§2.5 对数与对数函数(讲解部分)
对数与对数函数PPT课件
(4)了解指数函数和对数函数互为反函数。
二、高考考查题型:
以小题为主,如运算、比较大小、图象、性质等。
第1页/共14页
二、基础知识要点强化
1.对数的概念:
2.对数的运算:
(1)loga 1 _0__; loga a ___;
(2)loga MN __________;
(3)loga
M N
___________;
(4)log a
m
Mn
__________;
(5)a loga N ___; loga aN ___;
(6)loga b logb a __1 _;
(7)换底公式:logb N ______.
第2页/共14页
对数函数y=log a x (a>0, a≠1)
(2)若f (x)在( ,1上为增函数,求a的取值范围。
第9页/共14页
思考:带有参数的对数问题,做题应注意什么?
(1)对于带有参数的函数,不仅仅是对数函数,定义域 为R的问题应转化为恒成立问题解决,这种恒成立问题也 是高考的重点热点问题。 (2)在第二问中,应特别强调对数的真数在给定区间上 应恒大于0。
第7页/共14页
题型2:对数函数的图象
例4(2008山东理)已知函数 f (x) loga(2x b 1)(a 0,a 1)
的图象如图示,则 a,b 满足的关系是( A )
y
A. 0 a1 b 1 B. 0 b a1 1 O
x
C.0 b1 a 1 D. 0 a1 b1 1
第10页/共14页
巩固练习: 已知函数 f (x) log2(x2 ax在 a区) 间(-∞, 1- ] 3
2.5对数与对数函数
第二章
基础 自主夯实 考点 层级突破
课时 分组冲关
对数运算的一般思路 (1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂 的形式,使幂的底数最简,然后正用对数运算性质化简合并. (2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对 数的运算性质,转化为同底对数真数的积、商、幂的运算.
第二章
基础 自主夯实 考点 层级突破
课时 分组冲关
3.若 log147=a,14b=5,则用 a,b 表示 log3528= ________ .
解析:∵14b=5,∴log145=b,又 log147=a, 142
∴log3528=lloogg11442385=log1lo45g+14 l7og147=2a-+ab. 答案:2a-+ab
课时 分组冲关
(2)对数的运算法则 如果 a>0 且 a≠1,M>0,N>0,那么 ①loga(MN)= logaM+logaN ; ②logaMN= logaM-logaN ; ③logaMn= nlogaM (n∈R); ④logamMn=mn logaM(m,n∈R,且 m≠0).
第二章
基础 自主夯实 考点 层级突破
应用对数型函数的图象可求解的问题 (1)对一些可通过平移、对称变换作出其图象的对数型函数,在 求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思 想. (2)一些对数型方程、不等式问题常转化为相应的函数图象问题, 利用数形结合法求解.
第二章
基础 自主夯实 考点 层级突破
课时 分组冲关
g(x)=-logbx 的图象可能是(
)
第二章
基础 自主夯实 考点 层级突破
课时 分组冲关
4.(教材改编)函数 y= log0.54x-3的定义域为 ________ . 解析:由4loxg-0.534>x0-3≥0 ,解得 x∈34,1. 答案:34,1
对数与对数函数
o
1
3
0<a<1时,在 x=1右侧总是 底大图低.
练习3. 比较大小
12
log23 > log32 >log0.53 ___________________________. (2) log0.34 _____ <
(1) log32,log23, log0.53的大小关系为
log0.20.7
练习4.已知下列不等式,比较正数m,n的大小 (1)若log3m < log3n 则 m
log0.71.8
解:∵函数y= log0.7x 中底数 0<0.7<1 ∴ 函数y= log0.7x在(0,+)上 是减函数 ∵ 1.6 < 1.8 ∴ log0.71.6 > log0.71.8
③.
loga4
loga3.14
解 :讨论 a 的情况 I. 当 a>1 时 y=logax 是增函数 因为 所以 4 > 3.14 loga4 > loga3.14 y=logax 是减函数
所以所求函数的定义域为{x| x>
2 7
且x ≠
2 5
}.
例2、比较下列各组数中两个数的大小:
(1)log 2 3 . 4 与 log 2 8 . 5 解:∵ y = log 2 x 在 ( 0 , + ∞) 上是增函数
4
且 3 . 4 <8 . 5
∴ log 2 3 . 4 < log 2 8 . 5
1.2
1
0.8
0.6
0.4
0.2
1.8
0.5 1 1.5 2
2.7
2.5 3 3.5
-0.5 -0.2
《 对数与对数函数》课件
1 题目1
已知log35≈1.465,求log325的值。
3 题目2
已知log23≈1.585,求log63的值。
2 解答1
log325=log3((5)2)=2log35≈2×1.465≈2.93。
4 解答2
log63=log23/log26≈1.585/1.585≈1。
例题: 求解对数方程
1 题目1
求解方程log2(3x-2)=3。
3 题目2
求解方程log2x-14=log2(x-1)。
2 解答1
化为指数形式得:23=3x-2,解得x=7/3。
4 解答2
化为指数形式得:(2x-1)log42=x-1,解得x=3。
例题: 理解对数运算的应用
1 题目1
已知ab=c,则logac=?
2 解答1
根据对数的定义得:logac=b。
定义域为(0,+∞),值域为(-∞,+∞)。
对数函数的图像特征
随着x的增加而变化
当x>1时,y随x的增加而增加;当x=1时,y=0;当 0<x<1时,y随x的减小而增加;当x<0时,对数函数 无意义。
渐近线
对数函数的图像有两条渐近线,即x轴和y轴的反比 例函数。
对数函数的性质
1
单调性
当a>1时,对数函数单调递增;当0<a<1
3 题目2
已知log23≈1.585,log27≈2.807,求log521 的值。
4 解答2
log221=log2(3×7)=log23+log27≈1.585+2.80 7=4.392。利用换底公式得: log521=log221/log25≈4.392/2.322≈1.892。
对数与对数函数知识点及例题讲解
对数与对数函数1.对数(1)对数的定义:)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N Ûlog a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNN a a log log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: : loglog a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象)对数函数的图象O xyy = l o g x a > Oxy<a <a y = l o g x a 1111( ())底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题1.函数f (x )=|log 2x |的图象是的图象是1 1 1-1 1111 1 xxxxy y y y O OOOA BC D解析:f (x )=îíì<<-³.10,log ,1,log 22x x x x答案:A 2.若f --1(x )为函数f (x )=lg (x +1)的反函数,则f --1(x )的值域为___________________. 解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f --1(x )的值域为(-1,+∞). 答案:(-1,+∞)∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________. 解析:由0≤log 21(3-x )≤1Þlog 211≤log 21(3-x )≤log 2121Þ21≤3-x ≤1Þ2≤x ≤25. 答案:[2,25]4.若log x7y=z ,则x 、y 、z 之间满足之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由logx 7y=z Þx z=7y Þx 7z=y ,即y =x 7z. 答案:B 5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则,则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D 6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于等于 A.42 B.22 C.41 D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A 7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21 B.-21 C.2 D.-2 解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B 注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21. 8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是能是OxyOxyOxyOxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,)111-1O xy注意:研究函数的性质时,利用图象会更直观. 【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间. 解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 注意:讨论复合函数的单调性要注意定义域. 【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和)和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|. (1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4. 【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x xx x +)成立的函数是)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A 探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,127m +m -+m )-+m+2m ≥+xm+2m )+x m ≥2m (当且仅当=xm ,即=m 时等号成立)+x m +2m )=4m ,即4m ≥≥169. 可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较. 3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用. 。
2019届高考数学一轮必备考情分析学案:2.5《对数与对数函数》(含解析)
2.5对数与对数函数考情分析1.考查对数函数的定义域与值域. 2.考查对数函数的图象与性质的应用.3.考查以对数函数为载体的复合函数的有关性质. 4.考查对数函数与指数函数互为反函数的关系. 基础知识 1.对数的概念 (1)对数的定义如果a x=N(a >0且a≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.(2)几种常见对数2.对数的性质与运算法则 (1)对数的性质①alog a N =N ;②log a a N=N(a >0且a≠1). (2)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b·log b c·log c d =log a d.(3)对数的运算法则如果a >0且a≠1,M >0,N >0,那么①log a (MN)=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n =nlog a M(n ∈R);④log am M n=n m log a M.3.对数函数的图象与性质4.反函数指数函数y =a x与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称. 注意事项1.对数源于指数,指数式和对数式可以互化,对数的性质和运算法则都可以通过对数式与指数式的互化进行证明.2.解决与对数有关的问题时,(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.3.画对数函数4.对数值的大小比较方法(1)化同底后利用函数的单调性.(2)作差或作商法.(3)利用中间量(0或1). (4)化同真数后利用图象比较. 典型例题题型一 对数式的化简与求值【例1】计算:(1)121316324(12427162(8)--+-+-;(2)2(lg 2)lg 2lg 50lg25+⋅+;(3)3948(log 2log 2)(log 3log 3)+⋅+ 解:(1)原式12133(1)246324(113228⨯-⨯-⨯⨯=-+-⨯213332113222118811⨯=+-+-⨯=-=(2)原式22(lg 2)(1lg 5)lg 2lg 5(lg 2lg 51)lg 22lg 5=+++=+++ (11)lg 22lg 52(lg 2lg 5)2=++=+=(3)原式lg 2lg 2lg 3lg 3lg 2lg 2lg 3lg 3()()()()lg 3lg 9lg 4lg8lg 32lg 32lg 23lg 2=+⋅+=+⋅+ 3lg 25lg 352lg 36lg 24=⋅= 【变式1】已知11223x x-+=,求22332223x x x x--+-+-的值解:∵11223x x-+=,∴11222()9x x -+=,∴129x x -++=,∴17x x -+=,∴12()49x x -+=,∴2247x x -+=,又∵331112222()(1)3(71)18x x x x x x ---+=+⋅-+=⋅-=, ∴223322247231833x x x x--+--==-+-题型二 对数值的大小比较【例2】►已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f(log 47),b =f(log 123),c =f(0.2-0.6),则a ,b ,c 的大小关系是( ).A .c <a <bB .c <b <aC .b <c <aD .a <b <c解析 log 123=-log 23=-log 49,b =f(log 123)=f(-log 49)=f(log 49),log 47<log 49,0.2-0.6=⎝ ⎛⎭⎪⎫15-35=5125>532=2>log 49,又f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,故f(x)在[0,+∞)上是单调递减的, ∴f(0.2-0.6)<f(log 123)<f(log 47),即c <b <a ,故选B.答案 B【变式2】设a =log 32,b =ln 2,c =5-12,则( ).A .a <b <cB .b <c <aC .c <a <bD .c <b <a解析 法一 a =log 32=1log 23,b =ln 2=1log 2e ,而log 23>log 2e >1,所以a <b ,c =5-12=15,而5>2=log 24>log 23,所以c <a ,综上c <a <b ,故选C.法二 a =log 32=1log 23,b =ln 2=1log 2e ,1<log 2e <log 23<2,∴12<1log 23<1log 2e <1;c =5-12=15<14=12,所以c <a <b ,故选C. 答案 C题型三 对数函数性质的应用【例3】►已知函数f(x)=log a (2-ax),是否存在实数a ,使函数f(x)在[0,1]上是关于x 的减函数,若存在,求a 的取值范围.. 解 ∵a >0,且a≠1,∴u =2-ax 在[0,1]上是关于x 的减函数.又f(x)=log a (2-ax)在[0,1]上是关于x 的减函数,∴函数y =log a u 是关于u 的增函数,且对x ∈[0,1]时,u =2-ax 恒为正数.其充要条件是⎩⎪⎨⎪⎧a >12-a >0,即1<a <2.∴a 的取值范围是(1,2).【变式3】 已知f(x)=log 4(4x-1) (1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)求f(x)在区间⎣⎢⎡⎦⎥⎤12,2上的值域. 解 (1)由4x-1>0解得x>0, 因此f(x)的定义域为(0,+∞). (2)设0<x 1<x 2,则0<4x 1-1<4x 2-1,因此log 4(4x 1-1)<log 4(4x 2-1),即f(x 1)<f(x 2),f(x)在(0,+∞)上递增.(3)f(x)在区间⎣⎢⎡⎦⎥⎤12,2上递增, 又f ⎝ ⎛⎭⎪⎫12=0,f(2)=log 415, 因此f(x)在⎣⎢⎡⎦⎥⎤12,2上的值域为[0,log 415]. 重难点突破【例1】设f(x)=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2dt ,x≤0,若f(f(1))=1,则a =________.【例2】► (2018辽宁改编)设函数f(x)=⎩⎪⎨⎪⎧21-x,x≤1,1-log 2x ,x >1,则满足f(x)≤2的x 的取值范围是________.巩固提高1. 2 log 510+log 50.25=( ).A .0B .1C .2D .4 解析 原式=log 5100+log 50.25=log 525=2. 答案 C2.(人教A 版教材习题改编)已知a =log 0.70.8,b =log 1.10.9,c =1.10.9,则a ,b ,c 的大小关系是( ). A .a <b <c B .a <c <b C .b <a <cD .c <a <b解析 将三个数都和中间量1相比较:0<a =log 0.70.8<1,b =log 1.10.9<0,c =1.10.9>1. 答案 C3.(2018·黄冈中学月考)函数f(x)=log 2(3x+1)的值域为( ). A .(0,+∞) B .[0,+∞) C .(1,+∞)D .[1,+∞)解析 设y =f(x),t =3x+1. 则y =log 2t ,t =3x+1,x ∈R.由y =log 2t ,t>1知函数f(x)的值域为(0,+∞). 答案 A4.(2018汕尾模拟)下列区间中,函数f(x)=|ln(2-x)|在其上为增函数的是( ).A .(-∞,1]B.⎣⎢⎡⎦⎥⎤-1,43C.⎣⎢⎡⎭⎪⎫0,32D .[1,2)解析 法一 当2-x≥1,即x≤1时,f(x)=|ln(2-x)|=ln(2-x),此时函数f(x)在(-∞,1]上单调递减.当0<2-x≤1,即1≤x<2时,f(x)=|ln(2-x)|=-ln(2-x),此时函数f(x)在[1,2)上单调递增,故选D. 法二 f(x)=|ln(2-x)|的图象如图所示.由图象可得,函数f(x)在区间[1,2)上为增函数,故选D. 答案 D5.若log a 23>1,则a 的取值范围是________.答案⎝ ⎛⎭⎪⎫23,1。
对数与对数函数的基础知识梳理
课堂互动讲练
(2)原式=(llgg23+llgg29)·(llgg34+llgg38) =(llgg23+2llgg23)·(2llgg32+3llgg32) =32llgg23·56llgg32=54; (3)分子=lg5(3+3lg2)+3(lg2)2 =3lg5+3lg2(lg5+lg2)=3; 分母=(lg6+2)-lg 130600×110 =lg6+2-lg1060=4; ∴原式=34.
课堂互动讲练
自我挑战
(3)当x∈(1,+∞)时,f(x)>f(1), 要使f(x)>0,须f(1)≥0,∴a-b≥1.12分
规律方法总结
1.比较两个对数的大小的基本 方法是构造相应的对数函数,若底 数不相同时,可运用换底公式化为 同底数的对数,还要注意与0比较或 与1比较.
规律方法总结
2.把原函数做变量代换化归为二次 函数,然后用配方法求指定区间上的最 值是求对数函数的常见题型.在给定条 件下,求字母的取值范围也是常见题型, 尤其是与对数函数结合在一起的高考试 题更是屡见不鲜.
课堂互动讲练
跟踪训练
(2)法一:∵loga2=m,∴am=2. ∵loga3=n,∴an=3. 故a2m+n=(am)2·an=4×3=12. 法二:∵loga2=m,loga3=n, ∴a2m+n=a2loga2+loga3= aloga12=12.
课堂互动讲练
考点二
对数函数的图象
要正确识别函数图象,一是熟 悉各种基本函数的图象,二是把握图 象的性质,根据图象的性质去判断, 如过定点、定义域、值域、单调性、 奇偶性.
函数值分布
1,则 y<0 ; ②当0<a<1时:若x>1,
则 y<0 ;若x=1,则 y=0 ;
对数及对数函数
[答案] D
(2011·佛山一模)已知函数f(x)为奇函数,且当x>0时,f(x)=log2x.则满足不等式f(x)>0的x的取值范围是________. [答案] (-1,0)∪(1,+∞) (2010·天津文数)设a=log54,b=(log53)2,c=log45,则( ) A.a<c<b B.b<c<a C.a<b<c D.b<a<c [解析] 因为0<log53<1,所以0<(log53)2<log53,又log53<log54<1 log45>1,所以b<a<c. [答案] D
3.形如y=logaf(x)(a>0,a≠1)的函数有如下性质
化同底后利用函数的单调性; 作差或作商法; 利用中间量(0或1); 化同真数后利用图象比较.
4.对数值的大小比较的方法.
“当底数与真数同时大于1或底数与真数同时大于0而小于1时,对数值是正数,否则对数值小于0”.这一结论对解选择题,填空题很有帮助,能大大提高解题的效率.
Annual Work Summary Report
2021
2023
lgN
lnN
零与负数
0
1
logaN=b(a>0,a≠1)
1.对数的概念及运算性质 (1)对数的概念 如果ab=N(a>0,a≠1),那么b叫做以a为底N的对数,记 . 以10为底的对数叫做常用对数,记作 .以无理数e=2.71828…为底的对数叫做自然对数,记作 . (2)对数的性质 ① 没有对数;②loga1= ;③logaa= ;④alogaN=N(对数恒等式).
命题等价于x2-2ax+3>0的解集为{x|x<1或x>3} ∴x2-2ax+3=0的两根为1和3, ∴2a=1+3即a=2 [点评与警示] 对数函数的值域为R时,其真数必须取遍所有的正数.
人教a版高考数学(理)一轮课件:2.5对数与对数函数
(1)、(2)为化简题目,可由原式联想指数与对数的运算法则、 公式的结构形式来寻找解题思路.(3)可先求出 2m+n 的值,再用公式来求 a2m+n 的值.
(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分 数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运 算中要注意化同底及指数与对数之间的互化. (2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数 计算、化简、证明常用的技巧.
1.(1)化简 lg +lg 70-lg 3- ������������2 3-������������9 + 1; (2)已知 f(3x)=4xlog23+233,求 f(2)+f(4)+f(8)+…+f(28)的值. 【解】(1)原式=lg
2 3 2 ,0 3
B.
C.(1,0) 【答案】C 【解析】代入验证.
D.(0,1)
3.如果 f(10x)=x,则 f(3)等于( A.log310 B.lg 3 【答案】B 【解析】令 10x=t,则 x=lg t, 于是 f(t)=lg t.故 f(3)=lg 3.
) C.103 D.310
4.设 lg 2=a,lg 3=b,则 log512 等于( A.
������������ 8 【解】(1)原式= 50 ������������40
2×5
=
������������4
5
5=1. ������������4
(2)2
3+������������ ������ 0.5 4
对数与对数函数的应用PPT课件
比较下列各组数中两个值的大小 : (1)log23.4,log28.5; (2)log0.31.8,log0.32.7; (3)loga5.1,loga5.9(a>0,a ? 1).
解(1)考察对数函数 y=log2x ,因为它的底数
2<1,所以它在( 0,+? )上是增函数,于是
log23.4<log 28.5;
则 b=logaN 所以 alogaN=N
常用对数与自然对数的定义
? (1)以10为底的对数叫做 常用对数. 为了方便,N的常用对数 log10N简记为:lgN.
? (2)以e为底的对数叫做 自然对数. 为了方便,N的自然对数 logeN简记为:lnN.
例题
把下列 指数式 写成 对数式 :
(1) 54=625;
其中x是自变量,函数的定义域是( 0,+? )。
函数y=logax(a>0,且a ? 1)就是指数函数 y=ax的反 函数。因为 y=ax的值域是( 0,+? ),所以,函数 y=logax的定义域是( 0,+? )。
对数函数的图像与性质( 1)
对数函数 y=logax 与指数函数 y=ax 互为反函数, 所以y=logax的图像与 y=ax的图像关于直线 y=x对称。
练习
1.求下列函数的定义域: (1)y=log5(1-x);(2)1/log2x.
2.比较下列各题中两个值的大小: (1)log106,log108; (2)log0.56,log0.58.
(2) 2 -6=1/64;
(3) 3a=27;
(4) (1/3) m=5.73.
解 (1)log5625=4
高中数学对数和对数函数知识点与例题讲解
对数与对数函数1.对数(1)对数的定义:如果a b=N(a>0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.(2)指数式与对数式的关系:a b=NlogaN=b(a>0,a≠1,N>0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a(MN)=log a M+log a N.②log aMN=log a M-log a N.③logaM n=nlogaM.(M>0,N>0,a>0,a≠1)④对数换底公式:logbN= l oglogaaNb(a>0,a≠1,b>0,b≠1,N>0).2.对数函数(1)对数函数的定义函数y=log a x(a>0,a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里a<0,或=1的时候是会有相应b的值的。
但是,根据对数定义:log a a=1;如果a=1或=0那么log a a就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n=nlogaM如果a<0,那么这个等式两边就不会成立(比如,log(-2)4^(-2)就不等于(-2)*log(-2)4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象yyy =l ogxa>(1)a1O1xOxy =l o g a x (<a <1) 0底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R.③过点(1,0),即当x=1时,y=0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题题型1(对数的计算) 1.求下列各式的值. (1)35 log +25log2-1 21 50log - 514 log ;(2)log5 2 1 25 ×lo g 3 1 8 ×lo g 5 1 9. 练习题1.计算:lg 1 2 -lg5 8 +lg12.5-log 89·log 278;3.log535+21log2-log51502 -log514;3.log2125×log318×log519.1loglog4log3 4.399222.5.lg5lg2lg41(6).log24lglog27lg2log33222 7.2lg2lg3111lg0.36lg823例2.已知实数x、y、z满足3x=4y=6z>1.(1)求证:2x+1y=2z;(2)试比较3x、4y、6z的大小.练习题.已知log189=a,18b=5,用a、b表示log3645.题型二:(对数函数定义域值域问题)例1.已知函数fxlog22xx1aax的定义域为集合A,关于x的不等式22 的解集为B,若AB,求实数a的取值范围.2.设函数2ylog(ax2x2)定义域为A.2(1)若AR,求实数a的取值范围;(2)若2log(ax2x2)2在x[1,2]上恒成立,求实数a的取值范围.2练习题1.已知函数2 fxlgax2x1(1)若fx的定义域是R,求实数a的取值范围及fx的值域;(2)若fx的值域是R,求实数a的取值范围及fx的定义域2求函数y=2lg (x -2)-lg (x -3)的最小值.题型三(奇偶性及性) 例题1.已知定义域为R 的函数f (x )为奇函数足f(x +2)=-f(x),当x ∈[0,1]时,f(x)=2x -1.(1)求f(x)在[-1,0)上的解析式; (2)求f(1 log24)的值. 2 4.已知f (x )=l o g 1[3-(x -1)2],求f (x )的值域.3 5.已知y =l o g a (3-a x )在[0,2]上是x 的减函数,求a 的围.4.已知函数f(x)lg(2x)lg(2x).(Ⅰ)求函数yf(x)的定义域;(Ⅱ)判断函数yf(x)的奇偶性;(Ⅲ)若f(m2)f(m),求m的取值范围.练习题1.已知函数f(x)=loga(x+1)-loga(1-x)(a>0,a≠1)(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并给出证明;(3)当a>1时,求使f(x)>0的x的取值范围2.函数f(x)是定义在R上的偶函数,f(0)0,当x0时,1f(x)logx.2 (1)求函数f(x)的解析式;(2)解不等式2f(x1)2;3.已知f(x)是定义在R上的偶函数,且x0时,1f(x)log(x1).2 (Ⅰ)求f(0),f(1);(Ⅱ)求函数f(x)的表达式;(Ⅲ)若f(a1)1,求a的取值范围.题型4(函数图像问题)例题1.函数f(x)=|log2x|的图象是yy111x-11xOOAByy111x1xOOCD6.求函数y=log2|x|的定义域,并画出它的图象,指出它的单调区间.f(x)=|lgx|,a,b为实数,且0<a<b.(1)求方程f(x)=1的解;(2)若a,b满足f(a)=f(b)=2fa b2,求证:a·b=1,a b2 >1.练习题:1.已知a0且a1,函数f(x)log(x1)a,1g(x)log a,记F(x)2f(x)g(x)1x(1)求函数F(x)的定义域及其零点;(2)若关于x的方程2 F2.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log44xa?237.函数y=log2|ax-1|(a≠0)的对称轴方程是x=-2,那么a等于题型五:函数方程1方程lgx+lg(x+3)=1的解x=___________________.5.已知函数f(x)= 1()2x,x4,则f(2+log23)的值为f(x1),x4,4.已知函数f(x)log a(axx)(a0,a1为常数). (Ⅰ)求函数f(x)的定义域;(Ⅱ)若a2,x1,9,求函数f(x)的值域;(Ⅲ)若函数f(x)ya的图像恒在直线y2x1的上方,求实数a的取值范围.1xxyloglog(2x8).5.已知函数22242(Ⅰ)令tlog2x,求y关于t的函数关系式及t的取值范围;(Ⅱ)求函数的值域,并求函数取得最小值时的x的值.8.设函数f(x)=lg(1-x),g(x)=lg(1+x),在f(x)和g(x)的公共定义域内比较|f(x)|与|g(x)|的大小.您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。
对数函数及其性质-对数的公式互化-详尽的讲解(完整资料).doc
【最新整理,下载后即可编辑】2.1 对数与对数运算1.对数的概念一般地,如果a x=N (a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.说明:(1)实质上,上述对数表达式,不过是指数函数y=a x 的另一种表达形式,例如:34=81与4=log81这两个式子表达3是同一关系,因此,有关系式a x=N⇔x=log a N,从而得对数恒等式:a log a N=N.(2)“log”同“+”“×”“”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面.(3)根据对数的定义,对数log a N(a>0,且a≠1)具有下列性质:①零和负数没有对数,即N>0;②1的对数为零,即log a1=0;③底的对数等于1,即log a a=1.2.对数的运算法则利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度.(1)基本公式①log a (MN )=log a M +log a N (a >0,a ≠1,M >0,N >0),即正数的积的对数,等于同一底数的各个因数的对数的和.②log a M N=log a M -log a N (a >0,a ≠1,M >0,N >0),即两个正数的商的对数,等于被除数的对数减去除数的对数.③log a M n =n ·log a M (a >0,a ≠1,M >0,n ∈R ),即正数的幂的对数等于幂的底数的对数乘以幂指数.(2)对数的运算性质注意点①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4).②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a M N =log a M log a N,log a M n =(log a M )n . 3.对数换底公式在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底公式:log b N =log c N log c b(b >0,且b ≠1;c >0,且c ≠1;N >0).证明 设log b N =x ,则b x =N .两边取以c 为底的对数,得x log c b=log c N.所以x=log c Nlog c b,即log bN=log c Nlog c b.换底公式体现了对数运算中一种常用的转化,即将复杂的或未知的底数转化为已知的或需要的底数,这是数学转化思想的具体应用.由换底公式可推出下面两个常用公式:(1)log b N=1log N b或log bN·log N b=1 (N>0,且N≠1;b>0,且b≠1);(2)log bn N m=mn log b N(N>0;b>0,且b≠1;n≠0,m∈R) .题型一正确理解对数运算性质对于a>0且a≠1,下列说法中,正确的是( )①若M=N,则log a M=log a N;②若log a M=log a N,则M=N;③若log a M2=log a N2,则M=N;④若M=N,则log a M2=log a N2.A.①与③B.②与④C.②D.①、②、③、④解析在①中,当M=N≤0时,log a M与log a N均无意义,因此log a M=log a N不成立.在②中,当log a M=log a N时,必有M>0,N>0,且M=N,因此M=N成立.在③中,当log a M2=log a N2时,有M≠0,N≠0,且M2=N2,即|M|=|N|,但未必有M=N.例如,M=2,N=-2时,也有log a M2=log a N2,但M≠N.在④中,若M=N=0,则log a M2与log a N2均无意义,因此log a M2=log a N2不成立.所以,只有②成立.答案 C点评正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件,使用运算性质时,应牢记公式的形式及公式成立的条件.题型二对数运算性质的应用求下列各式的值:(1)2log 32-log 3329+log 38-5log 53; (2)lg25+23lg8+lg5·lg20+(lg2)2; (3)log 52·log 79log 513·log 734. 分析 利用对数的性质求值,首先要明确解题目标是化异为同,先使各项底数相同,才能使用性质,再找真数间的联系,对于复杂的真数,可以先化简再计算.解 (1)原式=2log 32-(log 332-log 39)+3log 32-3=2log 32-5log 32+2+3log 32-3=-1.(2)原式=2lg5+2lg2+lg 102·lg(2×10)+(lg2)2 =2lg(5×2)+(1-lg2)·(lg2+1)+(lg2)2=2+1-(lg2)2+(lg2)2=3. (3)∵log 52·log 79log 513·log 734=12log 52·2log 73-log 53·13log 74=-lg2lg5·lg3lg7lg3lg5·13·lg4lg7=-32. 点评 对数的求值方法一般有两种:一种是将式中真数的积、商、幂、方根利用对数的运算性质将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值.题型三 对数换底公式的应用计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258).分析 由题目可获取以下主要信息:本题是一道对数化简求值题,在题目中各个对数的底数都各不相同.解答本题可先通过对数换底公式统一底数再进行化简求值. 解 方法一 原式=⎝ ⎛⎭⎪⎪⎫log 253+log 225log 24+log 25log 28⎝ ⎛⎭⎪⎪⎫log 52+log 54log 525+log 58log 5125 =⎝⎛⎭⎪⎪⎫3log 25+2log 252log 22+log 253log 22⎝ ⎛⎭⎪⎪⎫log 52+2log 522log 55+3log 523log 55=⎝⎛⎭⎪⎪⎫3+1+13log 25·(3log 52) =13log 25·log 22log 25=13. 方法二 原式=⎝ ⎛⎭⎪⎪⎫lg125lg2+lg25lg4+lg5lg8⎝ ⎛⎭⎪⎪⎫lg2lg5+lg4lg25+lg8lg125 =⎝ ⎛⎭⎪⎪⎫3lg5lg2+2lg52lg2+lg53lg2⎝ ⎛⎭⎪⎪⎫lg2lg5+2lg22lg5+3lg23lg5 =⎝ ⎛⎭⎪⎪⎫13lg53lg2⎝ ⎛⎭⎪⎪⎫3lg2lg5=13. 点评 方法一是先将括号内换底,然后再将底统一;方法二是在解题方向还不清楚的情况下,一次性地统一为常用对数(当然也可以换成其他非1的正数为底),然后再化简.上述方法是不同底数对数的计算、化简和恒等证明的常用方法.已知log (x +3)(x 2+3x )=1,求实数x 的值.错解 由对数的性质可得x 2+3x =x +3.解得x =1或x =-3.错因分析 对数的底数和真数必须大于0且底数不等于1,这点在解题中忽略了.正解 由对数的性质知⎩⎨⎧ x 2+3x =x +3,x 2+3x >0,x +3>0且x +3≠1.解得x =1,故实数x 的值为1.对数的定义及其性质是高考中的重要考点之一,主要性质有:log a 1=0,log a a =1,a log a N =N (a >0,且a ≠1,N >0).1.(上海高考)方程9x -6·3x -7=0的解是________. 解析 ∵9x -6·3x -7=0,即32x -6·3x -7=0∴(3x -7)(3x +1)=0∴3x =7或3x =-1(舍去)∴x =log 37.答案 log 372.(辽宁高考)设g (x )=⎩⎪⎨⎪⎧ e x ,x ≤0,ln x ,x >0,则g ⎝ ⎛⎭⎪⎪⎫g ⎝ ⎛⎭⎪⎪⎫12=____. 解析 g ⎝ ⎛⎭⎪⎪⎫12=ln 12<0,g ⎝ ⎛⎭⎪⎪⎫ln 12=eln 12=12, ∴g ⎝ ⎛⎭⎪⎪⎫g ⎝ ⎛⎭⎪⎪⎫12=12. 答案 121.对数式log (a -3)(7-a )=b ,实数a 的取值范围是( )A .(-∞,7)B .(3,7)C .(3,4)∪(4,7) D.(3,+∞)答案 C解析 由题意得⎩⎨⎧ a -3>0,a -3≠1,7-a >0,解得3<a <7且a ≠4.2.设a =log 32,则log 38-2log 36用a 表示的形式是( )A .a -2B .3a -(1+a )2C .5a -2D .-a 2+3a -1答案 A解析 ∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1) =3a -2(a +1)=a -2.3.log 56·log 67·log 78·log 89·log 910的值为( )A .1B .lg5 C.1lg5D .1+lg2 答案 C解析 原式=lg6lg5·lg7lg6·lg8lg7·lg9lg8·lg10lg9=lg10lg5=1lg5. 4.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( )A .(0,1)B.⎝ ⎛⎭⎪⎪⎫0,12C.⎝ ⎛⎭⎪⎪⎫12,1 D .(1,+∞)答案 C解析 由题意,得⎩⎪⎨⎪⎧ 0<a <1,2a >1,∵a >0,a ≠1,log a (a 2+1)<log a 2a ,∴0<a <1.∴12<a <1. 5.已知函数f (x )=a x -1+log a x (a >0,a ≠1)在[1,3]上最大值与最小值之和为a 2,则a 的值为( )A .4 B.14 C .3 D.13答案 D6.若方程(lg x )2+(lg7+lg5)lg x +lg7·lg5=0的两根为α,β,则αβ等于( )A .lg7·lg5 B.lg35 C .35 D.135答案 D解析 ∵lg α+lg β=-(lg7+lg5)=-lg35=lg 35∴α·β=135.7.已知f (log 2x )=x ,则f ⎝ ⎛⎭⎪⎪⎫12=________. 答案2解析 令log 2x =12,则212=x ,∴f ⎝ ⎛⎭⎪⎪⎫12=212= 2.8.log (2-1)(2+1)=________.答案 -1 解析 log2-1(2+1)=log2-1(2+1)(2-1)2-1=log (2-1)12-1=-1.9.已知lg2=0.301 0,lg3=0.477 1,lg x =-2+0.778 1,则x =________.答案 0.06解析 ∵lg2=0.301 0,lg3=0.477 1,而0.301 0+0.477 1=0.778 1,∴lg x =-2+lg2+lg3, 即lg x =lg10-2+lg6.∴lg x =lg(6×10-2),即x =6×10-2=0.06.10.(1)已知lg x +lg y =2lg(x -2y ),求log 2y的值;(2)已知log 189=a,18b =5,试用a ,b 表示log 365. 解 (1)lg x +lg y =2lg(x -2y ), ∴xy =(x -2y )2,即x 2-5xy +4y 2=0. 即(x -y )(x -4y )=0,解得x =y 或x =4y ,又∵⎩⎨⎧x >0,y >0,x -2y >0,∴x >2y >0,∴x =y ,应舍去,取x =4y .则log 2x y =log 24y y =log 24=lg4lg 2=4.(2)∵18b =5,∴log 185=b, 又∵log 189=a , ∴log 365=log 185lg 1836=blog 18(18×2)=b 1+log 182=b1+log 18189=b 1+(1-log 189)=b2-a.11.设a ,b ,c 均为不等于1的正数,且a x=b y=c z,1x +1y+1z=0,求abc的值.解令a x=b y=c z=t (t>0且t≠1),则有1x=log t a,1y=log t b,1z=log t c,又1x+1y+1z=0,∴log t abc=0,∴abc=1.12.已知a,b,c是△ABC的三边,且关于x的方程x2-2x +lg(c2-b2)-2lg a+1=0有等根,试判定△ABC的形状.解∵关于x的方程x2-2x+lg(c2-b2)-2lg a+1=0有等根,∴Δ=0,即4-4[lg(c2-b2)-2lg a+1]=0.即lg(c2-b2)-2lg a=0,故c2-b2=a2,∴a2+b2=c2,∴△ABC为直角三角形.2.2.1 对数与对数运算(一)学习目标1.理解对数的概念,能进行指数式与对数式的互化.2.了解常用对数与自然对数的意义.3.理解对数恒等式并能用于有关对数的计算.自学导引1.如果a (a >0且a ≠1)的b 次幂等于N ,就是a b =N ,那么数b 叫做以a 为底N 的对数,记作b =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质有:(1)1的对数为零; (2)底的对数为1; (3)零和负数没有对数.3.通常将以10为底的对数叫做常用对数,以e 为底的对数叫做自然对数,log 10N 可简记为lg N ,log e N 简记为ln N .4.若a >0,且a ≠1,则a b =N 等价于log a N =b . 5.对数恒等式:a log a N =N (a >0且a ≠1).一、对数式有意义的条件例1 求下列各式中x 的取值范围:(1)log 2(x -10);(2)log (x -1)(x +2);(3)log (x +1)(x -1)2.分析 由真数大于零,底数大于零且不等于1可得到关于x的不等式(组),解之即可.解 (1)由题意有x -10>0,∴x >10,即为所求.(2)由题意有⎩⎪⎨⎪⎧ x +2>0,x -1>0且x -1≠1,即⎩⎪⎨⎪⎧x >-2,x >1且x ≠2,∴x >1且x ≠2.(3)由题意有⎩⎪⎨⎪⎧(x -1)2>0,x +1>0且x +1≠1,解得x >-1且x ≠0,x ≠1.点评 在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1.变式迁移1 在b =log (a -2)(5-a )中,实数a 的取值范围是( )A .a >5或a <2B .2<a <5C .2<a <3或3<a <5D .3<a <4 答案 C解析由题意得⎩⎨⎧5-a >0a -2>0a -2≠1,∴2<a <5且a ≠3.二、对数式与指数式的互化例2 将下列对数形式化成指数形式或将指数形式转化为对数形式:(1)54=625; (2)log 128=-3;(3)⎝ ⎛⎭⎪⎪⎫14-2=16; (4)log 101 000=3.分析 利用a x =N ⇔x =log a N 进行互化. 解 (1)∵54=625,∴log 5625=4.(2)∵log 128=-3,∴⎝ ⎛⎭⎪⎪⎫12-3=8. (3)∵⎝ ⎛⎭⎪⎪⎫14-2=16,∴log 1416=-2.(4)∵l og 101 000=3,∴103=1 000.点评 指数和对数运算是一对互逆运算,在解题过程中,互相转化是解决相关问题的重要途径.在利用a x =N ⇔x =log a N 进行互化时,要分清各字母分别在指数式和对数式中的位置.变式迁移2 将下列对数式化为指数式求x 值:(1)log x 27=32; (2)log 2x =-23;(3)log 5(log 2x )=0; (4)x =log 2719;(5)x =log 1216.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log 5(log 2x )=0,得log 2x =1,∴x =21=2. (4)由x =log 2719,得27x=19,即33x =3-2,∴x =-23.(5)由x =log 1216,得⎝ ⎛⎭⎪⎪⎫12x =16,即2-x =24, ∴x =-4.三、对数恒等式的应用例3 (1)a log a b ·log b c ·log c N 的值(a ,b ,c ∈R +,且不等于1,N >0);(2)412(log 29-log 25).解(1)原式=(a log a b )log b c ·log c N =b log b c ·log c N =(b log b c )log c N=c log c N =N .(2)原式=2(log 29-log 25)=2log 292log 25=95.点评 对数恒等式a log a N =N 中要注意格式:(1)它们是同底的;(2)指数中含有对数形式;(3)其值为真数.变式迁移3 计算:3log 35+(3)log 315.解 原式=5+312log 315=5+(3log 315)12=5+15=655.1.一般地,如果a (a >0,a ≠1)的b 次幂等于N ,就是a b =N ,那么b 叫做以a 为底N 的对数,记作log a N =b ,其中a 叫做对数的底数,N 叫做真数.2.利用a b =N ⇔b =log a N (其中a >0,a ≠1,N >0)可以进行指数与对数式的互化.3.对数恒等式:a log a N =N (a >0且a ≠1).一、选择题1.下列指数式与对数式互化不正确的一组是( ) A .100=1与lg1=0 B .27-13=13与log 2713=-13C .log 312=9与912=3D .log 55=1与51=5 答案 C2.指数式b 6=a (b >0,b ≠1)所对应的对数式是( )A .log 6a =aB .log 6b =aC .log a b =6D .log b a =6 答案 D3.若log x (5-2)=-1,则x 的值为( )A.5-2B.5+2C.5-2或5+2 D .2- 5 答案 B4.如果f (10x )=x ,则f (3)等于( ) A .log 310 B .lg3 C .103 D .310 答案 B解析 方法一 令10x =t ,则x =lg t , ∴f (t )=lg t ,f (3)=lg3.方法二 令10x =3,则x =lg3,∴f (3)=lg3. 5.21+12·log 25的值等于( )A .2+ 5B .2 5C .2+52D .1+52答案 B解析 21+12log 25=2×212log 25=2×2log 2512=2×512=2 5.二、填空题6.若5lg x =25,则x 的值为________. 答案 100解析 ∵5lg x =52,∴lg x =2,∴x =102=100.7.设log a 2=m ,log a 3=n ,则a 2m +n 的值为________. 答案 12解析 ∵log a 2=m ,log a 3=n ,∴a m =2,a n =3, ∴a 2m +n =a 2m ·a n =(a m )2·a n =22×3=12. 8.已知lg6≈0.778 2,则102.778 2≈________. 答案 600解析 102.778 2≈102×10lg6=600. 三、解答题9.求下列各式中x 的值 (1)若log 3⎝ ⎛⎭⎪⎪⎫1-2x 9=1,则求x 值;(2)若log 2 003(x 2-1)=0,则求x 值. 解(1)∵log 3⎝ ⎛⎭⎪⎪⎫1-2x 9=1,∴1-2x 9=3 ∴1-2x =27,即x =-13 (2)∵log 2 003(x 2-1)=0 ∴x 2-1=1,即x 2=2 ∴x =± 210.求x 的值:(1)x =log 224;(2)x =log 93;(3)x =71-log 75;(4)log x 8=-3;(5)log 12x =4.解(1)由已知得:⎝⎛⎭⎪⎪⎫22x=4, ∴2-12x =22,-x 2=2,x =-4.(2)由已知得:9x=3,即32x=312.∴2x =12,x =14.(3)x =7÷7log 75=7÷5=75.(4)由已知得:x -3=8,即⎝ ⎛⎭⎪⎪⎫1x 3=23,1x =2,x =12.(5)由已知得:x =⎝ ⎛⎭⎪⎪⎫124=116.2.2.1对数与对数运算(二)学习目标1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.自学导引1.对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么, (1)log a (MN )=log a M+log a N ;(2)log a MN=log a M -log a N ;(3)log a M n =n log a M (n ∈R ). 2.对数换底公式:log a b =log c blog c a.一、正确理解对数运算性质例1 若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数有( )①log a x · log a y =log a (x +y ); ②log a x -log a y =log a (x -y );③log a xy=log a x ÷log a y ;④log a (xy )=log a x ·log a y .A .0个B .1个C .2个D .3个答案 A解析 对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.在运算中要注意不能把对数的符号当作表示数的字母参与运算,如log a x ≠log a ·x ,log a x 是不可分开的一个整体.四个选项都把对数符号当作字母参与运算,因而都是错误的.点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件.变式迁移1 若a >0且a ≠1,x >0,n ∈N *,则下列各式正确的是( )A .log a x =-log a 1xB .(log a x )n =n log a xC .(log a x )n=log a x nD .log a x =log a 1x答案 A二、对数运算性质的应用例2 计算:(1)log 535-2log 573+log 57-log 51.8;(2)2(lg 2)2+lg 2·lg5+(lg 2)2-lg2+1; (3)lg 27+lg8-lg 1 000lg1.2;(4)(lg5)2+lg2·lg50.分析 利用对数运算性质计算.解 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55 =2log 55=2.(2)原式=lg 2(2lg 2+lg5)+(lg 2-1)2 =lg 2(lg2+lg5)+1-lg 2=lg 2+1-lg 2=1. (3)原式=32lg3+3lg2-32lg3+2lg2-1=3lg3+6lg2-32(lg3+2lg2-1)=32.(4)原式=(lg5)2+lg2·(lg2+2lg5)=(lg5)2+2lg5·lg2+(lg2)2=(lg5+lg2)2=1.点评 要灵活运用有关公式.注意公式的正用、逆用及变形使用.变式迁移2 求下列各式的值: (1)log 535+2log 122-log 5150-log 514;(2)[(1-log 63)2+log 62·log 618]÷log 64. 解 (1)原式=log 5(5×7)-2log 2212+log 5(52×2)-log 5(2×7)=1+log 57-1+2+log 52-log 52-log 57=2.(2)原式=[log 262+log 62·log 6(3×6)]÷log 622=log 62(log 62+log 63+1)÷(2log 62)=1.三、换底公式的应用例3 (1)设3x=4y=36,求2x +1y的值;(2)已知log 189=a,18b =5,求log 3645. 解 (1)由已知分别求出x 和y . ∵3x =36,4y =36, ∴x =log 336,y =log 436, 由换底公式得:x =log 3636log 363=1log 363,y =log 3636log 364=1log 364,∴1x =log 363,1y=log 364,∴2x +1y=2log 363+log 364=log 36(32×4)=log 3636=1. (2)∵log 189=a,18b =5,∴log 185=b . ∴log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b1+log 18189=a +b 2-a. 点评 指数式化为对数式后,两对数式的底不同,但式子两端取倒数后,利用对数的换底公式可将差异消除.变式迁移3 (1)设log 34·log 48·log 8m =log 416,求m ; (2)已知log 1227=a ,求log 616的值. 解 (1)利用换底公式,得lg4lg3·lg8lg4·lg mlg8=2,∴lg m =2lg3,于是m =9. (2)由log 1227=a ,得3lg32lg2+lg3=a ,∴lg3=2a lg23-a ,∴lg3lg2=2a 3-a.∴log 616=4lg2lg3+lg2=42a3-a +1=4(3-a )3+a.1.对于同底的对数的化简常用方法是:(1)“收”,将同底的两对数的和(差)化成积(商)的对数; (2)“拆”,将积(商)的对数拆成对数的和(差).2.对于常用对数的化简要充分利用“lg5+lg2=1”来解题. 3.对于多重对数符号对数的化简,应从内向外逐层化简求值.一、选择题1.lg8+3lg5的值为( )A .-3B .-1C .1D .3 答案 D解析 lg8+3lg5=lg8+lg53=lg1 000=3.2.已知lg2=a ,lg3=b ,则log 36等于( )A.a +b aB.a +b bC.aa +bD.ba +b答案 B解析 log 36=lg6lg3=lg2+lg3lg3=a +b b .3.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则⎝ ⎛⎭⎪⎪⎫lg a b 2的值等于( )A .2 B.12 C .4 D.14答案 A解析 由根与系数的关系,得lg a +lg b =2,lg a ·lg b =12,∴⎝ ⎛⎭⎪⎪⎫lg a b 2=(lg a -lg b )2 =(lg a +lg b )2-4lg a ·lg b =22-4×12=2.4.若2.5x=1 000,0.25y=1 000,则1x -1y等于( )A.13 B .3 C .-13 D .-3 答案 A解析 由指数式转化为对数式:x =log 2.51 000,y =log 0.251 000,则1x -1y =log 1 0002.5-log 1 0000.25=log 1 00010=13. 5.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 005)=8,则f (x 21)+f (x 22)+…+f (x 22 005)的值等于( )A .4B .8C .16D .2log a 8 答案 C解析 因为f (x )=log a x ,f (x 1x 2…x 2 005)=8,所以f (x 21)+f (x 22)+…+f (x 22 005) =log a x 21+log a x 22+…+log a x 22 005=2log a |x 1|+2log a |x 2|+…+2log a |x 2 005| =2log a |x 1x 2…x 2 005| =2f (x 1x 2…x 2 005)=2×8=16. 二、填空题6.设lg2=a ,lg3=b ,那么lg 1.8=__________. 答案a +2b -12解析 lg 1.8=12lg1.8=12lg 1810=12lg 2×910=12(lg2+lg9-1)=12(a +2b -1). 7.若log a x =2,log b x =3,log c x =6,则log abc x 的值为____. 答案 1解析 log abc x =1log x abc =1log x a +log x b +log x c∵lo g a x =2,log b x =3,log c x =6 ∴log x a =12,log x b =13,log x c =16,∴log abc x =112+13+16=11=1.8.已知log 63=0.613 1,log 6x =0.386 9,则x =________. 答案 2解析 由log 63+log 6x =0.613 1+0.386 9=1. 得log 6(3x )=1.故3x =6,x =2. 三、解答题9.求下列各式的值: (1)12lg 3249-43lg 8+lg 245; (2)(lg5)2+2lg2-(lg2)2.解 (1)方法一 原式=12(5lg2-2lg7)-43·32lg2+12(2lg7+lg5) =52lg2-lg7-2lg2+lg7+12lg5 =12lg2+12lg5=12(lg2+lg5) =12lg10=12. 方法二 原式=lg 427-lg4+lg7 5=lg 42×757×4=lg(2·5)=lg 10=12.(2)方法一 原式=(lg5+lg2)(lg5-lg2)+2lg2=lg10·lg 52+lg4=lg ⎝⎛⎭⎪⎪⎫52×4=lg10=1. 方法二 原式=(lg10-lg2)2+2lg2-lg 22 =1-2lg2+lg 22+2lg2-lg 22=1. 10.若26a=33b=62c,求证:1a +2b =3c.证明 设26a =33b =62c =k (k >0),那么⎩⎨⎧6a =log 2k ,3b =log 3k ,2c =log 6k ,∴⎩⎪⎪⎨⎪⎪⎧1a =6log 2k=6log k 2,1b =3log 3k =3log k3,1c =2log 6k=2log k6.∴1a +2b=6·log k 2+2×3log k 3=log k (26×36)=6log k 6=3×2log k 6=3c,即1a +2b =3c.2.2.2 对数函数及其性质1.对数函数的概念形如y =log a x (a >0且a ≠1)的函数叫做对数函数. 对于对数函数定义的理解,要注意:(1)对数函数是由指数函数变化而来的,由指数式与对数式关系知,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞);(2)对数函数的解析式y =log a x 中,log a x 前面的系数为1,自变量在真数的位置,底数a 必须满足a >0,且a ≠1;(3)以10为底的对数函数为y=lg x,以e为底的对数函数为y =ln x.2.对数函数的图象及性质:a>10<a<1图象性质函数的定义域为(0,+∞),值域为(-∞,+∞)函数图象恒过定点(1,0),即恒有log a1=0当x>1时,恒有y>0;当0<x<1时,恒有y<0当x>1时,恒有y<0;当0<x<1时,恒有y>0 函数在定义域(0,+∞)上为增函数函数在定义域(0,+∞)上为减函数3.指数函数与对数函数的关系比较名称指数函数对数函数解析式y=a x (a>0,且a≠1)y=log a x(a>0,且a≠1)定义域(-∞,+∞)(0,+∞)值域(0,+∞)(-∞,+∞)函数值变化情况a>1时,a>1时,log a x()()()⎪⎩⎪⎨⎧<<==>>011101x x x a x ; 0<a <1时,x ()()()⎪⎩⎪⎨⎧<>==><011101x x x a x ()()()⎪⎩⎪⎨⎧<<>==>>1001010x x x ; 0<a <1时,log a x()()()⎪⎩⎪⎨⎧<<>==><1001010x x x 图象必 过定点点(0,1) 点(1,0)单调性a >1时,y =a x 是增函数;0<a <1时,y =a x 是减函数a >1时,y =log a x 是增函数;0<a <1时,y =log a x 是减函数图象y =a x 的图象与y =log a x 的图象关于直线y=x 对称实际上,观察对数函数的图象不难发现,对数函数中的值y =log m n 有以下规律:(1)当(m -1)(n -1)>0,即m 、n 范围相同(相对于“1”而言),则log m n >0;(2)当(m -1)(n -1)<0,即m 、n 范围相反(相对于“1”而言),则log m n <0.有了这个规律,我们再判断对数值的正负就很简单了,如log 213<0,log 52>0等,一眼就看出来了!题型一 求函数定义域求下列函数的定义域: (1)y =log 3x -12x +3x -1; (2)y =11-log a (x +a )(a >0,a ≠1).分析 定义域即使函数解析式有意义的x 的范围. 解(1)要使函数有意义,必须{ 2x +3>0,x -1>0,3x -1>0,3x -1≠1同时成立,解得⎩⎪⎨⎪⎧x >-32,x >1,x >13,x ≠23. ∴x >1. ∴定义域为(1,+∞).(2)要使原函数有意义,需1-log a (x +a )>0, 即log a (x +a )<1=log a a .当a >1时,0<x +a <a ,∴-a <x <0. 当0<a <1时,x +a >a ,∴x >0.∴当a >1时,原函数定义域为{x |-a <x <0}; 当0<a <1时,原函数定义域为{x |x >0}.点评 求与对数函数有关的定义域问题,首先要考虑:真数大于零,底数大于零且不等于1,若分母中含有x ,还要考虑不能使分母为零.题型二 对数单调性的应用(1)log 43,log 34,log 4334的大小顺序为( )A .log 34<log 43<log 4334B .log 34>log 43>log 4334C .log 34>log 4334>log 43D .log 4334>log 34>log 43(2)若a 2>b >a >1,试比较log a a b ,log b ba,log b a ,log a b 的大小.(1)解析 ∵log 34>1,0<log 43<1, log 4334=log 43⎝ ⎛⎭⎪⎪⎫43-1=-1,∴log 34>log 43>log 4334.答案 B(2)解 ∵b >a >1,∴0<ab<1.∴log a a b <0,log b ba ∈(0,1),logb a ∈(0,1).又a >b a >1,且b >1,∴log b ba <logb a ,故有log a a b <log b ba<log b a <log a b .点评 比较对数的大小,一般遵循以下几条原则: ①如果两对数的底数相同,则由对数函数的单调性(底数a >1为增;0<a <1为减)比较.②如果两对数的底数和真数均不相同,通常引入中间变量进行比较.③如果两对数的底数不同而真数相同,如y =log a 1x 与y =log a 2x 的比较(a 1>0,a 1≠1,a 2>0,a 2≠1).当a 1>a 2>1时,曲线y 1比y 2的图象(在第一象限内)上升得慢.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2.而在第一象限内,图象越靠近x 轴对数函数的底数越大.当0<a 2<a 1<1时,曲线y 1比y 2的图象(在第四象限内)下降得快.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2即在第四象限内,图象越靠近x 轴的对数函数的底数越小.已知log a 12<1,那么a 的取值范围是________.分析 利用函数单调性或利用数形结合求解.解析 由log a 12<1=log a a ,得当a >1时,显然符合上述不等式,∴a >1;当0<a <1时,a <12,∴0<a <12.故a >1或0<a <12.答案 a >1或0<a <12点评 解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答.理解会用以下几个结论很有必要:(1)当a >1时,log a x >0⇔x >1,log a x <0⇔0<x <1; (2)当0<a <1时,log a x >0⇔0<x <1,log a x <0⇔x >1.题型三 函数图象的应用若不等式2x -log a x <0,当x ∈⎝⎛⎭⎪⎪⎫0,12时恒成立,求实数a 的取值范围.解要使不等式2x<logax 在x ∈⎪⎭⎫⎝⎛21,0时恒成立,即函数y=logax的图象在⎪⎭⎫⎝⎛21,0内恒在函数y=2x 图象的上方,而y=2x 图象过点⎪⎭⎫⎝⎛2,21.由图可知,loga 21>2,显然这里0<a<1,∴函数y=logax 递减. 又loga 21>2=log 2aa ,∴a 2>21,即a>2221⎪⎭⎫⎝⎛.∴所求的a 的取值范围为2221⎪⎭⎫⎝⎛<a<1.点评 原问题等价于当x ∈⎪⎭⎫⎝⎛21,0时,y1=2x 的图象在y2=logax 的图象的下方,由于a 的大小不确定,当a>1时,显然y2<y1,因此a 必为小于1的正数,当y2的图象通过点⎪⎭⎫⎝⎛2,21时,y2满足条件,此时a 0=2221⎪⎭⎫⎝⎛.那么a 是大于a 0还是小于a 0才满足呢?可以画图象观察,请试着画一画.这样可以对数形结合的方法有更好地掌握.设函数f(x)=lg(ax2+2x+1),若f(x)的值域是R,求实数a的取值范围.错解∵f(x)的值域是R,∴ax2+2x+1>0对x∈R恒成立,即{a>0Δ<0⇔{a>04-4a<0⇔a>1.错因分析出错的原因是分不清定义域为R与值域为R的区别.正解函数f(x)=lg(ax2+2x+1)的值域是R⇔真数t=ax2+2x+1能取到所有的正数.当a=0时,只要x>-12,即可使真数t取到所有的正数,符合要求;当a≠0时,必须有{a>0Δ≥0⇔{a>04-4a≥0⇔0<a≤1.∴f(x)的值域为R时,实数a的取值范围为[0,1].本节内容在高考中考查的形式、地位与指数函数相似,着重考查对数的概念与对数函数的单调性,考查指数、对数函数的图象、性质及其应用.1.(广东高考)已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅解析 由题意知M ={x |x <1},N ={x |x >-1}. 故M ∩N ={x |-1<x <1}. 答案 C2.(湖南高考)下列不等式成立的是( ) A .log 32<log 23<log 25 B .log 32<log 25<log 23 C .log 23<log 32<log 25 D .log 23<log 25<log 32解析 ∵y =log 2x 在(0,+∞)上是增函数, ∴log 25>log 23>log 22=1.又y =log 3x 在(0,+∞)上为增函数, ∴log 32<log 33=1.∴log 32<log 23<log 25. 答案 A3.(全国高考)若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( ) A .a <b <c B .c <a <bC .b <a <cD .b <c <a 解析 ∵1e <x <1,∴-1<ln x <0.令t =ln x ,则-1<t <0. ∴a -b =t -2t =-t >0.∴a >b .c -a =t 3-t =t (t 2-1)=t (t +1)(t -1),又∵-1<t <0,∴0<t +1<1,-2<t -1<-1,∴c -a >0,∴c >a . ∴c >a >b . 答案 C1.已知函数f (x )=1+2x 的定义域为集合M ,g (x )=ln(1-x )的定义域为集合N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-12<x <1D .∅答案 C2.已知函数f (x )=lg 1-x 1+x ,若f (a )=12,则f (-a )等于( )A.12 B .-12 C .-2 D .2 答案 B解析 f (-a )=lg 1+a 1-a =-lg ⎝ ⎛⎭⎪⎪⎫1+a 1-a -1 =-lg 1-a 1+a =-f (a )=-12.3.已知a =log 23,b =log 32,c =log 42,则a ,b ,c 的大小关系是( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b 答案 A解析 因为a =log 23>1,b =log 3 2<1,所以a >b ; 又因为2>3,则log 32>log 33=12, 而log 42=log 22=12, 所以b >12,c =12,即b >c .从而a >b >c .4.函数f (x )=lg|x |为( )A .奇函数,在区间(0,+∞)上是减函数B .奇函数,在区间(0,+∞)上是增函数C .偶函数,在区间(-∞,0)上是增函数D.偶函数,在区间(-∞,0)上是减函数答案 D解析已知函数定义域为(-∞,0)∪(0,+∞),关于坐标原点对称,且f(-x)=lg|-x|=lg|x|=f(x),所以它是偶函数.又当x>0时,|x|=x,即函数y=lg|x|在区间(0,+∞)上是增函数.又f(x)为偶函数,所以f(x)=lg|x|在区间(-∞,0)上是减函数.5.函数y=a x与y=-log a x (a>0,且a≠1)在同一坐标系中的图象只可能为( )答案 A解析方法一若0<a<1,则曲线y=a x下降且过(0,1),而曲线y=-log a x上升且过(1,0);若a>1,则曲线y=a x上升且过(0,1),而曲线y=-log a x下降且过(1,0).只有选项A满足条件.方法二注意到y=-log a x的图象关于x轴对称的图象的表达式为y=log a x,又y=log a x与y=a x互为反函数(图象关于直线y=x 对称),则可直接选定选项A.6.设函数f (x )=log 2a (x +1),若对于区间(-1,0)内的每一个x 值都有f (x )>0,则实数a 的取值范围为( )A .(0,+∞)B.⎝ ⎛⎭⎪⎪⎫12,+∞ C.⎝⎛⎭⎪⎪⎫12,1D.⎝⎛⎭⎪⎪⎫0,12 答案 D解析 已知-1<x <0,则0<x +1<1,又当-1<x <0时,都有f (x )>0,即0<x +1<1时都有f (x )>0,所以0<2a <1,即0<a <12.7.若指数函数f (x )=a x (x ∈R )的部分对应值如下表:则不等式log a (x . 答案 {x |1<x <2}解析 由题可知a =1.2,∴log 1.2(x -1)<0, ∴log 1.2(x -1)<log 1.21,解得x <2, 又∵x -1>0,即x >1,∴1<x <2. 故原不等式的解集为{x |1<x <2}.8.函数y =log a x (1≤x ≤2)的值域为[-1,0],那么a 的值为________.答案 12解析 若a >1,则函数y =log a x 在区间[1,2]上为增函数,其值域不可能为[-1,0];故0<a <1,此时当x =2时,y 取最小值-1, 即log a 2=-1,得a -1=2,所以a =12.9.已知函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1log a x ,x ≥1是实数集R 上的减函数,那么实数a 的取值范围为__________.答案⎣⎢⎢⎡⎭⎪⎪⎫17,13 解析 函数f (x )为实数集R 上的减函数, 一方面,0<a <1且3a -1<0,所以0<a <13,另一方面,由于f (x )在R 上为减函数, 因此应有(3a -1)×1+4a ≥log a 1,即a ≥17.因此满足题意的实数a 的取值范围为17≤a <13.10.已知f (x )=1+log 2x (1≤x ≤4),求函数g (x )=f 2(x )+f (x 2)的最大值和最小值.解∵f(x)的定义域为[1,4],∴g(x)的定义域为[1,2].∵g(x)=f2(x)+f(x2)=(1+log2x)2+(1+log2x2)x+2)2-2,=(log2又1≤x≤2,∴0≤log2x≤1.∴当x=1时,g(x)min=2;当x=2时,g(x)max=7.学习目标1.掌握对数函数的概念、图象和性质.2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.自学导引1.对数函数的定义:一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的图象与性质定义y=log a x (a>0,且a≠1)底数a>10<a<1图象定义域(0,+∞)值域R单调性在(0,+∞)上是增函数在(0,+∞)上是减函数共点性图象过点(1,0),即log a1=函数值特点x∈(0,1)时,y∈(-∞,0);x∈[1,+∞)时,y∈[0,+∞)x∈(0,1)时,y∈(0,+∞);x∈[1,+∞)时,y∈(-∞,0]对称性函数y=log a x与y=log1a x 的图象关于x轴对称对数函数y =log a x (a >0且a ≠1)和指数函数y =a x _(a >0且a ≠1)互为反函数.一、对数函数的图象例1 下图是对数函数y =log a x 的图象,已知a 值取3,43,35,110,则图象C 1,C 2,C 3,C 4相应的a 值依次是( ) A.101,53,34,3B .53,101,34,3C .101,53,3,34D .53,101,3,34 答案 A解析 方法一 因为对数的底数越大,函数的图象越远离y 轴的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2 (2020届河北邯郸模拟,15)已知函数f(x)=|log3x|,实数m,n满足0<m<n,且
f(m)=f(n),若f(x)在[m2,n]上的最大值为2,则 n =
.
m
解析 ∵f(x)=|log3x|,正实数m,n满足m<n,且f(m)=f(n),∴0<m<1<n,∴-log3m=
log3n,∴mn=1.
∴ln a>-ln(2-a)⇒a(2-a)>1,无解. 综上,a的取值范围为(0,1),故选A.
答案 A
考向二 对数函数性质的应用 例3 (2019陕西西安高新区第一中学模拟,6)已知函数f(x)=5-log3x,x∈(3,27], 则f(x)的值域是 ( ) A.(2,4] B.[2,4) C.[-4,4) D.(6,9]
答案 (3,+∞)
考向三 指数式与对数式的大小比较 例6 (2019山西吕梁第一次模拟,6)已知a=log35,b=1.51.5,c=ln 2,则a,b,c的大 小关系是 ( ) A.c<a<b B.c<b<a C.a<c<b D.a<b<c
解析
1<a=log35=
1 2
log325<
1 2
log327=1.5,b=1.51.5>
解析 由对数的运算公式和换底公式可得
log29×log34+2log510+log50.25=2log23×
log2 log2
4 3
+log5(102×0.25)=4+2=6.故选D.
答案 D
考向基础
考点二 对数函数的图象与性质
1.对数函数的图象与性质
a>1
0<a<1
图象
性质 定义域:(0,+∞) 值域:R 过点(1,0),即x=1时,y=0 当x>1时,y>0;当0<x<1时,y<0 是(0,+∞)上的增函数
当x>1时,y<0;当0<x<1时,y>0 是(0,+∞)上的减函数
2.反函数 指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0且a≠1)互为反函数,它 们的图象关于直线y=x对称.其图象关系如图所示.
3.比较底数的大小 由图象可知,a>b>1>c>d,在第一象限内,从左向右,底数越来越大.
logba
(a,b,c均大于0且不等于1,d>0)
运算 条件 法则 结论
a>0且a≠1,M>0,N>0
loga(MN)=logaM+logaN
loga =logaM-logaN
M
logaMN n=nlogaM(n∈R)
考向突破 考向 对数的运算 例1 (2018皖西高中教学联盟期末,4)计算log29×log34+2log510+log50.25= () A.0 B.2 C.4 D.6
考向突破 考向一 对数函数图象的应用
例2 (2020届山西运城模拟,7)已知函数f(x)=|ln x|满足f(a)>f(2-a),则实数a 的取值范围是 ( ) A.(0,1) B.(1,2) C.(2,3) D.(1,3)
解析
f(x)=
ln x,x 1, -ln x,0 x
画出f(x)的大致图象如图,
1 3
x
与y=log3x两函数图象交点的横坐标,易得b
=-2.画出y=
1 3
x
,y=3x,y=log3x,y=lo
g
1 3
x的图象,可看出b<a<c.
答案 A
方法2 对数函数的性质及其应用
1.比较对数值大小的类型及相应方法
2.研究复合函数y=loga f(x)的单调性(最值)时,应先研究其定义域,结合函数 u=f(x)及y=logau的单调性(最值)确定函数y=loga f(x)的单调性(最值)(其中a> 0且a≠1).
x
故实数a的取值范围是(0,1)∪(1,4].
答案 (0,1)∪(1,4]
考向二 与对数函数有关的复合函数的单调性
例5 函数f(x)=log2(x2-2x-3)的单调增区间是
.
解析 由题意可知x2-2x-3>0,∴x>3或x<-1. 令u=x2-2x-3,该函数在(-∞,-1)上单调递减,在(3,+∞)上单调递增, 又∵y=log2u在(0,+∞)上单调递增,∴y=log2(x2-2x-3)在(-∞,-1)上单调递减, 在(3,+∞)上单调递增,故f(x)的单调增区间为(3,+∞).
9
综上可得 n =9.
m
答案 9
1,
由图知f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.
根据题意可知 2a-a
0, 0
⇒0<a<2.
①当0<a<1,2-a>1时,∵f(a)>f(2-a),
∴-ln a>ln(2-a)⇒a(2-a)<1,解得a≠1⇒0<a<1;
②当a=1时,f(a)=f(2-a),不符合题意;
③当1<a<2,0<2-a<1时,∵f(a)>f(2-a),
考向突破 考向一 与对数函数有关复合函数的值域
例4
(2018江西一模,15)若函数f(x)=loga
xLeabharlann a x-4(a>0且a≠1)的值域为R,
则实数a的取值范围是
.
解析
函数f(x)=loga
x
a x
-4
(a>0且a≠1)的值域为R,则x+
a x
-4能取到所有
正数.易知x>0,∵x+ a ≥2 a ,∴只需2 a -4≤0,即2 a ≤4,解得a≤4.
考点清单
考点一 对数的概念及运算
考向基础 1.对数的概念 (1)对数的定义 一般地,如果ax=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=logaN, 其中a叫做对数的底数,N叫做真数.
(2)几种常见对数
对数形式 一般对数 常用对数 自然对数
特点 底数为a(a>0且a≠1)
底数为10 底数为e
∵f(x)在区间[m2,n]上的最大值为2,函数f(x)在[m2,1]上是减函数,在(1,n]上是
增函数,
∴-log3m2=2或log3n=2.
若-log3m2=2,则m=1 ,从而n=3,此时log3n=1,满足题意,故 n =3÷1 =9;
3
m3
若log3n=2,则n=9,从而m=1 ,此时-log3m2=4,不满足题意.
解析 因为3<x≤27,所以1<log3x≤3,2≤f(x)<4, 即f(x)的值域是[2,4).
答案 B
考点三 对数函数的综合应用
考向基础 1.与对数函数有关的复合函数的定义域、值域 (1)y=loga f(x)的定义域是满足f(x)>0的x的值组成的集合. (2)先确定f(x)>0时对应的x的取值范围及此时f(x)的取值范围,再根据对数 函数的单调性确定y=loga f(x)的值域. 2.与对数函数有关的复合函数的单调性 函数y=loga f(x)的单调区间必须保证在f(x)>0时相应x的取值范围内,这时内 外层函数要注意“同增异减”.
记法 logaN lg N ln N
2.对数的性质、换底公式与运算法则
性质
loga1=0;logaa=1 a loga N =N;logaaN=N(a>0且a≠1)
换底 公式
loga N
logbN= logab (a,b均大于0且不等于1,N>0)
相关结论:logab= 1 ;logab·logbc·logcd=logad
例1
(2018广东广州执信中学月考,5)设a,c为正数,且3a=lo
g
1 3
a,
1 3
b
=9,
1 3
c
=log3c,则 ( )
A.b<a<c B.c<b<a C.c<a<b D.a<b<c
解析 方程的根可以转化为两图象交点的横坐标,a为y=3x与y=log1 x两函
3
数图象交点的横坐标,c为y=
1.5,c=ln
2<1,所以c<a<b,
故选A.
答案 A
方法技巧
方法1 对数函数的图象及其应用
1.底数与1的大小关系决定了图象的升降,a>1时,图象上升;0<a<1时,图象下 降. 2.设y1=logax,y2=logbx,其中a>1,b>1(或0<a<1,0<b<1).当x>1时,“底大图低”, 即若 a>b,则y1<y2;当0<x<1时,“底大图高”,即若a>b,则y1>y2. 3.对一些可通过平移、对称作出其图象的对数函数型问题,在求解其单调 性(单调区间)、值域(最值)、零点时,常利用数形结合法.