近世代数基础课件

合集下载

《近世代数》PPT课件

《近世代数》PPT课件
– 剩余类的加法和乘法运算
a b a b ,(m m )o a b d a b(m m )o
10.01.2021
编辑ppt
18
2.2 多项式剩余类环和域
1.域上多项式的定义
– 多项式与码字的关系:桥梁;
• 多项式的系数表示

• x的幂次表示

– 域上的多项式
• 针对系数定义;
• 例如二进制系数多项式,称为二元域GF(2)上的 多项式。
编辑ppt
28
(1) 常数总是多项式的因子。
(2) 一个多项式 f(x) 是否为既约多项式 与所定义的域有关。
(3) 一个多项式既约的充要条件:多项 式Pl(x) 不能分解成两个次数低于Pl(x) 的多项式的乘积。
(4) 完全分解:n次多项式最多能分解成 n个一次多项式的乘积,被称为完全分 解。
(5) 一次多项式一定是既约的。
(3)加法和乘法之间满足如下分配率 (distributive) :
a(bc) abac
(bc)a baca
则称F是一个域。
10.01.2021
编辑ppt
6
(1)域的阶(针对群中元素的个数),记 为q。
(2)有限域或伽逻华(Galois)域,表示为:
GF(q)。
–域将
10.01.2021

编辑ppt
联系在一起?
7
例2-3
– F1:有理数全体、实数全体对加法和乘法都 分别构成域,分别称为有理数域和实数域。
– F2:0、1两个元素模2加构成域;由于该域 中只有两个元素,记为GF(2)。
10.01.2021
编辑ppt
8
• 定理:
– 设p为质数,则整数全体关于p模的剩余类: 0,1,2,…,p-1,在模p的运算下(p模相 加和相乘),构成p阶有限域GF(p)。

近世代数学习教材PPT课件

近世代数学习教材PPT课件

§8.2 代数系统常见的一些性质
(3)代数系统常见性质 1)结合律:(a b) c=a (b c) 2)交换律:a b=b a 3)分配律:a (b+c)=(a b)+(a c) 4)单位元:a 1=a 5)逆元:a a-1=1 6)零元:a 0=0
7)生成元
逆元

特殊子环 (两个二元运算:,
单位元,无零因子 整环 理想 商环
)
特殊环
两个运算的结合律、交换律、吸收律
格 两个运算的分配律 分配格 布尔代数 两个运算的单位元、逆元 两个运算有单位元 有界格 两个运算有逆元 有补格
第九章 群论
§9.1 一些群的定义
(7)半群——代数系统满足交换律
§9.2 一些群的理论与半群性质:
半群的子代数也是半群。 循环半群是可换半群。 (19)关于群的基本理论 群方程可解性:a x = b(或x a = b)对x存在唯一解; 群的消去律:a b = a c(或b a = c a)必有b = c; 任一群必与变换群同构; 与一个群同构或满同态的代数系统必为群; 一个代数系统有限群满足结合律及消去律则必为群;
第三篇 近世代数
代数系统是建立在集合论基础上以代 数运算为研究对象的学科。本篇共三章, 第五章代数系统基础介绍代数系统的一般 原理与性质, 第六章群论,主要介绍具有 代表性的代数系统-群,最后第七章其它 代数系统,介绍除群外常见的一些代数系 统,如环、域、格与布尔代数等,这三章 相互配合构成了代数系统的完整的整体。
§8.3 同构与同态
(4)同构:(X, )与(Y,)存在一一对应函
数g : XY使得如x1 , x2X,则有:g(x1 x 2)=g(x1)

《近世代数》课件

《近世代数》课件

近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。

近世代数教学课件

近世代数教学课件

并运算 设 A, B是两个集合 . 由 A的一切元素和 B的一切 元素所成的集合叫做A与B的并集(简称并),记作 A B. 如图1所示.
A
A B
( x A B) ( x A或x B) ( x A B) ( x A且x B)
B
交运算 由集合A与B的公共元素所组成的集合叫做A 与B的交集(简称交),记作: A B ,如图2所示.
A A
交换律 : A B B A ; A B B A 结合律 : ( A B) C A ( B C ) ; ( A B) C A ( B C) 分配律 : A B C A B A C
A B C A B A C
A是B的子集,记作:
( A B) (x : x A x B)
如果集合A与B的由完全相同的元素组成部分的, 就说A与B 相等,记作:A=B. 即
( A B) (x : x A x B)
以集合A的所有子集为ຫໍສະໝຸດ 素的集合,称为A的幂集, 记为P(A).
如果集合A包含无限多个元素,则记为 A =;如 果A包含n个元素,则记为 A =n,此时 P(A) 2n
近世代数
第一章 基本概念
§1 §2 §3 集 合 映射与变换 代数运算
§4 §5 §6
运算率 同态与同构 等价关系与集合的分类
§1 集 合
表示一定事物的集体,我们把它们称为集合或集, 如“一队”、“一班”、“一筐”. 组成集合的东西 叫这个集合的元素. 我们常用大写拉丁字母A,B,C,…表示集合,用 小写拉丁字母a,b,c,…表示元素. 如果a是集合A的 元素,就说a属于A,记作 a A ;如果a不是集合A 的元素,就说a不属于A,记作 a A ; 例如,设A是一切偶数所成的集合,那么4∈A, 而 3 . A

近世代数学习课件

近世代数学习课件
注:X上的一元和二元代数运算均满足 运算的封闭性。
定义4 结合律:设“”是X上的一个
二元代数运算。如果a,b, c X
有:(a b) c a (b c)
则称此二元代数运算适合结合律。
交换律:若对a,b X 有: ab ba
则称此二元代数运算适合交换律。
定义5 设“”是非空集合S上的一个
近世代数 课件
教材:离散数学引论 王义和,哈工大出版社
参考教材: 1)近世代数, 熊全淹,武大
2)近世代数基础习题指导,北师大
3)离散数学及其在计算机中的应用
4)代数结构与组合数学
引言
一、近世代数的研究对象
代数最初主要研究的是数,以及由数所衍 生出来的对象,如代数方程的求根。数的 基本特征是可以进行加法、乘法等运算, 其共同点是对任两个数,通过相应法则可 唯一求得第三个数。而对于很多抽象的对 象也都具有类似数的这一特征,因此对于 它们的结构和性质的研究就导致了近世代 数的产生和发展。
同理:A为 M , , e 的非空子集,则
包含A的所有子幺半群的交成为由A生 成的子幺半群。
注:根据集合交的性质知道 由A生成的子(幺)半群 (A) 是包含A的所有子(幺)半群 中最小的,即对任意包含A的
子(幺)半群 A 有:A A
定义4 左(右)理想:半群 S ,
的一个非空子集A为S的一个左(右)
定义乘法“”:N N N
a b a b 1, a,b N,
其中*为普通乘法
定义6 设(S,,) 是具有两个二元
代数运算“”和“+”的代数系。
如果a,b, c S 有:
a (b+c) (a b) (a c)
则称“”对“+”满足左分配律。
如果a,b, c S 有:

近世代数基础PPT课件

近世代数基础PPT课件

来说四元数的发现使人们对于数系的代数性质的认识提高了
一大步。四元数代数也成为抽象代数研究的一个新的起点,
它是近世代数的另一个重要理论来源。
返回
16
(3)Kummer理想数的发现
17世纪初法国数学家费马(P.Fermat 1601-1665) 研究整数方程时发现当n≥3时,方程 xn+yn=zn 没有正整数解,费马认为他能够证明这个 定理,但是其后的三百多年中人们研究发现这是一 个非常困难的问题,这一问题被后来的研究者称为 费马问题或费马大定理,此定理直到1995年才被英 国数学家A.Wiles证明。对费马问题的研究在三个半 世纪内从未间断过,欧拉、高斯等著名数学家都对 此作出过重要贡献。但最重大的一个进展是由 E.Kummer作出的。
18
Kummer方法的前提是形如a+bη的复整数也象 整数一样具有唯一的素因子分解,其中a与b是通 常整数。并不是对于每个整数n,复整数a+bη都具 有唯一分解性,Kummer把这种复整数的因子分解 称为理想数的分解。
14
加罗华
阿贝尔
返回
15
(2)Hamilton四元数的发现
长期以来人们对于虚数的意义存在不同的看法,后来发
现可以把复数看成二元数(a,b)=a+bi,其中i2= -1。二元数按
(a,b)±(c,d)=(a±c,b±d),(a,b)(c,d)=(ad+bc,ac-bd)的法则进行
代数运算,二元数具有直观的几何意义;与平面上的点一一
近 世 代 数
概 述
11
>>
1. 近世代数理论的三个来现 (3) Kummer理想数的发现
下一页
12
(1) 代数方程的解 两千多年之前古希腊时代数学家就能够利用开

《近世代数》PPT课件

《近世代数》PPT课件

定理1.5.1 假设一个集合A的代数运算 同时适合结合
律与交换律,那么在 a1a2 an中,元素的次序 可以调换.
例 判定下列有理数集Q上的代数运算 是否适合结合律,
交换律?
(1) a b a b ab (适合结合律和交换律 )
(2) ab(ab)2 (适合交换律,但不适合结合律)
(3) aba (适合结合律,但不适合交换律 )
定义1.9.2 设 是集合 A的代数运算. 若 是 A到 A的 一个同构映射(同态映射),则称 是 A的一个自 同构 (自同态).
小结
同态是把代数运算考虑在内的映射,即是用来
比较两个代数结构的工具.
返回
在代数学中,两个同构的代数结构一般认为是相同的. 22
§1.10 等价关系与集合的分类
定义1.10.1 A设 是集合,D对,.错 一个 AA 到 D 的映射
注: 变换 是 A到A自身的一个映射.
小结
为了比较两个集合,我们引入了单射,满射,一
一映射和变换的概念.
返回
19
§1.8 同态
定义1.8.1 设 , 分别是集合的代数运算, : A A 是一个映
射,若 a,bA,有 (ab ) (a ) (b ),
则称 是 A到 A 的一个同态.
例1 A=Z (整数集), 是普通加法; A ={1,-1}, 是普通乘法.
定义1.2.2 设 1 , 2是A到B的两个映射,若对 aA,
有 1(a)2(a), 则称 1 与 2 是相等的,记作 1 2.
注: 映射相等 构成映射的三要素(值域、定义域、对
应法则)全相同.
例5 设 AB 为正整数集 .
定义 1 : ; a1 1 ( a ) , a ,

近世代数引论PPT课件

近世代数引论PPT课件
域是近世代数中的一个基本概念,它是一个加法群和 一个乘法半群的组合,具有一些重要的性质。
详细描述
域是一个非空集合,其中定义了两种运算:加法和乘法 ,满足一定的性质。在域中,加法和乘法都是可逆的, 即每个元素都有唯一的加法逆元和乘法逆元。此外,域 中的乘法满足结合律,且每个元素都有乘法单位元。
子域与扩域
环论在几何学中的应用
环论也是近世代数的一个重要分支,它在几何学中也有着广泛的应用。例如,在代数几 何中,环论被用于描述多项式环的结构;在解析几何中,环论也被用于描述函数的性质。
数论中的应用
域论在数论中的应用
域论是近世代数中一个重要的分支,它在数论中有着广泛的应用。例如,在代数数论中,域论被用于描述代数数 的性质;在数论中,域论也被用于研究整数的性质和结构。
分式域与函数域
总结词
分式域和函数域是两种特殊的域,它们在数学和物理 中有广泛的应用。分式域是由其整环的分式组成的域 ,而函数域则是基于函数的定义域和值域形成的域。
详细描述
分式域是由一个整环的分式组成的域。整环是一个只含 有限除数的环,也就是说,如果一个元素在整环中不能 被其他元素整除,则该元素被称为不可约元素。分式环 是由整环中所有分式组成的集合,它构成一个域。函数 域是基于函数的定义域和值域形成的域。具体来说,给 定一个函数f和一个集合D,函数域是由集合D中所有可 能的函数值组成的集合,它也构成一个域。
交叉学科的研究
近世代数与其他学科的交叉研究也是未来的一个重要方向,如 代数几何、代数数论、计算机科学等学科的交叉研究,可以促
进近世代数的发展和应用。
THANKS
感谢观看
环论
环的定义和性质
要点一
总结词
环是具有加法和乘法两种运算的代数系统,满足一定的性 质。

近世代数课件(全)--1-2运算律,同态同构

近世代数课件(全)--1-2运算律,同态同构

2012-9-19
定义3

则称

是集合A的代数运算,若 a , b A, 都 有 a b=b a.

满足交换律.
定理2 如果 A 的代数运算 同时满足 交换律和结合律,那么 a 1 a 2 a n 中的元的次序可以任意掉换.
2012-9-19
定义4
是一个B×A到A的代数运算,⊕是一个A
n 0

0不在N中,矛盾。
( N , ) 与 (N , ) 不同构.
2012-9-19
作业: 证明: (1) { N ,}与 { N ,} (2) { Z , }与 { Z ,} (3)
{Q , }与 {Q ,}


不同构(普通乘法).
不同构.
(其中 Q
不同构. 为非零有理数集).
都是整数中
通常的加法“+”,现作
: ( A , ) ( A , )其 中 ( n ) n , n A
,那么
2012-9-19
是同构映射.
定理5 如果 ( A , , ) 和( A , , ) 同构,那么 (1) 满足结合律 也满足结合律 ; (2) (3)
的代数运算.若 , ⊕对于B的任何b,A的任何
a 1 , a 2 ,都有
a (b c ) ( a b ) ( a c )
则说 , ⊕适合第一分配律. 类似地可定义第二分配律. 如果⊕适合结合律 , , ⊕适合第一分配律,则
b B , a1 , a 2 , a n A, 都 有 a ( b1 b 2 b n ) ( a b1 ) ( a b 2 ) ( a b n )

近世代数课件(全)--3-1-环的定义与性质

近世代数课件(全)--3-1-环的定义与性质
两个消去律成立.即设 a, b, c R, b 0
,如果 ab cb 或 ba bc ,则 a c.
2024/7/18
2.整环 定义 7 一个交换的,有单位元 1R 且
1R 0 的无零因子环 R 称为整环.
例 6 整数环, 高斯整环 都是整环, 而偶数环为 无零因子环.
2024/7/18
例7
Z 的可逆元仅有1, -1;
2Z 由于没有单位元,所以它没有可逆元.
例 8 A Mn( K ) 可逆当且仅当 | A | 0. 例 9 试求高斯整环 Z[i] 的可逆元. 解 可逆元只有 1, 1, i, i
2024/7/18
定义9
设 R 是有单位元的环,且 1R 0 .如果 R 中每个非零元都可逆,则称 R 为除环.
,则
n
n
(1) a( ai ) aai
i 1
i 1
n
n
(2) ( ai )a aia
i 1
i 1
n
m
nm
(3) ( ai )( bj ) aibj
i 1
j 1
i1 j1
(4) (ma)(nb) (mn)ab
2024/7/18
三、子环
定义4 若环 R 的非空子集 S 关于环 R 的加法与乘法也做成环,称 S 为 R 的子环
同样,有理数集,实数集,复数集关 于数的加法与乘法构成有单位元 的交换环
2024/7/18
定理1
设 R 是一个环,如果 R 有单位元,则
单位元是唯一的.
R 的单位元常记作 1R .
2024/7/18
二、环的性质 性质1. 规定减法:
a b a (b),a, b R
,则有移项法则:

近世代数主要知识点PPT课件

近世代数主要知识点PPT课件
• 假如运算1和1‘来说,有一个A到A’的满射的同态映射存在,同态满射 • 同构映射 一一映射的同态映射就是一个同构映射 • 自同构
第8页/共27页
等价关系与等价类
• 集合的等价关系 。Ⅱ,
对称律:a~b=>b~a Ⅲ,推移律:a~b,b~c=>a~c 同余关系
第22页/共27页
除环、域
• 除环 1, R至少包含一个而不等于零的元
的每一个不等于零的元有一个逆元
2,R有单位元
3,R
• 域 一个交换除环叫做一个域
• 在一个没有零因子的环里所有不等于零的元对于加法来说的阶都一样的
• 一个无零因子的环里的非零元的相同的阶叫做环的特征
• 整环 除环 域 的特征或是无限大 或是一个素数
(b+c)a=ba+ca
第21页/共27页
交换律、单位元、零因子、整环
• 交换环 一个环 假如 ab=ba不管a b是环的哪两个元 • 单位元 ea=ae=a 一个环未必有单位元 • 零因子 若环里a≠0,b≠0但 ab=0 那么 a是左零因子 b 右零因子 • 整环 一个环叫做整环 如果 1.乘法适合交换律:ab=ba 2 .R有单位元1:1a=a1=a 3 R没有零因子ab=0=>a=0或b=0
合D的一个映射
像 逆象,
• 映射的相同 效果相同就行
第5页/共27页
代数运算
• 定义一个A×B到D的映射叫做一个A×B到D的代数运算 • 代数运算是一种特殊的映射 描写它的符号,也可以特殊一点,一个代数运算我们用。来
表示 • 二元运算 假如。是一个A×A到A的代数运算,我们说集合A是闭的 二元运算
换群 • 定理2 一个集合的所有一一变换做成一个变换群 • 定理3 任何一个群都同一个变换群同构 证明,假定G是一个群,G的元是a,b,c ·······我们在G里任意取出一个元x来,那么‫ג‬x:

近世代数课堂PPT

近世代数课堂PPT

4
但其中有一些可以通过旋转一个角
度或翻转180度使它们完全重合, 5 我们称为是本质相同的,我们要考
虑的是无论怎么旋转、翻转都不能
使它们重合的项链类型数。
1 8
7 6
28.07.2024
06:10
例1 用黑白两种颜色的珠子做成有5颗珠子的项链
利用枚举法,得到一共8种不同类型的项链。
随着n、m的增加,用枚举法解决越来越难, 采用群论方法解决是最简单、有效的方法。
学习近世代数的意义
由于近世代数在数学的其他分支、近代 物理、近代化学、计算机科学、数字通信、 系统工程等许多领域都有重要应用,因而它 是现代科学技术的数学基础之一,是许多科 技人员需要掌握的基本内容和方法,因此近 世代数也是数学专业的专业基础课之一。
28.07.2024
06:10
几个有趣的应用实例
28.07.2024
06:10
伽罗华(Évariste Galois,公元1811年~公元1832 年)是法国对函数论、方程式论和数论作出重要贡献的数学
家,他的工作为群论(一个他引进的名词)奠定了基础;所
有这些进展都源自他尚在校就读时欲证明五次多项式方程根
数解(Solution by Radicals)的不可能性(其实当时 已为阿贝尔(Abel)所证明,只不过伽罗华并不知道), 和描述任意多项式方程可解性的一般条件的打算。虽然他已
图。 问题:n个点的图中互不同构的图有多少个?
28.07.2024
06:10
5.开关线路的构造与计数问题 一个有两种状态的电子元件称为一个开关,
例如普通的电灯开关,二极管等。由一些开关 组成的二端网络称为开关线路。一个开关线路 的两端也只有两种状态:通与不通。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
37
第3讲 特殊的唯一分解环 1 主理想环 2 欧氏环 3 唯一分解环上的一元多项式环 4 因子分解与多项式的根
38
第六章 群论补充
39
第1讲 共轭元与共轭子群 1 第2讲 群的直积 第3讲 群在集合上的作用 第4讲 西罗定理
40
第1讲 共轭元与共轭子群
研究群内一些特殊类型的元素和子群
1 中心和中心化子 2 共轭元和共轭子群 3 共轭子群与正规化子
53
四 代数学发展的四个阶段
代数学经历了漫长的发展过程,抽象代 数(近世代数)是19世纪最后20年直到20世 纪前30年才发展起来的现代数学分支. 1 最初的文字叙述阶段 2 代数的简化文字阶段 3 符号代数阶段 4 结构代数阶段
54
1 最初的文字叙述阶段
古希腊之前直到丢番图(Diophantine,公元250年)时 代,代数学处于最初的文字叙述阶段,这一阶段除古希腊 数学之外还包括古巴比伦、古埃及与古代中国的数学. 此时算术或代数尚未形成任何简化的符号表达法,代数 运算则都采用通常的语言叙述方式表达,因而代数推理 也都采用直观的方法.在中国古代则有著名的筹算法,而 在古希腊则借助于几何图形的变换方法.最典型的代表 是毕达哥拉斯(Pythagoras,公元前585-497)几何数论方 法.例如通过图形的组合可以得到
}
} }
映射相关概念及举例
映射的运算 映射及其相关概念的推广
}
特殊映射
6
第3讲 基本概念之代数运算适应的规则 ——运算律 运算律
1 与一种代数运算发生关系的运算律 (1)结合律 (2)交换律 (3)消去律 2 与两种代数运算发生关系的运算律 (1)第一分配律 (2)第二分配律
7
第4讲 基本概念之与代数运算发生关系的映射 ——同态映射 同态映射 1 同态映射 2 同态满射 3 同构映射 4 自同构映射 5 举例
}
集合与元素的相关概念
}
}
集合的相关概念
集合的运算及运算律
}
集合的补充及说明
5
第2讲 基本概念之集合及其之间的关系 讲 —对应关系 映射 人造关系 对应关系(映射 人造关系) 对应关系 映射)(人造关系
1 2 3 4 5 6 7 8 映射概念回忆 映射及相关定义 映射的充要条件 映射举例 符号说明 映射的合成及相关结论 映射及其映射相等概念的推广 集合及其之间的关系——特殊 集合及其之间的关系 特殊 的映射(代数运算) 的映射(代数运算) 集合及其之间的关系——一一 9 集合及其之间的关系 一一 映射
14
第4讲 有限群
1 群的分类及群的阶
2 有限群的判定定理 3 由有限集合上代数运算的运算表观 察代数运算的性质
15
第5讲 子群的定义及性质
1 子群定义 2 子群的判别方法 3 子群的性质
16
第6讲 群中元素的阶1 元素阶的定义 2 元素阶举例 3 元素阶的性质17
第7讲 循环群
1 循环群的定义及举例 2 循环群与元素阶的关系 3 循环群的一般形式 4 循环群的生成元的个数定理 5 循环群生成元的确定定理
30
第7讲 特殊环
1 矩阵环 2 多项式环 3 剩余类环
31
第8讲 商域 1 构造域的方法 2 挖补定理 3 扩域定理 4 扩域的形式 5 商域的定义及结论 6 举例
32
第9讲 有限域
33
第五章 整环里的因子分解
34
第1讲 不可约元、素元、最大公因子 第2讲 唯一分解环 第3讲 特殊的唯一分解环
43
第4讲 西罗定理
44
第一章
绪 论
45
第一讲
绪 论
46
第一章 绪论
一 关于代 数的观念
二 数学史 的发展阶段
三 代数发展 的阶段( 的阶段(数 学发展史) 学发展史)
四 代数学发 展的四个阶段
五 几类与近世 代数的应用有 关的实际问题
1 用字母 的代数
1 萌芽阶段
1 初等数学时 初等数学) 期(初等数学 初等数学
1 + 3 + 5 + 7 + L + (2n − 1) = n
2
不要认为简单的几何变换只能产生简单的代数结论, 55 恰当地利用几何图形的变换有时也会产生重要的代数结 论(如勾股定理与勾股数.
2 简化文字阶段
缺乏符号运算的代数当然是相当原始的代数学.直到古希腊数 学后期,数学家丢番图才开始把通常的语言叙述作简化,利用简化 的文字符号代替一些相对固定的代数表达式.这一时期称为代数 的简化文字阶段,这一时期大致延续到欧洲文艺复兴时代. 丢番图对代数学的发展做出了突出的贡献,《算术》一书是丢 番图留下来的著作,该著作研究了一系列不定方程的求解问题.例 如把一个平方数表为两个平方数之和的问题.后来欧拉发现了正 整数能够表为两个整数平方和的充分必要条件.把一个给定的整 数表为四个数的和再加上这四个数的平方和.求两个有理数使它 们的和等于它们的立方和,例如七分之五与七分之八等等.正是在 丢番图关于整数诸如此类表法研究的基础上,17世纪伟大的法国 数学家费马(Pierre de Fermat,1601-1665)提出了不定方程 xn+yn=zn在n≥3时不可解问题.19世纪费马问题的研究也是导致近 56 世代数理想论产生的重要契机.
51
二 数学史的发展阶段
1 萌芽阶段 2 初等数学阶段 3 高等数学阶段 4 近代数学阶段 5 现代数学阶段
52
三 代数发展的阶段(数学发展史)
代数发展 的阶段
初等数学时期 初等数学) (初等数学)
变量数学时期 或高等数学时期 高等代数) (高等代数)
现代数学时期 (抽象代数 近世代数)) (近世代数))
18
第8讲 变换群
1 变换、满变换、单变换、一一变换 的定义及符号说明 2 特殊集合关于乘法的结论 3 变换群举例 4 特殊的变换群
19
第9讲 特殊子群
1 循环群子群的一些结论 2 循环群概念的推广 3 特殊子群的几何意义探讨 4 子群的陪集 5 正规子群与商群
20
第10讲 群的同态与同构
1 群的同态的定义及举例 2 同态的性质及结论 3 同构的性质及结论 4 循环群的构造及循环群之间的同态 5 同态基本定理与同构定理
8
第5讲 基本概念之等价关系与集合的分类 讲 ——商集 商集 1 商集 2 等价关系 3 集合的分类 集合A 4 集合A上的等价关系与 集合A 集合A的分类之间的联系
9
第三章 群
10
第1讲 代数系统 第2讲 半群 第3讲 群的定义及性质 第4讲 有限群 第5讲 子群的定义及性质 第6讲 元素的阶 第7讲 循环群 第8讲 变换群 第9讲 特殊子群 第10讲 群的同态与同构 10讲 第11讲 群与对称的关系 11讲
21
第11讲 群与对称的关系
1 序言 2 几何对称 3 代数对称
22
第四章
环论
23
第1讲 环的定义及基本性质 第2讲 特殊元素及性质 第3讲 环的分类及特殊环的性质 第4讲 环的特征 第5讲 子环、理想(主理想)及素理想和极大理想 第6讲 环的同态与同构 第7讲 特殊环 第8讲 商域 第9讲 有限域
4
第1讲 基本概念之集合及其之间的关系 —集合 集合
1 集合与集合元素的定义 2 集合与集合元素的表示符号 集合与集合元素之间的关系—— 3 集合与集合元素之间的关系 属于关系 4 集合的分类标准及分类 5 集合的表示方法 集合之间的内在关系——包含关 6 集合之间的内在关系 包含关 系 7 集合运算 8 运算律 9 特殊集合的表示符号 10 集合的补充说明 11 包含与排斥原理
5 开关线路的构 造与计数问题
6 数字通信 的可靠性问题
4 近代数学阶段
4 结构代数阶段
7 几何作图问题
8 代数方程根 式 的求解问题
5 现代数学阶段
47
一 关于代数的观念 二 数学史的发展阶段 三 代数发展的阶段(数学发展史) 四 代数学发展的四个阶段 五 几类与近世代数的应用有关的实际 问题
48
50
各种代数系统(代数结构),而对于代数结 构,其基本成分则是集合和集合上的映射. 而近世代数就像古典代数那样,是关 于运算的学说,是计算规则的学说,但它 不把自己局限在研究数的运算的性质上, 而是企图研究更具一般性的元素上运算 的性质,这种趋向是现实中的要求所提示 的.近世代数已广泛应用于近代物理学、 近代科学、计算机科学、数字通讯、系 统工程等领域.
1 最初的文 字叙述阶段
1 项链问题
2 分子结构 的计数问题
2 解方程
2 初等数学阶段
2 变量数学时 高等代数) 期(高等代数 高等代数
2 代数的简 化文字阶段
3 正多面体 的着色问题
4 图的构造 与计数问题
3 各种代数 结构的理论
3 高等数学阶段
3 现代数学时 近世代数) 期(近世代数 近世代数
3 符号代数阶段
第一章 绪 论
1
第1讲 绪 论
一 关于代数的观念 二 数学史的发展阶段 三 代数发展的阶段(数学发展史) 四 代数学发展的四个阶段 五 几类与近世代数的应用有关的实际 问题
2
第二章 基本概念
3
第1讲 集合及其之间的关系 ——集合 ——集合 第2讲 集合及其之间的关系 ——对应关系(映射)(人造关系) ——对应关系(映射)(人造关系) 对应关系 )(人造关系 代数运算适应的规则—— ——运算律 第3讲 代数运算适应的规则——运算律 与代数运算发生关系的映射—— ——同态映射 第4讲 与代数运算发生关系的映射——同态映射 第5讲 等价关系与分类
一 关于代数的观念
从人们的观念上来看,人们关于 从人们的观念上来看 人们关于 代数的观念大致有三种: 代数的观念大致有三种:
相关文档
最新文档