初中数学八年级下册中位数和众数
初中数学考点中位数与众数的求解技巧
初中数学考点中位数与众数的求解技巧在初中数学的学习中,中位数和众数是两个重要的统计量。
它们能够帮助我们更好地理解和分析数据的分布情况。
掌握中位数与众数的求解技巧,对于解决相关数学问题以及在实际生活中的数据分析都具有重要意义。
首先,让我们来了解一下什么是中位数和众数。
中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
众数则是一组数据中出现次数最多的数据。
接下来,我们分别探讨一下中位数和众数的求解技巧。
对于中位数的求解,关键在于正确地排列数据。
如果数据本身是有序的,那自然是再好不过;但如果数据是无序的,就需要我们先进行排序。
排序的方法有很多种,常见的有冒泡排序、插入排序等,但对于初中阶段,我们通常采用手工排序的方法,也就是依次比较相邻的数据,将较大或较小的数据交换位置,逐步将数据排列整齐。
例如,有一组数据:12,8,15,20,10。
我们先将它们从小到大排列:8,10,12,15,20。
由于数据个数是 5 个,为奇数,所以中间的数 12 就是这组数据的中位数。
再看另一组数据:18,16,22,15,20,19。
将它们从小到大排列:15,16,18,19,20,22。
数据个数是 6 个,为偶数,中间的两个数是 18 和 19,那么中位数就是(18 + 19)÷ 2 = 185。
在求解中位数时,还要特别注意数据中是否有重复的数。
如果有重复的数,排序时也要将它们考虑进去。
接下来谈谈众数的求解技巧。
众数的求解相对来说比较简单直观,只需要找出出现次数最多的数据即可。
比如,一组数据:5,6,5,7,5,8。
其中 5 出现了 3 次,而其他数都只出现了 1 次,所以这组数据的众数就是 5。
但有时一组数据可能会有多个众数。
比如:2,2,3,3,4,4,这组数据中 2、3、4 出现的次数相同,都是 2 次,那么 2、3、4 都是这组数据的众数。
平罗县八中八年级数学下册 20.1.2 中位数和众数同步练习含解析新人教版
中位数和众数知识要点:1.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
2.众数:一组数据中出现次数最多的数据就是这组数据的众数一、单选题1.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、402.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.平均数B.方差C.中位数D.极差3.某中学对该校九年级45名女学生进行了一次立定跳远测试,成绩如表:跳远成绩160 170 180 190 200 210人数 3 9 6 9 15 3这些立定跳远成绩的中位数和众数分别是()A.9,9 B.15,9 C.190,200 D.185,2004.一组数据按从小到大排列为2,4,8,x,10,14.若这组数据的中位数为9,则x是()A.7 B.8 C.9 D.105.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a 的值时,参考的统计量是此次调查所得数据的()A.平均数B.中位数C.众数D.方差6.为了增强学生体质,学校发起评选“健步达人”活动,某同学用计步器记录自己一周(七天)每天走的步数,统计如下表:这组数据的众数是()A.1.3 B.1.2 C.0.9 D.1.47.一组数据2,2,4,3,6,5,2的众数和中位数分别是()A.3,2 B.2,3 C.2,2 D.2,48.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为()A.3.5,3 B.3,4 C.3,3.5 D.4,39.某校四个绿化小组某天的植树棵树如下:10,10,x,8.若这组数据的众数与平均数相等,那么这组数据的中位数是()A.9 B.10 C.11 D.1210.某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.方差D.众数二、填空题11.5名同学每周在校锻炼的时间(单位:小时)分别为:7,5,8,6,9,这组数据的中位数是______.12.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.43,2.39,2.43,2.40,2.43.这组数据的中位数和众数分别是_____.13.“植树节”时,九(1)班6个小组的植树棵数分别是:5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是____14.某住宅小区四月份1日至5日,每天用水量变化情况如图所示,那么这5天每天用水量的中位数是_____吨.三、解答题15.从某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分四个等级,将调查结果绘制成如下的不完整的条形统计图和扇形统计图.根据图中信息.(1)求共抽取多少名学生;(2)求抽取的所有学生成绩的众数,中位数;(3)求抽取的所有学生成绩的平均数.16.学校在八年级新生中举行了全员参加的数学应用能力大赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:人数60分人数70分人数80分人数90分人数100分人数班级1班0 1 6 2 12班 1 1 3 a 1分析数据:根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由(写两条支持你结论的理由).17.车间有20名工人,某天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?18.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.答案 1.D 2.C 3.C 4.D 5.B 6.A 7.B 8.A 9.B 10.D 11.712.2.40,2.43. 13.5 14.3215.解:(1)依题意得,共抽取学生12÷30%=40(人)(2)由统计图可知:抽取的所有学生成绩的出现次数最多的是3分,因此众数是3分, 将成绩从从小到大排列后处在第20、21位两个数都是3分,因此中位数是3分, (3)3分的学生人数为40×42.5%=17人,2分的人数有40﹣3﹣17﹣12=8人, 抽取的所有学生成绩的平均数是:(1×3+2×8+3×17+4×12)÷40=2.95(分). 答:抽取的所有学生成绩的平均数为2.95分.16.(1)观察可知2班成绩为90分的有4人,故4a =,60170180490210028310b ⨯+⨯+⨯+⨯+⨯==,2班成绩从小到大排序:60,70,80,80,80, 90,90,90,90,100, 所以中位数8090852c +==, 2班成绩为90分的人数最多,所以众数90d =; (2)2班的成绩比较好.理由如下:通过对比,发现三个班平均分相同,但是2班的中位数要比1班和3班高,2班的众数也要比1班和3班大,所以2班的成绩比较好.17.解:(1()191101116124132152162191201=1320x =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯(个)答:这一天20名工人生产零件的平均个数为13个. (2)中位数为12个,众数为11个.当定额为13个时,有8个达标,6人获奖,不利于提高工人的积极性. 当定额为12个时,有12个达标,8人获奖,不利于提高大多数工人的积极性. 当定额为11个时,有18个达标,12人获奖,有利于提高大多数工人的积极性. ∴当定额为11个时,有利于提高大多数工人的积极性. 18.(1)花费30元的有12人,最多,故众数是30元;(2)一共有40个数据,排序后第20、21个数据的平均数即是中位数,6+12=18<20,6+12+10=28>20,故第20、21个数据都是50元,故中位数是50元;(3)10÷40×2400=600(人),故估计本学期计划购买课外书花费50元的学生有50人第十二章全等三角形12.3角的平分线的性质课时一角的平分线的性质【知识与技能】(1)掌握已知角的平分线的画法.(2)利用角的平分线的定义进行简单的证明与计算.(3)利用全等三角形证明角的平分线.(4)掌握角的平分线的性质.(5)了解角的平分线的性质在生活、生产中的应用.【过程与方法】经历角的平分线的画法和角的平分线的性质的探索过程,体会探索、研究问题的基本方法,培养学生的合作精神,体会转化的数学思想,感受数学来源于生活.【情感态度与价值观】在探究角的平分线的作法及性质的过程中,培养学生探究问题的兴趣,获得解决问题的成功体验,增强解决问题的信心.角的平分线的性质,能灵活运用角的平分线的性质解题.灵活运用角的平分线的性质解题.多媒体课件.复习引入教师提出问题:1.角的平分线的概念.2.点到直线(射线)的距离的概念.学生举手回答.探究1:角的平分线的画法教师引入:工人师傅常常用一种简易平分角的仪器(如图12-3-1),其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是∠DAB的平分线.你能说明它的道理吗?学生分组讨论,说明简易平分角仪器的原理,并写出证明过程.(教师提示:用全等三角形的知识)教师:其实这种平分角的方法告诉了我们作已知角的平分线的一种方法.然后教师引导学生用尺规作图:已知:∠AOB.求作:∠AOB的平分线.先让学生讨论作法,再由教师总结作法,师生共同作图:2.以点O为圆心,适当长为半径画弧,分别交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC.射线OC即为所求,如图12-3-2.教师紧接着提出问题:你们能说明OC为什么是∠AOB的平分线吗?学生进行交流,教师提示(可证明△MOC≌△NOC),然后让学生写出证明过程.教师巡示并指导.探究2:角的平分线的性质教师让学生完成以下活动:1.任意作一个∠AOB,作出∠AOB的平分线OC.在OC上任取一点P,过点P画出OA,OB 的垂线,分别记垂足为D,E,测量PD,PE并作比较,你得到什么结论?2.在OC上再取几个点试一试.3.通过以上测量,你发现了角的平分线的什么性质?学生动手操作,独立思考,然后举手回答自己的发现,学生互相补充,教师指导,一起概括出角的平分线的性质:角的平分线上的点到角的两边的距离相等.教师进一步提问:你们能通过严格的逻辑推理证明这个结论吗?教师首先引导学生分析命题的条件和结论.如果学生感到困难,可以让学生先将命题改写成“如果……那么……”的形式,再引导学生逐字分析结论,进而发现并找出结论中的隐含条件(垂直).最后让学生画出图形,用符号语言写出已知和求证,并独立完成证明过程.接着师生共同概括证明几何命题的一般步骤:一般情况下,我们要证明一个几何命题时,可以按照类似于以下的步骤进行,即1.明确命题中的已知和求证;2.根据题意,画出图形,并用符号表示已知和求证;3.经过分析,找出由已知推出要证的结论的途径,写出证明过程.最后教师归纳:利用角的平分线的性质可直接推导出与角的平分线有关的两条线段相等,但在推导过程中,不要漏掉垂直关系的书写.以后涉及角的平分线上的点到角的两边的垂线段时,可直接得到其相等,不必再通过证两个三角形全等而走弯路.教师出示例题:例1如图12-3-3,在△ABC中,∠C=90°,AM平分∠CAB,BM=5.2 cm,点M到AB的距离为3 cm.求BC的长.师生共同分析:只需补出点M到AB的距离,利用角的平分线的性质得到CM=3 cm,从而求出BC的长.师生共同完成证明过程,教师板书:解:过点M作MN⊥AB于点N,∴MN=3 cm.∵AM平分∠CAB,∠C=90°,∴CM=MN=3 cm.又∵BM=5.2 cm,∴BC=CM+BM=3+5.2=8.2(cm).进而教师让学生独立完成:教材P50练习第2题(学生完成之后,教师点评).本节课我们学习了角的平分线的性质是由三个条件(一条角平分线,两条垂线段)得到一个结论(线段相等),角的平分线的性质可独立地作为证明两条线段相等的依据.一次函数的应用第一课时一次函数是刻画与研究现实世界数量关系的重要工具。
人教初中数学八下 30.1.2 中位数众数课件 【经典初中数学课件汇编】
所以样本数据的中位数是147
例4.在一次男子马拉松长跑比赛中,抽得12名选手的成绩 如下(单位:分)
136 140 129 180 124 154
146 145 158 175 165 148 (1)样本数据(12名选手的成绩)的中位数是多少? (2)一名选手的成绩是142分,他的成绩如何? 解:根据(1)得到的数据可知,有一半选手的成绩快于 147分,有一半选手的成绩慢于147分。
(2)所有员工工资的中位数是 450 元; (3)用平均数还是用中位数描述该餐厅员工工资的一
般水平比较恰当?答: 中位数 。
(4)去掉经理的工资后,其他员工的平均工资
是 44元5,是否也能反映该餐厅员工工资的一般水平?
答:
能。
2.在一组数据1、0、4、5、8中插入一个数据
x,使该组数据的中位数为3,则x=_______
问题1 你见过这个图案吗? 它由哪些基本图形组成?
创设情境 引入课题
问题2 三个正方形A,B,C 的面积有什么关系?
追问 由这三个正方形 A,B,C的边长构成的等腰 直角三角形三条边长度之间 有怎样的特殊关系?
B
A
C
探究勾股定理
问题3 在网格中的一般的直角三角形,以它的三 边为边长的三个正方形A、B、C 是否也有类似的面积 关系?
中位数
职员 E
1100
职员 F
1100
杂工 G
500
一、中位数:将一组数据按照由小到大(或由 大到小)的顺序排列,如果数据的个数是奇数 则处于中间位置的数就是这组数据的中位数;
如果数据的个数是偶数,则中间两个数据的平 均数就是这组数据的中位数。
1.求中位数要将一组数据按大小顺序,顾名思义,中位数就是位置
人教八年级数学平均数、加权平均数、中位数、众数、极差和方差归纳与复习
平均数、加权平均数、中位数、众数、极差和方差归纳与复习一、回顾与梳理。
平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
即x=(x1+x2+……+xn)÷n中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
平均数:一组数据的平均值,平均水平.平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。
平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动.平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点。
反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点。
平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。
平均数易受极端数据的影响,从而使人对平均数产生怀疑。
中位数:在有序排列的一组数据中最居中的那个数据中等水平.中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。
中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点。
简单明了,很少受一组数据的极端值的影响。
中位数的缺点。
中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。
当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。
众数:一组数据中出现次数最多的那个数据。
集中趋势众数告诉我们,这个值出现次数最多,一组数据可以有不止一个众数,也可以没有众数。
众数着眼于对各数据出现的频数的考查,其大小只与这组数据中的部分数据有关.一组数据中的众数不止一个.当一组数据中有相同数据多次出现时,其众数往往是我们关心的.众数的优点。
中位数和众数(分层作业)-八年级数学下册同步备课系列(人教版)(解析版) (2)
人教版初中数学八年级下册20.1.3中位数和众数(1)分层作业夯实基础篇一、单选题:A.2-3小时B.3-4小时C.4-5小时D.5-6小时【答案】B【分析】求出a的值,再根据中位数的定义求解即可.a=----=,【详解】解:100810243028将这100名同学的中位数为第50,51名同学参加活动的时间,在一周中参加社团活动的时间从小到大排列,处在中间位置的两个数落在3-4小时,故选:B.【点睛】本题考查了频数分布直方图,中位数的定义,熟练掌握知识点是解题的关键.二、填空题:【答案】97【分析】将26名同学的成绩从高到低排列,找出第【详解】解:由图可知,将26名同学的成绩从高到低排列,则第的成绩为96分,()+÷=989629714.小王统计了一周家庭用水量,绘制了如图的统计图,那么这周用水量的众数是______,中位数是________.【答案】11【分析】根据众数和中位数的定义解答即可.【详解】根据统计图可知用水量为1的天数为3天,最多,故这周用水量的众数是1;将这周用水量按从小到大排列为:0.5,1,1,1,1.5,1.5,2,∴这周用水量的中位数是1.故答案为:1,1.【点睛】本题考查众数和中位数的定义.解题的关键是掌握一组数据中出现次数最多的数值为众数;按顺序排列的一组数据中居于中间位置的数为中位数,当数据为偶数个时,为最中间两个数的平均值.三、解答题:(1)将甲学校的成绩统计图补充完整;(2)补全下面的表格,并根据表格回答问题.学校平均分中位数甲学校87.6乙学校87.680①从平均数和中位数角度来比较甲、乙两所学校的成绩;(2)甲学校的中位数就是由低到高排序后第90分,则甲学校的中位数就是90分;由于甲学校乙学校A等级占44%,人数最多,因此乙学校的众数是补全表格如下:甲学校(1)图①中的m值为________;此次抽样随机抽取了口罩_______枚;(2)求统计的这些数据的平均数、众数和中位数;(3)根据样本数据,估计这3000枚口罩中,价格为1.8元的口罩约有多少枚?【答案】(1)28,50(2)1.52元,1.8元,1.5元(3)960枚m的值,从而可以得到【分析】(1)根据扇形统计图中的数据,可以计算出%答:价格为1.8元的口罩有960枚.【点睛】本题考查条形统计图、扇形统计图、中位数、平均数、众数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.能力提升篇一、单选题:1.当五个整数从小到大排列,中位数为8,若这组数中的唯一众数为10,则这5个整数的和最大可能是()A .39B .40C .41D .42【答案】C【分析】根据中位数和众数的定义分析可得答案.【详解】解:因为五个整数从小到大排列后,其中位数是8,这组数据的唯一众数是10.所以这5个数据分别是x ,y ,8,10,10,且8x y <<,当这5个数的和最大时,整数x ,y 取最大值,此时6x =,7y =,所以这组数据可能的最大的和是678101041++++=.故选:C .【点睛】主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.2.一组数据3-,a ,2,3,5有唯一的众数3,则这组数据的中位数是()A .2-B .1C .3D .5【答案】C【分析】根据众数的定义求出a 的值,再根据中位数的定义求解即可.【详解】解: 这组数据3-,a ,2,3,5有唯一的众数3,3a ∴=,将这组数据从小到大排列为:3-,2,3,3,5,处在中间位置的数为3,即中位数为3,故选:C .【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题:∵一共有15人,位于中间的值为16万元;∴中位数为16万元,∴今年销售目标应定为16万元.故答案为:16.【点睛】本题考查的是中位数的定义及运用.要学会根据统计量的意义分析解决问题.(1)m=,甲组成绩的众数乙组成绩的众数(填(2)求甲组的平均成绩;(3)这40个学生成绩的中位数是(4)计算出甲组成绩的方差为0.81【答案】(1)3;=。
20.2.1 中位数和众数 初中数学华东师大版八年级下册同步课时练习(含答案)
20.2.1 中位数和众数知识点1 中位数1.某校篮球队五名主力队员的身高分别是173,180,181,176,178(单位: cm),将这些数据按从小到大的顺序排列为 ,因为数据的个数是奇数,所以这五名运动员身高的中位数是 .2.一组数据1,3,3,4,4,5的中位数是( )A.3B.3.5C.4和3D.43.学习全等三角形时,某班举行了以“生活中的全等”为主题的测试活动,全班学生的测试成绩统计如下表:得分(分)85899396100人数(人)4615132则这些学生得分的中位数是( )A.89分B.91分C.93分D.96分4.某中学八年级(2)班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个):35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是( )A.42,42B.43,42C.43,43D.44,435.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持健康的状态.小明同学用手机软件记录了自己11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在小明每天所走的步数数据中,中位数是 万步.6.一名射击运动员在连续射靶时,2次射中10环,8次射中9环,7次射中8环,2次射中7环,1次射中6环,求这组成绩的平均数和中位数.知识点2 众数7.在某次体育测试中,八年级(1)班5名同学的立定跳远成绩(单位:m)分别为:1.81,1.98,2.10,2.30,2.10.在这组数据中, 出现2次,出现的次数最多,所以这组数据的众数为 .8. 据了解,某定点医院收治的7名新型冠状肺炎患者的新冠病毒潜伏期分别为2天、3天、3天、4天、4天、4天、7天,则这7名患者新冠病毒潜伏期的众数和中位数分别为( ) A.4天,4天B.3天,4天C.4天,3天D.3天,7天9. 在某时段有50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位: km/h)为( )A.60B.50C.40D.1510.受央视《朗读者》节目的影响,某校八年级(2)班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示:每天阅读时间(h)0.511.52人数89103则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是( )A.2 h,1 hB.1 h,1.5 hC.1 h,2 hD.1 h,1 h11.一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为 .12.某校八年级(1)班全体学生2020年初中毕业体育考试的成绩统计如下表:成绩(分)35394244454850人数(人)2566876根据上表中的信息判断下列结论错误的是( )A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分13. 在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示,这些成绩的中位数和众数分别是( )A.96分,98分B.97分,98分C.98分,96分D.97分,96分14.某班7个兴趣小组的人数如下:5,6,6,x,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( )A.6B.6.5C.7D.815.已知一组数据4,3,2,m,n的众数为3,平均数为2,m>n,则n的值为 .16.已知数据a1,a2,a3,a4,a5的平均数是m,且a1>a2>a3>a4>a5>0,则数据a1,a2,a3,-3,a4,a5的平均数和中位数分别是 .17.某商场购进600箱苹果.在出售之前,先从中随机抽出10箱检查,称得10箱苹果的质量(单位:千克)如下:5.0,5.4,4.4,5.3,5.0,5.0,4.8,4.8,4.0,5.3.(1)请指出这10箱苹果质量的平均数、中位数和众数分别是多少;(2)请你根据上述结果估计600箱苹果的质量为多少千克.18.我国是世界上严重缺水的国家之一.为了倡导“节约用水,从我做起”,小刚从他所在班的50名同学中,随机调查了10名同学一年中的家庭月平均用水量(单位:t),并将调查结果绘成了条形统计图(1)求这10名同学的家庭月平均用水量的平均数、众数和中位数;(2)试估计小刚所在班的50名同学的家庭月平均用水量不超过7 t的有多少户.参考答案1.173,176,178,180,181 178 cm2.B [解析] 按从小到大的顺序排列此组数据为1,3,3,4,4,5,处于中间位置的数是3,4,所以这组数据的中位数是(3+4)÷2=3.5.故选B.3.C [解析] 处于中间位置的数为第20,21两个数,都为93分,所以中位数为93分.故选C.4.B [解析] 把这组数据按从小到大的顺序排列得35,38,40,42,44,45,45,47,则这组数据的中位数为=43.=(35+38+42+44+40+47+45+45)=42.故选B.5.1.3 [解析] ∵共有2+8+7+10+3=30(个)数据,∴这组数据的中位数是第15,16个数据的平均数,而第15,16个数据均为1.3万步,则中位数是1.3万步.故答案为1.3.6.解:这组成绩的平均数为(10×2+9×8+8×7+7×2+6×1)÷(2+8+7+2+1)=8.4(环),中位数为=8.5(环).7.2.10 2.108.A9.C [解析] 由条形图知,40出现的次数最多.故选C.10.B11.3 [解析] 根据题意知=3,解得x=3,则这组数据为1,2,2,3,3,3,7,所以众数为3.故答案为3.12.D13.A [解析] 由统计图可知:按从小到大的顺序排列,第13名同学的分数为96分,故中位数为96分,得分人数最多的是98分,共9人,故众数为98分.故选A.14.C [解析] 根据题意,得=7,解得x=8,∴这组数据的中位数是7.故选C.15.-2 [解析] ∵一组数据4,3,2,m,n的众数为3,平均数为2,m>n,∴m=3,∴4+3+2+3+n=2×5,解得n=-2.故答案为-2.16., [解析] ∵数据a1,a2,a3,a4,a5的平均数是m,∴a1+a2+a3+a4+a5=5m,∴数据a1,a2,a3,-3,a4,a5的平均数为(a1+a2+a3-3+a4+a5)÷6=.数据a1,a2,a3,-3,a4,a5按照从小到大的顺序排列为:-3,a5,a4,a3,a2,a1.处在第3,4位的数据的平均数为,∴数据a1,a2,a3,-3,a4,a5的中位数为.故答案为,.17.解:(1)平均数=(5.0+5.4+4.4+5.3+5.0+5.0+4.8+4.8+4.0+5.3)÷10=4.9(千克).因为5.0出现的次数最多,出现了3次,所以众数是5.0千克.将这10个数按从小到大的顺序排列为:4.0,4.4,4.8,4.8,5.0,5.0,5.0,5.3,5.3,5.4,因为第5个数与第6个数的平均数是5.0,所以这10箱苹果质量的中位数是5.0千克.(2)由(1)得平均每箱苹果的质量为4.9千克,所以估计600箱苹果的质量为4.9×600=2940(千克).18.解:(1)观察条形统计图,可知10名同学的家庭月平均用水量的平均数是(6×2+6.5×4+7×1+7.5×2+8×1)÷10=6.8(t).∵在这组数据中,6.5 t出现了4次,出现的次数最多,∴这10名同学的家庭月平均用水量的众数是6.5 t.∵将这组数据按从小到大的顺序排列,其中处于中间位置的两个数都是6.5 t,则=6.5(t),∴这10名同学的家庭月平均用水量的中位数是6.5 t.(2)∵10名同学的家庭中月平均用水量不超过7 t的有7户,∴小刚所在班的50名同学的家庭月平均用水量不超过7 t的有50×=35(户).。
人教版数学八年级下册第二十章数据的集中趋势第二节《中位数和众数》
M
30%
连接中考
某校女子排球队12名队员的年龄分布如下表所示:
年龄(岁) 13
14
15
16
人数(人) 1
2
5
4
则该校女子排球队12名队员年龄的众数、中位数分别是( C ) A.13,14 B.14,15 C.15,15 D.15,14
课堂检测
基础巩固题
1.学校团委组织“阳光助残”捐款活动,九年一班学生捐款情
20人 18人
8人 4人
课堂检测
6.下面两组数据的中位数是多少? (1)5,6,2,3,2; (2)5,6,2,4,3,5.
提示:确定中位数要先排序、看奇偶,再计算. 解:(1) 中位数是3; (2)中位数是4.5.
课堂检测
能力提升题
为了了解开展“孝敬父母,从家务事做起”活动的实施情况,某
校抽取八年级某班50名学生,调查他们一周做家务所用时间,得
x 450001180001100001 55003 5000 6 34001 30001110001 6276 111 3 6 1111
平均数远远大于绝大多数人(22人)的实际月工资, 绝大多数人“被平均”,所以不合适.
探究新知
该公司员工的中等收入水平大概是多少元?你是怎样确定的?
月收
巩固练习
一组数据18,22,15,13,x,7,它的中位数是16,则x的值 是_____1_7_. 解析:这组数据有6个,中位数是中间两个数的平均数.因为 7<13<15<16<18<22,所以中间两个数必须是15,x,故 (15+x)÷2=16,即x=17.
探究新知 知识点 2 众数
下表是某公司员工月收入的资料.
人教版八年级下册第二十章数据的分析第26讲_中位数和众数 讲义
初中八年级数学下册第26讲:中位数和众数一:知识点讲解知识点一:中位数➢定义:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数➢意义:中位数是刻画一组数据“中等水平”的一个代表,反映了一组数据的集中趋势,一组数据的中位数是唯一的➢求法:1.把数据由小到大(或由大到小)排列2.确定这组数据的个数3.当数据是奇数个时,取最中间的一个数作为中位数;当数据是偶数个时,取最中间两个数的平均数作为中位数例1:求数据2、3、14、16、7、8、10、11、13的中位数例2:10名工人某天生产同一种零件的个数是15、17、14、10、15、19、17、16、14、12。
求这一天10名工人生产零件的中位数。
知识点二:众数➢定义:一组数据中出现次数最多的数据称为这组数据的众数➢意义:众数是刻画一组数据“大多数水平”的重要代表,在我们日常生活中,经常用众数来解决一些实际问题➢求法:众数是出现次数最多的数据,而不是出现次数,若一组数据中有两个或两个以上数据出现的次数并列最多,则这些数据都是众数,故众数可能不止一个。
例3:一组数据2、3、x、5、7的平均数是4,则这组数据的众数是。
知识点三:平均数、中位数和众数的综合➢平均数✧优点:平均数能充分利用各数据提供的信息,在实际生活中常用样本的平均数估计总体的平均数。
✧缺点:在计算平均数时,所有的数据都参与运算,所以它易受极端值的影响。
➢中位数✧优点:中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用中位数来描述数据的集中趋势。
✧缺点:不能充分地利用各数据的信息。
➢众数✧优点:众数考察的是各数据所出现的频数,其大小只与部分数据相关,当一组数据中某些数据多次重复出现时,众数往往更能反映问题。
✧缺点:当各数据重复出现的次数大致相等时,它往往就没有什么特别意义。
人教版八年级下 册 20.1.2 中位数、众数(2课时)学案设计(无答案)
中位数、众数(2两课时)【目标导航】1.理解和掌握中位数和众数的概念、算法及在统计应用2.注意平均数、中位数、众数的区别【要点梳理】活动1:中位数例1某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15合理,你能制定一个合理的销售定额吗?归纳:中位数的概念:若数据中共有n个数,n为奇数时,中间位置是第个;n为偶数时,中间位置是第、个注意:(1)在数据个数为奇数的情况下,中位数是这组数据中的一个数据;但在数据个数为偶数的情况下,其中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等.(2)中位数也是用来描述数据的集中趋势的量,它是一个位置代表值.如果知道一组数据的中位数,那么可以知道,小于或大于这个中位数的数据约各占一半.例2在一次男子马拉松长跑比赛中,抽得12名选手的成绩如下(单位:分):136,140,129,180,124,154,146,145,158,175,165,148(1)样本数据(12名选手的成绩)的中位数是多少?(2)一名选手的成绩是142分,他的成绩如何?【课堂练习】1.一组数据:1、3、2、3、1、0、2的中位数是;2.一组数据:5、6、2、4、3、5的中位数是.3.一组数据9,9,x,7的众数与平均数相等,则中位数是.4.活动2:众数例3归纳:众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.注意:(1)众数是一组数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数.(2)一组数据中的众数有时不只一个,如数据2、3、-1、2、1、3中,2和3都出现了2次,它们都是这组数据的众数.(3) 众数也常作为一组数据的代表,用来描述数据的集中趋势,当一组数据有较多的重复数据时,众数往往是人们所关心的一个量.例4 为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进根据上表中的数据,回答下列问题:(1)该班学生每周做家务劳动的平均时间是多少小时?(2)这组数据的中位数、众数分别是多少?(3)请你根据(1)、(2)的结果,用一句话谈谈自己的感受.【课堂练习】1.某服装销售商在进行市场占有率的调查时,他最应该关注的是()A.服装型号的平均数B.服装型号的众数C.服装型号的中位数D.最小的服装型号2.在一次英语口试中,20名学生的得分如下:70,80,100,60,80,70,90,50,80,70,80,70,90,80,90,80,70,90,60,80 则这次英语口试中学生得分的众数是.3.我市某一周的最高气温统计如下表:则这组数据的中位数与众数分别是.4.(1)若这20名学生成绩的平均分数为82分,求x和y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.活动3::平均数、中位数、众数描述数据的特点:平均数的计算要用到所有的数据,它能够充分利用数据提供的信息,因此在现实生活中较为常用,但它受极端值(是指一组数据中与其余数据差异很大的数据)的影响较大.当一组数据中某些数据多次重复出现时,众数往往是人们关心的一个量,众数不受极端值的影响,这是它的一个优势.中位数只需很少的计算,不受极端值的影响,这在有些情况下是一个优点.例5某商场服装部为了调动营业员的积极性,决定实现目标管理,即确定一个月销售目标,根据目标完成情况对营业员进行适当的奖惩.为了确定一个适当的目标,商场统计了每个营业员在某月的销售额,数据如下(单位:万元):8 16 13 24 15 28 26 18 19 17 7 16 19 32 3016 14 15 26 2 23 17 15 15 28 28 16 19 15 19(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定为多少合适?说明理由.例6为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动,初中三个年级根据成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所(1)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些);(2)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?并说明理由.【课堂练习】1.某校在一次考试中,甲乙两班学生的数学成绩统计如下:(1)甲班众数为________分,乙班众数为_______分,从众数看成绩较好的是_____班.(2)甲班的中位数是______分,乙班的中位数是______分.(3)若成绩在85分以上为优秀,则成绩较好的是_______班.2.(1(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,合理确定今年每个销售员统一的销售额标准是多少万元?3.【课后盘点】1.一组从小到大的数据:0、4、x、10的中位数为5,则x的值为()A.5B.6C.7D.82.一组数据:2、4、x、2、4、7的众数是2,则这组数据的平均数、中位数分别为()A.3.5、3B.3、4C.3、3.5D.4、33.下列数据:16、20、22、25、24、25的平均数和中位数分别为()A.21和22B.22和23C.22和24D.21和234.在共有15人参加的演讲比赛中,参赛选手的成绩各不相同,因此选手要想知道自己是否进前8名,只需要了解自己的成绩以及全部成绩的 ( ) A.平均数B.众数C.中位数D.极差5.某校为了了解学生的身体素质情况,对初三(2)班的50余名学生进行了立定跳远、铅球、100m三个项目的测试,每个项目满分为10分.如图,是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分为5组画出的频率分布直方图.已知从左至右前4个小组的频率分别为0.02,0.1,0.12,0.46.下列说法:①学生的成绩≥27分的共有15人;②学生成绩的众数在第四小组(22.5~26.5)内;③学生成绩的中位数在第四小组(22.5~26.5)范围内.其中正确的说法是()A.①②B.②③C.①③D.①②③6.为了解某班学生的视力情况,从中抽取了7名学生进行检查,视力如下:1.2、1.5、0.9、1.0、1.2、1.2、0.8,则这组数据的中位数是_________.7.一射击运动员在一次射击练习中打出的成绩如下表所示,这次成绩的众数是.8.在一组数据4,5,8,-1,0中插入一个数据x使得新的数据的中位数是3,则x=_____.9由小到大排列的一组数据a、b、c、d、e,其中每一个数据都小于-1,则对于样本1、a、-b、c、-d、e的中位数可以表示为_____.10(2)小明说,他所在的年龄组的参赛人数占全体参赛人数的28%,你认为小明是哪个年龄组的选手?请说明理由.11.八年级某班50名同学积极参加了一次赈灾捐款活动,下表是小明对全班捐款情况的统计表:(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(2)该班捐款金额的众数、中位数分别是多少?12.厦张贴巨幅广告,称他们这次“真情回报顾客”活动共设奖金20万元,最高奖每份1万元,平均每份奖金200元.一位顾客幸运地抽到一张奖券,奖金数为10元,她调查了周围正在兑奖的其他顾客,一个也没有超过50元的.她气愤地要求与商厦领导评理,领导安慰她说不存在欺骗,并向她出示了下面这张奖金分配表,你认为商厦领导说“平均每份奖金200元”是否欺骗了顾客?这一说法能够很好地代表中奖的一般奖金额吗?以后遇到开奖的问题你会更关心什么?13.某学校对初中毕业班经过初步比较后,决定从初三(1)、(4)、(8)班这三个班中推荐一个班为市级先进班集体的候选班,现对这三个班进行综合素质考评,下表是其五项结果的差异?并从中选择一个能反映差异的统计量将这三个班的得分进行排序;(2)根据你对表中五个项目的重要程度的认识,设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同).按这个比例对各班级的得分重新计算,比较出大小关系,并从中推荐一个得分高的班级作为市级先进班集体的候选班.。
2019年春八年级数学下册第20章数据的初步分析20.2数据的集中趋势与离散程度20.2.1数据的集中趋势第2课时中
第2课时中位数与众数知识要点基础练知识点1中位数1.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是(C)A.6B.7C.8D.92.九年级(1)班15名男同学进行引体向上测试,每人只测一次,测试结果统计如下:引体向0 12345678上个数人1 12133211数这15名男同学引体向上个数的中位数是4.知识点2众数3.我省某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个5 6 7 8数(个)人数3 15 22 10(人)表中表示零件个数的数据中,众数是(C)A.5B.6C.7D.84.已知一组数据5,4,6,5,6,6,3,则这组数据的众数是6.知识点3平均数、中位数和众数的综合5.某单位组织职工开展植树活动,植树量与人数之间的关系如图,下列说法不正确的是(D )A.参加本次植树活动的共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵6.一组数据2,4,x,2,4,7的众数是2,则这组数据的中位数为3.综合能力提升练7.今年的某一天全国部分宜居城市最高气温的数据如下:宜居城市大连青岛威海金华昆明三亚最高气温(℃)25 28 35 30 26 32则以上最高气温数值的中位数为(D)A.30B.28C.32.5D.298.若一组数据2,3,x,5,7的众数为7,则这组数据的中位数为(C)A.2B.3C.5D.79.小明班上比赛投篮,每人投6球,如图是班上所有学生投进球数的扇形统计图.根据统计图,下列关于班上所有学生投进球数的统计量,一定正确的是(D)A.中位数为3B.中位数为2.5C.众数为5D.众数为210.如图是根据某班40名同学一周的体育锻炼情况绘制的统计图,该班40名同学一周参加体育锻炼时间的中位数、众数分别是(B)A.10.5,16B.9,8C.8.5,8D.8.5,1611.为了调查某地居民的用水情况,抽查了若干户家庭的月用水量,结果如下表:月用3 458水量户数2 341则关于这若干户家庭的月用水量,下列说法错误的是(A)A.众数是4B.平均数是4.6C.样本容量为10D.中位数是4.512.在环保整治行动中,某市环保局对辖区内的单位进行了抽样检查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数是92,众数是95.13.(天津中考)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为40,图1中m的值为30;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.解:(2)根据平均数的计算方法,可知=15,因此这组数据的平均数为15,众数为16,中位数为15.14.某学校举行“中国梦,我的梦”演讲比赛,初、高中部根据初赛成绩,各选出5名选手组成代表队决赛,初、高中部代表队的选手决赛成绩如图所示:(1)根据图示填写表格:平均数(分) 中位数(分)众数(分)初中代表队85 8585高中代表队8580 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好.解:(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.拓展探究突破练15.某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售目标,根据目标完成的情况对营业员进行适当的奖惩.为了确定一个适当的目标,商场统计了每个营业员在某月的销售额,并整理得到如下统计图(单位:万元).请分析统计数据完成下列问题.(1)计算月销售额的中位数、众数和平均数.(2)为了提高营业员的工作积极性,你认为月销售额定为多少合适?请说明理由.解:(1)月销售额的众数是18万元;中位数是20万元;平均数×(12×3+13×1+…+35×1)=22万元.(2)目标定为20万元,因为这组数据的中位数是20万元,这样就能让一半以上的营业员达到目标.(合理即可)。
初中数学中位数和众数
初中数学中位数和众数中位数和众数都是描述一组数据集中趋势的统计指标。
中位数是指数据集中的中间值,也叫中间值。
一个数据的中位数说明了该数据的典型特征。
有了这个特征,我们可以将一组数据分为几类,从而把比较集中的一类作为计算中位数的依据。
通常情况下,如果一个数列中连续几个数字都是它的中位数,就可以说这个数列是收敛的;如果连续几个数都是它的众数,就可以说这个数列是发散的。
众数和中位数都可以用来计算平均数和方差。
一、中位数中位数是一个数列,即所有数字按照从小到大的顺序排列,中间数(即中位数)的值就是这组数据的平均数。
如果把所有数字都按大小顺序排列,中间数也就是中位数,它位于平均数和中位数之间。
例:把两个班的数学成绩整理好,平均分为a和b两组,计算出a组和b组的中位数。
分析:按照大小顺序排列后,中间两个数分别是a和b,这两个数是所有数据的平均数。
所以a组中的中间两个数字就是a组的中位数。
二、众数在一组数据中,如果某一组数据的平均数与众数之和都位于中位数附近,那么这一组数据就是收敛的;如果某一组数据的平均数与众数之和都位于中位数附近,那么这一组数据就是发散的。
如果我们将数据按大小排序,那么我们看到的是收敛的序列和发散的序列。
举个例子,小明在考试中数学考了98分,语文考了95分,小东数学考了98分,小明和小东的语文成绩都是100分,数学成绩是两位数;小明和小东的语文成绩都是90分。
三、平均数平均数是反映数据集中趋势的统计指标,它是对一组数据按一定的标准进行整理,并求出算术平均数或几何平均数后所得的平均数。
例如,计算全班50名同学平均成绩,计算结果是平均每门功课成绩为62分,可以认为这个班的数学成绩是比较平均的。
平均数还可以用来比较不同水平的人之间的差别。
例如,把一个班级中学生的平均成绩和全班平均成绩相比,可以认为这个班级中每个学生的平均成绩比全班平均成绩高。
平均数反映了一组数据中数值大小的变化情况。
但是它不能表示数值之间的变化关系,例如把100个人的成绩加起来求平均值,得到结果是100/20=1,这说明每个人的成绩相差不大。
八年级数学中位数和众数
中位数、众数和平均数可以相 互补充,全面地揭示数据的分 布情况。
05
实例分析
中位数实例分析
题目
某班有50名学生,在一次数学考试中 的成绩分别为60,65,70,75,80, 85,90,95,100,则这组数据的中 位数为多少?
分析
首先将这组数据从小到大排序,然后 找到位于中间位置的数字。由于数据 量为奇数(50名学生),中位数即为 排序后位于中间位置的数字。
八年级数学中位数和 众数
目录
CONTENTS
• 引言 • 中位数的定义与计算 • 众数的定义与计算 • 中位数与众数的比较 • 实例分析 • 总结与回顾
01
引言
主题简介
中位数和众数是在统计学中常用的两个概念,用于描述一组数据的中心趋势和集中 趋势。
中位数是一组数据排序后处于中间位置的数值,而众数是一组数据中出现次数最多 的数值。
学习中位数和众数的概念及其应用,有助于学生更好地理解和分析数据,解决实际 问题。
学习目标
掌握中位数和众数的 定义和计算方法。
能够在实际问题中应 用中位数和众数的知 识,进行数据分析和 处理。
理解中位数和众数在 描述数据分布中的作 用。
02
中位数的定义与计
算
中位数的定义
01
中位数是一组数据中排在中间位 置的数值。
比较
众数反映数据的集中趋势,而平均数反映数据的平均水平。当数据分布较为集中时,众数 与平均数的差距较小;当数据分布较为分散时,众数与平均数的差距较大。
中位数、众数与平均数的综合比较
中位数、众数和平均数都是描 述数据特征的重要统计量,各 有其特点和适用场景。
在实际应用中,需要根据数据 的特性和问题的需求选择合适 的统计量来描述数据的特征。
3.2中位数和众数-浙教版八年级数学下册教案
3.2 中位数和众数-浙教版八年级数学下册教案一、教学目标1.了解中位数和众数的概念;2.掌握求中位数和众数的方法;3.能够通过实例运用中位数和众数进行数据分析。
二、教学重点和难点1.教学重点:掌握求解中位数和众数的方法、应用中位数和众数进行数据分析。
2.教学难点:在实际问题中运用中位数和众数进行数据分析。
三、教学方法1.情境教学法2.案例分析法四、教学过程一、引入新课1.老师通过举例子介绍什么是中位数和众数。
2.让学生展示自己带回来的数据,引导学生从中找出众数。
二、概念解释1.中位数:将一组数据按从小到大的顺序排好,处于中间位置的样本值就是中位数。
2.众数:在一组数据中出现最多的数就是众数。
三、求解中位数和众数的方法1.中位数的计算方法将数据从小到大排列,若数据个数为奇数,则中间的数即为中位数;若数据个数为偶数,则中间两个数的平均数即为中位数。
例如:6,8,9,10,13,15,16,20,25,30 中,中位数为 13。
2.众数的计算方法求众数时,首先将数据从小到大排列,然后统计每个数出现的次数,出现次数最多的数即为众数,如果出现次数相同,那么这几个数都是众数。
例如:5,5,7,8,8,8,9,10,13 中,众数为 8。
四、应用实例通过生活中的实例教授学生应用中位数和众数进行数据分析的方法。
例如:班级学生身高数据,通过求解中位数和众数,进行身高的比较和分析。
五、小结知识点老师让学生总结所学的知识点,巩固学习成果。
五、课堂练习1.求以下数列中位数和众数:3, 5, 2, 9, 7, 5, 4, 6, 5, 7, 2。
2.根据生活实例,运用中位数和众数进行数据分析。
六、课后练习1.计算以下数列的中位数:8, 4, 10, 5, 2。
2.求出以下数列的众数:3, 4, 5, 6, 6, 6, 7, 7, 8, 8。
七、教学反思中位数和众数都是十分重要的数学概念,它们在实际问题中的运用也是非常广泛的。
八年级数学(下)第二十章《中位数和众数》同步练习题(含答案)
八年级数学(下)第二十章《中位数和众数》同步练习题(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校在五个班级中对认识伦敦奥运会吉祥物的人数进行了调查,统计结果为(单位:人):30,31,27,26,31.这组数据的中位数是A.27 B.29C.30 D.31【答案】C【解析】将数据由小到大排列得:26,27,30,31,31.所以中位数为30.故选C.2.一组数据:85,88,73,88,79,85,其众数是A.88 B.73C.88,85 D.85【答案】C【解析】数据85,88,73,88,79,85有两个众数,它们是88,85.故选C.3.某班一次英语测验的成绩如下,得98分的7人,90分的4人,80分的17人,70分的8人,60分的3人,50分的1人,这里80分是A.是平均数B.只是众数C.只是中位数D.既是众数又是中位数【答案】D【解析】∵80分出现了17次,出现的次数最多,∴80分是众数.∵共有40个数,中位数是第20、21个数的平均数,∴这组数据的中位数是80.故选D.4.某青年排球队12名队员的年龄情况如下:则12名队员的年龄A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁【答案】D【解析】在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选D.5.某校为了丰富校园文化,举行初中生书法大赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛得分,要判断她能否获奖,只需知道这11名选手得分的A.中位数B.平均数C.众数D.方差【答案】A【解析】11个不同的分数按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的分数和中位数就可以知道是否获奖了,故选A.6.10个商店某天销售同一品牌的电脑,销售的件数是16、14、15、12、17、14、17、10、15、17,设其平均数为a,中位数为b,众数为c,则有A.a>b>c B.b>c>dC.c>a>b D.c>b>a【答案】D【解析】∵16、14、15、12、17、14、17、10、15、17,设其平均数为a=(16+14+15+12+17+14+17+10+15+17)÷10=14.7,10个数据从小大大排列:10,12,14,14,15,15,16,17,17,17,中位数为b是最中间两数的平均数,即:b=(15+15)÷2=15;众数为c,即c=17.∴a<b<c.故选D.二、填空题:请将答案填在题中横线上.7.一组数据3,4,x,5,8的平均数是6,则该组数据的中位数是__________.【答案】5【解析】根据题意可得:345865x++++=,解得:x=10,这组数据按照从小到大的顺序排列为:3,4,5,8,10,则中位数为:5.故答案为:5.8.某巴蜀中学组织数学速算比赛,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数是__________.【答案】15【解析】把这组数据从小到大排列:13、13、15、15、20,最中间的数是15,则这组数据的中位数是15,故答案为:15.9.已知一组数据:x,10,12,6的中位数与平均数相等,则x的值是__________.【答案】4或8或16【解析】(1)将这组数据从大到小的顺序排列为12,10,x,6,处于中间位置的数是10,x,那么由中位数的定义可知,这组数据的中位数是(10+x)÷2,平均数为(12+10+x+6)÷4,∵数据12,10,x,6,的中位数与平均数相等,∴(10+x)÷2=(12+10+x+6)÷4,解得x=8,大小位置与8对调,不影响结果,符合题意.(2)将这组数据从大到小的顺序排列后12,10,6,x,中位数是(10+6)÷2=8,此时平均数是(12+10+x+6)÷4=8,解得x=4,符合排列顺序.(3)将这组数据从大到小的顺序排列后x,12,10,6,中位数是(12+10)÷2=11,平均数(x+12+10+6)÷4=11,解得x=16,符合排列顺序.∴x的值为4、8或16.故答案为:4或8或16.10.自然数4,5,5,x,y从小到大排列后,其中位数是4,如果这组数据唯一的众数是5,那么所有满的最大值是__________.足条件的x,y中,x y【答案】5【解析】∵这组数据的中位数为4,∴x≤4,y≤4,∵这组数据唯一的众数是5,∴x≠4且y≠4,要求x+y的最大值,∴x=2,y=3,或x=3,y=2,即x+y的最大值=2+3=5,故答案为:5.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.小明最近6次测验的成绩依次为90分、85分、70分、65分、85分、75分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20.1.2 中位数和众数
第1课时中位数和众数
一.明确目标,预习交流
【学习目标】
1.通过学习了解中位数和众数的含义,能够准确确定出一组数据的中位数和众数。
2.理解中位数的概念,感知其代表数据的意义,提高解决问题能力。
【重、难点】
重点:理解中位数与众数所代表数据的意义。
难点:能否准确描述出具体问题中位数和众数的意义。
【预习作业】:
1.已知一个样本:11、11、11、6、6、6、2、2、2、2,则样本平均数为
2. 600≤x<1000的组中值为;1800≤x<2200的组中值为
3.在求n个数的算术平均数时,如果x
1出现f
1
次,x
2
出现f
2
次,…,x
k
出现f
k
次(这里f
1+f
2
+…+f
k
=n)那么这n个数的算术平均数
= ,这也叫做x
1,x
2
,…,x
k
这k个数的加权平
均数,其中f
1,f
2
,…,f
k
分别叫做x
1
,x
2
,…,x
k
的权。
4.中位数和众数(预习新知)
(1)将一组数据按照的顺序排列,
如果数据的个数是奇数,则称为这组数据的中位数
...;
如果数据的个数是偶数,则称为这组数据的中位数
.... (2)中位数是一个代表值,利用它分析数据可获得一些信息,例如,在一组互不相等的数据中,小于和大于它们的中位数的数据各占 . (3)一组数据中出现次数最多的数据称为
二.合作探究,生成总结
探讨1.在一次男子马拉松比赛中,抽得12名选手的成绩(单位:分)如下: 136 140 129 180 124 154 146 145 158 175 165 148
(1)样本数据的中位数是多少?
(2)一名选手的成绩为142分,他的成绩如何?
归纳:
1.如何确定一组数据的中位数?
第一步:;
第二步:
第三步:。
2.求中位数时一定要注意 .
(平均数、中位数都是反映一组数据集中趋势的统计量,但当某些数据与平均数偏差太大时,最好选用中位数来表达这组数据的一般水平)
练一练:
1. -1,3,5,8,9的中位数是;
2.14,10,11,15,14,17的中位数是
3.一次英语口语测试中,10名学生的得分如下:90,50,80,70,80,70,90,80,90,80。
这次英语口试中学生得分中位数是。
4.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是
5.随机抽取我市一年(按365天计)中的30天平均气温状况如下表:
请你根据上述数据回答问题:(1).该组数据的中位数是什么?
(2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?
探讨2. 某商店在一段时间内出售某一品牌各种规格的空调,销售台数如下表所示你能根据下面的数据为这家商店提供进货建议吗?(温馨提示:认真阅读P
132
例5,然后解答此题,注意表达清楚哦!)
归纳:
1.众数是一组数据中出次的数据. 众数可能是唯一的也可能是 .
2.众数可以反映一定的数据信息,可以作为一组数据的代表,帮助人们在实际问题中分析并做出决策.
练一练:
1.数据8、9、9、8、8、8、9、9、8、10、7、9、9、8的众数是
2.一射击运动员在一次射击练习中打出的成绩是(单位:环):•7,8,9,8,6,8,10,7,这组数据的众数是_____ _____.
3.公园里有两群人在做游戏,两群人的年龄分别如下:
甲群:13,13,15,17,15,18,12,19,11,20,17,20,14,23,25
乙群:3, 4, 4, 5, 5, 6, 6, 6,54,57,48,36,38,58,34
甲群游客的年龄众数是:,乙群游客的年龄众数是:。
4.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是()
A.24、25
B.23、24
C.25、25
D.23、25
5.某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示:
根据表格回答问题:
(1)、商店出售的各种规格空调中,众数是多少?
(2)、假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?
知识点小结:本节课我们学习了……..
三.达标测评,分层巩固
基础训练题:
1.数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数
是
2.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是 .
3.数据92、96、98、100、X的众数是96,则其中位数和平均数分别是()
A.97、96
B.96、96.4
C.96、97
D.98、97
4.一组数据由6个3,8个11,1个12,1个21组成,则这组数据的众数是()A、8 B、11 C、21 D、1
能力训练题:
5.八年级(1)班45名同学的身高统计如下:
6.某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)
180、510、250、250、210、250、210、210、
150、210、150、120、120、210、150
(1)求这15个销售员该月销量的中位数和众数。
(2)假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。