晶闸管(可控硅)调压电路
可控硅调压器工作原理
可控硅调压器工作原理可控硅调压器是一种用于调节电流和电压的电子器件,它由可控硅(也称为晶闸管)和辅助电子元件组成。
可控硅具有单向导电特性,能够控制电流的通断以及电压的输出,因此被广泛应用在电力系统中,例如家用电器、变压器、电动机等。
可控硅调压器的工作原理基于可控硅的导通和关断控制。
可控硅有三个引脚,分别为阳极(Anode)、阴极(Cathode)和控制端(Gate)。
当可控硅的阳极接受到正向电压,阴极接地时,可控硅处于关断状态,无法导通电流。
当控制端施加一个正脉冲信号时,可控硅会从关断状态转变为导通状态,允许电流通过。
可控硅调压器通过控制可控硅的导通角度来调节输出电压。
可控硅导通的时间取决于控制端施加的信号的宽度和频率。
当控制端施加一个窄的脉冲信号时,可控硅导通的时间很短,输出电压较低;而当控制端施加一个宽的脉冲信号时,可控硅导通的时间较长,输出电压较高。
通过控制控制端信号的宽度和频率,可实现输出电压的连续调节。
触发电路通常采用触发变压器或电容压控触发器来产生控制信号。
触发变压器将输入电压变换为控制端所需的电压和电流,用来触发可控硅的导通。
电容压控触发器则通过电容的充放电过程来产生触发信号,实现可控硅的导通和关断。
控制电路包括控制信号发生器和比较器。
控制信号发生器根据用户的需求产生控制信号的频率和宽度,而比较器则将控制信号与反馈信号进行比较,并调整控制信号的宽度和频率,以达到输出电压的稳定。
可控硅调压器还可以具有保护功能,例如过电压保护和过流保护。
过电压保护是通过检测输出电压超过设定值时,立即使可控硅关断来防止设备损坏。
而过流保护是通过检测电流超过设定值时,立即使可控硅关断来避免电流过载。
总之,可控硅调压器是一种基于可控硅的导通和关断控制的电子器件,通过控制可控硅的导通角度来实现对输出电压的调节。
它包括触发电路、控制电路和保护功能,能够广泛应用于各种电力系统中。
可控硅-晶闸管的几种典型应用电路
可控硅-晶闸管的几种典型应用电路描述:SCR半波整流稳压电源。
如图4电路,是一种输出电压为+12V的稳压电源。
该电路的特点是变压器B将220V的电压变换为低压(16~20V),采用单向可控硅SCR半波整流。
SCR的门极G从R1、D1和D2的回路中的C点取出约13.4V的电压作为SCR门阴间的偏置电压。
电容器C1起滤波和储能作用。
在输出CD端可获得约+12V的稳压。
晶闸管,又称可控硅(单向SCR、双向BCR)是一种4层的(PNPN)三端器件。
在电子技术和工业控制中,被派作整流和电子开关等用场。
在这里,笔者介绍它们的基本特性和几种典型应用电路。
1.锁存器电路。
图1是一种由继电器J、电源(+12V)、开关K1和微动开关K2组成的锁存器电路。
当电源开关K1闭合时,因J回路中的开关K2和其触点J-1是断开的,继电器J不工作,其触点J-2也未闭合,所以电珠L不亮。
一旦人工触动一下K2,J得电激活,对应的触点J-1、J-2闭合,L点亮。
此时微动开关K2不再起作用(已自锁)。
要使电珠L熄灭,只有断开电源开关K1使继电器释放,电珠L才会熄灭。
所以该电路具有锁存器(J-1自锁)的功能。
图2电路是用单向可控硅SCR代替图1中的继电器J,仍可完成图1的锁存器功能,即开关K1闭合时,电路不工作,电珠L不亮。
当触动一下微动开关K2时,SCR因电源电压通过R1对门极加电而被触发导通且自锁,L点亮,此时K2不再起作用,要使L熄灭,只有断开K1。
由此可见,图2电路也具有锁存器的功能。
图2与图1虽然都具有锁存器功能,但它们的工作条件仍有区别:(1)图1的锁存功能是利用继电器触点的闭合维持其J线圈和L的电流,但图2中,是利用SCR自身导通完成锁存功能。
(2)图1的J与控制器件L完全处于隔离状态,但图2中的SCR与L不能隔离。
所以在实际应用电路中,常把图1和图2电路混合使用,完成所需的锁存器功能。
2.单向可控硅SCR振荡器。
图3电路是利用SCR的锁存性制作的低频振荡器电路。
可控硅调压的工作原理
可控硅调压的工作原理1.晶闸管结构:可控硅是一种半导体器件,它有四个层,由P-N-P-N的结构组成。
P-N结形成PNP和NPN管两个双极晶体管的结合。
晶闸管内部还有一个控制电极(即门极)和两个主电极(即阳和阴极)。
2.晶闸管的导通方式:晶闸管的导通方式包括正向导通和反向导通。
-正向导通:当阳极接到正电压且门极施加正脉冲或正直流电压时,PNP管的基结区会由于电子的注入而形成导电通道,使得晶闸管导通。
一旦晶闸管被压阻,它将继续导通,直到输电线上的电流降为零或通过管子的流过电流降到维持当前电压的最小值。
此时,控制电流可以被从逆向回火电压中提防。
-反向导通:当阳极接到负电压且门极施加正脉冲或正直流电压时,晶闸管的两个PN结都会逆向击穿,形成双向导通通道。
在这种模式下,晶闸管将进行双向导通电流。
3.可控硅的调压控制:可控硅的调压控制是通过改变晶闸管的导通和截止时间来实现的。
这个过程可以通过施加控制信号脉冲来完成,控制信号脉冲可以是正脉冲、负脉冲、半波脉冲、宽脉冲等。
-正脉冲控制:当正脉冲施加到门极时,PNP管的基结区将注入电子,从而使得晶闸管导通。
增加正脉冲宽度会导致晶闸管导通时间增加,从而增加输出电压。
-负脉冲控制:当负脉冲施加到门极时,NPN管的基结区将注入电子,从而引起反向电流流动,使得晶闸管截止。
增加负脉冲宽度会导致晶闸管截止时间增加,从而降低输出电压。
-半波脉冲控制:半波脉冲控制是通过将正脉冲和负脉冲的开关信号交错施加到门极来实现的。
半波脉冲控制可以实现输入电压的改变范围更大。
-宽脉冲控制:在宽脉冲控制下,由于晶闸管的导通和截止时间可以通过调整控制信号宽度来改变,因此可以实现更大的输入电压范围。
总的来说,可控硅调压器通过改变晶闸管的导通和截止时间来调整输出电压。
不同的控制信号脉冲可以实现不同范围的电压调节。
这种调压器可以在电力系统中实现精确的电压控制,以适应不同的负载需求。
同时,由于可控硅具有高效率和可靠性,因此被广泛应用于电力调节和电机控制系统中。
(完整版)晶闸管可控整流技术直流电机调速系统设计
目录1 绪论 (1)1.1 课题背景 (1)1。
2 直流电动机调压调速可控整流电源设计简介 (1)1。
3 课题设计要求 (1)1.4 课题主要内容 (2)2 主电路设计 (3)2.1 总体设计思路 (3)2.2 系统结构框图 (3)2。
3 系统工作原理 (4)2。
4 对触发脉冲的要求 (5)3 主电路元件选择 (6)3.1 晶闸管的选型 (6)4 整流变压器额定参数计算 (7)4。
1 二次相电压U2 (7)4.2 一次与二次额定电流及容量计算 (8)5 触发电路的设计 (10)6 保护电路的设计 (12)6.1 过电压的产生及过电压保护 (13)6。
2 过电流保护 (13)7 缓冲电路的设计 (14)8 总结 (17)1 绪论1.1 课题背景当今,自动化控制系统已在各行各业得到广泛的应用和发展,而自动调速控制系统的应用在现代化生产中起着尤为重要的作用,直流调速系统是自动控制系统的主要形式.由可控硅整流装置供给可调电压的直流调速系统(简称KZ—D系统)和旋转变流机组及其它静止变流装置相比,不仅在经济性和可靠性上有很大提高,而且在技术性能上也显示出较大的优越性。
可控硅虽然有许多优点,但是它承受过电压和过电流的能力较差,很短时间的过电压和过电流就会把器件损坏。
为了使器件能够可靠地长期运行,必须针对过电压和过电流发生的原因采用恰当的保护措施.为此,在变压器二次侧并联电阻和电容构成交流侧过电压保护;在直流负载侧并联电阻和电容构成直流侧过电压保护;在可控硅两端并联电阻和电容构成可控硅关断过电压保护;并把快速熔断器直接与可控硅串联,对可控硅起过流保护作用。
随着电力电子器件的大力发展,该方面的用途越来越广泛.由于电力电子装置的电能变换效率高,完成相同的工作任务可以比传统方法节约电能10%~40%,因此它是一项节能技术,整流技术就是其中很重要的一个环节.1.2 直流电动机调压调速可控整流电源设计简介该系统以可控硅三相桥式全控整流电路构成系统的主电路,采用同步信号为锯齿波的触发电路,本触发电路分成三个基本环节:同步电压形成、移相控制、脉冲形成和输出。
使用双向可控硅,控制大负载
双向晶闸管手动调温电路发布时间:2011-10-17 9:56:55 访问次数:670(1)电路之一电路如图6-1所示,采用双向晶闸管交流调压电路。
①工作原理合上电源开关QS,220V交流电通过电位器RP、电阻R对电容C充电。
当C两端的充电电压达到双向触发二极管VD 的转折电压时,VD导通,电容C上的电荷经VD和双向晶闸管V的控制极(主电极)迅速放电,双向晶闸管V触发导通,电热器EH 得电加热。
调节RP,可改变电容C的充电快慢,既可改变V的导通角,也可改变加在电热器EH两端的电压,达到调温的目的。
图中,压敏电阻RV保护双向晶闸管免受电源过电压而损坏,也可用0.111F/600V电容代替。
K6F4016U6E②元件选择开关QS、熔断器FU和双向晶闸管V的选择,根据电热器EH的容量决定。
如电热器EH为1000W,则开关QS选用D212-60/2,10A;熔断器FU选用RT14-20/6A;双向晶闸管V 选用KS10A/600V;双向触发二极管VD选用2CTS;电阻R选用RJ-47kΩ,1/2w;电位器RP选用WX3-680kΩ、3W;电容c选用漏电电流小的CBB22型;压敏电阻RV选用MY31-440V O.5kA。
③调试合上电源开关QS,调节电位器RP,测量电热器EH两端的电压,应在50~210V范围变化。
如果上端电压达不到210V,则可减少R的阻值或C的容量;如果下端电压太高,则可增大电阻R和电位器RP的阻值,或增大电容C的容量。
电容C的容量范围以0. 068~0.47μF为宜,双向晶闸管V容量越大,此电容的容量也应越大,这样较容易触发。
(2)电路之二电路如图6-2所示。
工作原理接通电源,220V交流电经电热器EH、整流桥VC整沆、电阻R1降压、稳压管VS削波,提供单结晶体管VT弛张振荡器同步直流电源。
触发脉冲经脉冲变压器TM耦合去触发双向晶闸管V。
调节电位器RP,即可改变振荡器振荡频率,从而改变双向晶闸管的导通角,达到调温的目的。
单相交流调功电路正文
1概括1.1 晶闸管沟通调功器沟通调功器:是一种以晶闸管为基础,以智能数字控制电路为中心的电源功率控制电器,简称晶闸管调功器,又称可控硅调功器,可控硅调整器,可控硅调压器,晶闸管调整器,晶闸管调压器,电力调整器,电力调压器,功率控制器。
拥有效率高、无机械噪声和磨损、响应速度快、体积小、重量轻等诸多长处。
1.2沟通调压与调功沟通调功电路的主电路和沟通调压电路的形式基真同样,不过控制的方式不一样,它不是采纳移相控制而采纳通断控制方式。
沟通调压是在沟通电源的半个周期内作移相控制,沟通调功是以沟通电的周期为单位控制晶闸管的通断 , 即负载与沟通电源接通几个周波,再断开几个周波,经过改变接通周波数和断开周波数的比值来调理负载所耗费的均匀功率。
如图3-21所示,这类电路常用于电炉的温度控制,因为像电炉这样的控制对象,其时间常数常常很大,没有必需对沟通电源的各个周期进行屡次的控制。
只要大概以周波数为单位控制负载所耗费的均匀功率,故称之为沟通调功电路。
1.3过零触发和移相触发过零触发是在设准时间间隔内,改变晶闸管导通的周波数来实现电压或功率的控制。
过零触发的主要弊端是当通断比太小时会出现低频扰乱,当电网容量不够大时会出现照明闪耀、电表指针颤动等现象,往常只合用于热惯性较大的电热负载。
移相触发是初期触发可控硅的触发器。
它是经过调速电阻值来改变电容的充放电时间再来改变单结晶管的振荡频次,实质改变控制可控硅的触发角。
初期可控但是依赖这样改变阻容移相线路来控制。
所为移相就是改变可控硅的触发角大小,也叫改变可控硅的初相角。
故称移相触发线路。
2系统整体方案2.1 沟通调功电路工作原理单相沟通调功电路方框图如图所示。
LOADA1BCR脉宽可调矩形TLC336波信号发生器ug A2图沟通调功电路的主电路和沟通调压电路的形式基真同样,不过控制的方式不一样,它不是采纳移相控制而采纳通断控制方式。
沟通调压是在沟通电源的半个周期内作移相控制,沟通调功是以沟通电的周期为单位控制晶闸管的通断 , 即负载与沟通电源接通几个周波,再断开几个周波,经过改变接通周波数和断开周波数的比值来调理负载所耗费的均匀功率。
触发双向可控硅调压电路
过零触发双向可控硅调压电路图新一代晶闸管触发模块KTM2011A的原理及应用摘要:KTM2011A是青岛珠峰科技有限公司推出的新一代晶闸管触发模块,具有体积小、重量轻、触发动率大及波形对称性对等优点。
文中详细介绍了KTM2011A的内部结构、工作原理、设计特点及具体的应用电路。
关键词:触发电路隔离脉冲KTM2011A1 概述KTM2011A是青岛珠峰科技有限公司经过优化设计和精心研制的新一代晶闸管触发模块,具有体积小、重量轻、触发功率大及波形对称性好等优点。
其输出可触发单相电路中两个相位互差180°的晶闸管,可广泛用于单相交流调压、单相桥式半控整流电路中作为晶闸管的触发电路,由于模块内部集成有隔离单元,故使用中不需要外接脉冲变压器。
KTM2011具有如下特点:2.2 极限参数KTM2011A的极限工作参数如下:●输入交流同步电压:15~17V;●输出直流电压V+:22V;●输入移相电压VK:0~+10V;●输出触发电流:≤750mA;●输出脉冲幅度:18~21V;●移相范围:0~180°;●脉冲宽度:≮2ms ;●需配变压器容量:5~10VA ;●输入、输出间隔离电压:2500VDC ; ●工作温度范围:-10~+70℃。
●工作电源电压VCC :+16V ;3 结构及原理 KTM2011A 的内部结构及工作原理框图如图2所示。
它由同步环节、锯齿波形成、整流电路、脉冲形成、脉冲放大及隔离整形环节共五个单元电路组成。
工作时,KTM2011A 首先将来自同步电流变压器副边的电压信号经整流电路整流,并通过引脚4的内部送给脉冲放大与隔离整形电路,同时将滤波稳压后的电压经引脚3输入给锯齿波形成和脉冲形成部分作为供电电源。
另一方面,来自同步电源变压器副边的电压信号经同步环节检测出过零点,并在锯齿波形成环节根据用户在引脚7所接电阻的大小而决定的斜率形成锯齿波。
将该锯齿波与引脚9输入的控制电压 Uk 相比较以形成对应于同步信号的正、负半周脉冲。
晶闸管的电路原理及其调压电路分析
晶闸管的电路原理及其调压电路分析作者:龚国俊来源:《硅谷》2014年第10期摘要主要介绍应用晶闸管设计出调光电路,实现以小功率信号控制大功率系统的功能,高效完成对电能的变换和控制。
关键词晶闸管控制电压中图分类号:TN342 文献标识码:A 文章编号:1671-7597(2014)10-0043-011 晶闸管调光电路原理图(图1)图1 晶闸管调光电路原理图2 主要电器元件2.1 晶闸管(图2)图2 晶闸管符号和结构晶闸管即硅晶体闸流管,俗称可控硅(SCR)。
特点是以小功率信号去控制大功率系统,可以作为强电与弱电的接口,高效地完成对电能的变换和控制。
必须同时具备两个条件才能导通晶闸管:一是正向电压加上晶闸管主电路。
二是合适的正向电压机上晶闸管控制电路。
晶闸管作为半控制器件,一旦导通晶闸管,门会随即失去控制作用。
因此只有通过使用阳极电压减小到零或者是通过反方向的方法将关断晶闸管。
晶闸管检测:①把万用表置于R X 1K挡,测量阳极与阴极之间、阳极与控制极之间的正、反向电阻,正常时阻值较大(几百千欧以上)。
②把万用表置于R X 1挡或R X 10挡,用红、黑两表笔分别测任意两引脚间正、反向电阻,当检测到阻值为几十欧的一次,此时控制极G作为黑表笔的引脚,阴极K作为红表笔的引脚,阳极A作为另一个引脚。
③把万用表置于R X 1挡或R X 10挡,A极接黑表笔,K极接红表笔,此时的阻止无穷大。
保持黑表笔与A及接触的同时,让黑表笔与G极相接触,这时万用表阻值明显变小,这说明晶闸管被触发导通,断开黑表笔与G极的接触仅保持黑表笔与A极的接触,如果此时晶闸管异常处于导通状态,基本说明晶闸管是好的。
注意:这种判断晶闸管能否触发的方法只对小功率管有效,当判断大功率晶闸管时,由于其需要较大的触发电流,万用表无法提供如此大的测试电流,因而可能无法判断。
2.2 单结晶体管(图3)图3 单结晶体管的符号和结构单结晶体管(简称UJT)又称双基极二极管,有一个PN结和两个电阻接触电极。
晶闸管单相交流调压及调功电路课程设计
目录绪论 (1)1 调压调功原理简介 (2)2 交流调压电路波形及相控特性分析 (3)带电阻性负载 (3)原理 (3)计算与分析 (3)带阻感性负载 (4)原理分析 (4)计算与分析 (5)α<φ的情形 (6)3 方案设计 (7)主电路的设计 (7)主电路图 (7)参数计算 (7)调功电路的设计 (8)触发电路的设计 (9)芯片介绍 (9)触发电路图 (10)保护电路的设计 (11)原理 (11)计算 (12)保护电路图 (13)4 电阻炉负载过零控制特性分析 (14)5 MATLAB仿真 (15)6.个人小结 (17)参考文献 (17)附录: (18)绪论交流-交流变流电路,即把一种形式的交流变成另一种形式交流的电路。
在进行交流-交流变流时,能够改变相关的电压(电流)、频率和相数等。
交流-交流变流电路能够分为直接方式(无中间直流环节方式)和间接方式(有中间直流环节方式)两种。
而间接方式能够看做交流-直流变换电路和直流-交流变换电路的组合,故人-交变流主要指直接方式。
其中,只改变电压、电流或对电路的通断进行控制,而不改变频率的电路称为交流电力控制电路,改变频率的电路称为变频电路。
采用相位控制的交流电力控制电路,即交流调压电路;采用通断控制的交流电力控制电路,即交流调功电路和交流无触点开关。
交流调压电路普遍用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软启动也用于异步电动机调速。
在电力系统中,这种电路还常常利用于对无功功率的持续调节。
另外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。
在这些电源中若是采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联,低电压大电流直流电源需要很多晶闸管并联,十分不合理。
采用交流调压电路在变压器一次侧调压,其电压、电流值都比较适中,在变压器二次侧只要用二极管整流就可以够了。
如此的电路体积小、本钱低、易于设计制造。
在交流调压电路中双向可控硅(晶闸管)的使用注意事项
在交流调压电路中双向可控硅(晶闸管)的使用注意事项目前交流调压多采用双向可控硅,它具有体积小、重量轻、效率高和使用方便等优点,对提高生产效率和降低成本等都有显著效果,但它也具有过载和抗干扰能力差,且在控制大电感负载时会干扰电网和自干扰等缺点,下面我们来谈谈可控硅在其使用中如何避免上述问题。
1灵敏度双向可控硅是一个三端元件,但我们不再称其两极为阴阳极,而是称作T1和T2极,G为控制极,其控制极上所加电压无论为正向触发脉冲或负向触发脉冲均可使控制极导通,在图1所示的四种条件下双向可控硅均可被触发导通,但是触发灵敏度互不相同,即保证双向可控硅能进入导通状态的最小门极电流IGT是有区别的,其中(a)触发灵敏度最高,(b)触发灵敏度最低,为了保证触发同时又要尽量限制门极电流,应选择(c)或(d)的触发方式。
2可控硅过载的保护可控硅元件优点很多,但是它过载能力差,短时间的过流,过压都会造成元件损坏,因此为保证元件正常工作,需有条件(1)外加电压下允许超过正向转折电压,否则控制极将不起作用;(2)可控硅的通态平均电流从安全角度考虑一般按最大电流的~2倍来取;(3)为保证控制极可靠触发,加到控制极的触发电流一般取大于其额值,除此以外,还必须采取保护措施,一般对过流的保护措施是在电路中串入快速熔断器,其额定电流取可控硅电流平均值的倍左右,其接入的位置可在交流侧或直流侧,当在交流侧时额定电流取大些,一般多采用前者,过电压保护常发生在存在电感的电路上,或交流侧出现干扰的浪涌电压或交流侧的暂态过程产生的过压。
由于,过电压的尖峰高,作用时间短,常采用电阻和电容吸收电路加以抑制。
3控制大电感负载时的干扰电网和自干扰的避免可控硅元件控制大电感负载时会有干扰电网和自干扰的现象,其原因是当可控硅元件控制一个连接电感性负载的电路断开或闭合时,其线圈中的电流通路被切断,其变化率极大,因此在电感上产生一个高电压,这个电压通过电源的内阻加在开关触点的两端,感应电压一次次放电直到感应电压低于放电所必须电压为止,在这一过程中将产生极大的脉冲束。
晶闸管电路
阳极
阴极
晶闸管外型
实验
结果
晶闸管工作原理
晶闸管可看成有PNP和NPN型 两个晶体管联接而成 原理
1)晶闸管阳极A与阴极K之间加正向电压,控 制极断开,两个三极管均无基极电流,晶闸 管不导通。 等效电路 2) 在控制极G与阴极K之间加正向电压, 当IG到达一定数值,T2首先导通: IB2=IG,IC2=IB2= IG 又: IB2=IC1, 随后T2导通, IC1与IG一起进入T2的基极后再次放大。
1. 双向晶闸管(TRIAC)
l 特点 1) 三端子NPNPN元件; 2) 采用交流电源; 3) 相当于两只普通晶闸管反并联; 4) 双向控制,简化触发电路; 5) 成本低,可靠性好;
6) 主要应用于家用电器控制,调节交流电压。
l 符号(如图所示) l 工作原理 1) 门极无信号时, MT1 、 MT2 不导电。 2) 导通条件:① MT2 "+" , MT1 "-",G "+" ② MT2 "-", MT1"+",G "-" l 电压波形图(如图所示)
测试点 A—K A—G 表内电池极性 测量范围 测试结果
顺向或逆向
同上
R×1000
同上
高电阻 (表针不动)
同上
K—G
顺向:G “+”,K “-” 逆向:G -”,K “+”
R× 1 R× 1
10 ~ 100 50 ~ 500
注意:当 A—K 间为高阻值,而 K—G 间逆向电阻大于顺向 电阻时,管子良好。
9.1 晶闸管简介
晶闸管是晶体闸流管的 简称,也称可控硅 可控整流 逆变 将直流交流,可 实现异步电动机的 变频调速 交流调压 无触点开关 代替闸刀开关通/断, 切换速度快,无火花 无噪音
交流调压原理—可控硅
交流调压原理—可控硅可控硅(也称可控二极管或晶闸管)是一种能够实现电流的可控制和调节的半导体器件。
它的调压原理是利用P-N结的正反向特性来控制电流的流动。
可控硅主要由两个P型半导体与一个N型半导体组成。
当将正向电压施加在PN结上时,就会出现导通状态。
但是,只有当施加的电压超过硅件的阈值电压(也称触发电压)时,才会导通。
在不施加触发电压时,可控硅处于阻断状态,即不允许电流通过。
当施加正向触发电压时,PN结上的电子和空穴会受到电场的作用而向相反方向移动,导致导电质的扩展。
这种扩展导电质被称为扩散区,扩散区的电阻远远小于PN结的电阻。
因此,一旦可控硅导通,电流就会大幅增加。
可控硅还有一个特点,即一旦进行导通,即使去掉触发电压,它也会一直保持导通状态。
只有当电流小于可控硅的保持电流时,它才会回到阻断状态。
基于可控硅的调压原理,可以通过控制触发信号的时间和电压来实现对电流的调节。
通过调节触发时间来控制可控硅的导通时长,从而控制电流的大小。
调节电压的大小可以改变可控硅的导通阈值,进而调节电流的大小。
在实际的应用中,可控硅的调压原理通常用于电力控制和信号传输控制。
例如,在电力调节领域,可控硅可以在交流电路中实现电压调整或功率控制。
通过控制可控硅的导通角,可以实现对电流的精确控制。
在变频调速系统中,可控硅可以控制电机的速度和电力传输。
此外,可控硅的调压原理还可以用于交流电调压器(也叫控制硅调压器)的设计。
交流电调压器通过控制可控硅的导通角来调整输出电压,实现对负载电压的稳定和可调节。
总之,可控硅的调压原理是通过控制硅件的触发时间和电压来实现对电流的调节。
它的特点是具有可控性、稳定性和可调节性,广泛应用于电力控制和信号传输控制等领域。
简介晶闸管调功器
简介晶闸管调功器1.什么是晶闸管调功器晶闸管调功器是一种以晶闸管(电力电子功率器件)为基础,以智能数字控制电路为核心的电源功率控制电器,简称晶闸管调功器。
由于晶闸管又俗称可控硅,所以晶闸管调功器又被叫做可控硅调功器,可控硅调整器,可控硅调压器,晶闸管调整器,晶闸管调压器,电力调整器,电力调压器,功率控制器等等。
2.晶闸管调功器具有的优点晶闸管调功器具有效率高、无机械噪声和磨损、响应速度快、体积小、重量轻等诸多优点。
晶闸管调功器通过对电压、电流和功率的精确控制,从而实现精密控温。
并且凭借其先进的数字控制算法,优化了电能使用效率,对节约电能起了重要作用。
3.晶闸管调功器的分类从功能上(触发方式)分可分为:a.过零触发过零触发又分为:变周期过零触发和定周期过零触发。
b.移相触发移相触发可进行电压反馈、电流反馈、功率反馈。
4.晶闸管调功器的应用领域晶闸管调功器广泛应用于以下领域:电炉工业:退火炉,烘干炉,淬火炉,烧结炉,坩埚炉,隧道炉,熔炉,箱式电炉,井式电炉,熔化电炉,滚动电炉,真空电炉,台车电炉,淬火电炉,时效电炉,罩式电炉,气氛电炉,烘箱,实验电炉,热处理,电阻炉,真空炉,网带炉,高温炉,窑炉,电炉等。
机械设备:包装机械,注塑机械,热缩机械,挤压机械,食品机械,回火设备,塑料加工,红外加热等。
玻璃工业:玻璃纤维,玻璃成型,玻璃融化,玻璃印制,浮法玻璃生产线,退火槽等。
汽车工业:喷涂烘干,热成型等。
焊接工业:高频焊接等。
节能照明:隧道照明,路灯照明,摄影照明,舞台灯光等。
化学工业:蒸馏蒸发,预热系统,管道加热,石油化工,温度补偿等。
其它行业:盐浴炉,工频感应炉,淬火炉温控,热处理炉温控,金刚石压机加热,大功率充磁/退磁设备等。
航空电源调压,中央空调电加热器温控,纺织机械,水晶石生产,粉末冶金机械,彩色显像管生产设备,冶金机械设备,石油化工机械,灯光平滑调节,恒压恒流恒功率控制等领域。
晶闸管调功器与带0-5V、4-20mA的智能PID调节器或PLC配套使用;主要用与工业电炉的加热节能控制、大型风机水泵软启动运行控制。
可控硅调压电路原理
可控硅调压电路原理_可控硅调压器电路图_晶闸管交流调压电路分析图1 交流可控硅调压电路原理方框图(1)整流电路采用桥式整流,将220伏,50赫兹交流电压变为脉动直流电。
(2)抗干扰电路为普通电源抗干扰电路。
(3)可控硅控制电路采用可控硅和降压电阻组成。
(4)张弛振荡器由单结晶体管和电阻组成。
(5)冲放电电路有电阻和可变电阻及电容组成。
图2 交流可控硅调压电路的原理图3. 可控硅(晶闸管)交流调压电路工作原理图中TVP抗干扰普通电源电路。
采用双向TVP管子。
它对于电网的尖脉冲电压和雷电叠加电压等等干扰超过去额定的数值量,都能有效的吸收。
整流电路采用桥式整流,由4只二极管组成,D1,D2,D3,D4组成。
双基极二极管组成张弛真振荡器作为可控硅的同步触发电路。
当调压器接上市电后220伏交流电通过负载电阻Rc,二极管D1到D4整流,在可控硅SCH的A ,K两极形成一个脉动的直流电压。
该电压由电阻R1降压后作为触发电路的直流电源。
在交流的正半周时,整流电路通过电阻R1,可变电阻W1对电容充电。
当充电电压T1管的峰值电压Up时,管子由截止变为导通。
于是电容C通过T1管的e1,b1结和R2迅速的放电,结果在R2上获得一个尖脉冲。
这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。
可控硅导通后的管压降很低,一般小于1伏,所以张弛振荡器停止工作。
当交流电通过0点时,可控硅自行关断。
当交流电在负半周时C又重新充电…周而复始。
改变可变电阻的阻值可改变电容的冲放电时间,从而改变可控硅的导通时刻,来改变负载上的的输出电压。
4. 可控硅(晶闸管)交流调压电路元件参数的选择(1)二极管D1,D2,D3,D4于300伏,整流电流大于0.3安的硅流二极管。
型号2CZ21B, 2CZ83E。
(2)晶闸管选用正向与反向电压大于300伏,额定平均电流大于1安的可控硅整流器件。
型号国产3CT。
(3)调压电位器选用阻值围470千欧的WH114—1型的合成炭膜电位器。
晶闸管电路
V VAA
R
GB2 VGG
• 触发导通 晶闸管A、K间加正向电压,再闭合开 关S,给控制极G也加上正向电压,灯亮。 说明晶闸管已导通。
S GB2 VGG R
GB1
V VAA
• 维持导通 维持阳极电压不变,断开开关S,灯仍亮 说明晶闸管仍然导通。
S
GB1 VAA V GB2 VGG
R
• 反向阻断
触发电路
四、思考 (1)晶闸管的基本结构和工作特性,其 导通与关断条件。 (2)单相半控桥式整流电路的构成 和工作原理。
五、晶闸管调光灯电路板制作
• 电子元件的识别与测量 • 按原理图进行电子元件线路插接 • 调光灯电路板焊接 (视频)
工作波形
u
O
ug
O
2
t
t t t
uO
uT1
O
加在控制极的触发 脉冲由触发电路产生, 角α称为控制角,改 变α可改变输出电压
π-α被称为晶体管的 导通角
单结管触发的半控桥式整流电路
T1 D1 T2 RL D2
+ +
u1
uL
+
主电路
u
+
R
RP R C –
R2
+
u2
–
uZ +
+ uC R1 u g
《电子技术基础》第五章
晶闸管电路
制作 韩永平
调光台灯是日常生活中常用的一种照 明灯具。视频 • 为什么调光台灯亮度可以调节呢?
• 因为它使用了晶闸管构成调压电路,通 过调压来调节灯的亮度。
晶闸管也称可控硅,是一种可控制硅整 流器件。它将半导体器件的应用,从弱 电领域扩展到强电领域。
实验二 可控硅触发调压实验
实验二可控硅触发调压实验一、实验目的1.理解可控硅在交流调压电路中的作用及工作原理。
2.理解单相交流调压电路的工作原理。
3.了解KC05晶闸管集成移相触发器的应用。
二、实验原理本实验采用KC05晶闸管集成移相触发器(其内部电路说明见本实验后面的附录),该触发器适用于双向晶闸管或两个反向并联晶闸管电路的交流相位控制,具有锯齿波线形好、移相范围宽、控制方式简单、易于集中控制、有失交保护、输出电流大等优点。
单相晶闸管交流调压器的主电路由两个反向并联的晶闸管组成,如图16-1所示。
图2-1 可控硅触发调压实验电路图三、实验器件及单元1.测控电路实验箱2.示波器3.万用表四、实验内容及步骤1.把灯负载装到U25的负载单元2.KC05集成晶闸管移相触发电路各点输出波形的观测把本实验单元SW1,SW2,SW3,SW4四个开关拨到断开方向(即把各个开关的钮子拨到向下方向),断开本单元的交流电源开关(带灯红开关处于不亮状态);把“调压输出”开关打到开的状态,把本单元的交流电源开关拨到开方向(带灯红开关处于亮状态),用示波器观测TP1,TP2,TP3,TP4,TP5各点的波形,可以观测到如图16-2所示。
调节电位器R p1,观测锯齿波斜率是否变化;调节电位器R p2,观测输出脉冲的移相范围如何变化,移相能否达到170º,记录上述过程中观测到的各点电压波形。
3.断开上面实验过程中TP1,TP2,TP3,TP4,TP5各点与示波器之间的信号探头。
4.然后把本实验单元的SW1,SW2,SW3,SW4四个开关拨到开方向,调节电位器R p2,观测在不同α角时(α角为可控硅的导通角),“调压输出”端输出电压大小的变化(即灯的亮暗程度不同)。
5.断开本单元的交流电源(带灯红开关灯不亮),取下各实验导线。
五、实验注意事项1.实验前应断开本单元的交流电源开关(带灯红开关处于不亮状态)。
2.实验过程中不要用手去触摸“调压输出”的两端,以免误触电。
单相晶闸管调压电路
单向可控硅调压电路可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。
从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。
当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。
在交流电的正半周时,整流电压通过R4、W1对电容C充电。
当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。
这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。
可控硅导通后的管压降很低,一般小于1V,所以张弛振荡器停止工作。
当交流电通过零点时,可控硅自关断。
当交流电在负半周时,电容C又从新充电……如此周而复始,便可调整负载RL上的功率了。
双向可控硅的工作原理及原理图2007年12月09日09:11 来源:本站整理作者:本站我要评论(1)标签:可控硅(358)双向可控硅的工作原理1.可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN 管所组成当阳极A加上正向电压时,BG1和BG2管均处于放大状态。
此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。
因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。
此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。
这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。
由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。
晶闸管调功器和可控硅调压器的区别
晶闸管调功器和可控硅调压器的区别富安时调功器他是有触发板和模块,风机和散热器组合而成.调压器是有调压器触发控制板和可控硅,散热器和风机组成。
可控硅也称作晶闸管,它是由PNPN四层半导体构成的元件,有三个电极、阳极A、阴极K和控制极G.富安时可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性好.在调速、调光、调压、调温以及其他各种控制电路中都有它的身影.可控硅分为单向的和双向的,符号也不同.单向可控硅有三个PN结,由最外层的P极和N极引出两个电极,分别称为阳极和阴极,由中间的P极引出一个控制极.单向可控硅有其独特的特性:当阳极接反向电压,或者阳极接正向电压但控制极不加电压时,它都不导通,而阳极和控制极同时接正向电压时,它就会变成导通状态.一旦导通,控制电压便失去了对它的控制作用,不论有没有控制电压,也不论控制电压的极性如何,将一直处于导通状态.要想关断,只有把阳极电压降低到某一临界值或者反向.富安时双向可控硅的引脚多数是按T1、T2、G的顺序从左至右排列(电极引脚向下,面对有字符的一面时).加在控制极G 上的触发脉冲的大小或时间改变时,就能改变其导通电流的大小.与单向可控硅的区别是,双向可控硅G极上触发脉冲的极性改变时,其导通方向就随着极性的变化而改变,从而能够控制交流电负载.而单向可控硅经触发后只能从阳极向阴极单方向导通,所以可控硅有单双向之分.电子制作中常用可控硅,单向的有MCR-100等,双向的有TLC336等双向可控硅按象限来分,又分为四象三端双向可控硅、三象限双向可控硅;按封装分:分为一般半塑封装,外绝缘式全塑封装;按触发电流来分:分为微触型、高灵敏度型、标准触发型;按电压分:常规电压品种、高压品种.可控硅产品由于它在电路应用中的效率高、控制特性好、寿命长、体积小、功能强等优点,自上个世纪六十长代以来,获得了迅猛发展,并已形成了一门独立的学科.“晶闸管交流技术”.可控硅发展到今天,在工艺上已经非常成熟,品质更好,成品率大幅提高,并向高压大电流发展.可控硅在应用电路中的作用体现在:可控整流:如同二极管整流一样,将交流整流为直流,并且在交流电压不变的情况下,有效地控制直流输出电压的大小即可控整流,实现交流→可变直流之转变;无触点功率静态开关(固态开关):作为功率开关元件,可控硅可以代替接触器、继电器用于开关频率很高的场合.因此可控硅元件被广泛应用于各种电子设备和电子产品的电路中,多作可控整流、逆变、变频、调压、无触点开关等用途.家用电器中的调光灯、调速风扇、冷暖空调器、热水器、电视、冰箱、洗衣机、照相机、音响组合、声控电路、定时控制器、感应灯、圣诞灯控制器、自动门电路、以及玩具装置、电动工具产品、无线电遥控电路、摄像机等工业控制领域等都大量使用了可控硅器件.在这些应用电路中,可控硅元件多用来作可控整流、逆变、变频、调压、无触点开关晶闸管(THYRISTOR)又名可控硅,属于功率器件领域,是一种功率半导体开关元件,可控硅是其简称,按其工作特性,可控硅可分为单向可控硅(SCR)、富安时双向可控硅(TRIAC).。
晶闸管和可控整流电路
这样循环下去,使两个晶体管迅速进入饱和状态,晶闸管导通。
7
3. 伏安特性 晶闸管的导通和阻断是由阳极和阴极之间的电压UAK、阳极电流IA及
控制极电流IG控制的,IA与UAK之间的关系IA= f (UAK)即为晶闸管的 伏安特性。如图1.3所示。
8
(1)正向特性 当UAK0时,晶闸管承受正向电压,若控制极不加电压,即IG=0,
15
(2)反向特性 晶闸管的反向特性与二极管类似。当UAK 0时,晶闸管承受反向
电压,处于阻断状态,只流过很小的反向漏电流,当反向电压UAK数 值增大到UBR时,晶闸管反向击穿,反向电流剧增,UBR称为反向击 穿电压。
9
4. 主要参数
为了合理地选择和正确地使用晶闸管,有必要了解晶闸管主要
参数的意义。
(4)反向重复峰值电压URRM 在晶闸管控制极开路时,可以重复加在晶闸管上的反向峰值电压。
URRM为UBR的80%。
11
1.2 可控整流电路
在桥式整流电路中,若整流管由晶闸管组成即构成可控整流电路。如 果整流管全部采用晶闸管,则组成单相桥式全控整流电路,如图1.4 所示。若只采用两只晶闸管,另外两只用整流二极管,则组成图1.5 所示的是单相桥式半控整流电路。
若UGK0且为某一适当的数值,则满足T1和T2的发射结正偏置,集电
结反偏置,这时T1和T2均导通,UGK产生控制极电流IG,为T2提供基
极电流IB2,IB2经T2放大后形成集电极电流IC2,IC2=2IB2,IC2就是
T1的基极电流IB1,IB1经T1放大后形成较大的集电极电流IC1,故
IC1=1IB1=12IB2,IC1又流入T2的基极再一次放大,形成正反馈,
3
1.1 晶闸管 晶闸管的种类很多,除普通型晶闸管外,还有双向型、逆导型、
晶闸管三相桥可控整流电路
晶闸管三相桥可控整流电路单位晶闸管三相桥可控整流电路是一种由桥式可控rectifier(又叫桥式整流器)和共阴极晶闸管构成的整流网络。
它是一种三相调压整流电路,能够根据需求,独立调节输出电压。
晶闸管三相桥可控整流电路由三相可控晶闸管导通角组成,每相由一个可控硅晶闸管,L型和T型桥连接构成。
它以宽输入范围及精确的输出电压调节为特点,用于大功率负载,并形成通用的光电控制系统,广泛用于开关电源、电动机控制及车辆动力系统等电力电子技术领域。
晶闸管三相桥可控整流电路由三路可控硅晶闸管组成,分别为U型桥、V型桥和W型桥,每路桥电路输入两个交流提供电压,输出一个相同的直流电压。
三路晶闸管同时导通时可获得一个三相整流输出,即可根据需求把输入电压转变两个相位相互180°反相出来。
由于桥式构成,三路晶闸管在一定导通角度控制下,输入的三相交流电压便可转换成两个相位相互180°的反相交流输出电压。
此类电路具有输入电压宽幅、稳定调节输出电压等优点,使其在开关电源、电动机控制及车辆动力系统等领域得到了广泛的应用。
晶闸管三相桥可控整流电路的典型应用包括:一是在高功率开关电源中,采用可控硅晶闸管和L-T型桥把输入电压转变为中性点以外的可调直流电压输出,从而形成常用的单相开关电源、双相开关电源和三相开关电源。
二是针对大功率电机,提出控制输出电流的驱动方案,以及电机振荡抑制系统来保证驱动电机的稳定运行。
三是常用于空调和电冰箱的复杂启动电路、变频的一二三极点控制、变频电控等,以获得最佳的效率和响应。
综上所述,晶闸管三相桥可控整流电路是一种应用广泛、操作方便、调节稳定和具有高转换效率的电力电子技术,因其在对晶闸管桥式可控整流器的控制和精确调节方面具有突出的优势,已被广泛的应用于电动机及车辆动力系统等领域,在它们的发展和进步中发挥着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶闸管调压电路2.3.1单相调压电路工作电路如图2.6(a)所示,R-L负载是交流调压器最一般化的负载。
显然,两只晶闸管门极的起始控制点应分别定在电源电压每个半周的起始点,α的最大范围是0<α<π。
正、负半周有相同的α角。
图2.6阻感负载单相交流调压电路[4]在一个晶闸管导电时,它的管压降成为另一晶闸管的反向电压而截止。
于是在一个晶闸管导电时,电路工作情况和单相半波整流时相同,负载电流i o 的表达式即为下述微分方程式之解。
t U Ri dtdi Lo oωsin 21=+ (2.12) 解该方程得:φωαφαφωtg t o e t ZU i ----=)sin()[sin(21(2.13)θαωα+≤≤t式中, 2122])([L R Z ω+=;RLtg ωφ1-=;θ为晶闸管导通角。
另一晶闸管导电时,情况完全相同,只是o i 相位差180度。
与单相半波整流不同的是,现在有两个晶闸管,分别在电源的正、负半周工作,所以每个晶闸管的导通角θ不可能大于180度,而单相半波整流时,视不同的φ,θ可大于180度。
负载电流波形图2.6(a )所示。
导通角θ可由边界条件求得。
当θαω+=t 时,o i =0,将此条件代入式(2.13),得φθφαφθαtg e--=-+)sin()sin( (2.14)以φ为参变量,θ与α间的关系为单相半波阻感负载时的普 遍关系。
现在,针对交流调压器,应附加o 180≤θ的条件,于是 得以φ为参变量的θ与α的关系,如图3.2所示。
图2.7中各曲线上o 180=θ的点都对应于φα=,换句话说,把φα=代入式(2.14)求得的每个晶闸管的导通角应为o 180=θ。
如将φα=代入式(2.13),得出o i 的表达式只有稳态分量,即)sin(21φω-=t ZU i o (2.15) φπωφ+≤≤t另一半周的工作情况也完全相同,负载电流成为完全的正弦波,负载电路这时获得最大功率,相当于晶闸管此时已被短接。
负载电流处于连续状态。
可以认为,如果电流波形是在φα>情况下的,o i 既不连续,又非正弦。
如果φα< ,要分两种情况来讨论:1)晶闸管门极用窄脉冲触发:图 2.6(a )电路接通电源后,如果先触发VT1,且φα< ,则VT1的导通角θ>π,如图3.3所示。
如果触发脉冲的宽度小于πθαπθα-=+-+)(,则当VT1的电流下降到零时时,VT2的门极脉冲已经消失而无法导通。
到第二个周期时,VT1又重复第一周期的工作,这样,电路如同R-L 负载的半波整流情况,VT2始终不能导电,回路中将出现直流分量的电流。
如果调压器的负载是变压器的一次绕组,则因其直流电阻很小,将引起很大的直流电流,使电路不能正常工作。
为此,需采用宽脉冲或脉冲列(例如30KHZ )。
2)晶闸管门极用宽脉冲或脉冲列触发:如果触发脉冲的宽度大于πθ-,见图2.8 ,VT1的θ>π ,VT2可以在VT1之后接着导电,但VT2的起始导电角αφπθα>>-+,所以VT2的导通角πθ<。
从第二个周期开始,VT1的导通角逐渐减小,VT2的导通 角将逐渐增大,直到两个晶闸管的πθ=时达到平衡,这时电路的工作状态与φα=时相同。
其所以会逐渐过渡到平衡状态,是因为VT1被首次触发后,电路的工作情况和两只晶闸管被短接时一样,电路的过渡过程和L-R 负载的普通单相交流电路在αω=t 时合闸发生的过渡过程完全相同。
该过度过程的电流解亦即式(2.13),电流解的适用区应改为∞<≤t ωα,当∞→t ω时,电路达到稳态,式(2.13)中的指数项等于零,这时,电流表达式即式(2.15),也就是电路工作在φα=的状态。
通过理论分析,得出单相半波整流的感性负载,当α=0、φ=o 90时,它就是起动时最先导电的晶闸管可能到达的最大θ角。
为使电路能起动,必须使晶闸管门极的触发脉冲宽度ππθω=->t t 。
还应注意,当φα>时,从图2.6(g )可知,在VT1导电结束后即承受反向电压时,如门极脉冲宽度为,则VT1在承受反压的同时门极仍有电流,将引起VT1的反向漏电流增大;致使反向击穿电压降低,VT1管内损耗增大;结温上升等一系列弊病。
因此,通常设计把两晶闸管的触发脉冲后沿固定在π、2π、3π…处,而前沿在α、π+α、2π+α…处,脉冲宽度随α而变。
这样,起动时必须是φα>。
一个周期内VT1导通输出的电压平均值为)]cos([cos 22)(sin 22111θααπωωπθαα+-==⎰+U t td U U dT(2.16)一个周期内流过VT1电流平均值为)]cos([cos cos 221θααφπ+-==Z U R U I dT dT(2.17) 一个周期内VT1电流平均值的标么值为)]cos([cos cos 2121θααφπ+-==U Z I I dTN (2.18)流过晶闸管的电流有效值为⎰+----=θααφωαωφαφωπ2121)}(])sin()[sin(21{2t d et Z U I tg tT (2.19)负载电流有效值为T tg to I t d et Z U I 2)}(])sin()[sin(1{22121=---=⎰+-θααφωαωφαφωπ(2.20)晶闸管电流有效值的标么值为12U Z I I TTN = (2.21)由o 180≤θ的条件和式(2.18)、式(2.21),可作出N I 与α和TN I 与α的关系曲线,如图3.4和图3.5所示。
由图2.9和图2.10可计算单相调压器中每一个晶闸管电流的平均值dT I 和有效值T I 当o 180=θ时,φα=,以此条件代入式(2.18),可求得N I 的上限值,即318.01)]cos([cos cos 21)]cos([cos cos 21==+-=+-=ππφφφπθααφπN I (2.22)用式(2.15)的标么值形式求其有效值,并计及o 180=θ、φα=,可得TN I 的上限值,即5.0)]()(sin 21[)]()(sin 21[212212=-=-=⎰⎰++πφφθααωφωπωφωπt d t t d t I TN(2.23)2.3.2 三相调压电路工作原理将三组反并联的晶闸管分别接至三相负载就形成了一个三相交流调压电路,此时的负载可以是星形或三角形连接。
图2.11所示的是一个三相全波星形连接的调压电路。
图2.11 三相全波Y 连接的调压电路[2](1)在此电路中由于没有中线,所以在工作时若要负载电流流通,至少需要两相构成通路。
为此:三相电路中至少要有一相的正向晶闸管与另一相的反向晶闸管同时导通。
(2)为了保证在电路起始工作时能使两个晶闸管同时导通,以及在感性负载与控制角较大时仍能保证不同相的正、反向两个晶闸管同时导通,所以如同三相全控桥式整流电路一样,要求采用>60º的宽脉冲或双窄脉冲的触发方式。
(3)为保证输出电压三相对称并有一定的调节范围,要求晶闸管的触发信号除了必须与相应的交流电源有一致的相序外,各触发信号之间还必须严格地保持一定的相位关系。
从图的电路看,即要求A、B、C三相电路中正向晶闸管(即在交流电源为正半周时工作的晶闸管)的触发信号相位互差2л/3,三相电路中反向晶闸管(即在交流电源为负半周时工作的晶闸管)的触发信号相位也互差2л/3;但同一相中反并联着的两个正、反向晶闸管的触发脉冲相位应互差л。
根据上面的讨论,因而可得出三相调压电路中各个晶闸管触发脉冲的序列应如图中1、2、3、4、5、6的次序,相临两个晶闸管的触发信号相位差为л/3。
确定了触发脉冲序列的安排后,就可以讨论这个电路了。
在这里我们也只讨论负载为阻感性负载时的情况。
当三相调压电路的负载为阻感性负载时,分析工作很复杂。
因为既要考虑到在线电压或相电压过零瞬间,晶闸管的导电并不停止,负载中仍有电流在流通;同时要记及三相电路工作的特点以及负载阻抗角的大小,它直接影响到每相电路导电的时间。
这里根据一些典型的示波曲线进行分析。
如前所述,当调压电路在三相电阻-电感负载下工作时,控制角α不能小于负载阻抗角φ,否则系统就工作在不可控的情况下。
以图 2.11所示的三相Y连接电路分析。
当负载阻抗角φ与晶闸管控制角α有相等的数值时,以图2.12表示在α=φ=40º时的实验波形,它分别给出了三相负载相电压与相电流的波形。
可以看到i A 是落后于u AO 40º的,但i A 与u AO 波形基本上连续,说明任何瞬间都有三个晶闸管导通,而负载上所得的电压是不可调的最大值。
图中在α时刻以后,每隔60º都出现电压波形有缺口与电流波形振荡的现象,这正好是晶闸管关断的时刻。
这是由于晶闸管不是理想的元件,它并不是在零电流时关断,而是在一个很小的反电流下才关断。
所以在关断瞬间,储存在负载电路电感中的能量,将消耗在有电感和用来限制晶闸管电压变化率的RC 吸收电路中(即与晶闸管并联的RC 保护电路)。
从而引起电流的振荡与电压波形的缺口。
当然缺口的大小与电路元件的参数是关联的。
例如在图2.12的ωt1时刻之前,由于三相晶闸管1、6、5都导通,电流从A 、C 相流向B 相,此时三相电路在正常工作状态。
到ωt=ωt1时刻,C 相电流过零,5被关断,而2还未导通;此时只有A 、B 相形成电流回路,为维持原来的电流变化趋势,有如下的电路方程式:(2.24)当不记L 作用时,在ωt1时刻Y 连接电路中一相负载上的电压为u AB /2,显然它小于相电压。
当记及L 作用后,Y 连接中点的电位也变了,对A 相负载来说压降为dt di L R i a a a a /-,而B 相则为dt di L R i a b b a /+,所以此时u AO 减小了,u BO 也更负了。
其它晶闸管切换点上的波形分析同理。
()()a a AB a a b La Lb a a b ab di diu i R R e e i R R L L dt dt=+++=+-+。