数学史概论简单与论述期末考
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.在牛顿和莱布尼茨之前有许多数学家曾对微积分的创立作出过重要贡献,请列举其中的两位,并指出他们的主要贡献.
意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,把曲线看成无限多条线段(不可分量)拼成的
沃利斯是在牛顿和莱布尼茨之前将分析方法引入微积分贡献最突出的数学家,它最重要的贡献是《无穷算术》
2.简述《自然哲学的数学原理》的作者、主要科学成就
《自然哲学的数学原理》的作者是英国科学家牛顿。他发表的《自然哲学的数学原理》里提出的万有引力定律以及他的牛顿运动定律是经典力学的基石。牛顿还和莱布尼茨各自独立地发明了微积分。他奠定的理论力学、微积分、物质组成思想、光学实验发现和理论、万有引力定律、运动三定律、低速流体阻力定律等都在各学科的历史上留下了划时代的贡献。
3.简述莱布尼茨生活在哪个世纪、所在国家及在数学上的主要成就。
莱布尼茨于 1646 年出生在德国的莱比锡,其主要数学成就有:发明了微积分;论述了积分与微分的互逆关系;引入积分符号;首次引进“函数”一词;发明了二进位制,开始构造符号语言,在历史上最早提出了数理逻辑的思想。
4.简述阿波罗尼奥斯的生活时代及主要数学成就?
亚历山大时期,约公元前262-前190. 主要成就:在前人工作的基础上创立了相当完美的圆锥曲线理论。著作《圆锥曲线论》将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地
5.三次数学危机分别发生在何时?主要内容是什么?是如何解决的?
第一次数学危机: 无理数的发现。欧多克索斯借助几何方法,避免直接出现无理数;无理数的使用在几何中是允许的,合法的,在代数中就是非法的,不合逻辑的。
第二次数学危机:无穷小是零吗:无穷小量在当时实际应用而言,它必须既是 0,又不是 0。从形式逻辑而言,这无疑是一个矛盾。极限理论、实数理论和集合论三大理论的完善,微积分学坚实牢固基础的建立,解决了这个问题。
第三次数学危机:罗素悖论:罗素构造了一个集合 S:S 由一切不是自身元素的集合所组成,康托尔集合论是有漏洞的。公理化集合系统的建立,成功排除了集合论中出现的悖论。6.简述《九章算术》中国数学史上的意义
《九章算术》是中国古代第一部数学专著。系统总结了战国、秦、汉时期的数学成就。最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。它是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系。
7.简述欧几里得的生活年代、代表著作以及在数学上的主要成就。
欧几里得是古希腊著名数学家,公元前330年~前275年。著作是《几何原本》。他是欧氏几何学的开创者,被称为“几何之父”,欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品,是几何学的奠基人。
试论述数学如何促进社会进步.
数学在其发展的早期主要是作为一种实用的技术或工具,广泛应用于处理人类生活及社会活动中的各种实际问题。早期数学应用的重要方面有:食物、牲畜、工具以及其他生活用品的分配与交换,房屋、仓库等的建造,丈量土地,兴修水利,编制历法等。随着数学的发展和人类文化的进步,数学的应用逐渐扩展和深入到更一般的技术和科学领域。从古希腊开始,数学就与哲学建立了密切的联系,近代以来,数学又进入了人文社会科学领域,并在当代使人文社会科学的数学化成为一种强大的趋势。数学在提高全民素质、培养适应现代化需要的各级人才方面也显现出特殊的教育功能。数学在当代社会中有许多出入意料的应用,在许
多场合,它已经不再单纯是一种辅助性的工具,它已经成为解决许多重大问题的关键性的思想与方法,由此产生的许多成果,又早已悄悄地遍布在我们身边,极大地改变了我们的生活方式。
论述数学史对数学教育的意义和作用.
数学史进入课程是数学新课程改革的重要理念之一。在课程变革由结构——功能视角向文化——个人视角转变的过程中,文化融入是师生对课程改革适应性的一个重要因素。对数学学科而言,数学史是数学文化生成的文库性资源,是最具权威的课程资源,具有明理、哲思与求真三重教育价值。
学习数学史可以帮助人们—理解数学的本质、掌握数学的思想与方法、重走数学家数学思维的关键性步子。因此,要重视数学史在数学教学中的意义和作用,通过数学教学展现数学知识的发现历程,让学生了解数学知识的来龙去脉,是数学教学的有效策略。展现数学知识的发现过程,不是简单叙述数学史实,重复数学家的“原发现过程”。而是需要教师开展教育取向的数学史研究,从中获得对数学教学的启示,引导学生重走数学发现之路。