227523123183-⨯+⨯-⨯-==∴第5个式子为: ()()222225125111940⨯+-⨯-=-=即第5个式子为:2211940-=(2)根据题(1)的推理可得:第n 个式子: ()()2221218n n n +--=∵左边=224414418n n n n n +-++-==右边∴等式成立.【点睛】本题考查数式规律的探索,解题的关键仔细观察所给的式子,正确找出式子的规律.27.(1)115;(2)180-2x ,理由见解析;(3)45°.【分析】(1)已知点I 是两角∠ABC 、∠ACB 平分线的交点,故()()()11118018018018090222BIC IBC ICB ABC ACB A BAC ∠=︒-∠+∠=︒-∠+∠=︒-︒-∠=+∠ ,由此可求∠BIC ;(2)当CE ∥AB 时, ∠ACE=∠A=x °,根据∠ACE=∠A=x °,根据CE 是∠ACG 的角平分线,推出∠ACG=2x °,∠ABC=∠BAC=x °,即可求出ACB ∠的度数.(3)由题意知:△BDE 是直角三角形∠D+∠E=90°,可求出若∠D=3∠E 时,∠BEC=22.5°,再推理出12BEC BAC ∠=∠,即可求出BAC ∠的度数. 【详解】(1)∵点I 是两角∠ABC 、∠ACB 平分线的交点,∴()180BIC IBC ICB ∠=︒-∠+∠ ()11802ABC ACB =-∠+∠︒ ()11801802A =-︒︒-∠ 1901152BAC =+∠=︒; 故答案为:115.(2)当∠ACB 等于(180-2x )°时,CE ∥AB .理由如下:∵CE ∥AB ,∴∠ACE=∠A=x °,∵∠ACE=∠A=x °,CE 是∠ACG 的角平分线,∴∠ACG=2∠ACE=2x °,∴∠ABC=∠ACG-∠BAC=2x °-x °=x °,∴∠ACB=180°-∠BAC-∠ABC=(180-2x )°;(3)由题意知:△BDE 是直角三角形∠D+∠E=90°若∠D=3∠E 时∠BEC=22.5°,∵90BEC BDC ∠=︒-∠190902BAC ⎛⎫=︒-︒-∠ ⎪⎝⎭ 12BAC =∠, ∴45BAC ∠=︒.【点睛】本题考查了三角形的内角、外角平分线的夹角大小与原三角形内角的关系,要充分运用三角形内角和定理,角平分线性质转换.28.化简结果:-8x+13,值为21.【解析】分析:根据整式的混合运算法则将所给的整式化简后,再代入求值即可.详解:原式=4(x 2-2 x +1)-(4x 2-9) =4x 2-8 x +4-4x 2+9=-8 x +13当x =-1时,原式=21点睛:本题是整式的化简求值,考查了整式的混合运算,解题时注意运算顺序以及符号的处理.。

安徽省六安市2017_2018学年七年级数学下学期期末试题含答案

安徽省六安市2017_2018学年七年级数学下学期期末试题含答案

安徽省六安市2017-2018学年七年级数学下学期期末试题一、选择题(本题共10小题,每小题4分,满分40分)1.-8的立方根是()A.±2B.-2C.0D.22.下列运算正确的是()A.()532a a =B.842aa a =∙C.236a a a =÷D.()333b a ab =3.不等式128>-x 的解集是()A.x<10B.x>9C.x>6D.x>104.我们的生活离不开氧气,已知氧原子的半径大约是0.000000000074米,那么0.000000000074用科学记数法表示为()A.101074.0-⨯ B.11104.7-⨯ C.121074-⨯ D.11104.7⨯5.下列分解因式正确的是()A.)4(42+-=+-x x x x B.)(2y x x x xy x+=++C.2)()()(y x x y y y x x -=-+-D.)2)(2(442-+=+-x x x x 6.如图,AB//CD,EG⊥AB,∠1=50°,则∠E 的度数等于()A.30°B.40°C.50°D.60°7.化简a 2b-ab 2b-a的结果是()A.-ab B.ab C.a 2-b2D.b 2-a 28.已知x+y=-5,xy=3,则x²+y²=()A.25B.-25C.19D.-199.下列说法:①两条直线被第三条直线所截,内错角相等;②过一点有且只有一条直线与已知直线垂直;③在连接直线外一点与直线上各点的线段中,垂线段最短;④如果两个角相等,那么这两个角是对顶角.其中正确的结论的个数是()A.4个B.3个C.2个D.1个10.定义新运算“△”,a△b=ab a+b ,如:2△3=65,则:①a△a=a 2;②2△x=1的解是x=2;③若(x+1)△(x-1)的值为0,则x=1;④1a△1+2a△2+-3a△(-3)=3,上述结论中正确的是()A.①②④B.①③④C.①②③D.①②③④二、填空题(本题共4小题,每小题5分,满分20分)11.比较大小:21-553;12.在实数范围内分解因式x 4–4=;13.若4x²+kx+9是完全平方式,则k =;14.已知关于x 的不等式组⎩⎨⎧≥->+023032x a x a 恰有3个整数解,则a 的取值范围是.七年级数学学科期末考试答题卷时间:120分钟满分:150分一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有4小题,每小题5分,共20分)11.______________________12._________________________13.______________________14._________________________三、解答题(本题有9小题,共90分)15.(8分)计算:20328)2(5-+⨯+--题号12345678910选项学号:座位号:16.(8分)解方程:12111+-=-+x x x 17.(8分)解不等式组⎪⎩⎪⎨⎧≥2->21-51-x 43x x x ,并把解集在数轴上表示出来.18.(8分)根据要求画图:(1)过点A 作MN//BC;(2)过点C 作CD//AB 交MN 于点D;(3)连接BD 交AC 于点0.19.(10分)化简:⎪⎪⎭⎫ ⎝⎛+---÷-1121122x x x x x ,并从±2、±1、0中选择一个合适的代入求值.20.(10分)已知,如图,∠1+∠2=180°,∠3=∠B,猜想∠BAC 和∠DEC 的数量关系,并证明.21.(12分)在正整数中,⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-2112112112,⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-3113113112,⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-4114114112......观察上面的算式,并利用规律计算下列各式(要求写出计算过程):(1)⎪⎭⎫ ⎝⎛-211×⎪⎭⎫ ⎝⎛-211×⎪⎭⎫⎝⎛-211(2)⎪⎭⎫⎝⎛-2211×⎪⎭⎫⎝⎛-2311×⎪⎭⎫⎝⎛-2411×......×⎪⎭⎫⎝⎛-220181122.(12分)六安市在创建全国文明城市过程中,决定购买A、B两种树苗对某路段道路进行绿化改造,已知购买A种树苗11棵,B种树苗5棵,需要1080元.若购买A种树苗6棵,B种树苗10棵,则需要880元.(1)求购买A、B两种树苗每棵各需要多少元?(2)考虑到绿化效果和资金周转,购进A种树苗要多于60棵,且用于购买这两种树苗的资金不能超过6960元,若购进这两种树苗共110棵,则有哪几种购买方案?23.(14分)芳芳同学在完成第10章的学习后,遇到了一些问题,请你帮助她.(1)如图1,已知AB∥CD,你知道∠BAE,∠DCE,∠AEC之间的关系吗?请说明理由;(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠FAD=m°,∠ABC=n°,求∠BED的度数;(用含m、n的式子表示)(3)将图2中的线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,得到图3,直接写出∠BED的度数是多少?(用含m、n的式子表示).裕安中学2017—2018学年度春学期期末七年级数学试卷参考答案及评分标准制定人:胡磊,包发勇,陶光荣一、选择题二、填空题11.>12.)2)(2)(2(2-++x x x 13.±1214.2334≤≤a 三、解答题15.解:原式=1+2+4+......................................(4分)=7...........................................(8分)16..................(8分)17......(8分)题号12345678910选项B D D B C B A C C A18.图略19............(5分)∴当x=2时,原式===......................................(10分)20.................................(10分)21.解:(1)原式=(1-)×(1+)×(1-)×(1+)×(1-)×(1+)=×=............................(6分)(2)原式=(1-)×(1+)×......×(1-)×(1+)=×=............................(12分)22.23.。

安徽省六安市2020年初一下期末学业质量监测数学试题含解析

安徽省六安市2020年初一下期末学业质量监测数学试题含解析

安徽省六安市2020年初一下期末学业质量监测数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题只有一个答案正确)1.如图所示的图案可以看作由“基本图案”经过平移得到的是( )A .B .C .D .【答案】D【解析】【分析】确定一个基本图案按照一定的方向平移一定的距离组成的图形就是经过平移得到的图形.【详解】A .不是由“基本图案”经过平移得到,故此选项错误;B .不是由“基本图案”经过平移得到,故此选项错误;C .不是由“基本图案”经过平移得到,故此选项错误;D .是由“基本图案”经过平移得到,故此选项正确;故选:D .【点睛】此题主要考查了利用平移设计图案,关键是正确理解平移的概念.2.如果x y >,下列各式中正确的是( )A .20192019x y ->-B .20192019x y >C .2019220192x y ->-D .20192019x y ->-【答案】D【解析】【分析】根据不等式的基本性质和绝对值的概念,可得答案.【详解】解:由x >y ,可得:A 、-2019x <-2019y ,故A 错误;B 、因为x ,y 的正负未知,所以20192019x y >或20192019x y <,故B 错误;C 、2019-2x <2019-2y ,故C 错误;D 、x-2019>y-2019,故D 正确故选:D .【点睛】本题考查了不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变.3.下列调查方式合适的是( )A .为了了解电视机的使用寿命,采用普查的方式B .调查济南市初中学生利用网络媒体自主学习的情况,采用普查的方式C .调查某中学七年级一班学生视力情况,采用抽样调查的方式D .为了了解人们保护水资源的意识,采用抽样调查的方式【答案】D【解析】A 、为了了解电视机的使用寿命,采用抽样调查,故本选项错误;B 、调查济南市初中学生利用网络媒体自主学习的情况,采用抽样调查,故本选项错误;C 、调查某中学七年级一班学生视力情况,采用普查的方式,故本选项错误;D 、为了了解人们保护水资源的意识,采用抽样调查的方式,故本选项正确,故选D .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.若x y >,则下列式子错误..的是(). A .33x y ->-B .33x y >C .22x y -<-D .33x y ->- 【答案】D【解析】【分析】利用不等式的性质判断即可得到结果.【详解】解:若x >y ,则有x-3>y-3;33x y >;-2x <-2y ; 3-x <3-y 故选:D .【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解本题的关键.5.下列命题不成立的是( )A .等角的补角相等B .两直线平行,内错角相等C .同位角相等D .对顶角相等【答案】C【解析】分析:对各个命题一一判断即可.详解:A. 等角的补角相等,正确.B. 两直线平行,内错角相等,正确.C.两直线平行,同位角相等.这是平行线的性质,没有两直线平行的前提,同位角相等,错误.D.对顶角相等,正确.故选C.点睛:考查命题真假的判断.比较简单.注意平行线的性质. 6.若关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( ) A .a≥1B .a>1C .a≤-1D .a<-1【答案】A【解析】 0{122x a x x ->->-①②, 由①得,x<1,由②得,x>a ,∵此不等式组无解,∴a ⩾1.故选A.点睛:此题主要考查了已知不等式的解集,求不等式中另一未知数的问题.可以先将另一未知数当做已知处理,求出解集与已知解集比较,进而求得另一个未知数.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.7.流感病毒的直径约为0.000 000 72 m ,其中0.000 000 72用科学记数法可表示为( )A .7.2×107B .7.2×10-8C .7.2×10-7D .0.72×10-8【答案】C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000 00072=7.2×10-7,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形(含三角形),若这两个多边形的+不可能是().内角和分别为M和N,则M NA.360︒B.540︒C.720︒D.630︒【答案】D【解析】如图,一条直线将该矩形ABCD分割成两个多边(含三角形)的情况有以上三种,①当直线不经过任何一个原来矩形的顶点,此时矩形分割为一个五边形和三角形,∴M+N=540°+180°=720°;②当直线经过一个原来矩形的顶点,此时矩形分割为一个四边形和一个三角形,∴M+N=360°+180°=540°;③当直线经过两个原来矩形的对角线顶点,此时矩形分割为两个三角形,∴M+N=180°+180°=360°.故选D .9.如图,下列四组条件中,能判断//AB CD 的是( )A .12∠=∠B .34∠=∠C .180ABC BCD ︒∠+∠= D .180BAD ABC ︒∠+∠=【答案】C【解析】【分析】根据平行线的判定,逐个判断即可.【详解】解:A 、∵∠1=∠2,∴AD ∥BC ,故本选项错误;B 、∵34∠=∠,∴AD ∥BC ,故本选项错误;C 、∵180ABC BCD ︒∠+∠=,∴AB ∥CD ,故本选项正确;D 、∵∠BAD +∠ABC =180°,∴AD ∥BC ,故本选项错误;故选:C .【点睛】本题考查了平行线的判定:内错角相等,两直线平行;同旁内角互补,两直线平行.10.若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为() A .90° B .105° C .130° D .120°【答案】C【解析】【分析】本题主要考查了多边形的外角和内角. 先用2570°÷180°,看余数是多少,再把余数补成180°【详解】解:∵2570°÷180°=14…50°,又130°+50°=180°∴这个内角度数为130°故选C二、填空题11.如图,点P 是∠AOB 内部一定点(1)若∠AOB=50°,作点P 关于OA 的对称点P1,作点P 关于OB 的对称点P2,连OP1、OP2,则∠P1OP2=___.(2)若∠AOB=α,点C、D 分别在射线OA、OB 上移动,当△PCD 的周长最小时,则∠CPD=___(用α 的代数式表示).【答案】100°180°-2α【解析】【分析】(1)根据对称性证明∠P1OP2=2∠AOB,即可解决问题;(2)如图,作点P关于OA的对称点P1,作点P关于OB的对称点P2,连P1P2交OA于C,交OB于D,连接PC,PD,此时△PCD的周长最小.利用(1)中结论,根据对称性以及三角形内角和定理即可解决问题;【详解】(1)如图,由对称性可知:∠AOP=∠AOP 1,∠POB=∠BOP 2,∴∠P 1OP 2=2∠AOB=100°,故答案为100°.(2)如图,作点P 关于OA 的对称点P 1,作点P 关于OB 的对称点P 2,连P 1P 2交OA 于C ,交OB 于D ,连接PC ,PD ,此时△PCD 的周长最小.根据对称性可知:∠OP 1C=∠OPC ,∠OP 2D=∠OPD ,∠P 1OP 2=2∠AOB=2α.∴∠CPD=∠OP 1C+∠OP 2D=180°-2α.故答案为180°-2α.【点睛】本题考查作图-最短问题、三角形的内角和定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.12.分解因式:2a 2-2=__________.【答案】2(1)(1)a a +-.【解析】试题分析:原式=22(1)a -=2(1)(1)a a +-.考点:分解因式.13.如图,ABC ∆中,30B ∠=︒,110ACB ∠=︒,AD 是角平分线,AE 是高,则DAE =∠______________︒.【答案】40︒【解析】【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义求出∠BAD ,根据直角三角形两锐角互余求出∠BAE ,然后求解即可.【详解】∵∠B=30°,∠C=110°,∴∠BAC=180°-∠B-∠C=180°-30°-110°=40°,∵AD 是角平分线,∴∠BAD=12∠BAC=12×40°=20°, ∵AE 是高,∴∠BAE=90°-∠B=90°-30°=60°,∴∠DAE=∠BAE-∠BAD=60°-20°=40°.故答案为:40°.【点睛】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.14.x 的12与5的和不大于3,用不等式表示为______________ 【答案】2x +5≤3 【解析】【分析】根据x 的12,即2x ,然后与5的和不大于3得出即可. 【详解】 解:又题意得:2x +5≤3故答案为:2x +5≤3. 【点睛】 此题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.15.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是_____. 【答案】13【解析】分析:根据“摸出一只球是黑球的概率=袋子中黑球的个数:袋子中各种球的总数”结合已知条件进行解答即可. 详解:由已知条件可得:P (任取一球是黑球)=441264123==++. 故答案为:13. 点睛:知道“从袋子中随机摸出一只球是黑球的概率=袋子中黑球的个数:袋子中各种球的总数”是解答本题的关键.16.已知1x y +=,则2212x y 1xy+2+的值是________. 【答案】12 【解析】【分析】利用完全平方公式化简,然后将1x y +=代入计算即可得出结果。

安徽六安市初中数学七年级下期末复习题(含答案解析)

安徽六安市初中数学七年级下期末复习题(含答案解析)

一、选择题1.下列各式中计算正确的是( )A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.点M (2,-3)关于原点对称的点N 的坐标是: ( )A .(-2,-3)B .(-2, 3)C .(2, 3)D .(-3, 2)3.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣55.如图,在平面直角坐标系xOy 中,点P(1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位至点P 3,第4次向右跳动3个单位至点P 4,第5次又向上跳动1个单位至点P 5,第6次向左跳动4个单位至点P 6,….照此规律,点P 第100次跳动至点P 100的坐标是( )A .(﹣26,50)B .(﹣25,50)C .(26,50)D .(25,50)6.如图,在下列给出的条件中,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠1=∠AC .∠1=∠4D .∠A=∠37.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.88.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°9.已知关于x 的不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤ B .12a << C .12a ≤< D .12a ≤≤10.不等式4-2x >0的解集在数轴上表示为( )A .B .C .D .11.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138° 12.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°13.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,014.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( ) A .8 B .6C .4D .2 15.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题16.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为______________.17.某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降③音乐手机4月份的销售额比3月份有所下降④今年1-4月中,音乐手机销售额最低的是3月其中正确的结论是________(填写序号).18.不等式组{x >−1x <m有3个整数解,则m 的取值范围是_____. 19.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.20.不等式3x 134+>x 3+2的解是__________. 21.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .22.结合下面图形列出关于未知数x ,y 的方程组为_____.23.若方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解为_______. 24.若关于x 的不等式组0532x m x +<⎧⎨-⎩无解,则m 的取值范围是_____. 25.在平面直角坐标系中,若x 轴上的点P 到y 轴的距离为3,则点P 的坐标是________.三、解答题26.如图,12180∠+∠=︒,B DEF ∠=∠,55BAC ∠=︒,求DEC ∠的度数.27.一个正数x 的两个平方根是2a -3与5-a ,求x 的值.28.如图,将三角形ABC 向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:A 1 ,B 1 ,C 1 ;(2)画出平移后三角形A 1B 1C 1;(3)求三角形ABC 的面积.29.解不等式-3+3+121-3-18-x x x x ⎧≥⎪⎨⎪<⎩()30.规律探究,观察下列等式:第1个等式:111111434a ⎛⎫==⨯- ⎪⨯⎝⎭ 第2个等式:2111147347a ⎛⎫==⨯- ⎪⨯⎝⎭ 第3个等式:311117103710a ⎛⎫==⨯- ⎪⨯⎝⎭ 第4个等式:41111101331013a ⎛⎫==⨯- ⎪⨯⎝⎭请回答下列问题:(1)按以上规律写出第5个等式:= ___________ = ___________(2)用含n 的式子表示第n 个等式:= ___________ = ___________(n 为正整数) (3)求1234100a a a a a +++++【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.B4.A5.C6.B7.C8.C9.A10.D11.B12.D13.B14.D15.D二、填空题16.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C(32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大17.④【解析】【分析】分别求出1-4月音乐手机的销售额再逐项进行判断即可【详解】1月份的音乐手机销售额是85×23=1955(万元)2月份的音乐手机销售额是80×15=12(万元)3月份音乐手机的销售额18.2<m≤3【解析】【分析】根据不等式组x>-1x<m有3个整数解先根据x>-1可确定3个整数解是012所以2<m≤3【详解】根据不等式组x>-1x<m有3个整数解可得:2<m≤3故答案为:2<m≤319.100【解析】【分析】根据对顶角相等求出∠AOC再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA平分∠COE∴∠AOE=∠AOC=40°∴∠COE=820.x>-3【解析】>+2去分母得:去括号得:移项及合并得:系数化为1得:故答案为x>-321.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长=AD+AB+BF+D22.【解析】【分析】根据图形列出方程组即可【详解】由图可得故答案为【点睛】本题考查了二元一次方程组解题的关键是根据实际问题抽象出二元一次方程组23.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时24.m≥﹣1【解析】【分析】分别表示出不等式组中两不等式的解集根据不等式组无解即可确定出m的范围【详解】解不等式x+m<0得:x<﹣m解不等式5﹣3x≤2得:x≥1∵不等式组无解∴﹣m≤1则m≥﹣1故答25.(±30)【解析】解:若x轴上的点P到y轴的距离为3则∴x=±3故P的坐标为(±30)故答案为:(±30)三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A3=,此选项错误错误,不符合题意;B3=,此选项错误错误,不符合题意;C3=-,此选项错误错误,不符合题意;D3=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.B解析:B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.3.B解析:B【解析】∵−2<0,3>0,∴(−2,3)在第二象限,故选B.4.A解析:A【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.5.C解析:C【解析】【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数). 故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50.故选:C .【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.6.B解析:B【解析】【分析】利用平行线的判定定理,逐一判断,容易得出结论.【详解】A选项:∵∠2+∠A=180°,∴AB∥DF(同旁内角互补,两直线平行);B选项:∵∠1=∠A,∴AC∥DE(同位角相等,两直线平行),不能证出AB∥DF;C选项:∵∠1=∠4,∴AB∥DF(内错角相等,两直线平行).D选项:∵∠A=∠3,∴AB∥DF(同位角相等,两直线平行)故选B.【点睛】考查了平行线的判定;正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.8.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.9.A解析:A【解析】【分析】先根据一元一次不等式组解出x 的取值范围,再根据不等式组只有三个整数解,求出实数a 的取值范围即可.【详解】3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1,解不等式②得:x<a , ∵不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解,∴不等式的整数解为:-1、0、1,∴1<a≤2,故选:A【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.D解析:D【解析】【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x >-4,系数化为1,得:x <2,故选D .【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.11.B解析:B【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.12.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.13.B解析:B【解析】【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论.【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.14.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.15.D解析:D【解析】解:∵直线l 1∥l 2,∴∠3=∠1=44°.∵l 3⊥l 4,∠2=90°-∠3=90°-44°=46°.故选D .二、填空题16.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C(32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大解析:(1,3)或(5,1)【解析】【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:①如图1,当A平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点A的横坐标增大了1,纵坐标增大了2,平移后的B坐标为(1,3),②如图2,当B平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点B的横坐标增大了3,纵坐标增大2,∴平移后的A坐标为(5,1),故答案为:(1,3)或(5,1)【点睛】本题考查坐标系中点、线段的平移规律,关键要理解在平面直角坐标系中,图形的平移与图形上某点的平移相同,从而通过某点的变化情况来解决问题.17.④【解析】【分析】分别求出1-4月音乐手机的销售额再逐项进行判断即可【详解】1月份的音乐手机销售额是85×23=1955(万元)2月份的音乐手机销售额是80×15=12(万元)3月份音乐手机的销售额解析:④ .【解析】【分析】分别求出1-4月音乐手机的销售额,再逐项进行判断即可.【详解】1月份的音乐手机销售额是85×23%=19.55(万元)2月份的音乐手机销售额是80×15%=12(万元)3月份音乐手机的销售额是 60×18%=10.8(万元),4月份音乐手机的销售额是 65×17%=11.05(万元).①从1月到4月,手机销售总额3-4月份上升,故①错误;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比没有连续下降,故②错误;③由计算结果得,10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了.故③错误;④今年1-4月中,音乐手机销售额最低的是3月,故④正确.故答案为:④.【点睛】此题主要考查了拆线统计图与条形图的综合应用,利用两图形得出正确信息是解题关键.18.2<m≤3【解析】【分析】根据不等式组x>-1x<m有3个整数解先根据x >-1可确定3个整数解是012所以2<m≤3【详解】根据不等式组x>-1x<m有3个整数解可得:2<m≤3故答案为:2<m≤3解析:2<m≤3【解析】【分析】根据不等式组{x>−1x<m有3个整数解,先根据x>−1可确定3个整数解是0,1,2,所以2<m≤3.【详解】根据不等式组{x>−1x<m有3个整数解,可得:2<m≤3.故答案为:2<m≤3.【点睛】本题主要考查不等式组整数解问题,解决本题的关键是要熟练掌握不等式组的解法.19.100【解析】【分析】根据对顶角相等求出∠AOC 再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA 平分∠COE ∴∠AOE=∠AOC=40°∴∠COE=8解析:100【解析】【分析】根据对顶角相等求出∠AOC ,再根据角平分线和邻补角的定义解答.【详解】解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA 平分∠COE ,∴∠AOE=∠AOC=40°,∴∠COE=80°.∴∠DOE=180°-80°=100°故答案为:100.【点睛】本题考查了对顶角相等的性质,角平分线、邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.20.x >-3【解析】>+2去分母得:去括号得:移项及合并得:系数化为1得:故答案为x >-3解析:x >-3【解析】3134x +>3x +2, 去分母得:3(313)424,x x +>+ 去括号得:939424,x x +>+ 移项及合并得:515,x >- 系数化为1得:3x >- .故答案为x >-3.21.【解析】试题解析:根据题意将周长为8的△ABC 沿边BC 向右平移1个单位得到△DEF 则AD=1BF=BC+CF=BC+1DF=AC 又∵AB+BC+AC=10∴四边形ABFD 的周长=AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC 沿边BC 向右平移1个单位得到△DEF , 则AD=1,BF=BC+CF=BC+1,DF=AC ,又∵AB+BC+AC=10,∴四边形ABFD 的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.22.【解析】【分析】根据图形列出方程组即可【详解】由图可得故答案为【点睛】本题考查了二元一次方程组解题的关键是根据实际问题抽象出二元一解析:250325x y x y +=⎧⎨=+⎩ . 【解析】【分析】根据图形列出方程组即可.【详解】由图可得250325x y x y +=⎧⎨=+⎩. 故答案为250325x y x y +=⎧⎨=+⎩. 【点睛】本题考查了二元一次方程组,解题的关键是根据实际问题抽象出二元一次方程组.23.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab 的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时解析: 6.32.2x y =⎧⎨=⎩【解析】【分析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩; 又∵8.31.2a b =⎧⎨=⎩, ∴ 28.31 1.2x y +=⎧⎨-=⎩, 解得 6.32.2x y =⎧⎨=⎩. 故答案为 6.32.2x y =⎧⎨=⎩ 【点睛】本题主要应用了换元法解二元一次方程组,换元法是将复杂问题简单化时常用的方法,应24.m≥﹣1【解析】【分析】分别表示出不等式组中两不等式的解集根据不等式组无解即可确定出m 的范围【详解】解不等式x+m <0得:x <﹣m 解不等式5﹣3x≤2得:x≥1∵不等式组无解∴﹣m≤1则m≥﹣1故答解析:m ≥﹣1【解析】【分析】分别表示出不等式组中两不等式的解集,根据不等式组无解,即可确定出m 的范围.【详解】解不等式x +m <0,得:x <﹣m ,解不等式5﹣3x ≤2,得:x ≥1,∵不等式组无解,∴﹣m ≤1,则m ≥﹣1,故答案为:m ≥﹣1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.25.(±30)【解析】解:若x 轴上的点P 到y 轴的距离为3则∴x=±3故P 的坐标为(±30)故答案为:(±30)解析:(±3,0)【解析】解:若x 轴上的点P 到y 轴的距离为3,则3x =,∴x =±3.故P 的坐标为(±3,0).故答案为:(±3,0).三、解答题26.55︒【解析】【分析】只要证明AB ∥DE ,利用平行线的性质即可解决问题.【详解】解:∵1180CDF ∠+∠=︒,12180∠+∠=︒,∴2CDF ∠=∠,∴//EF BC ,∴DEF CDE ∠=∠,∵B DEF ∠=∠,∴B CDE ∠=∠,∴//DE AB ,∴55DEC BAC ∠=∠=︒.【点睛】此题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.27.x=49【解析】试题分析:根据一个正数的平方根有两个,它们是互为相反数可得: 2a -3+5-a =0,可求出a =2-,即可求出这个正数的两个平方根是-7和7,根据平方根的意义可求出x .试题解析: 因为一个正数x 的两个平方根是2a -3与5-a ,所以2a -3+5-a =0,解得a =2-,所以2a -3=7-,所以49x =.28.(1)A 1(4,7),B 1(1,2),C 1(6,4);(2)见解析;(3)192【解析】【分析】(1)根据平移的规律变化结合平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(3)利用△ABC 所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1) 观察图形可知点A (-2,2),点B (-5,-3),点C (0,-1),所以将三角形ABC 向右平移5个单位长度,再向上平移3个单位长度后所得对应点的坐标为:A 1(3,5),B 1(0,0),C 1(5,2);(2)△A 1B 1C 1如图所示;(3)△ABC 的面积=5×5-12×5×2-12×2×3-12×3×5 =25-5-3-7.5=25-15.5=9.5.【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.29.﹣2<x≤1.【解析】【分析】【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可. 试题解析:331(1)213(1)8(2)x x x x -⎧++⎪⎨⎪--<-⎩,∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.30.(1)11316⨯;11131316⎛⎫⨯- ⎪⎝⎭;(2)[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦;(3)100301. 【解析】【分析】 (1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案; (2)根据前4个等式归纳类推出一般规律即可;(3)利用题(2)的结论,先写出1234100a a a a a +++++中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可.【详解】(1)观察前4个等式的分母可知,第5个式子的分母为1316⨯则第5个式子为:51111131631316a ⎛⎫==⨯- ⎪⨯⎝⎭故应填:11316⨯;11131316⎛⎫⨯- ⎪⎝⎭; (2)第1个等式的分母为:14(130)(131)⨯=+⨯⨯+⨯第2个等式的分母为:47(131)(132)⨯=+⨯⨯+⨯第3个等式的分母为:710(132)(133)⨯=+⨯⨯+⨯第4个等式的分母为:1013(133)(134)⨯=+⨯⨯+⨯归纳类推得,第n 个等式的分母为:[]13(1)(13)n n +-⋅+则第n 个等式为:[]1111313(1)(13)13(1)13n a n n n n +-⋅++⎡⎤==-⎢⎥⎣-⎦+(n 为正整数) 故应填:[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦; (3)由(2)的结论得:[]10013(1001)(13100)298301311111329801a ⎛⎫==+⨯-⨯+⨯⨯=⨯- ⎪⎝⎭则1234100a a a a a +++++ 1111144771010132983011+++++⨯⨯⨯⨯⨯= 111111111111343473711132981031013301⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-+⨯-++ ⎪ ⎪ ⎛⎫=⨯-⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪⎝⎭ 111111111++++344771*********3018=-⎛⎫⨯-+--- ⎪⎝⎭1330111⎛=⨯-⎫ ⎪⎝⎭30130103⨯= 110030=. 【点睛】本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键.。

安徽省六安市2019-2020学年七年级第二学期期末质量检测数学试题含解析

安徽省六安市2019-2020学年七年级第二学期期末质量检测数学试题含解析

安徽省六安市2019-2020学年七年级第二学期期末质量检测数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题只有一个答案正确)1.若a-b >a ,a+b <b ,则有( ).A .ab <0B .a b >0C .a+b >0D .a-b <0 【答案】B【解析】【分析】根据不等式的基本性质1可知:不等式两边同减去一个数,不等号的方向不变,所以,据此即可求得a 与b 的取值范围,即可确定那个正确.【详解】∵a-b >a ,a+b <b ,∴b <0,a <0,∴ab>0 ,a b>0 , a+b<0 , a-b 无法确定, 故选B.【点睛】本题考查了不等式的性质,解答此题的关键是熟知不等式的基本性质.基本性质1:不等式两边同时加或减去同一个数或式子,不等号方向不变;基本性质2:不等式两边同时乘以(或除以)同一个大于0的数,不等号方向不变;基本性质3:不等式两边同时乘以(或除以)同一个小于0的数,不等号方向改变.2.若点A (2,6),点B (-3,6),那么点A 、B 所在的直线是( )A .直线6y = ;B .直线6x =;C .直线2x =;D .直线3x =-. 【答案】A【解析】【分析】由点A 与点B 的坐标得到它们到x 轴的距离相等,都为1,所以点A 、B 所在的直线为y=1.【详解】∵点A (2,1),点B (-3,1),即点A 与点B 的纵坐标都为1,∴直线AB 过(0,1),且与y 轴垂直,∴点A、B所在的直线为y=1.故选:A.【点睛】考查了坐标与图形:点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.3.在下列方程组中,不是二元一次方程组的是().A.222x yy-=⎧⎨=-⎩B.1531xy+=⎧⎨+=-⎩C.34x yxy-=⎧⎪⎨=⎪⎩D.27325x yx y+=⎧⎨-=-⎩【答案】C【解析】【分析】根据二元一次方程组的定义对各选项进行逐一分析即可.【详解】解:A、B、D、符合二元一次方程组的定义;C中的第二个方程是分式方程,故C错误.故选:C.【点睛】本题考查二元一次方程组的定义,熟知二元一次方程组必须满足三个条件:①方程组中的两个方程都是整式方程;②方程组中共含有两个未知数;③每个方程都是一次方程是解题的关键.4.下列各组数是二元一次方程371x yy x+=⎧⎨-=⎩的解是( )A.12xy=⎧⎨=⎩B.1xy=⎧⎨=⎩C.7xy=⎧⎨=⎩D.12xy=⎧⎨=-⎩【答案】A【解析】分析:所谓“方程组”的解,指的是该数值满足方程组中的每一方程.此题直接解方程组或运用代入排除法作出选择.详解:∵y﹣x=1,∴y=1+x.代入方程x+3y=7,得:x+3(1+x)=7,即4x=4,∴x=1,∴y=1+x=1+1=1.∴解为12 xy=⎧⎨=⎩.故选A.点睛:本题要注意方程组的解的定义.5.面积为4的正方形的边长是()A.4开平方的结果B.4的平方根C.4的立方根D.4的算术平方根【答案】D【解析】【分析】因为正方形的面积等于边长乘以边长,即边长的平方,根据正方形面积是4,可得:正方形边长的平方等于4,即,即4的算术平方根.【详解】设正方形的边长为x,根据题意可得:x2=4,所以,即边长为4的算术平方根.故答案为:D【点睛】本题主要考查算术平方根的应用,解决本题主要熟练掌握算术平方根的定义.6.为了解我校1200名学生的身高,从中抽取了200名学生对其身高进行统计分析,则下列说法正确的是()A.1200名学生是总体B.每个学生是个体C.200名学生是抽取的一个样本D.每个学生的身高是个体【答案】D【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量【详解】A.1200名学生的身高是总体,错误;B.每个学生的身高是个体,错误;C.200名学生的身高是抽取的一个样本,错误;D.每个学生的身高是个体,正确;故选D .【点睛】本题考查了总体、个体、样本、样本容量,解题的关键是掌握总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位7.如图,ABC ∆的三边,,AB BC CA 的长分别为20,30,40,点O 是ABC ∆三条角平分线的交点,则::ABO BCO CAO S S S ∆∆∆等于( )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶5【答案】C【解析】【分析】 作OF ⊥AB 于F ,OE ⊥AC 于E ,OD ⊥BC 于D ,根据角平分线的性质得到OD=OE=OF ,根据三角形的面积公式计算即可.【详解】作OF ⊥AB 于F ,OE ⊥AC 于E ,OD ⊥BC 于D ,∵三条角平分线交于点O ,OF ⊥AB ,OE ⊥AC ,OD ⊥BC ,∴OD=OE=OF ,∴S △ABO :S △BCO :S △CAO =AB :BC :CA=20:30:40=2:3:4,故选C .【点睛】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.下列各式中,能用平方差公式计算的是( )A .B .C.D.【答案】C【解析】【分析】分别将四个选项变形,找到符合=(a-b)(a+b)的即可解答.【详解】A、,是完全平方公式,故不符合题意;B、=,是完全平方公式,故不符合题意;C、=,可以用平方差计算,故符合题意;D、=,是完全平方公式,故不符合题意.故选择:C.【点睛】本题考查了平方差公式,将算式适当变形是解题的关键.9.把多项式x2+mx﹣35分解因式为(x﹣5)(x+7),则m的值是()A.2 B.﹣2 C.12 D.﹣12【答案】A【解析】【分析】分解因式的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m的值即可.【详解】x1+mx-35=(x-5)(x+7)=x1+1x-35,可得m=1.故选A.【点睛】此题考查了因式分解-十字相乘法,熟练掌握十字相乘法是解本题的关键.10.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB得到线段A’B’(点A与A’对应),已知A’的坐标为(3,-1),则点B’的坐标为( )A.(4,2) B.(5,2) C.(6,2) D.(5,3)【答案】B【解析】试题解析:根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选B.二、填空题11.若方程x﹣y=﹣1的一个解与方程组221x y kx y-=⎧⎨-=⎩的解相同,则k的值为_____.【答案】-4【解析】【分析】联立不含k的方程组成方程组,求出方程组的解得到x与y的值,即可确定出k的值.【详解】解:联立方程得:1 21 x yx y-=-⎧⎨-=⎩,解得:23 xy=⎧⎨=⎩,代入方程得:2﹣6=k,解得:k=﹣4,故答案为﹣4【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.12.若m,n为实数,且=0,则(mn)2018的值为_____.【答案】1【解析】【分析】直接利用算术平方根以及绝对值的性质得出m,n的值,进而得出答案.【详解】解:∵=0,∴m+3=0,n﹣3=0,∴m=﹣3,n=3,∴(m n)2018=1. 故答案为1.【点睛】此题主要考查了算术平方根以及绝对值的性质,正确得出m ,n 的值是解题关键.13.若()()1221235m n n m a b a b a b ++-⋅-=-,则m n +的值为________.【答案】2【解析】【分析】先把左边根据单项式的乘法法则化简,再与右边比较,求出m 、n 的值,然后代入m n +计算即可.【详解】∵()()1221235m n n m a b a b a b ++-⋅-=-,∴22235m n m n a b a b +++-=-,∴23225m n m n +=⎧⎨++=⎩, 解之得11m n =⎧⎨=⎩, ∴m n +=1+1=2.【点睛】本题考查了单项式的乘法,以及二元一次方程组的解法,根据题意列出关于m 、n 的二元一次方程组是解答本题的关键.14.若a ﹣b=1,ab=﹣2,则(a ﹣2)(b+2)=______.【答案】-1【解析】【分析】【详解】解:∵ a ﹣b =1,ab =﹣2∴(a ﹣2)(b+2)= ab+2a ﹣2b ﹣1=ab+2(a ﹣b )﹣1=﹣2+2×1﹣1=-1.故答案为-1.15.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元,一律按原价打九折;③一次性购书超过200元,一律按原价打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是_________.【答案】248元或296元【解析】【分析】设小丽第一次购书的原价为x元,则第二次购书的原价为3x元,分x≤1003、1003<x≤2003、2003<x≤100及x>100四种情况,找出关于x的一元一次方程,解之即可得出结论.【详解】设小丽第一次购书的原价为x元,则第二次购书的原价为3x元,根据题意得:当3x≤100,即x≤1003时,x+3x=229.4,解得:x=57.35(舍去);当100<3x≤200,即1003<x≤2003时,x+0.9×3x=229.4,解得:x=62,∴x+3x=248;当3x>200且x≤100,即2003<x≤100时,x+0.7×3x=229.4,解得:x=74,∴x+3x=296;当x>100时,0.9x+0.7×3x=229.4,解得:x≈76.47(舍去).答:小丽这两次购书原价的总和是248元或296元.故填:248元或296元.【点睛】本题考查了一元一次方程的应用,分x≤1003、1003<x≤2003、2003<x≤100及x>100四种情况,列出关于x的一元一次方程是解题的关键.16.一个三角形的三边为2、5、x,另一个和它全等的三角形的三边为y、2、6,则x+y=_______.【答案】11【解析】∵一个三角形的三边为2、5、x,另一个和它全等的三角形的三边为y、2、6,∴x=6,y=5,则x+y=11.故答案为:11.17.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于_____.【答案】230°【解析】【分析】首先根据三角形内角和可以计算出∠A+∠B的度数,再根据四边形内角和为360°可算出∠1+∠2的结果.【详解】解:∵△ABC中,∠C=50°,∴∠A+∠B=180°-∠C=130°,∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°-130°=230°.故答案为230°.【点睛】此题主要考查了三角形内角和以及多边形内角和,关键是掌握多边形内角和定理:(n-2).180°(n≥3)且n为整数).三、解答题18.已知A,B两地相距50千米,某日下午甲、乙两人分别骑自行车和骑摩托车从A地出发驶往B地如图所示,图中的折线PQR和线段MN分别表示甲、乙两人所行驶的路程S(千米)与该日下午时间t(时)之间的关系.请根据图象解答下列问题:(1)直接写出:甲骑自行车出发小时后,乙骑摩托车才开始出发;乙骑摩托车比甲骑自行车提前小时先到达B地;(2)求出乙骑摩托车的行驶速度;甲骑自行车在下午2时至5时的行驶速度;(3)当甲、乙两人途中相遇时,直接写出相遇地与A地的距离.【答案】(1)1,2,;(2)乙骑摩托的行驶速度为50千米/小时;甲骑自行车在下午2时至5时的行驶速度10千米/小时,(3)25千米.【解析】【分析】(1)认真分析图象得到甲比乙早出发的时间与乙比甲早到达的时间;(2)速度=路程÷时间,根据图象中提供数据计算即可;(3)甲乙相遇时即是O点的位置,设此时乙出发了t小时,可列出关于t的一元一次方程,从而求出相遇地与A的距离.【详解】(1)由图象可知:甲从1时开始出发,乙从2时开始出发,2﹣1=1,故甲骑车出发1小时后,乙骑摩托车才开始出发,由图象可知:乙在3时时到达,甲在5时时到达,5﹣3=2,故乙骑摩托车比甲骑自行车提前2小时先到达B地,故答案为1,2;(2)由图象可知:乙的行驶路程为50千米,时间为3﹣2=1小时,乙骑摩托的行驶速度为50÷1=50千米/小时,甲骑自行车在下午2时至5时的行驶路程为Q﹣R的距离,50﹣20=30千米,时间为5﹣2=3小时,甲骑自行车在下午2时至5时的行驶速度为30÷3=10千米/小时,答:乙骑摩托的行驶速度为50千米/小时;甲骑自行车在下午2时至5时的行驶速度10千米/小时;(3)设相遇时乙出发了t小时,此时二者行驶距离相同,20+10t=50t,解得:t=0.5小时,此时距离A地的距离为乙的行驶距离50×0.5=25千米,答:当甲、乙两人途中相遇时,相遇地与A地的距离为25千米,故答案为25千米.【点睛】本题考查从函数图像获取信息,正确识图并熟练运用相关知识是解题的关键.19.在我市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,该校有几种购买方案?(3)上面的哪种方案费用最低?按费用最低方案购买需要多少钱?【答案】(1)每台电脑0.5万元,每台电子白板1.5万元;(2)共有三种方案:方案一:购进电脑15台,电子白板15台;方案二:购进电脑16台,电子白板14台;方案三:购进电脑1台,电子白板13台;(3)选择方案三最省钱,即购买电脑1台,电子白板13台最省钱.需要28万元.【解析】【分析】(1)先设每台电脑x万元,每台电子白板y万元,根据购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元列出方程组,求出x,y的值即可;(2)先设需购进电脑a台,则购进电子白板(30-a)台,根据需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元列出不等式组,求出a的取值范围,再根据a只能取整数,得出购买方案;(3)根据每台电脑的价格和每台电子白板的价格,算出总费用,再进行比较,即可得出最省钱的方案.【详解】解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:2 3.5 2 2.5 x yx y+=⎧⎨+=⎩解得:0.51.5 xy=⎧⎨=⎩,答:每台电脑0.5万元,每台电子白板1.5万元.(2)设需购进电脑a台,则购进电子白板(30-a)台,则0.5 1.5(30)300.5 1.5(30)28a aa a+-⎧⎨+-⎩,解得:15≤a≤1,即a=15、16、1.故共有三种方案:方案一:购进电脑15台,电子白板15台;方案二:购进电脑16台,电子白板14台;方案三:购进电脑1台,电子白板13台.(3)方案一:总费用为15×0.5+1.5×15=30(万元);方案二:总费用为16×0.5+1.5×14=29(万元),方案三:1×0.5+1.5×13=28(万元),∵28<29<30,∴选择方案三最省钱,即购买电脑1台,电子白板13台最省钱.需要28万元.【点睛】本题考查了二元一次方程组和一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组和一元一次不等式组,注意a 只能取整数.20.若关于x ,y 的二元一次方程组325233x y a x y a -=-⎧⎨+=+⎩的解都是正数. (1)求a 的取值范围;(2)若上述二元一次方程组的解是一个等腰三角形的一条腰和底边的长,且这个等腰三角形的周长为9,求a 的值.【答案】(1)1a >;(1)a 的值为1【解析】【分析】(1)先解方程组用含a 的代数式表示x ,y 的值,再代入有关x ,y 的不等关系得到关于a 的不等式求解即可;(1)首先用含m 的式子表示x 和y ,由于x 、y 的值是一个等腰三角形两边的长,所以x 、y 可能是腰也可能是底,依次分析即可解决,注意应根据三角形三边关系验证是否能组成三角形.【详解】解:解方程组325233x y a x y a -=-⎧⎨+=+⎩得: 12x a y a =-⎧⎨=+⎩ ∵方程组的解都为正数∴1020a a ->⎧⎨+>⎩解得:1a >(1))∵二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,这个等腰三角形的周长为9, ∴1(a-1)+a+1=9,解得:a=3,∴x=1,y=5,不能组成三角形,∴1(a+1)+a-1=9,解得:a=1,∴x=1,y=4,能组成等腰三角形,∴a 的值是1.【点睛】考查了方程组的解的定义和不等式的解法.理解方程组解的意义用含m 的代数式表示出x ,y ,找到关于x ,y 的不等式并用a 表示出来是解题的关键.21.如图,在直角坐标系中,ABC △的顶点都在网格点上,其中C 点的坐标为1,2.(1)直接写出点A 的坐标为__________;(2)求ABC △的面积;(3)将ABC △向左平移1个单位,再向上平移2个单位,画出平移后的111A B C △,并写出111A B C △三个顶点的坐标.【答案】(1)点A 的坐标为()2,1-;(2)ABC △的面积为5;(3)画出平移后的111A B C △,见解析,()11,1A 、()13,5B 、()10,4C .【解析】【分析】(1)根据点在坐标系中的位置写出点A 的坐标即可;(2)根据图形平移的性质画出△A′B′C′,根据各点在坐标系中的位置写出各点坐标即可;(3)利用三角形所在矩形面积减去周围三角形面积进而得出答案.【详解】(1)由图可知,点A 的坐标为()2,1-;(2))△ABC 的面积为:3×4-12×1×3-12×2×4-12×1×3=5;(3)如图所示,111A B C △即为所求,()11,1A 、()13,5B 、()10,4C .【点睛】本题考查平移变换以及三角形面积求法,得出平移后对应点位置是解题关键.22.如图,在ABC ∆中,AB AC =,,,D E F 分别在三边上,且,BE CD BD CF ==,G 为EF 的中点.(1)若40A ∠=︒,求B 的度数;(2)试说明:DG 垂直平分EF .【答案】(1)70°(2)见解析【解析】【分析】(1)如图,首先证明∠ABC=∠ACB ,运用三角形的内角和定理即可解决问题;(2)如图,作辅助线;首先证明△BDE ≌△CFD ,得到DE=DF ,运用等腰三角形的性质证明DG ⊥EF ,即可解决问题.【详解】(1)因为AB AC =,所以C B ∠=∠,因为40A ∠=︒, 所以18040702B ︒-︒∠==︒; (2)连接DE DF ,,在BDE ∆和CFD ∆中,BD CF B C BE CD =⎧⎪∠=∠⎨⎪=⎩所以()BDE CFD SAS ∆∆≌,所以DE DF =,因为G 为EF 的中点,所以DG EF ⊥,所以DG 垂直平分EF .【点睛】该题主要考查了等腰三角形的判定及其性质、三角形的内角和定理、全等三角形的判定及其性质等几何知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用等腰三角形的判定及其性质、三角形的内角和定理等几何知识点来分析、判断、解答.23.某校随机抽取部分学生,就”对自己做错题进行整理、分析、改正”这一学习习惯进行问卷调查,选项为:很少、有时、常常、总是(每人只能选一项);调查数据进行了整理,绘制成部分统计图如图:请根据图中信息,解答下列问题:()1该调查的总人数为______,a =______%,b =______%,“常常”对应扇形的圆心角的度数为______;()2请你补全条形统计图;()3若该校有2000名学生,请你估计其中”总是”对错题进行整理、分析、改正的学生有多少名?【答案】(1)200;12;36;108(2)补图见解析;(3)720名.【解析】【分析】(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少,然后分别用“很少、总是”对自已做错的题目进行整理、分析、改正的人数除以样本容量,求出a 、b 的值各是多少;用360︒乘以“常常”的人数所占比例;(2)求出常常“对自已做错的题目进行整理、分析、改正”的人数,补全条形统计图即可; (3)用该校学生的人数乘“总是”对错题进行整理、分析、改正的学生占的百分率即可.【详解】解:()14422%200(÷=名)∴该调查的样本容量为200;2420012%a =÷=,7220036%b =÷=,“常常”对应扇形的圆心角为:36030%108⨯=.故答案为200、12、36、108;()2常常的人数为:20030%60(⨯=名),补全图形如下:.()3200036%720(⨯=名)∴“总是”对错题进行整理、分析、改正的学生有720名.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.24.(1)计算:231(23)869-(2)解方程组231x y x y -=⎧⎨-=⎩;(3)解不等式组:2(1)1112x x x x --⎧⎪⎨+>-⎪⎩【答案】(1)8;(2)21xy=⎧⎨=⎩;(3)1x【解析】【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)利用加减消元法求解可得;(3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)原式1 1226122282=--⨯=--=;(2)2x y3x y1-=⎧⎨-=⎩①②,①-②,得:x2=,将x2=代入②,得:2y1-=,解得y1=,则方程组的解为21xy=⎧⎨=⎩;(3)解不等式()x2x11--,得:x1,解不等式1xx12+>-,得:x3<,则不等式组的解集为x1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.如图1,AB∥CD,E是射线FD上的一点,∠ABC=140°,∠CDF=40°(1)试说明BC∥EF;(1)若∠BAE=110°,连接BD,如图1.若BD∥AE,则BD是否平分∠ABC,请说明理由.【答案】 (1)见解析;(1)见解析.【解析】【分析】(1)证明∠BCD=∠CDF=40°即可解决问题.(1)证明∠ABD=∠DBC=70°即可解决问题.【详解】(1)证明:∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=140°,∴∠BCD=40°,∵∠CDF=40°,∴∠BCD=∠CDF,∴BC∥EF.(1)解:结论:BD平分∠ABC.理由:∵AE∥BD,∴∠BAE+∠ABD=180°,∵∠BAE=110°,∴∠ABD=70°,∵∠ABC=140°,∴∠ABD=∠DBC=70°,∴BD平分∠ABC.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.。

安徽省六安市汇文中学2023-2024学年七年级下学期月考数学试题

安徽省六安市汇文中学2023-2024学年七年级下学期月考数学试题

安徽省六安市汇文中学2023-2024学年七年级下学期月考数学试题一、单选题1)A.BC .2±D .22.下列各式中,正确的是( )A .22b b a a = B .()0b b c c a a c +=≠+ C .()202b b c a c a c =≠++ D .22a b a ab a a --= 3.若249x mx ++是完全平方式,则m 的值为( ).A .12B .-12C .±12D .以上都不对 4.下列各式中是最简分式的是( )A .2xB .315y xC .211x x --D .22x y x y-+ 5.已知1x =时,分式2x b x a +--无意义;4x =时,分式的值为0,则a b +的值为( ) A .2B .2-C .1D .1- 6.如果把5x y xy+中的x 与y 都扩大为原来的5倍,那么这个代数式的值( ) A .不变B .扩大为原来的5倍C .缩小为原来的15D .扩大为原来的10倍7.若分式21x x -□1x x -运算结果为x ,则在“□”中添加的运算符号为( ) A .+B .-C .+或⨯D .-或÷ 8.当13m n =时,代数式()222221m n m mn m mn ⎛⎫+⨯- ⎪-+⎝⎭的值为( ) A .-6 B .6 C .-12 D .129.已知不等式210x +>的解都能使不等式12ax x <-成立,则a 的取值范围是( ) A .42a -≤≤-B .2a ≤-C .42a -≤<-D .4a ≤- 10.已知111y x =-,且23412311111,,1111n n y y y y y y y y -====----L ,则2024y 为( ) A .11x - B .2x - C .12x x -- D .21x x --二、填空题11.把分式22111221(1)x x x ⋅⋅+--通分,最简公分母是. 12.分解因式:232x x x -+=.13.已知非零实数a ,b 满足111a b =-,则22a ab b ab a b++--的值等于. 14.若关于 x 的不等式组 0321x m x -<⎧⎨-≤⎩, 的所有整数解的和是 10,则 m 的取值范围是.三、解答题15.计算:(1)()120313234--⎛⎫-+-- ⎪⎝⎭; (2)()()()2212121m m m +-+-.16.解不等式组()()()11322561x x x x ⎧--<⎪⎨⎪+≥-⎩并把解集在数轴上表示出来.17.先化简:1111x x x x ⎛⎫--÷ ⎪--⎝⎭,再从11x -≤≤中选取一个你喜欢的整数作为x 的值代入求值.18.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数.19.某同学计算一个多项式乘23x -时,因抄错符号,算成了加上23x -,得到的答案是221x x -+.(1)求这个多项式(2)正确的计算结果应该是多少?20.观察以下等式:第1个等式:11912412+=⨯-, 第2-个等式:11182291+=⨯-, 第3个等式:11125231612+=⨯-,第4个等式:1111824251+=⨯-, ……按照以上规律,解决下列问题:(1)写出第5个等式:__________________;(2)写出你猜想的第n 个等式(用含n 的等式表示),并证明.21.先阅读理解下列例题,再按要求完成下列各题.例题:解不等式()()31230x x -+>.由有理数的乘法法则“两数相乘,同号得正,异号得负”有①310230x x ->⎧⎨+>⎩或②310230x x -<⎧⎨+<⎩. 解不等式组①,得13x >.解不等式组②,得32x <-. 所以不等式()()31230x x -+>的解集是13x >或32x <-. (1)求不等式()()7320x x +-<的解集;(2)求不等式35062x x+>-的解集. 22.同学们,本学期我们结识了无理数,数系从有理数扩充到实数,有理数的所有运算律对实数都适用.任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果0ax b +=,其中a ,b 为有理数,x 为无理数,那么0a =且0b =.运用上述知识,解决下列问题:(1)若(320a b +-=,其中a ,b 为有理数,则a =__________,b =__________;(2)如果((325a b -=,其中a ,b 为有理数,求2a b -的平方根.23.图①是一个长为m ,宽为4n (m n >)的长方形,用剪刀沿图中虚线剪开,把它平均分成形状和大小都一样的四个小长方形,然后按图②那样拼成一个正方形.(1)观察图②,可得:()()22m n m n +--=______;(2)若7m n -=,6mn =,求()2m n +的值;(3)当()()10208x x --=时,求()2230x -的值.。

六安市七年级数学下册期末试卷填空题汇编精选考试题及答案

六安市七年级数学下册期末试卷填空题汇编精选考试题及答案

一、解答题1.如图所示,在直角坐标系xoy 中,已知()6,0A ,()8,6B ,将线段OA 平移至CB ,连接OC 、AB 、CD 、BD ,且//OC AB ,点D 在x 轴上移动(不与点O 、A 重合).(1)直接写出点C 的坐标;(2)点D 在运动过程中,是否存在ODC △的面积是ABD △的面积的3倍,如果存在请求出点D 的坐标,如果不存在请说明理由;(3)点D 在运动过程中,请写出OCD ∠、ABD ∠、BDC ∠三者之间存在怎样的数量关系,并说明理由.解析:(1)(2,6);(2)(92,0)或(9,0);(3)∠OCD +∠DBA =∠BDC 或∠OCD -∠DBA =∠BDC【分析】(1)由点的坐标的特点,确定出FC =2,OF =6,得出C (2,6);(2)分点D 在线段OA 和在OA 延长线两种情况进行计算;(3)分点D 在线段OA 上时,∠OCD +∠DBA =∠BDC 和在OA 延长线∠OCD -∠DBA =∠BDC 两种情况进行计算.【详解】解:(1)如图,过点C 作CF ⊥y 轴,垂足为F ,过B 作BE ⊥x 轴,垂足为E ,∵A (6,0),B (8,6),∴FC =AE =8-6=2,OF =BE =6,∴C (2,6);(2)设D (x ,0),当△ODC 的面积是△ABD 的面积的3倍时,若点D 在线段OA 上,∵OD =3AD ,∴12×6x=3×12×6(6-x),∴x=92,∴D(92,0);若点D在线段OA延长线上,∵OD=3AD,∴12×6x=3×12×6(x-6),∴x=9,∴D(9,0);(3)如图,过点D作DE∥OC,由平移的性质知OC∥AB.∴OC∥AB∥DE.∴∠OCD=∠CDE,∠EDB=∠DBA.若点D在线段OA上,∠BDC=∠CDE+∠EDB=∠OCD+∠DBA,即∠OCD+∠DBA=∠BDC;若点D在线段OA延长线上,∠BDC=∠CDE-∠EDB=∠OCD-∠DBA,即∠OCD-∠DBA=∠BDC.【点睛】此题是几何变换综合题,主要考查了点三角形面积的计算方法,平移的性质,平行线的性质和判定,解本题的关键是分点D在线段OA上,和OA延长线上两种情况.2.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.问题解决:(1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P 在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由;(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出∠APC、α、B之间的数量关系;(3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC 的度数.解析:(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解.【详解】解:(1)如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC=β-α;(3)如图3,过点P,Q分别作PE∥AB,QF∥AB,∵AB∥CD,∴AB∥QF∥PE∥CD,∴∠BAP=∠APE,∠PCD=∠EPC,∵∠APC=116°,∴∠BAP+∠PCD=116°,∵AQ平分∠BAP,CQ平分∠PCD,∴∠BAQ=12∠BAP,∠DCQ=12∠PCD,∴∠BAQ+∠DCQ=1(∠BAP+∠PCD)=58°,2∵AB∥QF∥CD,∴∠BAQ=∠AQF,∠DCQ=∠CQF,∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°,∴∠AQC=58°.【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键.3.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN.(1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°;(2)如图2,∠BMH和∠HND的角平分线相交于点E.①请直接写出∠MEN与∠MHN的数量关系:;②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论)解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣1(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.2【详解】解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=12∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=12∠GND.(两直线平行,内错角相等)∴∠MEN=∠MEQ+∠QEN=12∠BMH+12∠GND=12(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:过点H作GI∥AB.如答图2由(1)可得∠MEN=12(∠BMH+∠HND),由图可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案为:2∠MEN+∠MHN=360°.②:由①的结论得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.过点H作HT∥MP.如答图2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).∵MP平分∠AMH,∴∠PMH=12∠AMH=12(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.∵∠ENH=12∠HND.∴∠ENQ+12∠HND+140°﹣90°+12∠BMH=180°.∴∠ENQ+12(HND+∠BMH)=130°.∴∠ENQ+12∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.4.如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.(1)求证:∠CAB=∠MCA+∠PBA;(2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE;(3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数.解析:(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如图2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.5.如图,直线//PQ MN ,点C 是PQ 、MN 之间(不在直线PQ ,MN 上)的一个动点.(1)如图1,若1∠与2∠都是锐角,请写出C ∠与1∠,2∠之间的数量关系并说明理由; (2)把直角三角形ABC 如图2摆放,直角顶点C 在两条平行线之间,CB 与PQ 交于点D ,CA 与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有BDF GDF ∠=∠,求AEN CDG∠∠的值; (3)如图3,若点D 是MN 下方一点,BC 平分PBD ∠, AM 平分CAD ∠,已知25PBC ∠=︒,求ACB ADB ∠+∠的度数.解析:(1)见解析;(2)12;(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.【详解】解:(1)∠C =∠1+∠2,证明:过C 作l ∥MN ,如下图所示,∵l ∥MN ,∴∠4=∠2(两直线平行,内错角相等),∵l ∥MN ,PQ ∥MN ,∴l ∥PQ ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴∠C =∠1+∠2;(2)∵∠BDF =∠GDF ,∵∠BDF =∠PDC ,∴∠GDF =∠PDC ,∵∠PDC +∠CDG +∠GDF =180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-12∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴190(90)90122CDGAEN CEM PDCCDG CDG CDG CDG︒-︒-∠∠∠︒-∠====∠∠∠∠,(3)设BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.6.已知AB//CD.(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)解析:(1)见解析;(2)55°;(3)1118022αβ︒-+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数.【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠;(2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠,BF 平分ABC ∠,DF 平分ADC ∠,1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒, 55BFD FBA FDC ∴∠=∠+∠=︒.答:BFD ∠的度数为55︒;②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠.即180BFD FBA FDC ∠=︒-∠+∠, BF 平分ABC ∠,DF 平分ADC ∠, 1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=, 1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+. 答:BFD ∠的度数为1118022αβ︒-+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 7.已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED = .(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,∠AED =32°,∠P =30°,求∠EKD 的度数.解析:(1)70°;(2)EAF AED EDG ∠=∠+∠,证明见解析;(3)122°【分析】(1)过E 作//EF AB ,根据平行线的性质得到25EAF AEH ∠=∠=︒,45EAG DEH ∠=∠=︒,即可求得AED ∠;(2)过过E 作//EM AB ,根据平行线的性质得到180EAF MEH ∠=︒-∠,180EDG AED MEH ∠+∠=︒-,即EAF AED EDG ∠=∠+∠;(3)设EAI x ∠=,则3BAE x ∠=,通过三角形内角和得到2EDK x ∠=-︒,由角平分线定义及//AB CD 得到33224x x =︒+-︒,求出x 的值再通过三角形内角和求EKD ∠.【详解】解:(1)过E 作//EF AB ,//AB CD ,//EF CD ∴,25EAF AEH ∴∠=∠=︒,45EAG DEH ∠=∠=︒,70AED AEH DEH ∴∠=∠+∠=︒,故答案为:70︒;(2)EAF AED EDG ∠=∠+∠.理由如下:过E 作//EM AB ,//AB CD ,//EM CD ∴,180EAF MEH ∴∠+∠=︒,180EDG AED MEH ∠+∠+=︒,180EAF MEH ∴∠=︒-∠,180EDG AED MEH ∠+∠=︒-,EAF AED EDG ∴∠=∠+∠;(3):1:2EAP BAP ∠∠=,设EAP x ∠=,则3BAE x ∠=,32302AED P ∠-∠=︒-︒=︒,DKE AKP ∠=∠,又180EDK DKE DEK ∠+∠+∠=︒,180KAP KPA AKP ∠+∠+∠=︒,22EDK EAP x ∴∠=∠-︒=-︒, DP 平分EDC ∠,224CDE EDK x ∴∠=∠=-︒,//AB CD ,EHC EAF AED EDG∴∠=∠=∠+∠,x=︒,即33224x x=︒+-︒,解得28EDK∴∠=︒-︒=︒,28226∴∠=︒-︒-︒=︒.1802632122EKD【点睛】本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.8.已知直线AB//CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3°旋转至QD停止,此时射线PB也停止旋转.(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB'与QC'的位置关系为;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB′//QC′.解析:(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB ∥CD ,PB ′∥QC ′,∴∠BPB ′=∠BEQ =∠CQC ′,即12t ﹣360=45+3t ,解得,t =45;综上,当射线PB 旋转的时间为5秒或25秒或45秒时,PB ′∥QC ′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.9.已知,在平面直角坐标系中,AB ⊥x 轴于点B ,点A (,)a b 满足4a -||20b +-=,平移线段AB 使点A 与原点重合,点B 的对应点为点C .(1)则a = ,b = ,点C 坐标为 ;(2)如图1,点D (m ,n )在线段BC 上,求m ,n 满足的关系式;(3)如图2,E 是线段OB 上一动点,以OB 为边作∠BOG =∠AOB ,交BC 于点G ,连CE 交OG 于点F ,当点E 在线段OB 上运动过程中,OFC FCG OEC∠+∠∠的值是否会发生变化?若变化请说明理由,若不变,请求出其值.解析:(1)4,2,(0,2)-;(2)24m n -=;(3)不变,值为2.【分析】(14a -||20b +-=,即可得出a ,b 的值,再根据平移的性质得出2AB OC ==,因为点C 在y 轴负半轴,即可得出点C 的坐标;(2)过点D 分别作DM ⊥x 轴于点M , DN ⊥y 轴于点N ,连接OD ,在BOC 中用等面积法即可求出m 和n 的关系式;(3)分别过点E ,F 作EP ∥OA , FQ ∥OA 分别交y 轴于点P ,点Q ,根据平行线的性质,得出,OEC AOE GCF ∠=∠+∠ 2OFC AOE GCF ∠=∠+∠进而得到OFC FCG OEC ∠+∠∠的值. 【详解】(1)解:∵4a -||20b +-=, ∴40,20,a b -=-=∴4,2,a b ==∵2,AB OC ==且C 在y 轴负半轴上,∴(0,2)C -,故填:4,2,(0,2)-;(2)如图1,过点D 分别作DM ⊥x 轴于点M , DN ⊥y 轴于点N ,连接OD .∵AB ⊥ x 轴于点B ,且点A ,D ,C 三点的坐标分别为:(4,2),(,),(0,2)m n -∴4,2,,OB OC MD n ND m ===-=,∴142BOC S OB OC ==, 又∵S △BOC = S △BOD +S △COD =12OB ×MD +12OC ×ND 114()222n m =⨯⨯-+⨯⨯ 2m n =-,∴24m n -=;(3)解:OFC FCG OEC∠+∠∠的值不变,值为2.理由如下: 如图所示,分别过点E ,F 作EP ∥OA , FQ ∥OA 分别交y 轴于点P ,点Q ,∵线段OC 是由线段AB 平移得到,∴BC ∥OA ,又∵EP ∥OA ,∴EP ∥BC ,∴∠GCF =∠PEC ,∵EP ∥OA ,∴∠AOE =∠OEP ,∴∠OEC =∠OEP +∠PEC =∠AOE +∠GCF ,同理:∠OFC =∠AOF +∠GCF ,又∵∠AOB =∠BOG ,∴∠OFC =2∠AOE +∠GCF , ∴OFC FCG OEC∠+∠∠ OFC FCG AOE FCG ∠+∠=∠+∠ 22AOE FCG AOE FCG∠+∠=∠+∠ 2=.【点睛】本题主要考查了非负数的性质,坐标与图形,平行线的判定与性质,以及平移的性质,解决问题的关键是作辅助线,运用等面积法,角的和差关系以及平行线的性质进行求解. 10.如图,在平面直角坐标系中,同时将点A (﹣1,0)、B (3,0)向上平移2个单位长度再向右平移1个单位长度,分别得到A 、B 的对应点C 、D .连接AC ,BD(1)求点C 、D 的坐标,并描出A 、B 、C 、D 点,求四边形ABDC 面积;(2)在坐标轴上是否存在点P ,连接PA 、PC 使S △PAC =S 四边形ABCD ?若存在,求点P 坐标;若不存在,请说明理由.解析:(1)(0,2),(4,2),见解析,ABDC 面积:8;(2)存在,P 的坐标为(7,0)或 (﹣9,0)或(0,18)或 (0,﹣14).【解析】【分析】(1)根据向右平移横坐标加,向上平移纵坐标加写出点C 、D 的坐标即可,再根据平行四边形的面积公式列式计算即可得解;(2)分点P 在x 轴和y 轴上两种情况,依据S △PAC =S 四边形ABCD 求解可得.【详解】(1)由题意知点C 坐标为(﹣1+1,0+2),即(0,2),点D 的坐标为(3+1,0+2),即(4,2),如图所示,S 四边形ABDC =2×4=8;(2)当P 在x 轴上时,∵S △PAC =S 四边形ABCD , ∴182AP OC ⋅=, ∵OC =2,∴AP =8,∴点P 的坐标为 (7,0)或(﹣9,0);当P 在y 轴上时,∵S △PAC =S 四边形ABCD , ∴182CP OA =, ∵OA =1,∴CP =16,∴点P 的坐标为(0,18)或(0,﹣14);综上,点P 的坐标为(7,0)或 (﹣9,0)或(0,18)或(0,﹣14).【点睛】本题考查了坐标与图形性质,三角形的面积,坐标与图形变化﹣平移,熟记各性质是解题的关键.11.如图1,已知直线CD ∥EF ,点A ,B 分别在直线CD 与EF 上.P 为两平行线间一点.(1)若∠DAP=40°,∠FBP=70°,则∠APB=(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由;②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示)解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=1 1802β︒-.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P作PM∥CD,∴∠APM=∠DAP.(两直线平行,内错角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一条直线的两条直线互相平行),∴∠MPB=∠FBP.(两直线平行,内错角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)结论:∠APB=∠DAP+∠FBP.理由:见(1)中证明.(3)①结论:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP =2∠DAP 1,∠FBP =2∠FBP 1,∴∠P =2∠P 1.②由①得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,∵AP 2、BP 2分别平分∠CAP 、∠EBP ,∴∠CAP 2=12∠CAP ,∠EBP 2=12∠EBP ,∴∠AP 2B =12∠CAP +12∠EBP ,= 12(180°-∠DAP )+ 12(180°-∠FBP ),=180°- 12(∠DAP +∠FBP ),=180°- 12∠APB ,=180°- 12β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.12.如图,在平面直角坐标系中,直线AB 与x 轴交于点(,0)B b ,与y 轴交于点(0,)A a ,且2(2)|4|0a b -+-=(1)求AOB S ;(2)若(,)P x y 为直线AB 上一点.①APO △的面积不大于BPO △面积的23,求P 点横坐标x 的取值范围; ②请直接写出用含x 的式子表示y .(3)已知点(,2)Q m m -,若ABQ △的面积为6,请直接写出m 的值.解析:(1)4;(2)①80x -≤<或805x <≤;②122y x =-+;(3)23或143. 【分析】(1)先根据偶次方和绝对值的非负性求出,a b 的值,从而可得点,A B 的坐标和,OA OB 的长,再利用直角三角形的面积公式即可得;(2)①分0x <和04x <<两种情况,先分别求出APO △和BPO △的面积,再根据已知条件建立不等式,解不等式即可得;②分4x <和4x ≥两种情况,利用APO △、BPO △和AOB 的面积关系建立等式,化简即可得;(3)过点Q 作y 轴的平行线,交直线AB 于点C ,从而可得1(,2)2C m m -+,再分0m <、04m ≤≤和4m >三种情况,分别利用三角形的面积公式建立方程,解方程即可得.【详解】解:(1)由题意得:20,40a b -=-=,解得2,4a b ==,(0,2),(4,0)A B ∴,2,4OA OB ∴==,x 轴y ⊥轴,1124422AOB S OA OB ∴=⋅=⨯⨯=; (2)①APO △的面积不大于BPO △面积的23, APO ∴的面积小于BPO △的面积,则分以下两种情况:如图,当0x <时,则122APO S x x =⨯=-,4BPO AOB APO S S S x =+=-,因此有2(4)3x x -≤-, 解得8x ≥-,此时x 的取值范围为80x -≤<;如图,当04x <<时,则122APO S x x =⨯=,4BPO AOB APO S S S x =-=-,因此有2(4)3x x ≤-, 解得85x ≤, 此时x 的取值范围为805x <≤,综上,P 点横坐标x 的取值范围为80x -≤<或805x <≤; ②当4x <时,则0y >,1422BPO Sy y =⨯=, 由(2)①可知,4BPO Sx =-, 则24y x =-,即122y x =-+; 如图,当4x ≥时,则0y ≤,122APO S x x =⨯=,1422BPO S y y =⨯=-, BPO AOB APO S S S +=,24y x ∴-+=,解得122y x =-+, 综上,122y x =-+; (3)过点Q 作y 轴的平行线,交直线AB 于点C ,由(2)②可知,1(,2)2C m m -+, 则132(2)422CQ m m m =-+--=-, 由题意,分以下三种情况:①如图,当0m <时,则1313(4)4()42222ABQ BCQ ACQ S S S m m m m =-=----⋅-, 32(4)62m =-=,解得203m =>,不符题设,舍去; ②如图,当04m ≤≤时,则1313(4)442222ABQ BCQ ACQ SS S m m m m =+=--+⋅-, 32462m =-=, 解得23m =或1443m =>(不符题设,舍去); ③如图,当4m >时,则13134(4)42222ABQ ACQ BCQ S S S m m m m =-=⋅----, 32(4)62m =-=, 解得143m =,符合题设, 综上,m 的值为23或143. 【点睛】本题考查了偶次方和绝对值的非负性、坐标与图形等知识点,较难的是题(3),正确分三种情况讨论是解题关键.13.两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大990.若设较大的两位数为x ,较小的两位数为y ,回答下列问题: (1)可得到下列哪一个方程组?A .68,1010990.x y x y y x +=⎧⎨+-+=⎩B .()()68,1010990.x y x y y x +=⎧⎨+-+=⎩ C .()()68,100100990.x y x y y x +=⎧⎨+-+=⎩ D .()()1068,100100990.x y x y y x +=⎧⎨+-+=⎩(2)解所确定的方程组,求这两个两位数.解析:(1)C ;(2)39和29【分析】(1)首先设较大的两位数为x ,较小的两位数为y ,根据题意可得等量关系:①两个两位数的和为68,②100x y +比100y x +大990,根据等量关系列出方程组;(2)利用加减消元法解方程组即可.【详解】解:(1)解:设较大的两位数为x ,较小的两位数为y ,根据题意,得()()68,100100990.x y x y y x +=⎧⎨+-+=⎩ 故选:C ;(2)化简()()68,100100990.x y x y y x +=⎧⎨+-+=⎩ 得6810x y x y +=⎧⎨-=⎩①②, ①+②,得278x =,即39x =.①-②,得258y =,即29y =.所以这两个数分别是39和29.【点睛】此题主要考查了由实际问题抽象出二元一次方程组和解二元一次方程组,关键是弄清题目意思,表示出“较小的两位数写在较大的两位数的右边,得到一个四位数为100y x +”,把较小的两位数写在较大的两位数的左边,得到另一个四位数为100x y +.14.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案.解析:(1)七(1)班有47人,七(2)班有51人;(2) 如果两个班联合起来买票,不可以买单价为9 元的票, 省钱的方法,可以买101张票,多余的作废即可【解析】【分析】(1)由两个班联合起来,作为一个团体购票,则需付 1078 元可知:710879=1209÷可得票价不是9元,所以两个班的总人数没有超过100人,设七(1)班有x 人,七(2)班有y人,可列方程组,解方程组即可得答案;(2)如果两班联合起来作为一个团体购票,则每张票11元,省钱的方法,可以买101张票,多余的作废即可。

安徽省六安市2020版七年级下学期数学期末考试试卷(II)卷

安徽省六安市2020版七年级下学期数学期末考试试卷(II)卷

安徽省六安市2020版七年级下学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、一.选择题 (共12题;共24分)1. (2分)(2016·钦州) 不等式组的解集在数轴上表示为()A .B .C .D .2. (2分)两条平行线被第三条直线所截,则()A . 一对内错角的平分线互相平行B . 一对同旁内角的平分线互相平行C . 一对对顶角的平分线互相平行D . 一对邻补角的平分线互相平行3. (2分) (2017七下·湖州期中) 已知x是无理数,且(x+1)(x+3)是有理数,则(1)x2是有理数;(2)(x﹣1)(x﹣3)是无理数;(3)(x+1)2是有理数;(4)(x﹣1)2是无理数4个结论中,正确的有()A . 3个B . 2个C . 1个D . 0个4. (2分)下列说法正确的有()①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A . 1个B . 2个C . 3个D . 4个5. (2分)如图,下列说法错误的是()A . ∠A和∠B是同旁内角B . ∠A和∠3内错角C . ∠1和∠3是内错角D . ∠C和∠3是同位角6. (2分)已知点P坐标为(2﹣a,3a+6),且点P到两坐标轴的距离相等,则a的值是()A . ﹣1或4B . 1或4C . 1或﹣4D . ﹣1或﹣47. (2分)下列命题是假命题的是()A . 两直线平行,同位角相等B . 两点之间线段最短C . 对顶角相等D . 过一点有且只有一条直线与已知直线平行8. (2分)一个多边形的内角和是外角和的2倍,则这个多边形是()A . 四边形B . 五边形C . 六边形D . 八边形9. (2分)的绝对值是()A . 3B . —3C .D .10. (2分)某校为了了解学生在校午餐所需的时间,抽量了20名学生在校午餐所需时间,获得如下的数据(单位:分):10、12、15、10、16、18、19、18、20、18、18、20、28、22、30、20、15、16、21、16.若将这些数据以4分为组距进行分组,则组数是()A . 4组B . 5组C . 6组D . 7组11. (2分) (2020七下·下陆月考) 如图,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能使a∥b成立的条件有()A . 1个B . 2个C . 3个D . 4个12. (2分)下列说法中正确的是()A . y=3是不等式y+4<5的解B . y=3是不等式3y<11的解集C . 不等式3y<11的解集是y=3D . y=2是不等式3y≥6的解二、填空题 (共4题;共4分)13. (1分)分解因式:m3﹣4m2+4m=________ .14. (1分) (2017七下·东城期末) 用不等式表示:a与2的差大于﹣1________.15. (1分)(2019·北京模拟) 惠来县某单位组织34人分别到广州和深圳进行继续教育学习,到广州的人数是到深圳的人数的2倍多1人,求到两地的人数各是多少?设到广州的人数为x人,到深圳的人数为y人,请列出满足题意的方程组________.16. (1分) (2017七下·滦县期末) 定义一种法则“⊕”如下:a⊕b= ,例如:1⊕2=2,若(﹣2m ﹣5)⊕3=3,则m的取值范围是________.三、解答题 (共6题;共58分)17. (5分)(2013·桂林) 解二元一次方程组:.18. (5分)(2016·滨州) 某运动员在一场篮球比赛中的技术统计如表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分篮板(个)助攻(次)个人总得分数据4666221011860注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.19. (10分)(2017·西乡塘模拟) 如图,△ABC中,AB=AC,E、F分别是BC、AC的中点,以AC为斜边作Rt△ADC.(1)求证:FE=FD;(2)若∠CAD=∠CAB=24°,求∠EDF的度数.20. (15分)(2017·樊城模拟) “赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组50≤x<606第2组60≤x<708第3组70≤x<8014第4组80≤x<90a第5组90≤x<10010请结合图表完成下列各题:(1)①求表中a的值;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.21. (8分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图所示的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图,在四边形ABCD中,BC=AD,AB=__①___.求证:四边形ABCD是___②___四边形.(1)在方框中填空,以补全已知和求证;①________;②________.(2)按嘉淇的想法写出证明.(3)用文字叙述所证命题的逆命题为________22. (15分)(2017·广陵模拟) 某企业对每个员工在当月生产某种产品的件数统计如下:设产品件数为x(单位:件),企业规定:当x<15时为不称职;当15≤x<20时为基本称职;当20≤x<25为称职;当x≥25时为优秀.解答下列问题(1)试求出优秀员工人数所占百分比;(2)计算所有优秀和称职的员工中月产品件数的中位数和众数;(3)为了调动员工的工作积极性,企业决定制定月产品件数奖励标准,凡达到或超过这个标准的员工将受到奖励.如果要使得所有优秀和称职的员工中至少有一半能获奖,你认为这个奖励标准应定为多少件合适?简述其理由.参考答案一、一.选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共58分)17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、22-3、。

汇文中学七下期末数学试卷

汇文中学七下期末数学试卷

一、选择题(每题4分,共40分)1. 下列各数中,不是有理数的是()A. √4B. 0.333...C. -πD. 2/32. 下列等式中,正确的是()A. 2x + 3 = 5x - 1B. 2(x + 3) = 2x + 9C. (2x + 3) / 3 = 2x + 1D. 2x + 3 = 2x - 33. 若a = 3,b = -2,则a² - b²的值为()A. 5B. -5C. 1D. -14. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 平行四边形5. 已知一元二次方程x² - 5x + 6 = 0,则该方程的解为()A. x₁ = 2,x₂ = 3B. x₁ = 3,x₂ = 2C. x₁ = 1,x₂ = 4D. x₁ = 4,x₂ = 16. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x²D. y = x³7. 在直角坐标系中,点P(2, -3)关于x轴的对称点坐标是()A. (2, 3)B. (-2, -3)C. (2, -3)D. (-2, 3)8. 下列命题中,正确的是()A. 平行四边形的对角线相等B. 等腰三角形的底角相等C. 直角三角形的斜边最长D. 正方形的四条边都相等9. 下列运算中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²10. 已知梯形ABCD的上底AB = 5cm,下底CD = 10cm,高AD = 6cm,则梯形ABCD 的面积是()A. 30cm²B. 60cm²C. 90cm²D. 120cm²二、填空题(每题5分,共50分)1. 0.25的小数点向右移动两位后变成______。

六安七年级下册数学期末试卷易错题(Word版 含答案)

六安七年级下册数学期末试卷易错题(Word版 含答案)

六安七年级下册数学期末试卷易错题(Word 版 含答案)一、解答题1.如图1,点E 在直线AB 、DC 之间,且180DEB ABE CDE ∠+∠-∠=︒. (1)求证://AB DC ;(2)若点F 是直线BA 上的一点,且BEF BFE ∠=∠,EG 平分DEB ∠交直线AB 于点G ,若20D ∠=︒,求FEG ∠的度数;(3)如图3,点N 是直线AB 、DC 外一点,且满足14CDM CDE ∠=∠,14ABN ABE ∠=∠,ND 与BE 交于点M .已知()012CDM αα∠=︒<<︒,且//BN DE ,则NMB ∠的度数为______(请直接写出答案,用含α的式子表示).2.已知//AB CD ,定点E ,F 分别在直线AB ,CD 上,在平行线AB ,CD 之间有一动点P .(1)如图1所示时,试问AEP ∠,EPF ∠,PFC ∠满足怎样的数量关系?并说明理由. (2)除了(1)的结论外,试问AEP ∠,EPF ∠,PFC ∠还可能满足怎样的数量关系?请画图并证明(3)当EPF ∠满足0180EPF ︒<∠<︒,且QE ,QF 分别平分PEB ∠和PFD ∠, ①若60EPF ∠=︒,则EQF ∠=__________°.②猜想EPF ∠与EQF ∠的数量关系.(直接写出结论)3.如图,∠EBF =50°,点C 是∠EBF 的边BF 上一点.动点A 从点B 出发在∠EBF 的边BE 上,沿BE 方向运动,在动点A 运动的过程中,始终有过点A 的射线AD ∥BC .(1)在动点A 运动的过程中, (填“是”或“否”)存在某一时刻,使得AD 平分∠EAC ? (2)假设存在AD 平分∠EAC ,在此情形下,你能猜想∠B 和∠ACB 之间有何数量关系?并请说明理由;(3)当AC ⊥BC 时,直接写出∠BAC 的度数和此时AD 与AC 之间的位置关系.4.综合与探究 (问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,//EF MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出PAF ∠、PBN ∠和APB ∠之间的数量关系;(问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动,①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设ADP α∠=∠,BCP β∠=∠.则CPD ∠,α∠,β∠之间有何数量关系?请说明理由.②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出CPD ∠,α∠,β∠之间的数量关系. 5.问题情境:如图1,AB ∥CD ,∠PAB =130°,∠PCD =120°.求∠APC 的度数.小明的思路是:过P 作PE ∥AB ,通过平行线性质,可得∠APC =∠APE +∠CPE =50°+60°=110°. 问题解决:(1)如图2,AB ∥CD ,直线l 分别与AB 、CD 交于点M 、N ,点P 在直线I 上运动,当点P 在线段MN 上运动时(不与点M 、N 重合),∠PAB =α,∠PCD =β,判断∠APC 、α、β之间的数量关系并说明理由;(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出∠APC、α、B之间的数量关系;(3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC 的度数.二、解答题6.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学∠=∠∠=∠,请判断光线a与光线b是否平行,并说明理由.知识有12,34(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线α与水平线OC的夹角为40︒,问如何放置平面镜MN,可使反射光线b正好垂直照射到井底?(即求MN与水平线的夹角)(3)如图3,直线EF上有两点A、C,分别引两条射线AB、CD.105BAF∠=︒,∠=︒,射线AB、CD分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转65DCF动,设时间为t,在射线CD转动一周的时间内,是否存在某时刻,使得CD与AB平行?若存在,求出所有满足条件的时间t.7.如图1所示:点E为BC上一点,∠A=∠D,AB∥CD(1)直接写出∠ACB与∠BED的数量关系;(2)如图2,AB∥CD,BG平分∠ABE,BG的反向延长线与∠EDF的平分线交于H点,若∠DEB比∠GHD大60°,求∠DEB的度数;(3)保持(2)中所求的∠DEB的度数不变,如图3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角).8.阅读下面材料:小颖遇到这样一个问题:已知:如图甲,//,AB CD E 为,AB CD 之间一点,连接,,35,37BE DE B D ∠=︒∠=︒,求BED ∠的度数.她是这样做的: 过点E 作//,EF AB 则有,BEF B ∠=∠ 因为//,AB CD 所以//.EF CD ① 所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠ 即BED ∠=_ ; 1.小颖求得BED ∠的度数为__ ; 2.上述思路中的①的理由是__ ; 3.请你参考她的思考问题的方法,解决问题:已知:直线//,a b 点,A B 在直线a 上,点,C D 在直线b 上,连接,,AD BC BE 平分,ABC DE ∠平分,ADC ∠且,BE DE 所在的直线交于点E .(1)如图1,当点B 在点A 的左侧时,若,ABC ADC αβ∠=∠=,则BED ∠的度数为 ;(用含有,αβ的式子表示).(2)如图2,当点B 在点A 的右侧时,设,ABC ADC αβ∠=∠=,直接写出BED ∠的度数(用含有,αβ的式子表示).9.已知射线//AB 射线CD ,P 为一动点,AE 平分PAB ∠,CE 平分PCD ∠,且AE 与CE 相交于点E .(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P 运动到线段AC 上时,180APC ∠=︒.直接写出AEC ∠的度数; (2)当点P 运动到图2的位置时,猜想AEC ∠与APC ∠之间的关系,并加以说明; (3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出AEC ∠与APC ∠之间的关系,并加以证明.10.如图1,O 为直线AB 上一点,过点O 作射线,30OC AOC ︒∠=,将一直角三角板(30M ︒∠=)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方,将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON 与OC 重合?(2)如图2,经过t 秒后,//MN AB ,求此时t 的值.(3)若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC 与OM 重合?请画图并说明理由.(4)在(3)的条件下,求经过多长时间OC 平分MOB ∠?请画图并说明理由.三、解答题11.(1)如图1,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,AB ∥CD ,∠ADC =50°,∠ABC =40°,求∠AEC 的度数;(2)如图2,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,∠ADC =α°,∠ABC =β°,求∠AEC 的度数;(3)如图3,PQ ⊥MN 于点O ,点A 是平面内一点,AB 、AC 交MN 于B 、C 两点,AD 平分∠BAC 交PQ 于点D ,请问ADPACB ABC∠∠-∠的值是否发生变化?若不变,求出其值;若改变,请说明理由. 12.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.13.如图,已知直线a ∥b ,∠ABC =100°,BD 平分∠ABC 交直线a 于点D ,线段EF 在线段AB 的左侧,线段EF 沿射线AD 的方向平移,在平移的过程中BD 所在的直线与EF 所在的直线交于点P .问∠1的度数与∠EPB 的度数又怎样的关系?(特殊化)(1)当∠1=40°,交点P 在直线a 、直线b 之间,求∠EPB 的度数;(2)当∠1=70°,求∠EPB 的度数;(一般化)(3)当∠1=n°,求∠EPB 的度数(直接用含n 的代数式表示). 14.如图①,AD 平分BAC ∠,AE ⊥BC ,∠B=450,∠C=730. (1) 求DAE ∠的度数;(2) 如图②,若把“AE ⊥BC ”变成“点F 在DA 的延长线上,FE BC ⊥”,其它条件不变,求DFE ∠ 的度数;(3) 如图③,若把“AE ⊥BC ”变成“AE 平分BEC ∠”,其它条件不变,DAE ∠的大小是否变化,并请说明理由.15.【问题探究】如图1,DF ∥CE ,∠PCE=∠α,∠PDF=∠β,猜想∠DPC 与α、β之间有何数量关系?并说明理由; 【问题迁移】如图2,DF ∥CE ,点P 在三角板AB 边上滑动,∠PCE=∠α,∠PDF=∠β. (1)当点P 在E 、F 两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P 在E 、F 两点外侧运动时(点P 与点A 、B 、E 、F 四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1) (图2)【参考答案】一、解答题1.(1)见解析;(2)10°;(3) 【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E 作HE ∥CD ,设 由(1)得AB ∥CD 解析:(1)见解析;(2)10°;(3)18015α︒- 【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出,CDE DEF ∠=∠结合已知条件180DEB ABE CDE ∠+∠-∠=︒,得出180,FEB ABE ∠+∠=︒即可证明;(2)过点E 作HE ∥CD ,设,,GEF x FEB EFB y ∠=∠=∠= 由(1)得AB ∥CD ,则AB ∥CD ∥HE ,由平行线的性质,得出20,DEF D EFB y ∠=∠+∠=︒+再由EG 平分DEB ∠,得出,DEG GEB GEF FEB x y ∠=∠=∠+∠=+则2DEF DEG GEF x y ∠=∠+∠=+,则可列出关于x 和y 的方程,即可求得x ,即GEF ∠的度数;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,根据14CDM CDE ∠=∠和CDM α∠=,得出3,MDE α∠=根据CD ∥PN ∥QM ,DE ∥NB ,得出,PND CDM DMQ α∠=∠=∠=3,EDM BNM α∠=∠=即4,BNP α∠=根据NP ∥AB ,得出4,PNB ABN α∠=∠=再由14ABN ABE ∠=∠,得出16,ABM α∠=由AB ∥QM ,得出18016,QMB α∠=︒-因为NMB NMQ QMB ∠=∠+∠,代入α的式子即可求出BMN ∠. 【详解】(1)过点E 作EF ∥CD ,如图,∵EF ∥CD , ∴,CDE DEF ∠=∠∴,DEB CDE DEB DEF FEB ∠-∠=∠-∠=∠ ∵180DEB ABE CDE ∠+∠-∠=︒, ∴180,FEB ABE ∠+∠=︒ ∴EF ∥AB , ∴CD ∥AB ;(2)过点E 作HE ∥CD ,如图, 设,,GEF x FEB EFB y ∠=∠=∠= 由(1)得AB ∥CD ,则AB ∥CD ∥HE , ∴20,,D DEH HEF EFB y ∠=∠=︒∠=∠= ∴20,DEF DEH HEF D EFB y ∠=∠+∠=∠+∠=︒+ 又∵EG 平分DEB ∠,∴,DEG GEB GEF FEB x y ∠=∠=∠+∠=+ ∴2,DEF DEG GEF x y x x y ∠=∠+∠=++=+ 即220,x y y +=︒+解得:10,x =︒即10GEF ∠=︒;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,如图, 由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,∵NP ∥CD ,CD ∥QM ,,CDM α∠= ∴PND CDM DMQ α∠=∠=∠=, 又∵14CDM CDE ∠=∠,∴33,MDE CDM α∠=∠= ∵//BN DE ,∴3,MDE BNM α∠=∠=∴34,PNB PND BNM ααα∠=∠+∠=+= 又∵PN ∥AB , ∴4,PNB NBA α∠=∠=∵14ABN ABE ∠=∠,∴44416,ABM ABN αα∠=∠=⨯= 又∵AB ∥QM , ∴180,ABM QMB ∠+∠=︒∴18018016,QMB ABM α∠=︒-∠=︒-∴1801618015NMB NMQ QMB ααα∠=∠+∠=+︒-=-. 【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.2.(1)∠AEP+∠PFC=∠EPF ;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF 【分析】(1)由于点是平行线,之间解析:(1)∠AEP +∠PFC =∠EPF ;(2)∠AEP +∠EPF +∠PFC =360°;(3)①150°或30;②∠EPF +2∠EQF =360°或∠EPF =2∠EQF 【分析】(1)由于点P 是平行线AB ,CD 之间有一动点,因此需要对点P 的位置进行分类讨论:如图1,当P 点在EF 的左侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:EPF AEP PFC ∠=∠+∠;(2)当P 点在EF 的右侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:360AEP EPF PFC ∠+∠+∠=︒;(3)①若当P 点在EF 的左侧时,150EQF BEQ QFD ∠=∠+∠=︒;当P 点在EF 的右侧时,可求得30BEQ QFD ∠+∠=︒;②结合①可得180218023602()EPF BEQ DFQ BEQ PFD ∠=︒-∠+︒-∠=︒-∠+∠,由EQF BEQ DFQ ∠=∠+∠,得出2360EPF EQF ∠+∠=︒;可得EPF BEP PFD =∠+∠,由BEQ DFQ EQF ∠+∠=∠,得出2EPF EQF ∠=∠.【详解】解:(1)如图1,过点P 作//PG AB ,//PG AB ,EPG AEP ∴∠=∠,//AB CD ,//PG CD ∴,FPG PFC ∴∠=∠,AEP PFC EPF ∴∠+∠=∠;(2)如图2,当P 点在EF 的右侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:360AEP EPF PFC ∠+∠+∠=︒;过点P 作//PG AB ,//PG AB ,180EPG AEP ∴∠+∠=︒,//AB CD ,//PG CD ∴,180FPG PFC ∴∠+∠=︒,360AEP EPF PFC ∴∠+∠+∠=︒;(3)①如图3,若当P 点在EF 的左侧时,60EPF ∠=︒,36060300PEB PFD ∴∠+∠=︒-︒=︒, EQ ,FQ 分别平分PEB ∠和PFD ∠, 12BEQ PEB ∴∠=∠,12QFD PFD ∠=∠, 11()30015022EQF BEQ QFD PEB PFD ∴∠=∠+∠=∠+∠=⨯︒=︒; 如图4,当P 点在EF 的右侧时,60EPF ∠=︒,60PEB PFD ∴∠+∠=︒,11()603022BEQ QFD PEB PFD ∴∠+∠=∠+∠=⨯︒=︒; 故答案为:150︒或30;②由①可知:11()(360)22EQF BEQ QFD PEB PFD EPF ∠=∠+∠=∠+∠=︒-∠,2360EPF EQF ∴∠+∠=︒; 11()22EQF BEQ QFD PEB PFD EPF ∠=∠+∠=∠+∠=∠, 2EPF EQF ∴∠=∠.综合以上可得EPF ∠与EQF ∠的数量关系为:2360EPF EQF ∠+∠=︒或2EPF EQF ∠=∠.【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.3.(1)是;(2)∠B =∠ACB ,证明见解析;(3)∠BAC =40°,AC ⊥AD .【分析】(1)要使AD 平分∠EAC ,则要求∠EAD =∠CAD ,由平行线的性质可得∠B =∠EAD ,∠ACB =∠CAD解析:(1)是;(2)∠B =∠ACB ,证明见解析;(3)∠BAC =40°,AC ⊥AD .【分析】(1)要使AD 平分∠EAC ,则要求∠EAD =∠CAD ,由平行线的性质可得∠B =∠EAD ,∠ACB =∠CAD ,则当∠ACB =∠B 时,有AD 平分∠EAC ;(2)根据角平分线可得∠EAD =∠CAD ,由平行线的性质可得∠B =∠EAD ,∠ACB =∠CAD ,则有∠ACB =∠B ;(3)由AC ⊥BC ,有∠ACB =90°,则可求∠BAC =40°,由平行线的性质可得AC ⊥AD .【详解】解:(1)是,理由如下:要使AD 平分∠EAC ,则要求∠EAD =∠CAD ,由平行线的性质可得∠B =∠EAD ,∠ACB =∠CAD ,则当∠ACB =∠B 时,有AD 平分∠EAC ;故答案为:是;(2)∠B =∠ACB ,理由如下:∵AD 平分∠EAC ,∴∠EAD =∠CAD ,∵AD ∥BC ,∴∠B =∠EAD ,∠ACB =∠CAD ,∴∠B =∠ACB .(3)∵AC ⊥BC ,∴∠ACB =90°,∵∠EBF =50°,∴∠BAC =40°,∵AD ∥BC ,∴AD ⊥AC .【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键.4.(1);(2)①,理由见解析;②图见解析,或【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过作交于,由平行线的性质,得到,,即可得到答案;②根据题意,可对点P 进行分类讨论解析:(1)360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠,理由见解析;②图见解析,CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过P 作//PE AD 交CD 于E ,由平行线的性质,得到DPE α∠=∠,CPE β∠=∠,即可得到答案;②根据题意,可对点P 进行分类讨论:当点P 在BA 延长线时;当P 在BO 之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ ∥EF ,如图:∵//EF MN ,∴////EF MN PQ ,∴180PAF APQ ∠+∠=°,180PBN BPQ ∠+∠=°,∵APB APQ BPQ ∠=∠+∠∴360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠;理由如下:如图,过P 作//PE AD 交CD 于E ,∵//AD BC ,∴////AD PE BC ,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE αβ∠=∠+∠=∠+∠;②当点P 在BA 延长线时,如备用图1:∵PE ∥AD ∥BC ,∴∠EPC=β,∠EPD =α,∴CPD βα∠=∠-∠;当P 在BO 之间时,如备用图2:∵PE∥AD∥BC,∴∠EPD=α,∠CPE=β,∴CPDαβ∠=∠-∠.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.5.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线解析:(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解.【详解】解:(1)如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC=β-α;(3)如图3,过点P,Q分别作PE∥AB,QF∥AB,∵AB∥CD,∴AB∥QF∥PE∥CD,∴∠BAP=∠APE,∠PCD=∠EPC,∵∠APC=116°,∴∠BAP+∠PCD=116°,∵AQ平分∠BAP,CQ平分∠PCD,∴∠BAQ=12∠BAP,∠DCQ=12∠PCD,∴∠BAQ+∠DCQ=1(∠BAP+∠PCD)=58°,2∵AB∥QF∥CD,∴∠BAQ=∠AQF,∠DCQ=∠CQF,∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°,∴∠AQC=58°.【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键.二、解答题6.(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF 的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.【详解】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(内错角相等,两直线平行);(2)如图2:∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=1×50°=25°,2∴MN与水平线的夹角为:25°+40°=65°,即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;(3)存在.如图①,AB与CD在EF的两侧时,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠ACD=∠BAC,即115-3t=105-t,解得t=5;如图②,CD旋转到与AB都在EF的右侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠DCF=∠BAC,即295-3t=105-t,解得t=95;如图③,CD旋转到与AB都在EF的左侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,则∠DCF=∠BAC,即3t-295=t-105,解得t=95,此时t>105,∴此情况不存在.综上所述,t为5秒或95秒时,CD与AB平行.【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.7.(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE交AB于点F,根据平行线的性质推出;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥E 解析:(1) +180ACB BED ∠∠=︒;(2) 100︒;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出+180ACB BED ∠∠=︒;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥ES 推出BED ABE CDE ∠=∠+∠,再根据AB ∥TH ,AB ∥CD 推出GHD THD THB ∠=∠-∠,最后根据BED ∠比BHD ∠大60︒得出BED ∠的度数;(3)如图3,过点E 作EQ ∥DN ,根据DEB CDE ABE ∠=∠+∠得出βα-的度数,根据条件再逐步求出PBM ∠的度数.【详解】(1)如答图1所示,延长DE 交AB 于点F .AB ∥CD ,所以D EFB ∠=∠,又因为A D ∠=∠,所以A EFB ∠=∠,所以AC ∥DF ,所以ACB CED ∠=∠.因为+180CED BED ∠∠=︒,所以+180ACB BED ∠∠=︒.(2)如答图2所示,过点E 作ES ∥AB ,过点H 作HT ∥AB .设ABG EBG α∠=∠=,FDH EDH β∠=∠=,因为AB ∥CD ,AB ∥ES ,所以ABE BES ∠=∠,SED CED ∠=∠,所以21802BED BES SED ABE CDE αβ∠=∠+∠=∠+∠=+︒-,因为AB ∥TH ,AB ∥CD ,所以ABG THB ∠=∠,FDH DHT ∠=∠,所以GHD THD THB βα∠=∠-∠=-,因为BED ∠比BHD ∠大60︒,所以2+1802()60αββα︒---=︒,所以40βα-=︒,所以40BHD ∠=︒,所以100BED ∠=︒(3)不发生变化如答图3所示,过点E 作EQ ∥DN .设CDN EDN α∠=∠=,EBM KBM β∠=∠=,由(2)易知DEB CDE ABE ∠=∠+∠,所以2+1802100αβ︒-=︒,所以40βα-=︒, 所以180()180DEB CDE EDN EBM PBM PBM αβ∠=∠+∠+︒-∠+∠=+︒--∠, 所以80()40PBM βα∠=︒--=︒.【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键.8.;2.平行于同一条直线的两条直线平行;3.(1);(2).【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据B解析:1.72;2.平行于同一条直线的两条直线平行;3.(1)1122αβ+;(2)1118022αβ-+. 【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据BE 平分,ABC DE ∠平分,ADC ∠求出11,22ABE CDE αβ∠=∠=,过点E 作EF ∥AB ,根据平行线的性质求出∠BEF =12α,11801802DEF CDE β∠=︒-∠=︒-,再利用周角求出答案.【详解】1、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以//.EF CD ①所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠即BED ∠=72;故答案为:72;2、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以EF ∥CD (平行于同一条直线的两条直线平行),故答案为:平行于同一条直线的两条直线平行;3、(1)∵BE 平分,ABC DE ∠平分,ADC ∠∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,由1可得∠BED =BEF FED ABE CDE ∠+∠=∠+∠,∴∠BED =1122αβ+, 故答案为:1122αβ+;(2)∵BE 平分,ABC DE ∠平分,ADC ∠ ∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,则∠ABE =∠BEF =12α, ∵//,AB CD∴EF ∥CD ,∴180CDE DEF ∠+∠=︒,∴11801802DEF CDE β∠=︒-∠=︒-, ∴11360360(180)22BED DEF BEF βα∠=︒-∠-∠=︒-︒--=1118022αβ-+.【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.9.(1);(2),证明见解析;(3),证明见解析.【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1)90︒;(2)2APC AEC ∠=∠,证明见解析;(3)2360APC AEC ∠+∠=︒,证明见解析.【分析】(1)过点E 作//EF AB ,先根据平行线的性质、平行公理推论可得,AEF BAE CEF DCE ∠=∠∠=∠,从而可得AEC BAE DCE ∠=∠+∠,再根据平行线的性质可得180PAB PCD ∠+∠=︒,然后根据角平分线的定义可得11,22BAE PAB DCE PCD ∠=∠∠=∠,最后根据角的和差即可得; (2)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠,再根据(1)同样的方法可得APC PAB PCD ∠=∠+∠,由此即可得出结论;(3)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得2PAB PCD AEC ∠+∠=∠,再根据平行线的性质、平行公理推论可得180,180APQ PAB CPQ PCD ∠=︒-∠∠=︒-∠,然后根据角的和差、等量代换即可得出结论.【详解】解:(1)如图,过点E 作//EF AB ,AEF BAE ∴∠=∠,//AB CD ,//EF CD ∴,CEF DCE ∴∠=∠,AEC AEF CEF BAE DCE ∴∠=∠+∠=∠+∠,又//AB CD ,且点P 运动到线段AC 上,180PAB PCD ∴∠+∠=︒,AE ∵平分PAB ∠,CE 平分PCD ∠,11,22BAE PAB DCE PCD ∴∠=∠∠=∠, 111()90222AEC PAB PCD PAB PCD ∴∠=∠+∠=∠+∠=︒; (2)猜想2APC AEC ∠=∠,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 同理可得:APC PAB PCD ∠=∠+∠,2APC AEC ∴∠=∠;(3)2360APC AEC ∠+∠=︒,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 即2PAB PCD AEC ∠+∠=∠,//PQ AB ,180APQ PAB ∴∠+∠=︒,即180APQ PAB ∠=︒-∠,//AB CD ,//PQ CD ∴,180CPQ PCD ∴∠+∠=︒,即180CPQ PCD ∠=︒-∠,APC APQ CPQ ∴∠=∠+∠,180180PAB PCD =︒-∠+︒-∠,()360PAB PCD =︒-∠+∠,3602AEC =︒-∠,即2360APC AEC ∠+∠=︒.【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.10.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t ;(3)设∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)703秒,画图见解析 【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t ;(3)设∠AON=3t ,则∠AOC=30°+6t ,由题意列出方程,解方程即可;(4)根据转动速度关系和OC 平分∠MOB ,由题意列出方程,解方程即可.【详解】解:(1)∵30÷3=10,∴10秒后ON 与OC 重合;(2)∵MN ∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴经过t秒后,MN∥AB,t=20秒.(3)如图3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,则∠AOC=30°+6t,∵OC与OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=12∠BOM=12(90°-3t),由题意得:180°-(30°+6t)=12( 90°-3t),解得:t=703秒,即经过703秒OC平分∠MOB.【点睛】此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.三、解答题11.(1)∠E=45°;(2)∠E=;(3)不变化,【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=∠解析:(1)∠E =45°;(2)∠E =2βα-;(3)不变化,12【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD ,则可得∠E= 12(∠D+∠B ),继而求得答案;(2)首先延长BC 交AD 于点F ,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D ,又由角平分线的性质,即可求得答案.(3)由三角形内角和定理,可得90ADP ACB DAC ∠+︒=∠+∠ADP DFO ABC OEB ∠+∠=∠+∠,利用角平分线的性质与三角形的外角的性质可得答案.【详解】解:(1)∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD , ∵∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E ,∴∠E=12(∠D+∠B ), ∵∠ADC=50°,∠ABC=40°,∴∠AEC=12×(50°+40°)=45°;(2)延长BC 交AD 于点F ,∵∠BFD=∠B+∠BAD ,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D ,∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD , ∵∠E+∠ECB=∠B+∠EAB ,∴∠E=∠B+∠EAB -∠ECB=∠B+∠BAE -12∠BCD =∠B+∠BAE -12(∠B+∠BAD+∠D ) = 12(∠B -∠D ), ∠ADC =α°,∠ABC =β°,即∠AEC=.2βα-(3)ADP ACB ABC ∠∠-∠的值不发生变化,1.2ADP ACB ABC ∠∴=∠-∠ 理由如下:如图,记AB 与PQ 交于E ,AD 与CB 交于F ,,PQ MN ⊥90,DOC BOE ∴∠=∠=︒90ADP ACB DAC ∠+︒=∠+∠①,ADP DFO ABC OEB ∠+∠=∠+∠②,∴ ①-②得:90,DFO ACB ABC DAC OEB ︒-∠=∠-∠+∠-∠90,DFO OEB DAC ACB ABC ∴︒-∠+∠-∠=∠-∠90,,ADP DFO OEB EAD ADP ∠=︒-∠∠-∠=∠AD 平分∠BAC ,,BAD CAD ∴∠=∠,OEB CAD ADP ∴∠-∠=∠2,ADP ACB ABC ∠=∠-∠1.2ADP ACB ABC ∠∴=∠-∠【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.12.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠; (2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.13.(1)∠EPB =170°;(2)①当交点P 在直线b 的下方时:∠EPB =20°,②当交点P 在直线a ,b 之间时:∠EPB =160°,③当交点P 在直线a 的上方时:∠EPB =∠1﹣50°=20°;(3)①当解析:(1)∠EPB =170°;(2)①当交点P 在直线b 的下方时:∠EPB =20°,②当交点P 在直线a ,b 之间时:∠EPB =160°,③当交点P 在直线a 的上方时:∠EPB =∠1﹣50°=20°;(3)①当交点P 在直线a ,b 之间时:∠EPB =180°﹣|n°﹣50°|;②当交点P 在直线a 上方或直线b 下方时:∠EPB =|n°﹣50°|.【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:①当交点P 在直线b 的下方时;②当交点P 在直线a ,b 之间时;③当交点P 在直线a 的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:①当交点P 在直线a ,b 之间时;②当交点P 在直线a 上方或直线b 下方时;【详解】解:(1)∵BD 平分∠ABC ,∴∠ABD =∠DBC =12∠ABC =50°,∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①当交点P在直线b的下方时:∠EPB=∠1﹣50°=20°;②当交点P在直线a,b之间时:∠EPB=50°+(180°﹣∠1)=160°;③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|;【点睛】考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.14.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE=14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE的度数.(2)求出∠ADE的度数,利用∠DFE=90°-∠ADE即可求出∠DAE的度数.(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的证明.【详解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)DAE∠=14°∠的大小不变.DAE理由:∵ AD平分∠ BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C =360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键.15.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2) (2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六安市汇文中学七年级(下)期末数学试卷
一.选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.
1.(4分)已知数据:,,,π,﹣2,其中无理数出现的频率为()
D
3.(4分)计算的结果是()
D.
6.(4分)(2004•乌鲁木齐)如图表示了某个不等式组的解集,该解集中所含的自然数的个数是()
9.(4分)(2009•山西)解分式方程,可知方程()
10.(4分)如图是一汽车探照灯纵剖面,从位于O点的灯泡发出的两束光线OB,OC经过灯碗反射以后平行射出,如果∠ABO=α,∠DC0=β,则∠BOC的度数是()
D
(α+β)
二.填空题(本题共4小题,每小题5分,满分20分)
11.(5分)有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时x的取值范围是x≠±1;丙:当x=﹣2时,分式的值为1,请你写出满足上述全部特点的一个分式_________.
12.(5分)(2009•宁夏)已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是_________.
13.(5分)如果2m,m,1﹣m这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是
_________.
14.(5分)小明和小刚玩一种游戏,即将图甲和图乙中的三角形通过水平或竖直方向的平移得到图丙,在平移过程中,规定每次只能平移一格,先拼成图丙者获胜.小明选择了图甲,小刚选择了图乙,则获胜的是_________.
三.(本大题共2小题,每小题8分,满分16分)
15.(8分)计算:()﹣1+(﹣2010)0﹣+.
16.(8分)化简:()÷
四.(本大题共2小题,每小题8分,满分16分)
17.(8分)(2009•临沂)解不等式组,并把解集在数轴上表示出来.
18.(8分)(2006•山西)课堂上,刘老师给大家出了这样一道题:当x=3,﹣1,2+时,求代数式÷
的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?请你写出具体过程.
五.(本大题共2小题,每小题10分,满分20分)
19.(10分)如图,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.
因为EF∥AD,
所以∠2=_________(_________),
又因为∠1=∠2,
所以∠1=∠3(_________),
所以AB∥_________(_________),
所以∠BAC+_________=180°(_________),
因为∠BAC=80°,
所以∠AGD=_________.
20.(10分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色地完成了任务,这是记者与驻军工程指挥官的一段对话:
记者:你们是怎样用9天时间完成4800米长的大坝加固任务呢?
指挥官:我们在加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍.
通过这段对话,请你求出该地驻军原来每天加固多少米?
六.(本题满分12分)
21.(12分)(2014•济南模拟)通辽市某校对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级,现从中抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为:14:9:6:1,评价结果为D等级的有2人,请你回答:
(1)共抽测了多少人?
(2)样本中B等级的频率是多少?C等级的频率是多少?
(3)如果要绘制扇形统计图,A、D两个等级在扇形统计图中所占的圆心角分别是多少度?
(4)该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中?
七.(本题满分12分)
22.(12分)(2009•十堰)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B 两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见
已知可供建造沼气池的占地面积不超过365m,该村农户共有492户.
(1)满足条件的方案共有几种?写出解答过程;
(2)通过计算判断,哪种建造方案最省钱?
八.(本题满分14分)
23.(14分)观察下列等式:
①;
②;
③;
④;

(1)猜想并写出第n个算式:_________;
(2)请说明你写出的等式的正确性;
(3)把上述n个算式的两边分别相加,会得到下面的求和公式吗?请写出具体的推导过
程.=_________;
(4)我们规定:分子是1,分母是正整数的分数叫做单位分数.任意一个真分数都可以表示成不同的单位分数的和的形式,且有无数多种表示方法.根据上面得出的两个结论,请将真分数表示成不同的单位分数的和的形式.(写出一种即可)。

相关文档
最新文档