第05章 投资组合的选择

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



另一种计算资产组合方差的公式为 P2=w1212+w2222+2w1w2Cov(r1 ,r2) 2=(0.5220.762)+(0.5215.772)+ [20.50.5(-240.96)]=49.43 =7.03% 这与前面得出的资产组合收益的标准差一样。
3
具有凹性效用函数的投资者,其财富的边际效 用递减,设X1,X2为期末两种可能的财富值, 对任意的0<α<1,有U(αX1+(1α)X2)>αU(X1)+(1-α)U(X2) 假设一项投资期末带来X1财富的可能性为α, 带来X2财富的可能性为1-α,其期末财富的期 望值为X,另有一项投资期末带来确定性财富 X,显然根据上式,确定性投资与风险投资具 有相同的期末财富期望值,但确定性投资给投 资者带来更高的期望效用。所以,具有凹性效 用函数的投资者是一风险厌恶者。
1
边际效用递减举例

假定有一公平游戏,投资10万,获利5万的概率为50%, 亏5万的概率为50%,因此,这一投资的期望收益为0。 当10万增到15万时,利用对数效用函数,效用从 log(100000)=11.51增加到log(150000)=11.92,效用增 加值为0.41,期望效用增加值为0.5×0.41=0.21。 如 果 由 1 0 万 降 到 5 万 , 由 于 log(100000)log(50000)=11.51-10.82=0.69,期望效用的减少值为 0.5×0.69=0.35,它大于期望效用的增加值
18
三、冷饮的收益与风险

雨较多的年份 股市的牛市 股市的熊市
少雨年份 冷饮需求大增


概率 收益率
0.4 4%
0.3 -10%
0.3 30%

冷饮公司的期望收益率为7.6%,方差为248.64%,标 准差为15.77% 。
19
四、互补组合的收益与风险

概率 收益率
雨较多的年份 股市的牛市 股市的熊市 0.4 0.3 17% 1%
16
一、资产组合的计算


概率 收益率
雨较多的年份 股市的牛市 股市的熊市 0.4 0.3 30% 12%
少雨年份 伞需求大减 0.3 -20%

E(r伞公司)=(0.4×30)+(0.3×12)+[0.3×(-20)]=9.6% σ2( 伞 公 司 ) = 0 . 4 ( 3 0 - 9 . 6 ) 2 + 0 . 3 ( 1 2 - 9 . 6 ) 2 + 0 . 3 ( - 2 0 9.6)2=431.04 σ=431.041/2=20.76 或20.76%
22
七、风险资产与无风险资产的结构

投资金额50万,其中15万投资国库券,35万投资股票, 15.75万买清华同方,19.25万买清华紫光。 同方:w1=15.75/35=0.45 紫光:w2=19.25/35=0.55 风险组合P的权重为y,无风险组合的权重为1-y,有 y=35/50=0.7(风险资产) 1-y=0.3(无风险资产)
2


边际效用递减举例
这笔投资的期望效用为
–E[U(W)]=pU(W1)+(1+p)U(W2)=(1/2)log(50 000)+(1/2)log(150 000)=11.37 –由于10万的效用值为11.51,比公平游戏的 11.37要大, –风险厌恶型投资者不会进行这一投资。即不 投资于公平游戏。
风险厌恶与公平游戏
我们将风险溢价为零时的风险投资称为公
平游戏(fair game),风险厌恶型的投资 者不会选择公平游戏或更糟的资产组合, 他们只愿意进行无风险投资或投机性投资。 当他们准备进行风险投资时,他们会要求 有相应的风险报酬,即要求获得相应的超 额收益或风险溢价。投资者为什么不接受 公平游戏呢?公平游戏看上去至少不坏, 因为它的期望收益为0,而不是为负。

4
效用公式

这里有一个金融界广泛运用的一个投资效用计 算公式,资产组合的期望收益为E(r),其收益 方差为2,其效用值为: U=E(r)-0.005A2 其中A为投资者的风险厌恶指数,风险厌恶程度 不同的投资者可以有不同的指数值,A值越大, 即投资者对风险的厌恶程度越强,效用就越小。 在指数值不变的情况下,期望收益越高,效用 越大;收益的方差越大,效用越小。

Cov(r伞公司,r冷饮公司)=0.4(30-9.6)(4-7.6)+0.3(129.6)(-10-7.6)+0.3(-20-9.6)(30-7.6)=-240.96
21
六、相关系数的计算

相关系数范围在-1和+1之间,与斜方差的关系为:两 变量协方差除以两标准差之积等于它们的相关系数。
(伞,冷饮)=[Cov(r伞, r冷饮)]/(伞冷饮) =-240.96/(20.7615.77)=-0.736
15
托宾的收益风险理论
托宾(James
Tobin)是著名的经济学家、他在1958年2月 The Review of Economic Studies发表文章,阐述了他对风险收益关系的理解。 凯的流动偏好有两个以后被证明不真实的假设,一个假设是利率水 平稳定不变,二是假设投资者或全部持有现金,或全部持有风险资产。 1955-56年,托宾发现马克维茨假定投资者在构筑资产组合时是在风 险资产的范围内选择,没有考虑无风险资产和现金,实际上投资者会 在持有风险资产的同时持有国库券等低风险资产和现金的。由于利率 是波动的,投资者通常会同时持有流动性资产和风险资产。 他还指出,投资者并不是简单地在风险资产和无风险资产这两种资 产之间进行选择,实际上风险资产有许多种,因此,他得出:各种风 险资产在风险资产组合中的比例与风险资产组合占全部投资的比例无 关。这就是说,投资者的投资决策包括两个决策,资产配置和股票选 择。而后者应依据马克维茨的模型。即无论风险偏好何样的投资者的 风险资产组合都应是一样的。托宾的理论不仅使凯恩斯理论有了更坚 实的基础,也使证券投资的决策分析方法更深入,也更有效率。
17
二、资产组合的方差

投资者将其资金的50%投资于伞公司的股票,其余的 50%投资于收益率为3%的国库券,因此投资者的整个资 产组合的期望收益率为
E(r投资者)=0.5E(r伞公司)+0.5r国库券=(0.5×9.6%)+(0.5×3%)=6.3%




资产组合的标准差为
σ投资者=0.5σ伞公司=0.5×20.76%=10.38%

13
第五章 投资组合的选择
马柯维茨的资产组合理论
马柯维兹(Harry
Markowitz)1952年在 Journal of Finance发表了 论文《资产组合的选择》,标志着现代投资理论发展的开端。 马克维茨1927年8月出生于芝加哥一个店主家庭,大学在芝大读经济 系。在研究生期间,他作为库普曼的助研,参加了计量经济学会的证 券市场研究工作。他的导师是芝大商学院院长《财务学杂志》主编凯 彻姆教授。凯要马克维茨去读威廉姆斯的《投资价值理论》一书。 马想为什么投资者并不简单地选内在价值最大的股票,他终于明白, 投资者不仅要考虑收益,还担心风险,分散投资是为了分散风险。同 时考虑投资的收益和风险,马是第一人。当时主流意见是集中投资。 马克维茨运用线性规划来处理收益与风险的权衡问题,给出了选择 最佳资产组合的方法,完成了论文,1959年出版了专著,不仅分析了 分散投资的重要性,还给出了如何进行正确的分散方法。 马的贡献是开创了在不确定性条件下理性投资者进行资产组合投资 的理论和方法,第一次采用定量的方法证明了分散投资的优点。他用 数学中的均值方差,使人们按照自己的偏好,精确地选择一个确定风 险下能提供最大收益的资产组合。获1990年诺贝尔经济学奖。

11
方差的分析
–均值本身是期望值的一阶矩差,方差是围绕 均值的二阶矩差。方差在描述风险时有一定 的局限性,如果两个资产组合的均值和方差 都相同,但收益率的概率分布不同时。 –一阶矩差代表收益水平;二阶矩差表示收益 的不确定性程度,并且所有偶数矩差(方差, M4,等)都表明有极端值的可能性,这些矩差 的值越大,不确定性越强;三阶矩差(包括其 他奇数矩差:M5,M7等)表示不确定性的方向, 即收益分布的不对称的情况。但是,矩差数 越大,其重要性越低。
12
方差的分析(2)
萨缪尔森有两个重要结论: ①所有比方差更高的矩差的重要性远远小于期 望值与方差,即忽略高于方差的矩差不会影响 资产组合的选择。 ②方差与均值对投资者的效用同等重要。 得出这个结论的主要假设是股票收益分布具有 “紧凑性”。所谓紧凑性是说,如果投资者能 够及时调整,控制风险,资产组合收益率的分 布就是紧凑的。
6



均值-方差准则
–风险厌恶型的投资者承担风险是要报酬的, 这个风险报酬就是超额收益或风险溢价。 –因此对于风险厌恶型的投资者来说,存在着 选择资产的均值-方差准则:当满足下列(a)、 (b)条件中的任何一个时,投资者将选择资产 A作为投资对象: –(a) –(b) E(RA)≥E(RB) E(RA)> E(RB) 且σ2A<σ2B 且σ2A≤σ2B
少雨年份 冷饮需求大增 0.3 5%

新组合的期望收益为8.6%,标准差为7.03%。互补的选择效果比 与无风险资产构成的组合还好。 资产组合 全部投资于伞公司股票 一半伞股票一半国库券 一半伞股票一半冷饮股票 期望收益 9.6% 6.3% 8.6% 标准差 20.76% 10.38% 7.03%
20
7
均值-方差准则(2)
8
均值-方差准则(3)

因为它的期望收益大于或等于第四象限中的任 何资产组合,而它的标准差则等于或小于第四 象限中的任何资产组合,即资产组合P优于在它 东南方向的任何资产组合。相应地,对投资者 来说,所有第一象限的资产组合都比资产组合P 更受欢迎,因为其期望收益等于或大于资产组 合P,标准差等于或小于资产组合P,即资产组 合P的西北方向的资产组合更受欢迎。那么,通 过 P 点 的 投 资 者 效 用 的 无 差 异 曲 线 (indifference curve)一定位于第二和第三象 限,即一定是条通过P点的、跨越第二和第三象 限的东南方向的曲线。
9
均值-方差准则(4)
一方面,风险厌恶程度不同的投资者有不同的 无差异曲线,但它们都通过P点,因为,这是市 场提供的唯一的风险溢价水平决定的。一般风 险厌恶程度较高的投资者的投资效用无差异曲 线较为陡峭,因为风险的增加他要求很高的期 望收益的增长;而一般风险厌恶程度较低的投 资者的投资效用无差异曲线较为平缓。 另一方面,每一个投资者一旦确定其风险厌恶 程度,其投资效用的无差异曲线的斜率就确定 了,除了一条由市场提供的唯一风险溢价水平 决定的无差异曲线外,还一定可以有无数条平 行它的无差异曲线。
5



效用数值应用举例

如果股票的期望收益率为10%,标准差为21.21%,国库 券的收益率为4%,尽管股票有6%的风险溢价,一个厌恶 风险的投资者会选择全部购买国库券的投资策略。 投 资 者 A=3 时 , 股 票 效 用 值 为 : 1 0 (0.005×3×21.212)=3.25%,比无风险报酬率稍低,在 这种情况下,投资者会放弃股票而选择国库券。 如果投资者的A为2,股票效用值为: 10-(0.005×2×21.212)=5.5%,高于无风险报酬率,投 资者就会接受这个期望收益,愿意投资于股票。 所以,投资者对风险的厌恶程度十分关键。



五、斜方差的计算

Biblioteka Baidu
测度两种资产互补程度的指标是协方差(covariance), 它测度的是两个风险资产收益相互影响的方向与程度。 正的意味着资产收益同向变动,负的则是反方向变动。
斜方差的计算公式为


Cov(r伞,r冷饮)=∑Pr(s)[r伞(s)-E(r伞)][r冷饮(s)-E(r冷饮)]

10
均值的分析
我们首先来看均值,投资的期望值或均值并不 是投资收益概率分布的唯一代表值,其他的选 择还有中值与众数。 中值(median)是所有收益按照高低排序时处于 正中位置的收益率,众数(mode)是最大概率时 的分布值或结果值,它代表了最大的可能收益, 但不是平均加权收益,也不是按高低排序后处 于正中的收益。 但投资者和理论界均认为均值最好,代表性最 强,实际使用也最广泛。
相关文档
最新文档