信号分析方法基础知识
信号完整性分析基础系列之一——眼图测量
信号完整性分析基础系列之一——关于眼图测量(上)汪进进美国力科公司深圳代表处内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。
全分为上、下两篇。
上篇包括一、二部分。
下篇包括三、四部分。
您知道吗?眼图的历史可以追溯到大约47年前。
在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。
您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。
很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。
这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。
在我2004年来力科面试前,我也从来没有听说过眼图。
那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。
之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。
刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。
网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。
“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。
信号分析基础理论知识之频谱分析
信号分析基础理论知识之频谱分析1. 从时域到频域实际的波形可视为由若干正弦波所合成,每一正弦分量各有其一定的频率和幅值。
(a) 波形;(b) 由三个正弦波组成;(c) 频谱2. 傅里叶变换(1) FT (连续傅里叶变换)正变换:逆变换:其中,ω=2πf,f(t)为时域数据序列,F(ω)为频域的谱函数序列。
(2) DFT(离散傅里叶变换)对N个样点的数字化的时域波形进行数值积分计算,计算某一频率点的幅值。
可在计算机上进行,但计算量巨大。
(3) FFT(快速傅里叶变换)离散变换的一种快速算法,计算速度快,适合工程应用,但具有如下限制:参与计算的数据点数(FFT分析点数)必须为2的幂次方,即2n。
频率分辨率问题,频率间隔Δf。
3. 频谱泄露误差泄漏产生:当实际信号的频率处于f(i)和f(i+1)之间时,则会产生频率泄漏现象,导致误差。
频率误差:FFT频率反映的频率为(i-1)Δf Hz或者iΔf Hz,最大频率误差为Δf/2。
幅值误差:谱峰的幅值减小,泄漏到附近的谱峰上,最大幅值误差为36.3%。
整周期采样:信号的频率正好处于f(i)的位置上,即信号频率等于Δf 的整数倍,则不会产生泄漏。
产生机理(边缘截断):常用校正方法:加窗处理:如hanning、平顶窗等,仅能校正幅值,不能校正频率;频率计校正:可以对若干个单个谱峰进行校正,特点为快速实时,既能校正幅值,又能校正频率;平滑处理:能有效校正最大谱峰处的幅值,不能校正频率。
4. 加窗和平滑加窗可消除或减轻信号截断和周期化带来的不连续问题。
平滑是将频谱任何一点的附近若干点进行相加,将泄露到两边的能量加回来。
(a) 整周期;(b) 严重泄露;(c) 加汉宁窗;(d) 平滑5. 窗函数基本特性相当于滤波器。
6. 常用窗(a) 指数窗形式;(b) hanning窗形式;(c)hamming窗形式(d) 平顶窗形式;(e) Kaiser窗形式;(f) 余弦矩形窗形式7. 平均和重叠平均:对较长的信号进行平均计算,用以消除随机噪声带来的误差。
信号与系统知识点整理
信号与系统知识点整理信号与系统是电子、通信、自动化等领域中的基础课程之一,主要研究信号的产生、传输、处理和分析等内容。
下面是信号与系统的知识点整理。
1.信号的分类:-连续信号:在时间和幅度上都是连续的信号,如声音、电压波形等。
-离散信号:在时间上是离散的信号,如数字音频、数字图像等。
-周期信号:在一定时间周期内重复出现的信号,如正弦信号、方波等。
-非周期信号:在一定时间段内不重复出现的信号,如脉冲信号、矩形波等。
2.基本信号:-阶跃信号:在其中一时刻突然跃变的信号。
-冲击信号:在其中一时刻瞬间出现并消失的信号。
-正弦信号:以正弦函数表示的周期信号。
-方波信号:由高电平和低电平构成的周期信号。
3.系统的分类:-时不变系统:输出不随时间变化而变化的系统。
-线性系统:满足叠加性质的系统。
-因果系统:输出仅依赖于当前和过去的输入的系统。
-稳定系统:有界的输入产生有界的输出的系统。
4.线性时不变系统的特性:-线性性质:满足叠加性质。
-时不变性:系统的输出只取决于输入信号的当前和过去的值。
-冲激响应:线性时不变系统对单位冲激信号的响应。
5.离散时间系统的表示:-差分方程:用差分方程表示离散时间系统。
-传输函数:用传输函数表示系统的输入和输出之间的关系。
6.离散时间信号的分析:-Z变换:将离散时间信号从时域变换到Z域的方法。
-序列的频率表示:幅度谱、相位谱和角频率。
7.连续时间系统的表示:-微分方程:用微分方程表示连续时间系统。
-传递函数:用传递函数表示系统的输入和输出之间的关系。
8.连续时间信号的分析:-傅里叶级数:将连续时间周期信号分解成一系列正弦和余弦函数的和。
-傅里叶变换:将连续时间非周期信号从时域变换到频域。
9.信号处理的应用:-通信系统:对信号进行调制、解调、编码、解码等处理。
-图像处理:对图像进行滤波、增强、压缩等处理。
-音频处理:对音频信号进行降噪、消除回声、变声等处理。
-生物医学信号处理:对生理信号如心电图、脑电图等进行分析和识别。
工程测试技术 第2章 信号分析基础-3
第二章、信号分析基础
Page 2 华中科技大学机械学院
2.5 信号的频域分析
信号频域分析是采用傅立叶变换将时域信号x(t)变换为 频域信号X(f),从而帮助人们从另一个角度来了解信号的特 征。
傅里叶 变换
8563A
SPECTRUM ANALYZER 9 kHz - 26.5 GHz
第二章、信号分析基础
2.5 信号的频域分析
频域分析
Page 25 华中科技大学机械学院
吉布斯现象(Gibbs)
• 吉布斯现象是由于展开式在间断点邻域不能均匀收敛 引起的。
• 例:方波信号
x(t)
T
T
t
2.5 信号的频域分析
频域分析
Page 26 华中科技大学机械学院
N=1
2.5 信号的频域分析
Page 27 华中科技大学机械学院
用线性叠加定理简化
X1(f)
+Page 38 华中科技大学机械学院
5、频谱分析的应用
频谱分析主要用于识别信号中的周期分量,是信号分析 中最常用的一种手段。
在齿轮箱故障诊断中,可
以通过齿轮箱振动信号频谱分 析,确定最大频率分量,然后 根据机床转速和传动链,找出 故障齿轮。
2 T
T /2
T /2 x(t) sin n0tdt;
ω0―基波圆频率; f0 ―基频:f0= ω0/2π
An an2 bn2 ;
n
arctan bn an
;
2.5 信号的频域分析
傅里叶级数的复数表达形式:
x(t) Cne jn0t , (n 0,1,2,...) n
Page 9 华中科技大学机械学院
2.5 信号的频域分析
信号分析基础
x(t ) a0 a1 cos 0t b1 sin 0t a2 cos 20t b2 sin 20t a0 an cos n0t bn sin n0t
2013/12/30
Song Yonggang
7
② 瞬变非周期信号:在一定时间区域内存在,或随着时间的增长而衰减 至零的信号。
A x(t ) 0
[t1 t t 2 ] (t1 t , t t 2 )
x(t ) x0e at sin( 0t 0 )
2、随机信号:是无法用数学解析式来表达的,也无法预见未来任何时刻 的瞬时值的信号。由于随机信号具有某些统计特征,可以用概率统计 的方法由其过去来估计未来,但它只能近似的描述,存在误差。
jn0t jn0t C e C e n n n 1 1
则:
x(t ) Cn e jn0t
(n 0,1,2, )
这就是傅立叶级数的复指数展开式。其中 Cn 为复数傅立叶 系数。
1 T Cn 2T x(t )e jn0t dt T 2
x(t ) x(t nT ) 其中:n =±1,±2,±3……
T 为周期
例如:正弦信号的时域描述为:
sin t sin( t 2n )
2013/12/30 Song Yonggang 6
(2)非周期性信号:指不具有周期性重复的信号称为非周期性信号。又分为 准周期信号和瞬变非周期信号 ① 准周期信号:由两种以上的周期信号组成,但其组成分量间不存在 公共周期,因而无法按某一时间间隔周而复始重复出现。设信号x(t)由两 个简谐信号合成,即
信号与系统知识点
信号与系统知识点信号与系统是电子工程及相关学科中的重要基础知识,其主要研究对象是信号的产生、传输、处理和分析,以及系统的特性和响应。
本文将探讨一些与信号与系统相关的重要知识点。
一、信号的分类信号是信息的表达方式,可以分为连续信号和离散信号。
连续信号是在时间和幅度上都是连续变化的,如模拟音频信号。
离散信号则是在时间或幅度上存在着间隔,如数字音频信号。
二、信号的表示和性质信号可以用数学函数进行表示,常见的信号类型有周期信号和非周期信号。
周期信号以某种周期性重复出现,如正弦信号;非周期信号则无规则的重复性。
信号还具有幅度、频率和相位等性质,这些性质对信号的分析和处理非常重要。
三、系统的响应系统是对输入信号做出某种处理的过程,系统的响应可以分为时域响应和频域响应。
时域响应是指系统对输入信号随时间的响应过程,可以通过巴特沃斯滤波器等工具进行分析。
频域响应则是指系统对不同频率的输入信号的响应情况,可以通过傅里叶变换等方法进行分析。
四、系统的特性系统的特性是描述系统行为的重要指标,主要包括线性与非线性、时不变与时变、稳定与不稳定等。
线性系统具有叠加性和比例性,输入和输出之间存在着线性关系;非线性系统则没有这种特性。
时不变系统的性质不随时间变化,稳定系统的输出有界且收敛于有限值,而不稳定系统则可能产生无界的输出。
五、卷积与相关卷积和相关是信号与系统分析中常用的运算符号。
卷积表示两个信号的叠加与重叠,它可以用于系统的输入与输出之间的关系描述。
相关则是通过计算信号之间的相似性,用于信号的匹配与识别。
六、傅里叶变换傅里叶变换是信号与系统分析中最重要的数学工具之一。
它可以将信号从时域转换到频域,使得信号的频率特性更加清晰。
傅里叶变换有连续傅里叶变换和离散傅里叶变换两种形式,分别适用于连续信号和离散信号的频域分析。
七、采样与重构采样和重构是数字信号处理中常用的技术。
采样是将连续信号转换为一系列离散的采样点,重构则是通过这些离散采样点还原出原始信号。
傅立叶变换,时域,频域
傅⽴叶变换,时域,频域=================================信号分析⽅法概述通信的基础理论是信号分析的两种⽅法:1 是将信号描述成时间的函数,2是将信号描述成频率的函数。
也有⽤时域和频率联合起来表⽰信号的⽅法。
时域、频域两种分析⽅法提供了不同的⾓度,它们提供的信息都是⼀样,只是在不同的时候分析起来哪个⽅便就⽤哪个。
思考:原则上时域中只有⼀个信号波(时域的频率实际上是开关器件转动速度或时钟循环次数,时域中只有周期的概念),⽽对应频域(纯数学概念)则有多个频率分量。
⼈们很容易认识到⾃⼰⽣活在时域与空间域之中(加起来构成了三维空间),所以⽐较好理解时域的波形(其参数有:符号周期、时钟频率、幅值、相位)、空间域的多径信号也⽐较好理解。
但数学告诉我们,⾃⼰⽣活在N维空间之中,频域就是其中⼀维。
时域的信号在频域中会被对应到多个频率中,频域的每个信号有⾃⼰的频率、幅值、相位、周期(它们取值不同,可以表⽰不同的符号,所以频域中每个信号的频率范围就构成了⼀个传输信道。
时域中波形变换速度越快(上升时间越短),对应频域的频率点越丰富。
所以:OFDM中,IFFT把频域转时域的原因是:IFFT的输⼊是多个频率抽样点(即各⼦信道的符号),⽽IFFT之后只有⼀个波形,其中即OFDM符号,只有⼀个周期。
时域 时域是真实世界,是惟⼀实际存在的域。
因为我们的经历都是在时域中发展和验证的,已经习惯于事件按时间的先后顺序地发⽣。
⽽评估数字产品的性能时,通常在时域中进⾏分析,因为产品的性能最终就是在时域中测量的。
时钟波形的两个重要参数是时钟周期和上升时间。
时钟周期就是时钟循环重复⼀次的时间间隔,通产⽤ns度量。
时钟频率Fclock,即1秒钟内时钟循环的次数,是时钟周期Tclock的倒数。
Fclock=1/Tclock 上升时间与信号从低电平跳变到⾼电平所经历的时间有关,通常有两种定义。
⼀种是10-90上升时间,指信号从终值的10%跳变到90%所经历的时间。
信号与系统的基本知识
04 信号与系统的分析方法
时域分析法
时间波形分析
01
直接观察信号的时域波形,了解信号的基本特征和变化规律。
相关分析
02
研究信号自身或信号之间的相似性,用于信号检测、识别和提
取有用信息。
卷积积分
03
描述线性时不变系统对输入信号的响应,用于求解系统的零状
态响应。
频域分析法
频谱分析
将信号分解为不同频率的正弦波, 研究信号的频率成分和幅度、相 位随频率的变化规律。
02
周期信号的判定
03
周期信号的频率
一个信号是否是周期的,可以通 过观察其波形是否在一定时间后 重复出现来判断。
周期信号的频率是指单位时间内 信号重复的次数,与周期成倒数 关系。
信号的奇偶性
奇信号的定义
奇信号是指对于任意时刻t,都有f(-t) = -f(t) 的信号。
偶信号的定义
偶信号是指对于任意时刻t,都有f(-t) = f(t)的信号。
生物系统建模与仿真
信号与系统的方法可用于建立生物系统的数学模型,并通过计算机 仿真研究和理解生物系统的复杂行为。
其他领域中的信号与系统
01
语音与音频处理
在语音和音频处理领域,信号与系统理论用于声音的采集、编码、合成
和分析等方面。
02
图像处理与计算机视觉
图像处理和计算机视觉中涉及大量的信号与系统方法,如图像滤波、边
05 信号与系统的应用举例
通信系统中的信号与系统
信号传输与处理
在通信系统中,信号与系统理论用于分析和设计信号的传输、调制、 编码和解码等过程,以确保信息的可靠传输和高效处理。
信道建模与均衡
通信系统中的信道往往存在多径效应、衰落和干扰等问题,信号与 系统理论可用于建立信道模型,设计均衡算法以补偿信道失真。
同轴电缆的信号传输 信号分析基础RC电路基础模拟电子技术基础脉冲电路基础
复频域中电路的输出波形分析
如图所示电路,求开关K合上后电路中电流和R上的电压 变化情况。设起始条件为t=0时,L、C上无电荷。
KC
L
Vm
R
)
2.65V
Vm
vR(t)
vC(t)
0 t
作业:看在几个脉冲后输出达到平衡(电压值取三位有效数字即可)。
RC电路的一些使用
• 放大器的放大级之间常用RC耦合电路(同微分电 路)进行隔离。如果要求不失真的传递信号,时 间常数应很大。
• 任何脉冲信号包括了直流分量和交流分量,电容 有隔直作用,因此直流分量经过RC耦合电路后逐 渐漂移至零。脉冲信号基线发生变化,RC耦合电 路输出信号只有交流分量而无直流分量。在核电 子学中,直流分量的漂移(即脉冲信号基线的漂 移)是一个有害的因素,因此必须消除。
F () F[ f (t)] f (t)e jtdt
f (t) F 1[F ()] 1 F ()e jtd 2π
时域中的矩形脉冲信号 g(t)= E t/2 0 t>/2
该信号在频域中的形式为:
G() f (t)e jtdt
2
Ee jtdt
2E sin
2
2
付立叶变换
付立叶变换分析信号及系统的输出信号是很有 效的。但也有不足,它要求被积函数f(t)绝对 可积,对不可积函数要引入一些奇异函数,如
t
VC (t) VR (t) 0
-Vm vR(t)
VC (t) VR (t) Vme t u(t)
重点
信号完整性分析基础知识
摘要如果您刚刚接触信号完整性分析,或者需要温习这方面的基础知识,那么本白皮书将是您的最佳选择。
在介绍基础知识之前,本白皮书首先回答一个最基本的问题“我需要了解哪些信息”?在基础知识部分,我们首先学习关键网络的识别和分析。
接着讨论传输线,以及因快速边缘率信号所产生的高频噪声引起的各种问题。
最后,我们将了解阻抗的概念,并在阻抗和信号完整性的背景下展开讨论。
现在,让我们从零开始学习信号完整性基础知识。
在开始任何类型的仿真或分析之前,您必须做好哪些准备工作,了解哪些信息呢?您的设计中可能包含成千上万个网络,需要全部进行仿真吗?恐怕不是—您没有足够的时间完成这项工作,事实上也完全没有必要。
因此,您要做的第一件事是确定您的关注对象—设计中究竟哪些是“关键”网络,如何识别这些“关键”网络?关键网络乍一看,“什么是关键网络”,答案似乎并不复杂。
我听到过各种各样的答案,譬如“时钟网络”、“高频网络”、“所有网络都很关键”、“频率超过100 MHz 的网络”,诸如此类,不胜枚举。
这些回答固然有一定的可取之处,但数字印刷电路板有一项您必须考虑的标志性网络特征,即边缘率和走线长度之间的关系。
些网络可能导致信号完整性 (SI) 或电磁干扰(EMI) 方面的问题时,您需要了解开关信号的速度,以确定是否需要首先关注该网络。
当今的硅工艺已纵深扩展至次微米空间,器件的物理特性决定了信号的边缘率越来越快。
归根到底,这意味着您的设计中可能存在问题的网络数量将远远超出您最初的设想。
因此,我们需要一些标准来识别关键网络。
那么,我们应该在哪里寻找这些信息来判断我们的分析对象呢?数据表提供了最快捷的器件管脚特性参考资料。
您可以在这些文档中找到电压摆幅、转换速率/开关时间、输入阻抗以及其他大量信息。
然后,您需要将这些开关数据与走线长度进行比较,确定是否存在问题。
这听起来有些复杂,甚至可能相当繁琐(如果必须手动完成此工作,的确如此)。
这时,您需要使用工具来提供帮助。
动态信号分析
动态信号分析引言动态信号分析是指对一系列随时间变化的信号进行分析和解释的过程。
这些信号可以是任何随时间变化的数据,如声音、振动、电信号等。
动态信号分析可以帮助我们了解信号的周期性、频谱特征、幅度变化等信息,对于理解信号的特性和进行相关应用具有重要意义。
常见的动态信号分析方法1. 傅里叶变换傅里叶变换是一种将信号从时域转换为频域的数学方法。
通过傅里叶变换,可以将信号分解为一系列不同频率的正弦波的叠加。
傅里叶变换可以帮助我们了解信号的频谱分布,找出信号中的主要频率成分,并进一步分析信号的周期性和频谱特征。
2. 小波变换小波变换是一种将信号从时域转换为时频域的数学方法。
与傅里叶变换不同,小波变换可以提供信号在时间和频率上的更为精细的分析。
通过小波变换,可以得到信号在不同时间段和频率段上的能量分布,帮助我们了解信号的局部特征和瞬态特性。
3. 自相关分析自相关分析是一种研究信号相关性的方法。
它通过计算信号与其在不同时间延迟下的自身的相关性,来分析信号的周期性和重复性。
自相关分析可以用来判断信号中的周期性成分,并估计信号的主要周期。
4. 谱分析谱分析是一种将信号在频域上进行分析的方法。
它通过计算信号在不同频率段上的能量分布,来了解信号的频谱特性。
谱分析可以帮助我们找到信号中的主要频率成分,并估计信号的频率范围和带宽。
动态信号分析的应用领域动态信号分析在许多领域都具有广泛的应用。
以下是一些常见的应用领域:1. 声音分析动态信号分析可以用来分析声音信号的频率特征、音调、语速等信息,对语音识别、音频处理和声音品质评估具有重要意义。
2. 振动分析动态信号分析可以帮助我们分析机械振动信号的频谱成分、振动模态、共振频率等信息,对机械故障诊断、结构健康监测等具有重要应用。
3. 电信号分析动态信号分析可以用来分析电信号的频谱特征、噪声成分、幅度调制等信息,对于电力系统分析、通信系统优化等具有重要意义。
4. 生物信号分析动态信号分析可以帮助我们研究生物信号的周期特征、频率变化、相位调制等信息,对心电图分析、脑电图分析和生物信号处理等具有重要应用价值。
第一、二章信号与系统基础知识和时域分析总结
信号与系统基础知识和时域分析总结
16 页
例4、一连续时间系统y(t)=f(2t),该系统是( D )
例5、( A ) 例6、周期序列f(t)=2 的 周期最小正周期N等于( C )
X
第
信号与系统基础知识和时域分析总结
17 页
例7、 ( A )
例8、积分
(t 2)(t)dt
等于(
A)
X
第
信号与系统基础知识和时域分析总结
20 页
例18、已知信号
的波形如题图1所示,
,
试画出 的波形。
解:
y(t) f1(t) f2 (t) f1(t) (t) (t 2)
f1(t) f1(t 2)
X
第
信号与系统基础知识和时域分析总结
21 页
例19、信号f(t)的波形如图1所示,试用阶跃函数写出f(t)的函数表达式,并画 出f(-2t+2)的波形。 解:
02
2
0
2
2
X
第
信号与系统基础知识和时域分析总结
1 页
1.1 信号的描述与分类; 确定信号与随机信号; 连续时间信号与离散时间信号;(时间和凼数值都连续,称为 模拟信号;时间和凼数值都离散,称为数字信号); 周期信号与非周期信号; 能量信号与功率信号;
X
第
信号与系统基础知识和时域分析总结
2 页
一维信号与多维信号: (按照信号是一个自变量的凼数,还是2个以上自变量的凼数来 区分); 实数信号与复数信号; (按照信号值是实数还是复数来区分);
X
第
信号与系统基础知识和时域分析总结
15 页
j t
例1、 已知连续信号 f (t) e 3 为周期信号,其周期为( C )
第1章 信号与系统的基本知识
f1(t) ,sin(2t) cos(3t)
为周期信号,其周期为T1和T2的最小公倍数 2( 2T1或3T2)。
cos(2t) 和 sin(t)的周期分别为
由于
K T1 T2 2
为无理数,故
T1
2 1
T2
2 2
2
f2(t) sin(t) cos(2t) 为非周期信号。
X
2. 系统的描述
第 9
页
• 系统可用数学模型和方框图来表示。
• 一个系统可以用一个矩形方框图简单地表示,方 框图左边为输入x(t),右边为系统的输出y(t),方 框表示联系输入和输出的其他部分,是系统的主 体。
• 系统的组合连接方式有串联、并联及混合连接。
• 连续系统可以用一些输入输出关系简单的基本单 元(子系统)连接起来表示。这些基本单元有加 法器、数乘器(放大器)、积分器。
ay1(t) by2 (t)
和 y1(t) T[x1(t)] y2 (t) T[x有2 (t:)] (1.3.1)
• 式中a、b为任意常数,该式具有满足叠加性和(或齐次性)的特 点。不满足该式的为非线性系统。
• 线性系统具有“零输入产生零输出”的特性,可以由此判断是否 为线性系统。
• “信息(information)”,它是信息论中的一个术语。通过各 种消息的传递,使人们获取各种不同的信息。因此,通俗的 说,“信息”是指具有新内容、新知识的“消息”。为了有 效地传播和利用信息,常常需要将信息转换成便于传输和处 理的信号。在本课程中对“信息”和“消息”两词不加严格 区分。
• “信号(signal)”也称为“讯号”,是运载消息的工具,是 消息的载体,“消息”通过“信号”表现出来。也就是说: “信号”是“消息”的表现形式与传送载体。“信号”是反 映“信息”的各种物理量,是系统直接进行加工、变换和处 理的对象。
振动信号分析和振动测试的基础知识
fd
=
1 Td
无阻尼固有频率fn =
fd 1- ζ2
对数减幅系数 δ = ln X i
X i+1
阻尼比 ζ = δ 4π 2 +δ 2
17
强迫振动的特点
振动的频率等于激励的频率。 振幅与激励的强弱成正比。 激励频率接近固有频率时,发生共振现象。 阻尼小,共振峰高;阻尼大,共振峰低。 位相上说,振动落后于激励。 振幅和位相随激励频率而变化,变化规律用系统
频谱图 (Spectrum)
组成振动的各谐波成分
轴心轨迹 (Orbit)
转轴中心的振动轨迹,由水平和铅垂两 方向波形合成
37
波形图、频谱图及轴心轨迹
38
旋转机械的振动图示 (变转速)
轴心轨迹阵
各转速下的轴心轨迹的组合
波德图与极坐标图 (Bode & Polar Plot)
升(降)速时,基频幅值和相位的变化
测量非转动部件的绝对 振动的速度。 不适于测量瞬态振动和 很快的变速过程。 输出阻抗低,抗干扰能 力强。 传感器质量较大,对小 型对象有影响。
22
典型的磁电速度传感器
23
压电加速度传感器
接收形式:惯性式 变换形式:压电效应 典型频率范围:0.2Hz~10kHz
线性范围和灵敏度随各种不同型号 可在很大范围内变化。
9
各种振动的频谱图
名称 波 形 频 谱 名称 波 形
频谱
10
Hale Waihona Puke FT时间域频率域IFFT
11
简单的振动系统
* 以单自由度振动系统为例
12
振动系统的模态特性
振动系统的模态特性有两个参数
2.信号分析与信息论基础(确定信号分析)
理想系统的幅-频特性 而相-频特性为 :
理想系统的相频特性
实际系统的特性并不理想----失真
由于系统特性不 理想引起的信号失真 称为线性失真。线性 失真包括频率失真和 相位失真。由于系统 的幅频特性不理想引 起的信号失真称为频 率失真,造成源信号各 种频率分量之间的相 对比例关系 。由于系 统的相频特性不理想 引起的信号失真称为 相位失真. 频率失真
主要傅氏变换运算特性
放大 叠加 比例 时延 频移 卷积
1 f (t ) F ( ), f (2t ) F( f ) 2
傅立叶变换应用:时域
频域
傅立叶变换应用
6. 能 量 谱 密 度 和 功 率 谱 密 度 -----信号单位频段的能量和功率 1. 能量谱密度 信号波形的能量 规一化能量(电阻值1Ω )
实际系统的幅频特性
相位失真
实际系统的相-频特性
理想低通滤波器 ----------------滤波器的通频带位于零频附近至某一频率
H ( j ) H ( j ) e
j ( j )
1.e j t0 0
c
other
H ( j ) 1
( j ) t0
线性算子与线性系统 令: yi(t) = L [xi(t)] i = 1,2,3.......
若系统算子满足以下关系:
其中: ci 为任意常数, i = 1,2,3,...... 则称此算子为线性算子,相应的系统称为线性系统。
叠加原理表述为:线性系统系统输入线性和的响应等于 响应的线性和。
恒参线性系统
通过时域卷积定理可将输入与输出在频域的关系表示出
传递 函数
单位冲激 响应
时域
时 域 卷 积 定 理
信号分析与处理 重点
《信号分析与处理》教学重点与难点一、课程目标通过本课程的学习,使学生系统地掌握信号分析与处理的基础知识,培养学生信号理论分析和计算的能力。
主要学习信号与系统的基本概念、卷积与时域分析、傅氏变换与频域分析、离散傅氏变换及快速算法、Laplace变换与S 域分析、Z变换与Z域分析和滤波器等内容。
通过上机实验掌握信号分析与处理常用程序的编写。
二、基本要求在学习本课程以前,要求学生学完高等数学、普通物理、工程数学(复变函数、积分变换)、程序设计语言等课程。
本课程的学习使学生对信号分析与处理的基础知识有深入的了解,为进一步学习专业课打下基础。
对于勘查技术与工程、地球物理学专业,务必要求学生掌握卷积和频谱分析程序以及Z变换分析方法。
三、教学内容与学时分配建议绪言 1学时第一章信号与系统的基本概念 6学时本章的重点难点: 1)信号的主要分类(确定性信号与随机信号、连续信号与离散信号、周期信号与非周期信号);2)常用离散序列和连续信号的描述(正弦信号、指数衰减信号、抽样信号、单位阶跃信号、矩形脉冲信号、单位冲激信号),注意单位阶跃信号的物理意义及使用;3)连续系统与离散系统的描述方法——微分方程与差分方程;4)线性时不变系统的含义与判别。
知识点1——信号的定义与分类:信号的定义,信号与信息的区别与联系,随机噪声的特点,周期信号的描述及周期的计算,能量、功率的计算公式,奇信号、偶信号的描述;知识点2——几种常用信号的描述:指数衰减信号、抽样信号的公式、图形,矩形脉冲信号如何用单位阶跃信号描述,单位冲激信号的定义及物理意义,离散信号如何用棒状图描述;知识点3——系统的定义和分类:如何用微分和差分方程描述RC无源网络,全响应、线性时不变特性(系统)的概念,线性时不变系统的判断。
【实验一常用信号的描述】编程要求:会写程序描述雷克子波、Sinc函数。
第二章卷积与简单的时域分析 10学时本章的重点难点:1)单位冲激函数的物理含义和数学定义;2)连续卷积的物理意义、计算公式、性质、公式法积分限的确定、图解法卷积的求取过程;3)离散卷积的计算公式、计算机编程、离散卷积与连续卷积间的关系。
信号系统基础知识讲解学习
2022/2/18
1.2 信号的描述 和分类
4.能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率 为| f (t) |2,在区间(–∞ , ∞)的能量和平均功率定义为
解 fk=sink=sink+2m
=sink+m2=sink+mN m = 0,±1,±2,…
式中β称为正弦序列的数字角频率,单位:rad。
数字信号判断是否周期信号的方法: 首先将函数写成规范式。 仅当2π/ β为整数时,正弦序列才具有周期N = 2π/ β。 当2π/ β为有理数时,正弦序列仍为具有周期性,但其周期为 N= M(2π/ β),M取使N为整数的最小整数。 当2π/ β为无理数时,正弦序列为非周期序列。 复合信号同前面方法。
满足上述关系的最小T(或整数N)称为该信号的周期。
不具有周期性的信号称为非周期信号。
周期信号的判别和计算?
2022/2/18
1.2 信号的描述 和分类
模拟复合信号判断是否周期信号:两个周期信号x(t),y(t)的周 期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号 x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。
紧密地联系在一起。 系统的基本作用是对输 输入
入信号进行加工和处理,将 其转换为所需要的输出信号。 激励
系统
输出 响应
2022/2/18
信号作用于系统产生响应举例:心电图机
2022/2/18
汽车系统&照相机系统
2022/2/18
信号重要基础知识点
信号重要基础知识点信号是一种用于传递信息或者在系统中进行通信的方法。
在现代科技和通信领域中,信号是非常重要的基础知识点。
下面将介绍几个与信号相关的重要基础知识点。
1. 信号的定义和分类:信号可以被定义为随时间、空间或其他变量的变化而变化的某种物理量。
根据其物理参数,信号可以被分类为模拟信号和数字信号。
模拟信号是连续时间和连续幅度变化的信号,而数字信号是离散时间和离散幅度变化的信号。
2. 信号的特征和表示:信号可以通过其幅度、频率、相位和时间特性进行描述。
幅度表示信号的振幅或强度,频率表示信号的周期性,相位表示信号相对于某个参考点的偏移,而时间特性表示信号的时域行为。
信号可以用数学方程、图形或者频谱表示进行分析和处理。
3. 傅里叶分析和频谱:傅里叶分析是一种将信号分解成一系列基本频率组成的方法,而频谱则表示信号在频域中不同频率成分的强度或能量分布。
傅里叶变换是用于从时域到频域的转换,而逆傅里叶变换则是将频域信号恢复到时域。
4. 信号传输和衰减:在信号传输过程中,信号可能会受到衰减和失真的影响。
衰减是信号幅度随着传输距离增加而减小的过程,而失真则是信号形状或频谱发生变化的过程。
为了克服这些问题,通信系统通常会采用调制、编码和纠错等技术来提高信号的传输质量。
5. 抽样和量化:数字信号的表示需要进行抽样和量化。
抽样是将连续时间的模拟信号转换为离散时间的数字信号,而量化则是将连续幅度的模拟信号转换为离散幅度的数字信号。
合适的抽样率和量化精度对于保证数字信号的准确性和保真度至关重要。
这些是关于信号重要的基础知识点。
了解信号的定义、分类、特征和表示方法,以及信号传输过程中可能遇到的问题和解决方案,将有助于深入理解信号处理、通信系统以及其他相关领域的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X射线成像技术 地铁、机场等地的安全检查
X射线行李安检系统
医学影像学
核成像技术通过对射线的利用,探测物体的内部组成 和结构,获得物体的图像,而不必破坏该物体。
大型集装箱检测系统
检测用核技术用核物理方法测量地下的矿藏和工业规模 材料的厚度、密度、重量、成分以及测量界面等等。
工业在线测厚仪
同位素示踪技术成为生物、化工、医学 和地矿领域中必不可少的强有力的工具。
• 核裂变和核聚变
过渡能源:铀钍资源——裂变能 热中子堆:可用50年 快中子堆:可用3000年
未来能源:氘氚资源——聚变能 可控聚变堆:可用200亿年
环境污染无法承受(全球每年CO2 排放200亿吨)!
核电是解决危机的重要出路
目前世界最先进的AP1000核电站
核技术应用
• 核成像技术 • 离子束分析 • 同位素示踪 • 检测用核技术 • 辐射工艺 等
• 包括:高能电磁波:X、射线; 粒子:带电粒子、中性粒子等。
核辐射无处不在
核辐射是双刃剑, 既有其危害性,更 有着无可替代的优 越性,为人类的当 代生活带来了便利。
核工程与核技术
核电
我们面临严峻的能源危机和 环境危机!
化石能源行将用完:(2002年探 明储量)
煤炭: 可采218年 石油: 可采48年 天然气:可采67年
辐射
• 辐射充满着整个空间
E.g. background radiation
2006年诺贝尔物理学奖 J. C. Mather and G. F. Smoot, USA
电磁波(电磁辐射)
高能电磁波如:射线(X射线),属于核(电离)辐射范畴。
核(电离)辐射
• 电离辐射:10 eV -10 MeV • 主要来源于原子核或核外电子的某些过程
• 中性核辐射
– 高能电磁辐射 (X射线, 射线) – 中子 (各种能量的中子)
• 带电粒子核辐射
– 轻的带电粒子 (电子、正电子、β射线) – 重的带电粒子 (α粒子、质子、重离子等)
核辐射(重点)
• 也称为电离辐射、射线,泛指原子或原子核的某些 过程(如核衰变或核裂变等)放出的粒子,或由加 速器加速的离子或核反应产生的各种粒子,包括 (4He2+)、3He、p、d、t等重带电粒子,重离子和 裂变碎片,e+、e-(射线)等轻带电粒子,X、射 线,中子等。
• 核技术应用已渗透到我们当代生活的方方 面面,深化了农业的绿色革命,促进了工 业的技术改造,推动了环保事业的发展, 提高了人类征服疾病的能力。
核辐射探测与测量是核技术应用和开展 核相关实验研究的基础
核辐射探测与测量
核辐射探测与测量方法
核电子学
Байду номын сангаас
核辐射探测系统=核辐射探测器+核电子学仪器
核电子学系统
在核辐射探测技术和电子技术基础上发展起来的电子学与核科学间的一门交叉学 科。核电子学形成于20世纪50年代。其内容包括:核科学、高能物理和核技术中有关 核辐射和粒子探测的电子技术;核爆炸和外层空间的辐射对电子系统的效应和抗辐射 的加固技术;核技术应用中所需的核电子技术。核辐射现象(天然放射性)发现于 1896年。1926年H.盖革等发明了能探测单次辐射的GM计数管,使核物理实验得到了 电子技术的支持,从而促成了核物理学和高能物理学上一系列重要的发现。1931年卢 瑟福实验室制成包括放大器、甄别器、计数器和电源的成套电子仪器,是核物理实验 中早期的有力工具。第二次世界大战开始后,围绕核武器的研制,核电子学得到更大 发展,逐渐形成了一门学科。1949年,R.L.霍夫斯塔特发明了闪烁计数器,推动了核γ 谱学和相应测量仪器γ谱仪的发展。50年代中、后期,高能加速器出现,物理学家开始 寻找新的基本粒子。60年代中期,核电子仪器的晶体管化几乎已全部实现。1968年和 1970年,卡尔帕克先后发明了多丝室和漂移室探射器,它们的信号丝数可达数万。因 此要求有快、准、稳的电子读出电路。这种由大型快速电子电路计算机组成的系统在 70年代中出现大规模集成电路等器件后才得以实现。这种全电子式探测器在高能物理
放射性
放射性
• 在人们发现的二千多种核素中,绝大多数都是不稳 定的,它们会自发地蜕变,变成另一种核素,同时 放出各种射线(核辐射)。这样的现象称为放射 性衰变。 稳定核素:271种 放射性核素: 2500多种 其中,天然:仅60多种 人工:绝大部分
核素:AX
摘自杨福家《原子核物理》
放射性衰变的种类
子学各分支技术成就中发展的,同时也作出了自己的贡献。如核电子学中对脉冲幅度
20世纪50年代。 和时间间隔的精密测量和甄别技术,对40年代雷达和电子计算机的发展提供了有益的
经验。在核电子学中还首先发展了纳秒脉冲技术,并在多道脉冲幅度分析技术基础上 发展出高速模-数转换技术等。核电子学的研究对象包括:①各种辐射探测器和与之相 应的电子电路或系统。②针对核信息的随机性、统计性或单次性等特点的电子学测量 技术,时间间隔(微秒到皮秒)、空间分辨(毫米到微米)。③配有在线电子计算机 的核电子系统,用于在核技术和高能物理实验中实时获取并处理巨量核信息,在实验 全过程中对整个系统工作的监测和控制。④核技术在工业、农业、军事、医学、生物 研究等方面应用时所需的各种辐射探测技术和电子技术。例如,20世纪70年代以后, 核医学诊断吸收了核电子学方法,使同位素扫描技术发展成γ照相机技术,又进而发展 成断层照相技术。
在核辐射探测技术和电子技术基础上发展起来 实验中逐步取代了1952年发明的汽泡室。1974年,丁肇中和B.里克特分别用全电子学
方法发现了J/Ψ粒子。1983年在欧洲核子研究中心的SPS质子-反质子对撞机上观察到
的电子学与核科学间的一门交叉学科。形成于 中间玻色子W+、W-和Z0的衰变现象。核电子学是在不断吸收其他科学技术特别是电
本章要解决的问题
• 谈“核”色变?核辐射到底是什么? • 核电子学研究的对象是什么? • 与普通电子学(模电)有何不同?
• 难点:阻抗匹配
核电子学
Nuclear Electronics
/s/336/main.htm
张雪梅 zhangxm@