高中数学必修+选修全部知识点精华归纳(苏教版)讲义

合集下载

高中数学 本章归纳整合(三)课件 苏教版选修2-1

高中数学 本章归纳整合(三)课件 苏教版选修2-1

专题一
空间向量及其运算
向量是数形结合的典范,向量的几何表示法(有向线
段表示法)是运用几何性质解决向量问题的基础. 【例1】已知:正四面体 O-ABC 中,OA=OB=OC=a,点 O
→ → → → 在底面上的射影为 G,试用向量OA,OB,OC表示OG.

法一
由正四面体的定义知道,点 O
在底面上的射影 G 为△ ABC 的中心,且 △ ABC 为正三角形;类比平面向量的线性 表示,注意二维到三维的变化,OG可以用 三个不共面的向量OA, OB, OC线性表示;
两个平面的法向量平行. 证明直线和平面平行,也可以使用下面的定理:
如图①,已知直线 a⊄平面 α, A, B∈ a, C, D∈ α,且 CDE 三点不共线, 则 a∥ α 的充要条件是存在有序实数对 λ, μ 使AB =λ CD+ μCE.



使用此定理时,我们常设AB=λCD+μCE,求 λ,μ;若 λ,μ 存在即可证明 a∥α; 若 λ, μ 不存在, 则直线 a 与平面 α 相交.
平面的法向量 2.
若向量 a所在直线垂直于平面α,则称这个向量垂直于平面
α,记作a⊥α,如果a⊥α,那么向量a叫做平面α的法向量. 用空间向量处理立体几何问题的常用方法 3. (1)证明空间的平行 证明直线与平面平行,可转化为证明直线的方向向量与平
面的法向量垂直;证明平面与平面平行,可转化为证明这
②平面的斜线的方向向量与平面法向量的夹角余弦的绝对值 等于该斜线与平面所成角的正弦,由此可求斜线与平面所成 的角.
③如图②,设n1,n2分别是二面角α-l-β中平面α,β的法向
量,则n1,n2所成的角就是所求二面角的平面角或其补角. (4)求空间的距离

苏教版高中数学(选修1-1)(提高版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

苏教版高中数学(选修1-1)(提高版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

苏教版高中数学(选修1-2)重难点突破全册知识点梳理及重点题型举一反三巩固练习命题及其关系【学习目标】1.了解命题、真命题、假命题的概念,能够指出一个命题的条件和结论;2.了解原命题、逆命题、否命题、逆否命题,会分析四种命题的相互关系,能判断四种命题的真假;3.能熟练判断命题的真假性.【要点梳理】要点一、命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.要点诠释:1. 不是任何语句都是命题,不能确定真假的语句不是命题,如“”,“2不一定大于3”.2. 只有能够判断真假的陈述句才是命题.祈使句,疑问句,感叹句都不是命题,例如:“起立”、“p是有理数吗?”、“今天天气真好!”等.3. 语句能否确定真假是判断其是否是命题的关键.一个命题要么是真,要么是假,不能既真又假,模棱两可.命题陈述了我们所思考的对象具有某种属性,或者不具有某种属性,这类似于集合中元素的确定性.要点二、命题的结构命题可以改写成“若,则”的形式,或“如果,那么”的形式.其中是命题的条件,是命题的结论.要点诠释:1.一般地,命题“若p则q”中的p为命题的条件q为命题的结论.2.有些问题中需要明确指出条件p和q各是什么,因此需要将命题改写为“若p则q”的形式.要点三、四种命题原命题:“若,则”;逆命题:“若,则”;实质是将原命题的条件和结论互相交换位置;否命题:“若非,则非”,或“若,则”;实质是将原命题的条件和结论两者分别否定;逆否命题:“若非,则非”,或“若,则”;实质是将原命题的条件和结论两者分别否定后再换位或将原命题的条件和结论换位后再分别否定.要点诠释:对于一般的数学命题,要先将其改写为“若,则”的形式,然后才方便写出其他形式的命题.要点四、四种命题之间的关系四种命题之间的构成关系四种命题之间的真值关系要点诠释:(1)互为逆否命题的两个命题同真同假;(2)互为逆命题或互为否命题的两个命题的真假无必然联系.要点五、反证法:1. 反证法是假设结论的否定成立,利用已知条件,经过推理论证得出矛盾,判定结论的否定错误,从而得出要证的结论正确.2. 反证法的步骤:(1)假设结论不成立.(2)从假设出发推理论证得到矛盾(3)判定假设错误,肯定结论正确.3. 互为逆否命题的两个命题同真同假是命题转化的依据和途径之一,因此在直接证明原命题有困难时,可以考虑证明与它等价的逆否命题.要点诠释:反证法是间接证明的重要方法之一.【典型例题】类型一:命题的概念例1.判断下列语句是否为命题?若是,判断其真假.(1);(2)当时, ;(3) 你是男生吗?(4) 求证:是无理数.【思路点拨】依据命题的定义判断。

高中数学知识点全总结苏教

高中数学知识点全总结苏教

高中数学知识点全总结苏教一、代数表达式与方程1. 代数基础代数表达式是由数字、字母和运算符组成的式子。

例如:3x^2 + 2x - 1。

字母代表变量,数字称为系数。

2. 单项式与多项式单项式是只有一个乘法运算的代数式,如:5x^3。

多项式是由若干个单项式相加或相减组成的代数式,如:2x^2 + 3x - 5。

3. 同类项与合并同类项同类项是指变量的指数相同的项,如:3x^2 和 -2x^2。

合并同类项即将同类项的系数相加。

4. 一元一次方程一元一次方程是只含有一个变量,且变量的最高次数为1的方程,如:3x + 2 = 0。

5. 二元一次方程组二元一次方程组是由两个含有两个变量的一次方程组成的方程组,如:x + y = 3 和 2x - y = 1。

6. 一元二次方程一元二次方程是只含有一个变量,且变量的最高次数为2的方程,标准形式为:ax^2 + bx + c = 0。

二、函数1. 函数的概念函数是将一个集合中的每个数(自变量)映射到另一个集合中的一个唯一确定的数(因变量)的关系。

2. 函数的表示方法函数通常用f(x)表示,其中x是自变量,f(x)是因变量。

3. 函数的性质函数具有单调性、奇偶性、周期性等基本性质。

4. 基本初等函数包括幂函数、指数函数、对数函数、三角函数等。

5. 函数的图像函数的图像是函数关系的几何表示,通过坐标系可以直观地展示函数的性质。

6. 函数的应用函数在实际问题中有着广泛的应用,如物理中的运动规律、经济学中的成本收益分析等。

三、立体几何1. 空间几何体包括点、线、面、体等基本元素,以及由这些元素构成的多面体、旋转体等。

2. 空间直线与平面空间直线是一维的无限延伸,平面是二维的无限延展。

直线与平面的位置关系有平行和相交两种。

3. 立体图形的性质包括体积、表面积的计算,以及棱柱、棱锥、圆柱、圆锥、球等常见几何体的性质。

4. 空间向量空间向量是具有大小和方向的量,可以用来表示空间中的位置关系和直线与平面的方程。

苏教版高中数学选修1-2知识讲解_复数的几何意义

苏教版高中数学选修1-2知识讲解_复数的几何意义

复数的几何意义: :【学习目标】1.理解复数的几何意义;2.理解复数加、减运算的几何意义;3.对复数加、减运算的几何意义能简单运用。

【要点梳理】要点一、复数的两种表示形式代数形式:z a bi =+(,a b R ∈)几何表示:①坐标表示:在复平面内以点(,)Z a b 表示复数z a bi =+(,a b R ∈);②向量表示:以原点O 为起点,点(,)Z a b 为终点的向量OZ 表示复数z a bi =+.要点诠释:复数z a bi =+←−−−→一一对应复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ 要点二、复数加、减法的几何意义 如果复数1z 、2z 分别对应于向量1OP 、2OP ,那么以1OP 、2OP 为两边作平行四边形12OPSP ,对角线OS 表示的向量OS 就是12z z +的和所对应的向量.对角线21P P 表示的向量21P P 就是两个复数的差12z z -所对应的向量.说明:设复数z 1=a +bi ,z 2=c +di ,(,,,a b c d R ∈)在复平面上所对应的向量为1OZ 、2OZ ,即1OZ 、2OZ 的坐标形式为1OZ =(a ,b ),2OZ =(c ,d )以1OZ 、2OZ 为邻边作平行四边形OZ 1ZZ 2,则对角线OZ 对应的向量是OZ ,由于OZ = 1OZ +2OZ =(a ,b )+(c ,d )=(a +c ,b +d ),所以1OZ 和2OZ 的和就是与复数(a +c )+(b +d )i 对应的向量类似复数加法的几何意义,由于z 1-z 2=(a -c )+(b -d )i ,而向量21Z Z = 1OZ -2OZ =(a ,b )-(c ,d )=(a -c ,b -d ),所以1OZ 和2OZ 的差就是与复数(a -c )+(b -d )i 对应的向量.要点三、复数的几何意义的应用要会运用复数运算的几何意义去解题,它包含两个方面:1.利用几何意义可以把几何图形的变换转化成复数运算去处理2.反过来,对于一些复数运算式也可以给以几何解释,使复数做为工具运用于几何之中。

最新苏教版高中数学选修4-44.4知识讲解(全套及答案)

最新苏教版高中数学选修4-44.4知识讲解(全套及答案)

最新教学资料·苏教版数学4.4 参数方程4.4.1参数方程的意义课标解读1.理解曲线参数方程的概念,能选取适当的参数建立参数方程.2.通过常见曲线的参数方程的研究,了解某些参数的几何意义和物理意义.1.参数方程的定义一般地,在平面直角坐标系中,如果曲线C 上任意一点P 的坐标x 和y 都可以表示为某个变量t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),反过来,对于t 的每一个允许值,由函数式⎩⎪⎨⎪⎧ x =f (t ),y =g (t )所确定的点P (x ,y )都在这条曲线上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )叫做曲线C 的参数方程,变量t 是参变数,简称参数.2.求参数方程的一般步骤(1)建立直角坐标系,设曲线上任意一点M 的坐标为(x ,y ); (2)选取适当的参数;(3)根据已知条件、图形的几何性质、物理意义等,建立点M 的坐标与参数的函数关系式; (4)证明所求得的参数方程就是所求曲线的方程(通常省略不写).1.从参数方程的概念来看,参数t 的作用是什么?什么样的量可以当参数?【提示】 参数t 是联系变数x ,y 的桥梁;可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数. 2.在选择参数时,要注意什么?【提示】 在选择参数时,要注意以下几点:①参数与动点坐标x ,y 有函数关系,且x ,y 便于用参数表示; ②选择的参数要便于使问题中的条件明析化;③对于所选定的参数,要注意其取值范围,并能确定参数对x ,y 取值范围的制约; ④若求轨迹,应尽量使所得的参数方程便于消参.点与曲线的位置已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =3t ,y =2t 2+1(t 为参数). (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值.【自主解答】 (1)把点M 1(0,1)代入,得⎩⎪⎨⎪⎧0=3t ,1=2t 2+1, 解得t =0,故点M 1在曲线C 上,把点M 2(5,4)代入,得⎩⎪⎨⎪⎧5=3t ,4=2t 2+1, 这个方程组无解,因此点M 2(5,4)不在曲线C 上,(2)因为点M 3(6,a )在曲线C 上,所以⎩⎪⎨⎪⎧ 6=3t ,a =2t 2+1,解得⎩⎪⎨⎪⎧t =2,a =9,故a =9.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 为参数,a ∈R ),点M (5,4)在该曲线上,求常数a . 【解】 ∵点M (5,4)在曲线C 上,∴⎩⎪⎨⎪⎧ 5=1+2t ,4=at 2,解得:⎩⎪⎨⎪⎧t =2,a =1.∴a 的值为1.求曲线的轨迹方程如图4-4-1,△ABP 是等腰直角三角形,∠B 是直角,腰长为a ,顶点B 、A 分别在x 轴、y 轴上滑动,求点P 在第一象限的轨迹的参数方程.图4-4-1【自主解答】 法一 设P 点的坐标为(x ,y ),过P 点作x 轴的垂线交x 轴于Q . 如图所示,则Rt △OAB ≌Rt △QBP .取OB =t ,t 为参数(0<t <a ). ∵OA =a 2-t 2, ∴BQ =a 2-t 2.∴点P 在第一象限的轨迹的参数方程为⎩⎨⎧x =t +a 2-t 2,y =t (0<t <a ).法二 设点P 的坐标为(x ,y ),过点P 作x 轴的垂线交x 轴于点Q ,如图所示. 取∠QBP =θ, θ为参数(0<θ<π2),则∠ABO =π2-θ.在Rt △OAB 中, OB =a cos(π2-θ)=a sin θ.在Rt △QBP 中, BQ =a cos θ,PQ =a sin θ.∴点P 在第一象限的轨迹的参数方程为⎩⎪⎨⎪⎧x =a (sin θ+cos θ),y =a sin θ(θ为参数,0<θ<π2).求动点的轨迹方程,是解析几何中常见的题型之一,通常可用解析法寻找变量之间的关系,列出等式,得到曲线的方程.当变量之间的关系不容易用等式表示时,可以引入参数,使变量之间通过参数联系在一起,从而得到曲线的参数方程.设质点沿以原点为圆心,半径为2的圆做匀角速运动,角速度为π60rad/s.试以时间t为参数,建立质点运动轨迹的参数方程.【解】 如图所示,运动开始时质点位于点A 处,此时t =0,设动点M (x ,y )对应时刻t ,由图可知⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ,又θ=π60t (t 以s 为单位),故参数方程为⎩⎨⎧x =2cosπ60t ,y =2sin π60t (t 为参数,t ≥0).(教材第56页习题4.4第1题)物体从高处以初速度v 0(m/s)沿水平方向抛出.以抛出点为原点,水平直线为x轴,写出物体所经路线的参数方程,并求出它的普通方程.(2013·课标全国卷Ⅱ)已知动点P 、Q 都在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 【命题意图】 本题考查参数方程及轨迹方程,主要考查逻辑思维能力和运算求解能力. 【解】 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π时,d =0,故M 的轨迹过坐标原点.1.已知曲线⎩⎪⎨⎪⎧x =2sin θ+1,y =sin θ+3(θ为参数,0≤θ<2π).下列各点A (1,3),B (2,2),C (-3,5),其中在曲线上的点是________.【解析】 将A 点坐标代入方程得:θ=0或π,将B 、C 点坐标代入方程,方程无解,故A 点在曲线上. 【答案】 A (1,3)2.椭圆⎩⎪⎨⎪⎧x =5cos θ,y =4sin θ的焦点坐标为________.【解析】 把椭圆方程化为普通方程,得x 225+y 216=1.则a 2=25,b 2=16,所以c 2=9.椭圆的焦点为(-3,0)和(3,0).【答案】 (-3,0)和(3,0)3.椭圆(x -2)24+y 2=1的一个参数方程为______.【解析】 设x -22=cos θ,y =sin θ,所以椭圆的一个参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =sin θ(θ为参数).【答案】 ⎩⎪⎨⎪⎧x =2+2cos θ,y =sin θ4.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是________. 【答案】 线段图4-4-21.如图4-4-2,OB 是机器上的曲柄,长是r ,绕点O 转动,AB 是连杆,M 是AB 上一点,MA =a ,MB =b (2r <a +b ).当点A 在Ox 上做往返运动,点B 绕着O 做圆周运动时,求点M 的轨迹方程.【解】 如题图,设点M (x ,y ),θ=∠BAO ,由点B 作BC ⊥Ox ,交Ox 于点C ,由点M 作MD ⊥Ox ,交Ox 于点D ,由点M 作ME ⊥BC ,交BC 于点E ,那么y =DM =a sin θ,x =OD =OC +CD =OC +EM =±OB 2-CB 2+EM=±r 2-(a +b )2sin 2θ+b cos θ, 得到点M (x ,y )的坐标满足方程组⎩⎨⎧x =b cos θ±r 2-(a +b )2sin 2θ,y =a sin θ,即为点M 的轨迹方程.2.动点M 作匀速直线运动,它在x 轴和y 轴方向上的分速度分别为9 m/s 和12 m/s ,运动开始时,点M 位于A (1,1),求点M 的轨迹方程.【解】 设t s 后点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =1+9t ,y =1+12t .所以点M 的轨迹方程为 ⎩⎪⎨⎪⎧x =1+9t ,y =1+12t (t ≥0). 3.以椭圆x 24+y 2=1的长轴的左端点A 与椭圆上任意一点连线的斜率k 为参数,将椭圆方程化为参数方程.【解】 椭圆x 24+y 2=1的长轴的左端点A 的坐标为(-2,0).设P (x ,y )为椭圆上任意一点(除点A ),则点P 的坐标满足⎩⎨⎧yx +2=k ,x24+y 2=1.将y x +2=k 代入x 24+y 2=1,消去x ,得(1k 2+4)y 2-4k y =0. 解得y =0,或y =4k 1+4k 2.由y =4k1+4k 2, 解得x =2(1-4k 2)1+4k 2;由y =0,解得x =2.由于(2,0)满足方程组⎩⎪⎨⎪⎧x =2(1-4k 2)1+4k 2,y =4k1+4k 2,所以椭圆x 24+y 2=1的参数方程为⎩⎪⎨⎪⎧x =2(1-4k 2)1+4k 2,y =4k 1+4k 2.4.△ABC 是圆x 2+y 2=1的内接三角形,已知A (1,0),∠BAC =60°,求△ABC 的重心的轨迹方程.【解】 因为∠BAC =60°,所以∠BOC =120°. 设B (cos θ,sin θ)(0°<θ<240°),则有C (cos(θ+120°),sin(θ+120°)).设重心坐标为(x ,y ),则⎩⎨⎧x =1+cos θ+cos (θ+120°)3,y =sin θ+sin (θ+120°)3.所以⎩⎪⎨⎪⎧x =1+12cos θ-32sin θ3y =12sin θ+32cos θ3,即⎩⎨⎧x =1+cos (θ+60°)3,y =sin (θ+60°)3.消去θ+60°,得(3x -1)2+9y 2=1, ∵0°<θ<240°, ∴-1≤cos(θ+60°)<12,∴0≤1+cos (θ+60°)3<12,即0≤x <12.∴△ABC 的重心的轨迹方程为(x -13)2+y 2=19(0≤x <12).图4-4-35.如图4-4-3,过抛物线y 2=4x 上任一点M 作MQ 垂直于准线l ,垂足为Q ,连接OM 和QF (F 为焦点)相交于点P ,当M 在抛物线上运动时,求点P 的轨迹方程.【解】 设直线OM 的方程为y =kx (k ≠0),由⎩⎪⎨⎪⎧ y =kx ,y 2=4x 得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎨⎧x =4k2,y =4k ,所以M (4k 2,4k),则Q (-1,4k ),于是直线QF 的方程为y =4k -1-1(x -1),即y =-2k (x -1).由⎩⎪⎨⎪⎧y =kx ,y =-2k (x -1), 消去k ,得2x 2+y 2-2x =0.所以点P 的轨迹方程为2x 2+y 2-2x =0(y ≠0).图4-4-46.如图4-4-4所示,OA 是圆C 的直径,且OA =2a ,射线OB 与圆交于Q 点,和经过A 点的切线交于B 点,作PQ ⊥OA ,PB ∥OA ,试求点P 的轨迹方程.【解】 设P (x ,y )是轨迹上任意一点,取∠DOQ =θ,由PQ ⊥OA ,PB ∥OA ,得 x =OD =OQ cos θ=OA cos 2θ=2a cos 2θ, y =AB =OA tan θ=2a tan θ. 所以P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =2a cos 2θ,y =2a tan θ,θ∈(-π2,π2).7.已知点P (x ,y )是曲线C :⎩⎨⎧x =3+cos θ,y =2+3sin θ上的任意一点,求3x +y 的取值范围.【解】 设P (3+cos θ,2+3sin θ), 则3x +y =3(3+cos θ)+(2+3sin θ) =11+3cos θ+3sin θ=11+23sin(θ+π3),∴3x +y 的最大值为11+23,最小值为11-23,取值范围是[11-23,11+23].教师备选8.如图,已知曲线4x 2+9y 2=36(x >0,y >0),点A 在曲线上移动,点C (6,4),以AC 为对角线作矩形ABCD ,使AB ∥x 轴,AD ∥y 轴,求矩形ABCD 的面积最小时点A 的坐标.【解】 ∵椭圆方程为x 29+y 24=1(x >0,y >0),设A (3cos θ,2sin θ),θ∈(0,π2),则B (6,2sin θ),C (6,4),D (3cos θ,4), 所以S ABCD =AB ·AD =(6-3cos θ)(4-2sin θ) =24-12(sin θ+cos θ)+6sin θcos θ.令t =sin θ+cos θ,则t ∈(1,2],sin θcos θ=t 2-12,则S ABCD =3(t -2)2+9.因为t ∈(1,2],所以当t =2时,矩形面积最小,即t =sin θ+cos θ=2sin(θ+π4)=2,此时,θ=π4.所以矩形ABCD 的面积最小时点A 坐标是(322,2).4.4.2参数方程与普通方程的互化课标解读 1.能通过消去参数将参数方程化为普通方程.2.能选择适当的参数将普通方程化为参数方程.1.过定点P 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+l cos α,y =y 0+l sin α(l 为参数),其中参数l 的几何意义:有向线段P 0P 的数量(P为该直线上任意一点).2.圆x 2+y 2=r 2的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数).圆心为M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).3.椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).1.普通方程化为参数方程,参数方程的形式是否惟一?【提示】 不一定惟一.如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同. 2.将参数方程化为普通方程时,消去参数的常用方法有哪些?【提示】 ①代入法.先由一个方程求出参数的表达式(用直角坐标变量表示),再代入另一个方程.②利用代数或三角函数中的恒等式消去参数.例如对于参数方程⎩⎨⎧x =a (t +1t)cos θ,y =a (t -1t)sin θ,如果t 是常数,θ是参数,那么可以利用公式sin 2θ+cos 2θ=1消参;如果θ是常数,t 是参数,那么适当变形后可以利用(m +n )2-(m -n )2=4mn 消参.参数方程化为普通方程将下列参数方程化为普通方程:(1)⎩⎪⎨⎪⎧x =t +1t -1,y =2tt 3-1(t 为参数);(2)⎩⎪⎨⎪⎧x =5cos θ,y =4sin θ-1(θ为参数).【自主解答】 (1)由x =t +1t -1,得t =x +1x -1.代入y =2tt 3-1化简得y =(x +1)(x -1)23x 2+1(x ≠1).(2)由⎩⎪⎨⎪⎧x =5cos θ,y =4sin θ-1得⎩⎨⎧cos θ=x5, ①sin θ=y +14. ②①2+②2得x 225+(y +1)216=1.将下列参数方程化为普通方程:(1)⎩⎨⎧x =t +1t ,y =t 2+1t2(t 为参数);(2)⎩⎪⎨⎪⎧x =2+3cos θ,y =3sin θ(θ为参数). 【解】 (1)∵x =t +1t ,∴x 2=t 2+1t 2+2.把y =t 2+1t2代入得x 2=y +2.又∵x =t +1t ,当t >0时,x =t +1t ≥2;当t <0时,x =t +1t ≤-2.∴x ≥2或x ≤-2.∴普通方程为x 2=y +2(x ≥2或x ≤-2).(2)⎩⎪⎨⎪⎧x =2+3cos θ,y =3sin θ 可化为⎩⎨⎧cos θ=x -23,sin θ=y3.两式平方相加,得(x -23)2+(y 3)2=1.即普通方程为(x -2)2+y 2=9.普通方程化为参数方程根据所给条件,把曲线的普通方程化为参数方程.(1)(x -1)23+(y -2)25=1,x =3cos θ+1.(θ为参数)(2)x 2-y +x -1=0,x =t +1.(t 为参数)【自主解答】 (1)将x =3cos θ+1代入(x -1)23+(y -2)25=1得:y =2+5sin θ.∴⎩⎨⎧x =3cos θ+1,y =5sin θ+2(θ为参数), 这就是所求的参数方程.(2)将x =t +1代入x 2-y +x -1=0得: y =x 2+x -1=(t +1)2+t +1-1 =t 2+3t +1,∴⎩⎪⎨⎪⎧x =t +1,y =t 2+3t +1(t 为参数), 这就是所求的参数方程.已知圆的方程为x 2+y 2+2x -6y +9=0,将它化为参数方程. 【解】 把x 2+y 2+2x -6y +9=0化为标准方程为(x +1)2+(y -3)2=1.∴参数方程为⎩⎪⎨⎪⎧x =-1+cos θ,y =3+sin θ(θ为参数).利用参数求轨迹方程过A (1,0)的动直线l 交抛物线y 2=8x 于M ,N 两点,求MN 中点的轨迹方程.【思路探究】 设出直线MN 的参数方程,然后代入抛物线的方程,利用参数方程中t 的几何意义及根与系数的关系解题.【自主解答】 直线MN 方程⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(α≠0,t 为参数)代入y 2=8x ,得t 2sin 2α-8t cos α-8=0.设M ,N 对应参数为t 1,t 2,MN 中点G 的参数为t 0,则t 0=12(t 1+t 2)=4cos αsin 2α,∵⎩⎨⎧x =1+4cos 2αsin 2α,y =4cos αsin α,消去α得y 2=4(x -1).1.用参数法求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.2.涉及到用直线的参数方程求轨迹方程时,需理解参数l 的几何意义.经过点A (-3,-32),倾斜角为α的直线l 与圆x 2+y 2=25相交于B 、C 两点.(1)求弦BC 的长;(2)当A 恰为BC 的中点时,求直线BC 的方程; (3)当BC =8时,求直线BC 的方程;(4)当α变化时,求动弦BC 的中点M 的轨迹方程. 【解】 取AP =t 为参数(P 为l 上的动点), 则l 的参数方程为⎩⎪⎨⎪⎧x =-3+t cos α,y =-32+t sin α, 代入x 2+y 2=25,整理,得 t 2-3(2cos α+sin α)t -554=0.∵Δ=9(2cos α+sin α)2+55>0恒成立, ∴方程必有相异两实根t 1,t 2, 且t 1+t 2=3(2cos α+sin α),t 1·t 2=-554. (1)BC =|t 1-t 2|=(t 1+t 2)2-4t 1t 2= 9(2cos α+sin α)2+55.(2)∵A 为BC 中点,∴t 1+t 2=0, 即2cos α+sin α=0,∴tan α=-2. 故直线BC 的方程为y +32=-2(x +3),即4x +2y +15=0.(3)∵BC =9(2cos α+sin α)2+55=8,∴(2cos α+sin α)2=1.∴cos α=0或tan α=-34.∴直线BC 的方程是x =-3或3x +4y +15=0.(4)∵BC 的中点M 对应的参数是t =t 1+t 22=32(2cos α+sin α),∴点M 的轨迹方程为⎩⎨⎧x =-3+32cos α(2cos α+sin α),y =-32+32sin α(2cos α+sin α)(0≤α<π).∴⎩⎨⎧x +32=32(cos 2α+12sin 2α),y +34=32(sin 2α-12cos 2α).∴(x +32)2+(y +34)2=4516.即点M 的轨迹是以(-32,-34)为圆心,以354为半径的圆.(教材第56页习题4.4第2题)将下列参数方程化为普通方程,并说明它表示什么曲线:(1)⎩⎪⎨⎪⎧x =-4+3t ,y =3-4t (t 为参数); (2)⎩⎪⎨⎪⎧x =3cos θ-1,y =3sin θ+2(θ为参数); (3)⎩⎪⎨⎪⎧x =1-t 21+t 2,y =4t1+t 2(t 为参数);(4)⎩⎪⎨⎪⎧x =a cos θ,y =b tan θ(θ为参数); (5)⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ(θ为参数).(2013·盐城模拟)在平面直角坐标系xOy 中,求过椭圆⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t (t 为参数)平行的直线的普通方程. 【命题意图】 本题主要考查参数方程与普通方程的互化及椭圆的基本性质、直线方程、两条直线的位置关系等知识. 【解】 由题设知,椭圆的长半轴长a =5,短半轴长b =3, 从而c =a 2-b 2=4,所以右焦点为(4,0).将已知直线的参数方程化为普通方程:x -2y +2=0, 故所求直线的斜率为12,因此其方程为y =12(x -4),即x -2y -4=0.1.将参数方程⎩⎨⎧x =t ,y =2t -4(t 为参数)化为普通方程为________.【解析】 将x =t 代入y =2t -4得y =2x -4. 又∵x =t ≥0,∴普通方程为2x -y -4=0(x ≥0). 【答案】 2x -y -4=0(x ≥0)2.(2013·陕西高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.【解析】 将参数方程化为普通方程为y 2=4x ,表示开口向右,焦点在x 轴正半轴上的抛物线,由2p =4⇒p =2,则焦点坐标为(1,0). 【答案】 (1,0)3.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程为________. 【解析】 转化为普通方程为y =x -2,且x ∈[2,3],y ∈[0,1]. 【答案】 y =x -2(2≤x ≤3)4.(2012·广东高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧ x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.【解析】 C 1的普通方程为y 2=x (x ≥0,y ≥0), C 2的普通方程为x 2+y 2=2.由⎩⎪⎨⎪⎧ y 2=x ,x ≥0,y ≥0x 2+y 2=2得⎩⎪⎨⎪⎧x =1,y =1.∴C 1与C 2的交点坐标为(1,1).【答案】 (1,1)1.将下列参数方程化为普通方程:(1)⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数,a 、b 为常数,且a >b >0); (2)⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,p 为正常数). 【解】 (1)由cos 2θ+sin 2θ=1,得x 2a 2+y 2b2=1,这是一个长轴长为2a ,短轴长为2b ,中心在原点的椭圆. (2)由已知t =y 2p ,代入x =2pt 2得y 24p 2·2p =x ,即y 2=2px , 这是一条抛物线.2.已知抛物线C 的参数方程为⎩⎪⎨⎪⎧x =8t 2,y =8t(t 为参数).若斜率为1的直线经过抛物线C 的焦点,且与圆(x -4)2+y 2=r 2(r >0)相切,求r 的值.【解】 由⎩⎪⎨⎪⎧x =8t 2,y =8t得y 2=8x ,抛物线C 的焦点坐标为F (2,0),直线方程为y =x -2,即x -y -2=0.因为直线y =x -2与圆(x -4)2+y 2=r 2相切,由题意得r =|4-0-2|2= 2. 3.若直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t (t 为参数)与直线4x +ky =1垂直,求常数k 的值.【解】 将⎩⎪⎨⎪⎧x =1-2t ,y =2+3t化为普通方程为y =-32x +72,斜率k 1=-32,当k ≠0时,直线4x +ky =1的斜率k 2=-4k ,由k 1k 2=(-32)×(-4k)=-1得k =-6;当k =0时,直线y =-32x +72与直线4x =1不垂直.综上可知,k =-6.4.过椭圆x 29+y 24=1内一定点P (1,0)作弦,求弦的中点的轨迹.【解】 设弦的两端点A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x ,y ).当AB 与x 轴不垂直时,设AB 的方程为y =k (x -1),代入方程x 29+y 24=1,得(9k 2+4)x 2-18k 2x +9k 2-36=0.由根与系数的关系,得x 1+x 2=18k 29k 2+4, 所以⎩⎪⎨⎪⎧x =9k 29k 2+4,y =k (x -1)=-4k9k 2+4,∴x y =-94k , 即k =-4x 9y ,代入y =k (x -1)中,得4x 2+9y 2-4x =0,即(x -12)214+y219=1.①当AB ⊥Ox 轴时,线段AB 的中点为(1,0),该点的坐标满足方程①,所以所求的轨迹方程为(x -12)214+y219=1.点M 的轨迹是以O 、P 为长轴端点且离心率与原椭圆相同的一个椭圆.5.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 是参数,α∈R ),点M (5,4)在该曲线上, (1)求常数a ;(2)求曲线C 的普通方程.【解】 (1)由题意,可知⎩⎪⎨⎪⎧ 1+2t =5,at 2=4,故⎩⎪⎨⎪⎧t =2,a =1,所以a =1. (2)由已知及(1)得,曲线C 的方程为⎩⎪⎨⎪⎧x =1+2t , ①y =t 2, ② 由①得t =x -12,代入②得y =(x -12)2,即(x -1)2=4y 为所求.6.已知极坐标系的极点O 与直角坐标系的原点重合,极轴与x 轴的正半轴重合,曲线C 1:ρcos(θ+π4)=22与曲线C 2:⎩⎪⎨⎪⎧x =4t 2,y =4t (t∈R )交于A 、B 两点.求证:OA ⊥OB .【证明】 曲线C 1的直角坐标方程为x -y =4,曲线C 2的直角坐标方程是抛物线y 2=4x . 设A (x 1,y 1),B (x 2,y 2),将这两个方程联立,消去x , 得y 2-4y -16=0⇒y 1y 2=-16,y 1+y 2=4.∴x 1x 2+y 1y 2=(y 1+4)(y 2+4)+y 1y 2=2y 1y 2+4(y 1+y 2)+16=0,∴OA →·OB →=0,∴OA ⊥OB . 7.设点M (x ,y )在圆x 2+y 2=1上移动,求点P (x +y ,xy )的轨迹.【解】 设点M (cos θ,sin θ)(0≤θ<2π),点P (x ′,y ′),则⎩⎪⎨⎪⎧x ′=cos θ+sin θ, ①y ′=cos θsin θ, ②①2-2×②,得x ′2-2y ′=1,即x ′2=2(y ′+12),∴所求点P 的轨迹方程为x 2=2(y +12)(|x |≤2,|y |≤12).它是顶点为(0,-12),开口向上的抛物线的一部分.教师备选8.在平面直角坐标系xOy 中,求圆C 的参数方程为⎩⎪⎨⎪⎧x =-1+r cos θ,y =r sin θ(θ为参数,r >0),以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos(θ+π4)=2 2.若直线l 与圆C 相切,求r 的值.【解】 将直线l 的极坐标方程化为直角坐标方程得:x -y -4=0, 将圆C 的参数方程化为普通方程得:(x +1)2+y 2=r 2, 由题设知:圆心C (-1,0)到直线l 的距离为r ,即r =|(-1)-0-4|12+(-1)2=522,即r 的值为522.4.4.3参数方程的应用第1课时 直线的参数方程的应用课标解读1.写出直线的参数方程.2.通过直线的参数方程的应用,感受参数的意义及其作用.直线的参数方程直线参数方程的常见形式:过定点P 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+l cos α,y =y 0+l sin α(l 为参数).其中参数l 的几何意义是有向线段P 0P 的数量,|l |表示P 0P 的长度.1.怎样理解参数l 的几何意义?【提示】 参数l 的几何意义是P 0到直线上任意一点P (x ,y )的有向线段P 0P 的数量.当点P 在点P 0的上 方或右方时,l 取正值,反之,l 取负值;当点P 与P 0重合时,l =0. 2.如何由直线的参数方程求直线的倾斜角?【提示】 如果直线的参数方程是⎩⎪⎨⎪⎧x =x 0+t cos θ,y =y 0+t sin θ(t 为参数)的形式,由方程直接可得出倾斜角,即方程中的角θ,例如,直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos 15°,y =1+t sin 15°,则直线的倾斜角为15°.如果不是上述形式,例如直线⎩⎪⎨⎪⎧x =1+t sin 15°,y =1+t cos 15°(t 为参数)的倾斜角就不能直接判断了.第一种方法:把参数方程改写为⎩⎪⎨⎪⎧x -1=t sin 15°,y -1=t cos 15°,消去t , 有y -1=1tan 15°(x -1),即y -1=tan 75°(x -1),故倾斜角为75°.第二种方法:把原方程化为参数方程和标准形式,即⎩⎪⎨⎪⎧x =1+t cos 75°,y =1+t sin 75°,可以看出直线的倾斜角为75°.求直线的参数方程已知直线l过(3,4),且它的倾斜角θ=120°.(1)写出直线l的参数方程;(2)求直线l与直线x-y+1=0的交点.【自主解答】(1)直线l的参数方程为⎩⎪⎨⎪⎧x=3+t cos 120°,y=4+t sin 120°(t为参数),即⎩⎨⎧x=3-12t,y=4+32t(t为参数).(2)把⎩⎨⎧x=3-12t,y=4+32t代入x-y+1=0,得3-12t-4-32t+1=0,得t=0.把t=0代入⎩⎨⎧x=3-12t,y=4+32t得两直线的交点为(3,4).已知两点A(1,3),B(3,1)和直线l:y=x,求过点A、B的直线的参数方程,并求它与直线l的交点M分AB的比.【解】设直线AB上动点P(x,y),选取参数λ=APPB,则直线AB的参数方程为⎩⎪⎨⎪⎧x=1+3λ1+λ,y=3+λ1+λ(λ为参数,λ≠-1).①把①代入y=x,得1+3λ1+λ=3+λ1+λ,得λ=1,所以M分AB的比:AMMB=1.直线参数方程的应用求直线⎩⎨⎧x =2+t ,y =3t(t 为参数)被双曲线x 2-y 2=1截得的弦长.【思路探究】 先求出直线和双曲线的交点坐标,再用两点间的距离公式,或者用直线参数方程中参数的几何意义求弦长. 【自主解答】 令t =112+(3)2t ′,即t ′=2t ,则直线的参数方程为⎩⎪⎨⎪⎧x =2+t ′cos θ,y =t ′sin θ(其中sin θ=32,cos θ=12), 将⎩⎪⎨⎪⎧x =2+t ′cos θ,y =t ′sin θ代入双曲线方程,得 t ′2-4t ′-6=0,所以弦长=|t 1′-t 2′|=(t 1′+t 2′)2-4t 1′t 2′=42+4×6=210.方程⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt 中t 的几何意义为定点P 0(x 0,y 0)到动点P (x ,y )的有向线段的数量,有两个原则:其一为a 2+b 2=1,其二为b ≥0.这是因为α为直线的倾斜角时,必有sin 2α+cos 2α=1及sin α≥0.不满足上述原则时,则必须通过换元的方法进行转化后,才能利用直线参数方程的几何意义解决问题.(2013·湖南高考)在平面直角坐标系xOy 中,若直线l 1:⎩⎪⎨⎪⎧ x =2s +1,y =s (s 为参数)和直线l 2:⎩⎪⎨⎪⎧x =at ,y =2t -1(t 为参数)平行,则常数a 的值为________.【解析】 由⎩⎪⎨⎪⎧x =2s +1,y =s 消去参数s ,得x =2y +1.由⎩⎪⎨⎪⎧x =at ,y =2t -1消去参数t ,得2x =ay +a . ∵l 1∥l 2,∴2a =12,∴a =4.【答案】 4(教材第57页习题4.4第6题)运用4.4.2小节中例3的结论:(1)求经过点P (1,-5),倾斜角是π3的直线的参数方程;(2)求(1)中的直线与直线x -y -23=0的交点到点P 的距离.(2013·江苏高考)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标. 【命题意图】 本题考查参数方程与普通方程的互化以及直线与抛物线的位置关系等基础知识,考查转化、分析问题的能力和运算能力.【解】 因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1,得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .联立方程组⎩⎪⎨⎪⎧y =2(x -1),y 2=2x ,解得公共点的坐标为(2,2),⎝⎛⎭⎫12,-1.1.直线⎩⎪⎨⎪⎧x =-2+t cos 50°,y =3-t sin 40°(t 为参数)的倾斜角α=________.【解析】 根据tan α=-sin 40°cos 50°=-1,因此倾斜角为135°.【答案】 135°2.曲线⎩⎪⎨⎪⎧x =-2+5t ,y =1-2t (t 为参数)与坐标轴的交点是________.【解析】 当x =-2+5t =0时,解得t =25,可得y =1-2t =15,当y =1-2t =0时,解得t =12,可得x =-2+5t =12,∴曲线与坐标轴的交点坐标为(0,15),(12,0).【答案】 (0,15),(12,0)3.点(-3,0)到直线⎩⎪⎨⎪⎧x =2t ,y =22t(t 为参数)的距离为________.【解析】 直线⎩⎪⎨⎪⎧x =2t ,y =22t 化为普通方程为x -22y =0. ∴点(-3,0)到直线的距离为|-3-0|1+(-22)2=1.【答案】 14.直线⎩⎨⎧x =2-12t ,y =-1+12t (t 为参数)被圆x 2+y 2=4截得的弦长为________.【答案】141.已知直线l 经过点P (1,-33),倾斜角为π3,求直线l 与直线l ′:y =x -23的交点Q 与点P 的距离|PQ |.【解】 ∵l 过点P (1,-33),倾斜角为π3,∴l 的参数方程为⎩⎨⎧x =1+t cos π3,y =-33+t sinπ3(t 为参数),即⎩⎨⎧x =1+12t ,y =-33+32t(t 为参数).代入y =x -23,得-33+32t =1+12t -23, 解得t =4+23,即t =23+4为直线l 与l ′的交点Q 所对应的参数值,根据参数t 的几何意义,可知|t |=PQ ,∴PQ =4+2 3.2.求直线⎩⎪⎨⎪⎧x =1+2t ,y =2+t (t 为参数)被圆x 2+y 2=9截得的弦长.【解】 将⎩⎪⎨⎪⎧x =1+2t ,y =2+t 代入圆的方程x 2+y 2=9,得5t 2+8t -4=0,t 1+t 2=-85,t 1t 2=-45.|t 1-t 2|2=(t 1+t 2)2-4t 1t 2=6425+165=14425, 所以弦长=22+1|t 1-t 2|=5·125=1255.3.已知椭圆x 216+y 24=1和点P (2,1),过P 作椭圆的弦,并使点P 为弦的中点,求弦所在的直线方程.【解】 设弦所在直线的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =1+t sin α(t 为参数),代入椭圆方程x 216+y 24=1,得(cos 2α+4sin 2α)·t 2+4(cos α+2sin α)t -8=0,所以t 1+t 2=-4(cos α+2sin α)cos 2α+4sin 2α,因为P 是弦的中点,所以t 1+t 2=0,即-4(cos α+2sin α)cos 2α+4sin 2α=0,所以cos α+2sin α=0,tan α=-12.又P (2,1)在椭圆内,所以弦所在的直线方程为y -1=-12(x -2),即x +2y -4=0.4.过抛物线y 2=2px (p >0)的顶点作两条互相垂直的弦OA ,OB ,求线段AB 中点M 的轨迹的普通方程. 【解】 由题意知,两弦所在直线的斜率存在且不为0,所以设直线OA 的方程为y =kx ,则OB 的方程为y =-1k x ,解⎩⎪⎨⎪⎧ y =kx ,y 2=2px 得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =2p k2,y =2p k .所以A 点坐标为(2p k 2,2pk).同理可求得B 点坐标为(2pk 2,-2pk ).设AB 中点M 的坐标为(x ,y ),则⎩⎨⎧x =p (1k2+k 2),y =p (1k -k ).消去k 得y 2=px -2p 2.所以点M 的轨迹方程为y 2=px -2p 2.5.(2012·湖南高考改编)在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧ x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,试求a 的值.【解】 ∵⎩⎪⎨⎪⎧x =t +1,y =1-2t ,消去参数t 得2x +y -3=0.又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1.方程2x +y -3=0中,令y =0得x =32,将(32,0)代入x 2a 2+y 29=1,得94a 2=1.又a >0,∴a =32.6.已知直线l 经过点P (1,0),倾斜角为α=π6.(1)写出直线l 的参数方程;(2)设直线l 与椭圆x 2+4y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 【解】 (1)直线l 的参数方程为⎩⎨⎧ x =1+t cos π6,y =t sin π6,即⎩⎨⎧x =1+32t ,y =12t(t 为参数).(2)联立直线与圆的方程得(1+32t )2+4(t 2)2=4,∴74t 2+3t -3=0, 所以t 1t 2=-127,即|t 1||t 2|=127.所以P 到A 、B 两点的距离之积为127.7.已知抛物线y 2=8x 的焦点为F ,过F 且斜率为2的直线交抛物线于A 、B 两点. (1)求AB ;(2)求AB 的中点M 的坐标及FM . 【解】 抛物线y 2=8x 的焦点为F (2,0), 依题意,设直线AB 的参数方程为⎩⎨⎧x =2+15t ,y =25t(t 为参数),其中tan α=2,cos α=15,sin α=25,α为直线AB 的倾斜角,代入y 2=8x 整理得t 2-25t -20=0. 则t 1+t 2=25,t 1t 2=-20. (1)AB =|t 2-t 1|=(t 1+t 2)2-4t 1t 2 =(25)2+80=10. (2)由于AB 的中点为M , 故点M 对应的参数为t 1+t 22=5,∴M (3,2),FM =|t 1+t 22|= 5.教师备选8.如图所示,已知直线l 过点P (2,0),斜率为43,直线l 和抛物线y 2=2x 相交于A ,B 两点,设线段AB 的中点为M ,求:(1)P ,M 间的距离PM ; (2)点M 的坐标; (3)线段AB 的长.【解】 (1)∵直线l 过点P (2,0),斜率为43,设直线l 的倾斜角为α,则tan α=43,cos α=35,sin α=45,∴直线l 的参数方程的标准形式为⎩⎨⎧x =2+35t ,y =45t(t 为参数).(*)∵直线l 和抛物线相交,∴将直线l 的参数方程代入抛物线方程y 2=2x 中,整理得8t 2-15t -50=0,Δ=152+4×8×50>0.设这个二次方程的两个根为t 1,t 2,由根与系数的关系得t 1+t 2=158,t 1t 2=-254.由M 为线段AB 的中点,根据t 的几何意义,得 PM =⎪⎪⎪⎪t 1+t 22=1516.(2)因为中点M 所对应的参数为t M =1516,将此值代入直线l 的参数方程的标准形式(*),得⎩⎨⎧x =2+35×1516=4116,y =45×1516=34,即M (4116,34).(3)AB =|t 1-t 2|=(t 1+t 2)2-4t 1t 2 =5873. 第2课时 圆、椭圆的参数方程的应用课标解读 1.能用曲线的参数方程去研究曲线的性质. 2.会用参数法解决圆锥曲线中的最值、定值等问题.1.圆的参数方程圆的参数方程的常见形式为⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α(α为参数).其中,参数α的几何意义是以圆心A (a ,b )为顶点,且与x 轴同向的射线按逆时针方向旋转到圆上一点P 所在半径成的角.2.椭圆的参数方程椭圆的参数方程的常见形式为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数).1.椭圆的参数方程与圆的参数方程有什么区别和联系?【提示】 椭圆x 2a 2+y 2b 2=1(a >b >0)和圆x 2+y 2=r 2普通方程都是平方和等于1的形式,故参数方程都运用了三角代换法,只是参数方程的常数不同.2.椭圆的参数方程中参数φ的几何意义是什么?【提示】 从几何变换的角度看,通过伸缩变换,令⎩⎨⎧x ′=1ax ,y ′=1b y ,椭圆x 2a 2+y 2b2=1可以变成圆x ′2+y ′2=1.利用圆x ′2+y ′2=1的参数方程⎩⎪⎨⎪⎧ x ′=cos φ,y ′=sin φ(φ是参数)可以得到椭圆x 2a 2+y 2b 2=1的参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ是参数).因此,参数φ的几何意义应是椭圆上任意一点M 所对应的圆的半径OA (或OB )的旋转角(称为离心角),而不是OM 的旋转角,如图.圆的参数方程的应用在圆x 2+2x +y 2=0上求一点,使它到直线2x +3y -5=0的距离最大.【自主解答】 圆的方程x 2+2x +y 2=0可化为(x +1)2+y 2=1,所以设圆的参数方程为⎩⎪⎨⎪⎧x =-1+cos θ,y =sin θ.设P (-1+cos θ,sin θ),则点P 到直线2x +3y -5=0的距离为 d =|2(-1+cos θ)+3sin θ-5|22+32=|2cos θ+3sin θ-7|13=|13sin (θ+α)-7|13(其中sin α=21313,cos α=31313).当sin(θ+α)=-1,θ+α=3π2,即θ=3π2-α时,d 取到最大值13+71313,此时x =-1+cos θ=-1-21313,y =sin θ=-31313,即点P (-1-21313,-31313)即为所求.已知点P (x ,y )在圆x 2+y 2=1上,求x 2+2xy +3y 2的最大值和最小值.【解】 圆x 2+y 2=1的参数方程为⎩⎪⎨⎪⎧x =cos α,y =sin α(α为参数).∴x 2+2xy +3y 2=cos 2α+2cos αsin α+3sin 2α =1+cos 2α2+sin 2α+3×1-cos 2α2=2+sin 2α-cos 2α=2+2sin(2α-π4).则当α=k π+3π8(k ∈Z )时,x 2+2xy +3y 2取最大值为2+2,当α=k π-π8(k ∈Z )时,x 2+2xy +3y 2取最小值为2- 2.椭圆参数方程的应用已知实数x ,y 满足3x 2+2y 2=6x ,求:(1)x +y 的最大值; (2)x 2+y 2的取值范围.【思路探究】 本题表面上看是代数题,但由于方程3x 2+2y 2=6x 可以表示一个椭圆,故可以用椭圆的参数方程来解. 【自主解答】 方程3x 2+2y 2=6x ,即(x -1)2+y232=1.设⎩⎪⎨⎪⎧x =1+cos θ,y = 32sin θ.(1)x +y =1+cos θ+ 32sin θ =1+52sin(θ+α)(其中tan α=63,θ∈[0,2π)). 所以x +y 的最大值为1+102. (2)x 2+y 2=(1+cos θ)2+(32sin θ)2 =1+2cos θ+cos 2θ+32sin 2θ=52-12cos 2θ+2cos θ=-12(cos θ-2)2+92,因为cos θ∈[-1,1],所以0≤x 2+y 2≤4.利用椭圆的参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ是参数),将问题转化为三角函数问题处理.(2013·湖北高考)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数,a >b >0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin ⎝⎛⎭⎫θ+π4=22m (m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为________.【解析】 由已知可得椭圆标准方程为x 2a 2+y 2b2=1(a >b >0).由ρsin ⎝⎛⎭⎫θ+π4=22m 可得ρsin θ+ρcos θ=m ,即直线的普通方程为x +y =m .又圆的普通方程为x 2+y 2=b 2,不妨设直线l 经过椭圆C 的右焦点(c,0),则得c =m .又因为直线l 与圆O 相切,所以|m |2=b ,因此c =2b ,即c 2=2(a 2-c 2).整理,得c 2a 2=23,故椭圆C 的离心率为e =63. 【答案】63(教材第47页例1)如图4-4-5,已知M 是椭圆x 2a 2+y 2b2=1(a >b >0)上在第一象限的点,A (a,0)和B (0,b )是椭圆的两个顶点,O 为原点,求四边形MAOB 的面积的最大值.(2013·镇江模拟)在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,π2),判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【命题意图】 本题主要考查极坐标与直角坐标的互化、椭圆的参数方程等基础知识,考查运算求解能力和转化与化归思想. 【解】 (1)把极坐标系下的点P (4,π2)化为直角坐标得点(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0, 所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α), 从而点Q 到直线l 的距离为 d =|3cos α-sin α+4|2=2cos (α+π6)+42=2cos(α+π6)+22,由此得,当cos(α+π6)=-1时,d 取得最小值,且最小值为 2.1.已知圆的方程为x 2+y 2=4x ,则它的参数方程是 ________.【解析】 x 2+y 2=4x 可化为(x -2)2+y 2=4, ∴圆心为(2,0),半径r =2.∴参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数,0≤θ<2π).【答案】 ⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数,0≤θ<2π)2.椭圆⎩⎨⎧x =32cos φ,y =23sin φ(φ为参数)的焦距是________.【解析】 根据参数方程,可知a =32,b =2 3. ∴c =(32)2-(23)2 =18-12=6, ∴焦距为2c =2 6. 【答案】 2 63.椭圆x 23+y 2=1上的点到直线x -y +6=0的距离的最小值为________.【解析】 设P (3cos θ,sin θ)是椭圆上的点,则点P 到直线x -y +6=0的距离 d =|3cos θ-sin θ+6|2=|2cos (θ+π6)+6|2,当cos(θ+π6)=-1时,d 取到最小值,最小值为2 2.【答案】 2 24.点P (x ,y )在圆(x -1)2+(y -1)2=1上运动,则3x +4y 的最大值为________,yx 的最小值为________.【解析】 设x =1+cos θ,y =1+sin θ,所以3x +4y =7+3cos θ+4sin θ=7+5sin(θ+α)(其中sin α=35,cos α=45),所以当sin(θ+α)=1时,3x +4y 取到最大值12. 设t =y x =1+sin θ1+cos θ,则sin θ-t cos θ=t -1,从而1+t 2sin(θ-α)=t -1(其中sin α=t 1+t 2,cos α=11+t 2),t -11+t 2=sin(θ-α), 所以⎪⎪⎪⎪⎪⎪t -11+t 2≤1,解得t ≥0,即y x 的最小值为0. 【答案】 12 01.当x 2+y 2=4时,求u =x 2+23xy -y 2的最值.【解】 设⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(0≤θ<2π),于是u =x 2+23xy -y 2=4cos 2θ+83cos θsin θ-4sin 2θ =4cos 2θ+43sin 2θ =8sin(2θ+π6).所以,当θ=π6,x =3,y =1时,或θ=7π6,x =-3,y =-1时,u max =8;当θ=2π3,x =-1,y =3时,或θ=5π3,x =1,y =-3时,u min =-8.2.若x ,y 满足(x -1)2+(y +2)2=4,求2x +y 的最值. 【解】 令x -1=2cos θ,y +2=2sin θ,则有 x =2cos θ+1,y =2sin θ-2, 故2x +y =4cos θ+2+2sin θ-2=4cos θ+2sin θ=25sin(θ+φ)(tan φ=2). ∴-25≤2x +y ≤2 5.即2x +y 的最大值为25,最小值为-2 5.3.过点P (-3,0)且倾斜角为30°的直线和曲线⎩⎨⎧x =t +1t ,y =t -1t (t 为参数)相交于A 、B 两点.求线段AB 的长.【解】 直线的参数方程为⎩⎨⎧x =-3+32s ,y =12s(s 为参数),曲线⎩⎨⎧x =t +1t,y =t -1t(t 为参数)可以化为x 2-y 2=4.将直线的参数方程代入上式,得 s 2-63s +10=0.设A 、B 对应的参数分别为s 1,s 2, ∴s 1+s 2=63,s 1s 2=10.AB =|s 1-s 2|=(s 1+s 2)2-4s 1s 2=217.4.已知A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OP A =90°,求椭圆离心率的取值范围.【解】 设椭圆的方程为x 2a 2+y 2b 2=1,A (a,0),设P (a cos θ,b sin θ)是椭圆上一点,则AP →=(a cos θ-a ,b sin θ),OP →=(a cos θ,b sin θ),由于∠OP A =90°,所以AP →·OP →=0,即(a cos θ-a )a cos θ+b 2sin 2θ=0,a 2(cos 2θ-cos θ)+b 2sin 2θ=0,a 2cos θ(cos θ-1)+b 2(1+cos θ)(1-cos θ)=0. 因为P 与A 不重合, 所以cos θ-1≠0, 则a 2cos θ=b 2(1+cos θ), b 2a 2=cos θ1+cos θ, c 2a 2=1-b 2a 2=1-cos θ1+cos θ=11+cos θ. 因为θ∈(0,π2)∪(32π,2π),所以c 2a 2∈(12,1),e ∈(22,1).5.已知椭圆x 24+y 2=1上任一点M (除短轴端点外)与短轴两端点B 1、B 2的连线分别交x 轴于P 、Q 两点,求证:OP ·OQ 为定值.【证明】 设M (2cos φ,sin φ),φ为参数,B 1(0,-1), B 2(0,1).则MB 1的方程:y +1=sin φ+12cos φ·x ,令y =0, 则x =2cos φsin φ+1,即OP =|2cos φ1+sin φ|.。

苏教版数学选修知识点总结

苏教版数学选修知识点总结

苏教版数学选修知识点总结一、数列1. 数列的概念:数列是由一列按照一定顺序排列的数所组成的数集,其中每一个数叫作数列的项。

2. 等差数列:等差数列是指数列中相邻两项的差都相等的数列。

等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为项数。

3. 等比数列:等比数列是指数列中任意两相邻项的比都相等的数列。

等比数列的通项公式为an=a1*r^(n-1),其中a1为首项,r为公比,n为项数。

4. 等差数列的求和公式:等差数列的前n项和Sn可以表示为Sn=n(a1+an)/2,其中a1为首项,an为末项。

5. 等比数列的求和公式:等比数列的前n项和Sn可以表示为Sn=a1(1-r^n)/(1-r),其中a1为首项,r为公比。

6. 通过数列可以引入极限的概念,学习数列极限的计算方法以及数列极限存在的条件。

二、向量1. 向量的概念:向量是具有大小和方向的量,用带箭头的线段来表示。

向量可以通过坐标、模、方向角等来描述。

2. 向量的基本运算:向量的加法、数乘和数量积,其中向量的数量积可以通过点乘和夹角来计算。

3. 向量的线性运算:向量可以进行线性运算,包括标量乘法和加法运算。

4. 在平面直角坐标系和空间直角坐标系中的向量表示和运算。

5. 向量的投影和垂直条件:学习如何计算向量的投影和判断向量的垂直性。

6. 向量的数量积的几何意义:了解向量数量积的几何意义,包括点乘的几何意义和角度的变化关系。

7. 向量的应用:运动学问题、力的合成与分解、平面向量和坐标、三角形的性质等。

三、三角函数1. 引入三角函数的概念和周期性,了解三角函数在单位圆上的定义和性质。

2. 三角函数的基本关系:学习正弦函数、余弦函数、正切函数等的定义和关系。

3. 三角函数的图像和性质:学习不同三角函数的图像和性质,包括振幅、周期、相位等。

4. 三角函数的变换:学习三角函数的平移、伸缩和翻转等变换,包括函数y=asin(bx+c)+d的变换。

高中数学知识点大全总结苏教版

高中数学知识点大全总结苏教版

高中数学知识点大全总结苏教版高中数学知识点大全总结(苏教版)一、函数与导数1. 函数的概念与性质- 函数的定义- 函数的表示方法- 函数的域与值域- 函数的奇偶性- 函数的单调性与周期性2. 基本初等函数- 幂函数、指数函数与对数函数- 三角函数及其性质- 反三角函数- 双曲函数3. 函数的极限与连续性- 极限的概念与性质- 无穷小与无穷大- 函数的连续性与间断点4. 导数与微分- 导数的定义与几何意义- 常见函数的导数- 高阶导数- 微分的概念与应用5. 导数的应用- 函数的极值与最值问题- 曲线的切线与法线- 洛必达法则- 函数的单调区间与曲线的凹凸性二、三角函数与解三角形1. 三角函数的图像与性质- 三角函数的图像- 三角函数的基本性质- 三角函数的和差化积与积化和差2. 三角函数的恒等变换- 同角三角函数的基本关系- 恒等变换公式3. 解三角形- 三角形的边角关系- 正弦定理与余弦定理- 三角形面积的计算三、数列与数学归纳法1. 等差数列与等比数列- 数列的基本概念- 等差数列与等比数列的定义、通项公式与求和公式2. 数列的极限- 数列极限的概念- 极限的四则运算3. 数学归纳法- 数学归纳法的原理- 证明方法与步骤四、平面向量与解析几何1. 平面向量- 向量的基本概念与运算- 向量的模、方向角与投影2. 直线与圆的方程- 直线的点斜式、两点式与一般式方程- 圆的标准方程与一般方程3. 圆锥曲线- 椭圆、双曲线与抛物线的方程及其性质五、立体几何1. 空间直线与平面- 空间直线的方程- 平面的方程- 直线与平面的位置关系2. 立体图形的性质- 棱柱、棱锥与圆柱、圆锥、圆台的体积与表面积 - 球的体积与表面积六、概率与统计1. 概率的基本概念- 随机事件与概率的定义- 条件概率与独立事件2. 随机变量及其分布- 离散型随机变量与连续型随机变量- 概率分布与概率密度函数3. 统计初步- 总体与样本- 统计量的概念与计算- 线性回归与相关分析以上是苏教版高中数学的主要知识点总结,涵盖了函数、三角函数、数列、向量、解析几何、立体几何、概率与统计等多个领域。

苏教版高中数学(选修1-2)(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

苏教版高中数学(选修1-2)(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

苏教版高中数学(选修1-2)重难点突破全册知识点梳理及重点题型举一反三巩固练习独立性检验的基本思想及其初步应用【学习目标】1. 了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用2. 通过典型案例的探究,了解实际推断原理和假设检验的基本思想、方法及初步应用.【要点梳理】要点一、分类变量有一种变量,这种变量所取不同的“值”表示的是个体所属不同类别,称这种变量为分类变量。

要点诠释:(1)对分类变量的理解。

这里的“变量”和“值”都应作为广义的“变量”和“值”进行理解。

例如:“性别变量”有“男”和“女”两种类别,这里的变量指的是性别,同样这里的“值”指的是“男”和“女”。

因此,这里所说的“变量”和“值”取的不一定是具体的数值。

(2)分类变量可以有多种类别。

例如:吸烟变量有“吸烟”与“不吸烟”两种类别,而国籍变量则有多种类别。

要点二、2×2列联表1. 列联表用表格列出的分类变量的频数表,叫做列联表。

2. 2×2列联表对于两个事件A,B,列出两个事件在两种状态下的数据,如下表所示:这样的表格称为2×2列联表。

要点三:卡方统计量公式为了研究分类变量X与Y的关系,经调查得到一张2×2列联表,如下表所示统计中有一个有用的(读做“卡方”)统计量,它的表达式是:22()()()()()n ad bc K a b c d a c b d -=++++(n a b c d =+++为样本容量)。

要点四、独立性检验1. 独立性检验通过2×2列联表,再通过卡方统计量公式计算2K 的值,利用随机变量2K 来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验。

2. 变量独立性的判断通过对2K 统计量分布的研究,已经得到两个临界值:3.841和6.635。

当数据量较大时,在统计中,用以下结果对变量的独立性进行判断:①如果2K ≤3.841时,认为事件A 与B 是无关的。

苏教版高一数学必修一、必修四拓展知识点

苏教版高一数学必修一、必修四拓展知识点

名师总结优秀知识点苏教版高一数学必修一、必修四拓展知识点必修一1.韦达定理:X 1+X 2=-b/a X 1X 2=c/a2. a3+b3=(a+b)(a 2-ab+b2)a3-b3=(a-b)(a 2+ab+b2)3.四个维度:开口方向、区间端点值的函数符号、对称轴、△。

4.常用对数: log10N=lgN log e=lnN5.函数的表达法:解析法(解析式)、列表法、图像法。

6.求函数定义域的依据:(1)分式的分母不为零。

(2)正切函数中 X≠π /2+k π(k ∈ Z) 。

(3)偶次方根的被开方数不小于零。

(4)零次幂的底数不为零。

(5)考虑实际情况。

(6)指、对数函数的底数大于零且不为一。

(7)对数函数的真数大于零。

7.判断函数是否为增减函数的方法:(1)取值(在定义域上任意取X1X2,且 X1﹤X2)。

(2)作差( f(X 1)-f(X 2 ) )。

(3)变形(通分)。

(4)定号。

(5)结论。

8.判断函数是否为奇偶函数的步骤:(1)求定义域,判断是否关于原点对称。

(2)求 f(-X) 。

(3)判断 f(X )与 f(-X) 的关系。

(4)结论。

9.奇函数与偶函数的性质:(1)单调性是局部性质,奇偶性是整体性质。

(2)奇函数图像关于原点对称,偶函数图像关于y 轴对称。

(3)奇偶函数定义域关于原点对称。

(4)奇函数在 X=0 有意义时,必有 f (0) =010.正数 a 的偶次方根是互为相反数的两个:±n。

n a的奇次方根只有一个为0的 n 次方根为 0。

11.函数图像:函数函数的记号名称。

函数的图形函数的性质名师总结优秀知识点指数函数对数函数幂函a 为任意实数数这里只画出部分函数图形的一部分。

12.设基础值为 N,增长率为 p% , 期数为 X,本利和为 y.则 y=N(1+ p % ) X13.f(x) 与 f(-x) 图像关于 y 轴对称; f(x)与 -f(x) 图像关于 x 轴对称;f(x) 与 -f(-x) 图像关于原点对称。

高中数学必修+选修全部知识点精华归纳总结(苏教版)

高中数学必修+选修全部知识点精华归纳总结(苏教版)

高中数学必修+选修全部知识点精华归纳总结(苏教版)高中数学必修+选修全部知识点精华归纳总结(苏教版)1、课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。

不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

选修课程有4个系列:系列1:由2个模块组成。

选修12:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。

选修22:导数及其应用,推理与证明、数系的扩充与复数选修21:数学史选讲。

选修33:球面上的几何。

选修35:欧拉公式与闭曲面分类。

选修31:几何证明选讲。

选修43:数列与差分。

选修45:不等式选讲。

选修47:优选法与试验设计初步。

选修49:风险与决策。

选修4作差定号层层求导THENTHEN语句的一般格式为:IF 条件 THEN语句END IF(图3)⑤循环语句的一般格式是两种:当型循环(WHILE)语句的一般格式:WHILE 条件循环体WEND (图4)直到型循环(UNTIL)语句的一般格式:DO循环体LOOP UNTIL 条件(图5)⑹算法案例:①辗转相除法结果是以减数与差相等而得到利用更相减损术求最大公约数的步骤如下:ⅰ):任意给出两个正数;判断它们是否都是偶数。

若是,用2约简;若不是,执行第二步。

ⅱ):以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。

继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。

高中数学必修选修全部知识点精华归纳总结苏教版

高中数学必修选修全部知识点精华归纳总结苏教版

高中数学必修选修全部知识点精华归纳总结苏教版在高中数学的学习过程中,我们需要掌握一系列的必修和选修知识点。

这些知识点对于我们的学习和未来的发展都具有重要的意义。

本文将对高中数学必修和选修知识点进行精华归纳总结,以帮助大家更好地掌握这些知识。

一、必修一1. 数和式- 自然数、整数和有理数的概念以及它们之间的关系- 数的性质和运算法则- 代数式的定义和基本操作2. 数据的收集整理与分析- 统计调查的基本方法和步骤- 统计图表的制作和解读- 统计指标的计算和应用3. 几何基础知识- 点、线、面的基本概念- 几何图形的性质和分类- 空间图形的投影和展开二、必修二1. 二次函数与一元二次方程- 二次函数的定义和性质- 二次函数的图像和应用- 一元二次方程的解法和应用2. 概率与统计- 随机事件、样本空间和事件概率 - 组合与排列的计算- 概率统计的应用3. 三角函数与解三角形- 三角函数的定义和性质- 三角函数的图像和应用- 解三角形的基本方法和技巧三、必修三1. 平面向量- 向量的概念和运算法则- 向量的共线、垂直和平行关系- 向量的投影和数量积2. 导数与函数的应用- 导数的定义和性质- 函数的极值和最值- 函数图像的绘制和变换3. 空间几何- 空间直线和平面的性质- 空间几何体的体积计算- 空间几何的投影和旋转四、选修一1. 平面解析几何- 平面直角坐标系和平面曲线的方程 - 直线和圆的性质及其方程- 曲线的参数方程和极坐标方程2. 函数与导数的应用- 函数的应用和建模- 导数在几何和物理问题中的应用 - 曲线的切线和法线3. 理数与数系- 实数的性质和运算法则- 数列的概念和基本性质- 数学归纳法的应用五、选修二1. 矩阵与变换- 矩阵的定义和运算法则- 线性方程组的解法- 平面向量与矩阵的关系2. 空间解析几何- 空间直角坐标系和空间曲线的方程 - 空间几何体的性质和计算- 曲线在空间中的投影和旋转3. 指数与对数- 指数函数和对数函数的性质- 指数方程和对数方程的解法- 对数函数在科学计算中的应用以上是高中数学必修和选修知识点的精华归纳总结。

苏教版高中数学必修+选修知识点归纳总结(精编版)

苏教版高中数学必修+选修知识点归纳总结(精编版)

高中数学必修+选修知识点归纳恒则成人生一连串的奋斗 追求理想要奋战不懈坚持到底有恒则成引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:三角函数、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。

不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

选修课程有3个系列:选修系列1:由2个模块组成。

选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。

选修1—2:统计案例、推理与证明、数系的扩充与复数的引入、框图选修系列2:由3个模块组成。

选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修2—2:导数及其应用,推理与证明、数系的扩充与复数的引入选修2—3:计数原理、概率,统计案例。

选修系列4:由4个专题组成。

选修4—1:几何证明选讲。

选修4—2:矩阵与变换。

选修4—4:坐标系与参数方程。

选修4—5:不等式选讲。

2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算必修1数学知识点第一章:集合与函数概念 §、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

高中数学必修+选修全部知识点精华归纳(苏教版)讲义

高中数学必修+选修全部知识点精华归纳(苏教版)讲义

专题一:推理与证明知识结构1、归纳推理把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由特殊到一般的推理。

归纳推理的一般步骤:∙通过观察个别情况发现某些相同的性质;∙从已知的相同性质中推出一个明确表述的一般命题(猜想);∙证明(视题目要求,可有可无).2、类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.类比推理的一般步骤:∙找出两类对象之间可以确切表述的相似特征;∙用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;∙检验猜想。

3、合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.归纳推理和类比推理统称为合情推理,通俗地说,合情推理是指“合乎情理”的推理.4、演绎推理从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.演绎推理的一般模式———“三段论”,包括⑴大前提-----已知的一般原理;⑵小前提-----所研究的特殊情况;⑶结论-----据一般原理,对特殊情况做出的判断.用集合的观点来理解:若集合M中的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.框图表示: 要点:顺推证法;由因导果.⑵分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.框图表示: 要点:逆推证法;执果索因.⑶反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.的证明方法.它是一种间接的证明方法. 反证法法证明一个命题的一般步骤: (1)(反设)假设命题的结论不成立;(2)(推理)根据假设进行推理,直到导出矛盾为止; (3)(归谬)断言假设不成立;(4)(结论)肯定原命题的结论成立. 6、数学归纳法n 的命题的一种方法. 用数学归纳法证明命题的步骤;(1)(归纳奠基)证明当n 取第一个值*00()n n N ∈时命题成立;(2)(归纳递推)假设*0(,)n k k n k N =≥∈时命题成立,推证当1n k =+时命题也成立. 只要完成了这两个步骤,就可以断定命题对从0n 开始的所有正整数n 都成立.用数学归纳法可以证明许多与自然数有关的数学命题,其中包括恒等式、不等式、数列通项公式、几何中的计算问题等.专题二:数系的扩充与复数 1、复数的概念 ⑴虚数单位;⑵复数的代数形式(,)z a bia b R =+∈;⑶复数的实部、虚部,虚数与纯虚数. 2、复数的分类 复数(),z a bi a b R =+∈3、相关公式⑴d c b a di c bi a ==⇔+=+且, ⑵00==⇔=+b a bi a ⑶22b a bi a z +=+=⑷z a bi =-z z ,指两复数实部相同,虚部互为相反数(互为共轭复数). 4、复数运算⑴复数加减法:()()()()i d b c a di c bi a ±+±=+±+; ⑵复数的乘法:()()()()a bi c di ac bd bc ad i ++=-++;⑶复数的除法:()()()()a bi c di a bi c di c di c di +-+=++- (类似于无理数除法的分母有理化→虚数除法的分母实数化) 5、常见的运算规律)9(设231i +-=ω是1的立方虚根,则012=++ωω,1,,332313===+++n n n ωωωωω6、复数的几何意义x 轴叫做复平面的实轴,y 轴叫做复平面的虚轴. 专题三:排列组合与二项式定理 1、基本计数原理⑴ 分类加法计数原理:(分类相加)做一件事情,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事情共有n m m m N +++= 21种不同的方法. ⑵ 分步乘法计数原理:(分步相乘)做一件事情,完成它需要n 个步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同的方法……做第n 个步骤有n m 种不同的方法.那么完成这件事情共有n m m m N ⨯⨯⨯= 21种不同的方法. 2、排列与组合⑴排列定义:一般地,从n 个不同的元素中任取()n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同的元素中任取m 个元素的一个排列.⑵组合定义:一般地,从n 个不同的元素中任取()n m m ≤个元素并成一组,叫做从n 个不同的元素中任取m 个元素的一个组合.⑶排列数:从n 个不同的元素中任取()n m m ≤个元素的所有排列的个数,叫做从n 个不同的元素中任取m 个元素的排列数,记作mn A .⑷组合数:从n 个不同的元素中任取()n m m ≤个元素的所有组合的个数,叫做从n 个不同的元素中任取m 个元素的组合数,记作m n C .⑸排列数公式:①()()()121+---=m n n n n A mn()!m n n A m n -=!;②!n A n n =,规定1!0=.⑹组合数公式: ①()()()!121m m n n n n C mn +---=或()!!m n m n C mn -=!;②m n n m n C C -=,规定10=n C .⑺排列与组合的区别:排列有顺序,组合无顺序.⑻排列与组合的联系:mm m n m n A C A ⋅=,即排列就是先组合再全排列.()(1)(1)!()(1)21!!m mn nm m A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-⑼排列与组合的两个性质性质排列11-++=m n m n m n mA A A ;组合11-++=m nm n m n C C C . ⑽解排列组合问题的方法①特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置).②间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉).③相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列). ④不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间). ⑤有序问题组合法.⑥选取问题先选后排法. ⑦至多至少问题间接法.⑧相同元素分组可采用隔板法.⑨分组问题:要注意区分是平均分组还是非平均分组,平均分成n 组问题别忘除以n !. 3、二项式定理⑴二项展开公式:()011222nnn n r n r rn n n n a b C a C ab C a b C a b ---+=++++ ()n nn C b n N +++∈.⑵二项展开式的通项公式:()+-+∈∈≤≤=N n N r n r b a C T rr n r n r ,,01.主要用途是求指定的项.⑶项的系数与二项式系数项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1时,系数就是二项式系数.如在()nax b +的展开式中,第1r +项的二项式系数为rn C ,第1r +项的系数为rn rr n C a b -;而1()n x x+的展开式中的系数等于二项式系数;二项式系数一定为正,而项的系数不一定为正.⑷()n x +1的展开式:()0221101x C x C x C x C x n n n n n n n n n++++=+-- ,若令1=x ,则有()nnn n n n n C C C C ++++==+ 210211. 二项式奇数项系数的和等于二项式偶数项系数的和.即131202-=⋅⋅⋅++=⋅⋅⋅++n n n n n C C C C⑸二项式系数的性质:(1)对称性:与首末两端“等距离”的两个二项式系数相等,即mn n m n C C -=;(2)增减性与最大值:当12n r +≤时,二项式系数C r n 的值逐渐增大,当12n r +≥时,C rn 的值逐渐减小,且在中间取得最大值。

江苏高中数学选修1-1知识点

江苏高中数学选修1-1知识点

选修 1- 1 知识点1、命题:用语言、符号或式子表达的,可以判断真假的陈述句 .2、“若 p ,则 q ”形式的命题中的 p 称为命题的条件, q 称为命题的结论.3、若原命题为“若 p ,则 q ”,则它的逆命题为“若4、若原命题为“若 p ,则 q ”,则它的否命题为“若5、若原命题为“若p ,则 q ”,则它的否命题为“若 q , 则 p ” .p ,则 q ” . q ,则 p ” .6、四种命题的真假性:原命题逆命题否命题逆否命题真 真 真 真 真 假 假 真 假 真 真 真 假假假假四种命题的真假性之间的关系: 12两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若 pq ,则 p 是 q 的充分条件, q 是 p 的必要条件.若 p q ,则 p 是 q 的充要条件(充分必要条件) .8、用联结词“且”把命题p 和命题 q 联结起来,得到一个新命题,记作 p q .p q当 pqp q 是真命题;当p q、 都是真命题时,、 两个命题中有一个命题是假命题时,是假命题.用联结词“或”把命题p 和命题 q 联结起来,得到一个新命题,记作 p q . 当 p 、 q 两个命题中有一个命题是真命题时, p q 是真命题;当 p 、 q 两个命题都是假 命题时, p q 是假命题. 若 p 是真命题,则 p 必是假命题;若 p 是假命题,则 p 必是真命题.9、短语“对所有的” 、“对任意一个”在逻辑中通常称为全称量词,用“ ”表示.含有全称量词的命题称为全称命题.全称命题“对中任意一个 x ,有 p x 成立”,记作“x , p x ”.短语“存在一个” 、“至少有一个”在逻辑中通常称为存在量词,用“ ”表示.含有存在量词的命题称为存在性命题.特称命题“存在 中的一个 x ,使 p x 成立”,记作“x, p x ”.10、全称命题p : x, p x ,它的否定p : x ,px .全称命题的否定是存在性命题.11、平面内与两个定点 F 1 ,F 2 的距离之和等于常数 (大于 F 1 F 2 )的点的轨迹称为椭圆. 这 两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 12、椭圆的几何性质:焦点的位置焦点在 x 轴上焦点在 y 轴上图形标准方程x2y21 a b 0y2x21 a b 0 a2b2a2b2范围a x a 且 b y b b x b 且 a y a1a,0、2a,010, a、20,a 顶点10, b 、20,b1b,0、2b,0轴长短轴的长2b长轴的长2a焦点F1c,0、 F2c,0F10, c、 F20,c 焦距F1 F22c c2a2 b2对称性关于 x 轴、y轴、原点对称c b20 e1离心率e12a a准线方程x a2ya2 c c13、设是椭圆上任一点,点到 F1对应准线的距离为d1,点到 F2对应准线的距离为 d2,则F1F2e .d1d214、平面内与两个定点F1, F 2的距离之差的绝对值等于常数(小于F1 F 2)的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.15、双曲线的几何性质:焦点在 y 轴上焦点的位置焦点在 x 轴上图形标准方程x2y21 a 0, b0y2x21 a0, b 0 a2b2a2b2范围x a 或 x a ,y R y a 或 y a , x R 顶点1a,0 、2a,010, a 、20,a轴长虚轴的长2b实轴的长2a焦点F1c,0、 F2c,0F1 0, c、 F20,c 焦距F1 F22c c2a2b2对称性关于 x 轴、y轴对称,关于原点中心对称c1b2e1离心率e2a a准线方程x a2ya2 c c渐近线方程y bx yax a b16、实轴和虚轴等长的双曲线称为等轴双曲线.17、设是双曲线上任一点,点到 F1对应准线的距离为d1,点到 F2对应准线的距离为 d2,则F1F2e .d1d218、平面内与一个定点F和一条定直线l的距离相等的点的轨迹称为抛物线.定点F称为抛物线的焦点,定直线l称为抛物线的准线.19、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即 2 p .20、焦半径公式:若点x0 , y0在抛物线 y2 2 px p0上,焦点为 F ,则F x0p ;2若点x0 , y0在抛物线 y2 2 px p0 上,焦点为 F ,则F x0p ;2若点x0 , y0在抛物线 x2 2 py p0上,焦点为 F ,则F y0p ;2p .若点x0 , y0在抛物线 x2 2 py p0 上,焦点为 F ,则F y0221、抛物线的几何性质:y 2 2 px y 2 2 px x 2 2 py x 2 2 py标准方程p0p0p0p0图形顶点0,0对称轴x 轴y 轴焦点F p, 0Fp, 0 F 0,pF 0,p 2222准线方程x p pypyp 2x222离心率e1范围x0x 0y0y022、若某个问题中的函数关系用f xf x2f x1表示,问题中的变化率用式子x2x1f表示,则式子f x2f x1称为函数 f x从x1到 x2的平均变化率.x x2x123、基本初等函数的导数公式:1 若 f x c ,则 f x0 ;2 若 f x x n x Q*,则 f x nx n 1;3 若 f x sin x ,则 f x cosx ; 4若 f x cosx ,则 f x sin x ;5 若 f x a x,则 f x a x ln a;6 若 f x e x,则 f x e x;7若 f x log a x ,则 f x18 若 f x ln x ,则 f x1;.x ln a x24、导数运算法则:1 f x g x f x g x2 f x g x f x g x f x g x ;3f x f x g x f x g xx0 .g x g x2g25、在某个区间a, b 内,若 f x0 ,则函数y f x 在这个区间内单调递增;若f x 0 ,则函数 y f x 在这个区间内单调递减.26、求函数y f x 的极值的方法是:解方程 f x 0 .当 f x00 时:1 如果在 x 0 附近的左侧 f x 0 ,右侧 f x 0 ,那么 f x 0 是极大值;2 如果在 x 0 附近的左侧 fx0 ,右侧 f x0 ,那么 f x 0 是极小值.27、求函数y f x 在 a,b 上的最大值与最小值的步骤是: 1 求函数 yf x 在 a, b 内的极值;2 将函数 yfx 的各极值与端点处的函数值fa , fb 比较,其中最大的一个是最大值,最小的一个是最小值.选修 1--2 知识点1.概念: (1) z=a+bi ∈R b=0 ( a,b ∈R)z= zz 2≥0;(2) z=a+bi 是虚数 b ≠ 0(a,b ∈R);(3) z=a+b i 是纯虚数 a=0 且 b ≠ 0(a,b ∈R)z + z =0( z ≠0) z 2<0;(4) a+bi= c+dia=c 且 c=d(a,b,c,d ∈R);2.复数的代数形式及其运算:设 z 1= a + bi , z 2 = c + di (a,b,c,d ∈R),则:(1) z 1± z 2 = ( a + b)± (c + d)i ;(2) z 1.z 2 = ( a+bi)· (c+di)=( ac-bd ) + (ad+bc)i ;12 (a bi )(c di ) (3) z ÷ z = ( c di )(c di )3.几个重要的结论:ac bd bc ad(z ≠ 0) ;cd cd2(1) (1 i )22i ;⑷1i i ; 1 i i ; (3) z 1z z 1z1。

苏教版高中数学选修(2-1)课件本章归纳整合(一)

苏教版高中数学选修(2-1)课件本章归纳整合(一)
件;若A⃘B且B⃘A,则p是q的既不充分又不必要条件.
【例1已】知不等式|x-m|<1成立的充分不必要条件是
<x13<
,1求 2
实数m的取值范围.
解 ∵|x-m|<1可化为m-1<m+1,
又∵不等式|x-m|<1 成立的充分不必要条件是13<x<12, (如图) ∴mm- +11≤ ≥1312, ,解得mm≤ ≥43-,12,即-12≤m≤43.
专题四 用全称命题与存在性命题理解集合间的关系
全称命题与存在性命题是我们理解集合间关系的很好工 具,有以下常用结论:P⊆Q即“∀x∈P,都有x∈Q成立”, P∩Q≠∅即“∃x∈P,有x∈Q成立”.
【例4已】知集合P=[ 12,2],函数f(x)=log2(ax2-2x+2)的定义域 为Q; (1)若P∩Q=P,求实数a的取值范围; (2)若P∩Q≠∅,求实数a的取值范围. 解 由 ax2-2x+2>0,得 a>-2(1x)2+2x=
高中数学课件
灿若寒星整理制作
本章归纳整合
知识网络
要点归纳
1.命题 命题是能够判断真假的语句,一个命题由条件和结论两部分 构成.由命题的正确与否,可将命题分为真命题、假命题.
2.四种命题及其关系 (1)若原命题:若p则q;则逆命题:若q则p(结论和条件“换 位”);否命题:若非p则非q(条件和结论都否定“换质”);逆否 命题:若非q则非p(条件和结论“换质”后又“换位”). (2)原命题与逆命题称为互逆命题;原命题与否命题称为互否 命题;原命题与逆否命题称为互为逆否命题. 注意:互为逆否的两个命题同真同假,而互逆或互否的两个 命题不一定具有相同的真假性.
命题趋势
命题是数学的重要构成形式,充分条件、必要条件是数学的 重要概念,故命题及其关系是数学高考的必考内容和热门考 点.而对逻辑联结词的考查主要是通过逻辑联结词考查集 合、函数等知识内容,对量词的考查主要是全称命题与存在 性命题的否定.本章内容一般占5~10分,预测今后的高考 在考查上述基本题型的基础上,可能会在解答题的条件中穿 插关于量词比较隐蔽的叙述,能否发现并合理转换成具有可 操作性的数学表达式往往是解题的突破口.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

④不相邻 ( 相间 ) 问题插空法 (某些元素不能相邻或某些元素要在某特殊位置时可采用插空
法,即先安排好没有限制元条件的元素, 然后再把有限制条件的元素按要求插入排好的元素
之间) .
⑤有序问题组合法 .
⑥选取问题先选后排法 .
⑦至多至少问题间接法 .
⑧相同元素分组可采用隔板法 .
⑨分组问题 :要注意区分是平均分组还是非平均分组, 平均分成 n 组问题别忘除以 n! .
3、二项式定理
⑴二项展开公式:
n
ab
Cn0a n
Cn1an 1b Cn2an 2b2 L
Cnr an r br
L Cnnbn n N .
⑵二项展开式的通项公式:
Tr 1
C
r n
a
n
r br
0
r
n, r
N,n
N . 主要用途是求指定的
项.
⑶项的系数与二项式系数
项的系数与二项式系数是不同的两个概念, 但当二项式的两个项的系数都为 1 时,系数
种不同的方法……做第 n 个步骤有 mn 种不同的方法 . 那么完成这件事情共有
N m1 m2
2、排列与组合
mn 种不同的方法 .
⑴排列定义:一般地,从 n 个不同的元素中任取 m m n 个元素,按照一定的顺序排成一
列,叫做从 n 个不同的元素中任取 m 个元素的一个排列 . ⑵组合定义:一般地,从 n 个不同的元素中任取 m m n 个元素并成一组,叫做从 n 个不
框图表示:
要点: 顺推证法;由因导果 . ⑵分析法: 从要证明的结论出发,逐步寻找使它成立的充分条件,
直至最后,把要证明的结
论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止
.
框图表示:
要点: 逆推证法;执果索因 . ⑶反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错
时,二项式系数
r
Cn
的值逐渐增大,
当r
2
n1
r
时 ,C n
2
的值逐渐减小,且在中间取得最大值。当
n 为偶数时,中间一项(第 n + 1 项)的二项式系 2
n

C
2 n
取得最大值
.当
n 为奇数时,中间两项(第
n 1 和 n 1 + 1 项)的二项式系数
2
2
n1
n1
Cn 2 Cn 2 相等并同时取最大值 .
用数学归纳法证明命题的步骤 ;
( 1)(归纳奠基)证明当 n 取第一个值 n0(n0 N * ) 时命题成立; ( 2)(归纳递推)假设 n k(k n 0 , k N * ) 时命题成立,推证当 n k 1时命题也成
立.
只要完成了这两个步骤,就可以断定命题对从
n0 开始的所有正整数 n 都成立 .
P( A B) P( A) P(B) .
⑵对立事件:其中必有一个发生的两个互斥事件
. 事件 A 的对立事件通常记着 A .
对立事件的概率和等于 1. P( A) 1 P( A) .
特别提醒: “互斥事件”与“对立事件”都是就两个事件而言的,互斥事件是不可能同 时发生的两个事件, 而对立事件是其中必有一个发生的互斥事件, 因此, 对立事件必然是互
.
4、演绎推理
从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.
简言之, 演绎推理是由一般到特殊的推理 .
演绎推理的一般模式——— “三段论”, 包括
⑴大前提 ----- 已知的一般原理;
⑵小前提 ----- 所研究的特殊情况;
⑶结论 ----- 据一般原理,对特殊情况做出的判断.
事件 A、B 分别发生的概率的积 . 即
P( A B) P( A) P(B) .
若 A、B 两事件相互独立,则 A 与 B 、 A 与 B、 A 与 B 也都是相互独立的 .
⑷独立重复试验
①一般地,在相同条件下重复做的 n 次试验称为 n 次独立重复试验 .
②独立重复试验的概率公式
如果在 1 次试验中某事件发生的概率是 p ,那么在 n 次独立重复试验中这个试验恰好
就是二项式系数 . 如
在 (ax
b )n 的展开式中, 第 r
1 项的二项式系数为
C
r n
,第
r
1项的系数为
C
r n
a
n
r
br

而 (x
为正 .
1 )n 的展开式中的系数等于二项式系数;二项式系数一定为正,而项的系数不一定 x
⑷1
x
n
的展开式:
1
xn
Cn0 xn
Cn1x n 1 Cn2 xn 2
C
n n
同的元素中任取 m 个元素的一个组合 .
⑶排列数:从 n 个不同的元素中任取 m m n 个元素的所有排列的个数,叫做从 n 个不同
的元素中任取 m 个元素的排列数,记作 Anm .
⑷组合数:从 n 个不同的元素中任取 m m n 个元素的所有组合的个数,叫做从 n 个不同
的元素中任取 m 个元素的组合数,记作 Cnm .
Anm
C
m n
Amm ,即排列就是先组合再全排列
.
Cnm
Anm Amm
n (n 1) L (n m 1)
n!
(m n) ⑼排列与组合的两个性质性质
m ( m 1) L 2 1 m! n m !
排列 Anm1
Anm
mAnm
1
;组合
Cnm 1
Cnm
Cnm 1 .
⑽解排列组合问题的方法
①特殊元素、特殊位置优先法 ( 元素优先法 :先考虑有限制条件的元素的要求,再考虑其
? 通过观察个别情况发现某些相同的性质;
? 从已知的相同性质中推出一个明确表述的一般命题(猜想)

? 证明(视题目要求,可有可无) .
2、类比推理
由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有
这些特征的推理称为类比推理(简称类比) .
简言之, 类比推理是由特殊到特殊的推理 .
⑵复数的乘法: a bi c di ac bd bc ad i ;
a bi
⑶复数的除法:
c di
a bi c di c di c di
ac bd bc ad i c2 d 2
ac bd c2 d 2
bc c2
ad d2
i
(类似于无理数除法的 分母有理化 5、常见的运算规律
虚数除法的 分母实数化 )
(1) z z ; (2) z z 2a, z z 2bi;
专题一:推理与证明 知识结构
推理 推 理 与 证 明
证明
合情推理 演绎推理
直接证明 间接证明
归纳推理 类比推理
比较法 综合法 分析法 反证法
数学归纳法
1、归纳推理
把从个别事实中推演出一般性结论的推理 , 称为归纳推理 ( 简称归纳 ).
简言之 , 归纳推理是由部分到整体、由特殊到一般的推理。
归纳推理的一般步骤:
做一件事情,完成它有 n 类办法,在第一类办法中有 m1 种不同的方法,在第二类办法中有
m2 种不同的方法……在第 n 类办法中有 mn 种不同的方法 . 那么完成这件事情共有
N m1 m2
mn 种不同的方法 .
⑵ 分步乘法计数原理: ( 分步相乘 )
做一件事情, 完成它需要 n 个步骤, 做第一个步骤有 m1 种不同的方法, 做第二个步骤有 m2
他元素; 位置优先法 :先考虑有限制条件的位置的要求,再考虑其他位置)
.
②间接法 (对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉)
.
③相邻问题捆绑法 (把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通
元素”全排列,最后再“松绑” ,将特殊元素在这些位置上全排列) .
x
0

若令 x 1 ,则有
1 1n
2n
C
0 n
Cn1
C
2 n
C
n n
.
二项式奇数项系数的和等于二项式偶数项系数的和
.即C0 nC Nhomakorabea2 n
C
1 n
C
3 n
2n 1
⑸二项式系数的性质: ( 1) 对称性 :与首末两端“等距离”的两个二项式系数相等,即
C
m n
C
n n
m

( 2)增减性与最大值 :当 r
n
1
⑹系数最大项的求法
设第 r 项的系数 Ar 最大,由不等式组
可确定 r .
⑺赋值法
Ar Ar 1 Ar Ar 1
若 (ax b) n a0 a1 x a2 x2 ... a nx n,
则设 f (x) (ax b) n. 有:
① a0 f (0);
② a0 a1 a2 ... an f (1);
③ a0 a1 a2 a3 ... ( 1)n an f ( 1);
用集合的观点来理解:若集合 M 中的所有元素都具有性质 P , S 是 M 的一个子集 ,那么
S 中所有元素也都具有性质 P.
M ·a S
从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在前
提和推理形式都正确的前提下,得到的结论一定正确
.
5、 直接证明与间接证明 ⑴综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推 导出所要证明的结论成立 .
(3) z z
2
z
2
z
a2
b2 ;(4) z
相关文档
最新文档