2020高考数学二轮专题复习 数学思想方法
2020版高三数学二轮复习(全国理)讲义:专题四 第一讲等差数列、等比数列
(2)求Sn.并求Sn的最小值.
[解析](1)设等差数列{an}的公差为d.由题意得3a1+3d=-15.
由a1=-7得d=2.
所以{an}的通项公式为an=2n-9.
(2)由(1)得Sn=n2-8n=(n-4)2-16.
所以当n=4时.Sn取得最小值.最小值为-16.
例1 (1)已知等比数列{an}的前n项和为Sn.a1+a3=30.S4=120.设bn=1+log3an.那么数列{bn}的前15项和为( B )
6.(20xx·全国卷Ⅰ.14)记Sn为数列 的前n项和.若Sn=2an+1.则S6=-63..
[解析]依题意. 作差得an+1=2an.
所以数列{an}是公比为2的等比数列.
又因为a1=S1=2a1+1.
所以a1=-1.所以an=-2n-1.
所以S6= =-63.
7.(20xx·全国卷Ⅱ.16)记Sn为等差数列{an}的前n项和.已知a1=-7.S3=-15.
A.1B.2
C.4D.8
[解析]设{an}的公差为d.则由
得
解得d=4.
故选C.
4.(20xx·全国卷Ⅲ.9)等差数列{an}的首项为1.公差不为0.若a2.a3.a6成等比数列.则{an}的前6项和为( A )
A.-24B.-3
C.3D.8
[解析]由已知条件可得a1=1.d≠0.
由a =a2a6可得(1+2d)2=(1+d)(1+5d).
(3)注意整体思想.如在与等比数列前n项和有关的计算中.两式相除就是常用的计算方法.整体运算可以有效简化运算.
G
1.(20xx·邵阳模拟)等比数列{an}的前n项和为Sn.已知a2a3=2a1.且a4与2a7的等差中项为 .则S5=( B )
高考数学二轮复习:“二八四三”原则
高考数学二轮复习:“二八四三”原则高考数学二轮复习:“二八四三”原则一、大处着眼,细心领会两个成功公式1.科学巨匠爱因斯坦的闻名公式是V=X+Y+Z(V-成功;X-刻苦的精神;Y-科学的方法;Z-少说废话)。
2.四轮学习方略中,成功=目标+打算+方法+行动。
学习好数学要有刻苦拼搏的精神加科学的方法;要有明确的奋斗目标加上切实可行的打算和措施方法,要天天见行动,苦干实干抓落实。
要站在整体的高度,重新熟悉自己所学,总体把握所学的数学知识和方法及应用。
学校的老师和课外班的冲刺有周密的复习打算,你要与老师紧密配合。
须知:围着老师转转得好,抛开老师转有自己的一套方案的学生,才能成为佼佼者。
二、做到对知识和能力要求心中有数,自身优势和不足心中有数1.主干知识八大块①函数;②数列;③平面向量;④不等式(解与证);⑤解析几何;⑥立体几何;⑦概率?统计;⑧导数及应用。
要做到块块清晰,不足之处如何补偿有招法,并能自觉建立起知识之间的有机联系,函数是其中最核心的主干知识。
2.把握四大数学思想方法明确驾驭数学知识的理性思维方法,其集中表达在四大数学思想方法上。
四大数学思想方法是:①函数与方程的思想②数型结合思想③分类讨论思想④化归或转化的思想3.学习好数学要抓住四个三①内容上要充分领会三个方面:理论、方法、思维;②解题上要抓好三个字:数,式,形;③阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言);④学习中要驾驭好三条线:知识(结构)是明线(要清晰);方法(能力)是暗线(要领会、要提炼);思维(练习)是主线(思维能力是数学诸能力的核心,制造性的思维能力是最强大的创新动力,是检验自己大脑潜能开发好坏的试金石。
)观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。
随机观看也是不可少的,是相当有味的,如蜻蜓、蚯蚓、毛毛虫等,小孩一边观看,一边提问,爱好专门浓。
高中数学高考二轮复习数形结合思想教案
第二讲数形结合思想对应学生用书P1291数形结合的含义(1)数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.(2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.2数形结合的途径(1)通过坐标系“形题数解”借助于直角坐标系、复平面,可以将几何问题代数化.这一方法在解析几何中体现得相当充分(在高考中主要也是以解析几何作为知识载体来考查的).值得强调的是,“形题数解”时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理).实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.如等式(x -2)2+(y -1)2=4,表示坐标平面内以(2,1)为圆心,2为半径的圆.(2)通过转化构造“数题形解”许多代数结构都有着相对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a (a >0)与距离互化;将a 2与面积互化,将a 2+b 2+ab =a 2+b 2-2|a ||b |cos θ(θ=60°或θ=120°)与余弦定理沟通;将a ≥b ≥c >0且b +c >a 中的a 、b 、c 与三角形的三边沟通;将有序实数对(或复数)和点沟通;将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的).另外,函数的图象也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常相互渗透,演绎出解题捷径.例1 已知函数f (x )=sin ⎝ ⎭⎪⎫2ωx +π3的相邻两条对称轴之间的距离为π4,将函数f (x )的图象向右平移π8个单位后,再将所有点的横坐标伸长为原来的2倍,得到g (x )的图象,若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根,则k 的取值范围是( )A.k ≤12B .-1≤k <-12 C.-12<k ≤12 D .-12<k ≤12或k =-1解析 因为f (x )相邻两条对称轴之间的距离为π4,结合三角函数的图象可知T 2=π4.又T =2π2ω=πω=π2,所以ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. 将f (x )的图象向右平移π8个单位得到f (x )=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π8+π3=sin ⎝ ⎛⎭⎪⎫4x -π6,再将所有点的横坐标伸长为原来的2倍得到g (x )=sin ⎝ ⎛⎭⎪⎫2x -π6. 所以方程为sin ⎝ ⎛⎭⎪⎫2x -π6+k =0. 令2x -π6=t ,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以-π6≤t ≤5π6. 若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根, 即g (t )=sin t 与y =-k 在⎣⎢⎡⎦⎥⎤-π6,5π6有且只有一个交点. 如图所示,由正弦函数的图象可知-12≤-k <12或-k =1,即-12<k ≤12或k =-1.利用数形结合求方程解应注意两点(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图象的准确性、全面性,否则会得到错解.(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.模拟演练1 已知函数f (x )满足f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]上方程f (x )-mx -m =0有两个不同的实根,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,12 B.⎣⎢⎡⎭⎪⎫12,+∞ C.⎣⎢⎡⎭⎪⎫0,13 D.⎝ ⎛⎦⎥⎤0,12 答案 D解析方程f (x )-mx -m =0有两个不同的实根等价于方程f (x )=m (x +1)有两个不同的实根,等价于直线y =m (x +1)与函数f (x )的图象有两个不同的交点.因为当x ∈(-1,0)时,x +1∈(0,1),所以f (x )+1=1f (x +1)=1x +1,所以f (x )=1x +1-1,所以f (x )=⎩⎨⎧ x ,x ∈[0,1]1x +1-1,x ∈(-1,0).在同一平面直角坐标系内作出直线y =m (x+1)与函数f (x ),x ∈(-1,1]的图象,由图象可知,当直线y =m (x +1)与函数f (x )的图象在区间(-1,1]上有两个不同的公共点时,实数m 的取值范围为⎝ ⎛⎦⎥⎤0,12.例2 (1)使log 2(-x )<x +1成立的x 的取值范围是________.(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.。
高考数学最佳复习方法(高三数学该怎么复习)
高考数学最佳复习方法(高三数学该怎么复习)高考数学最佳复习方法第一轮复习:熟悉考纲:详细了解数学高考的考试内容和要求,包括考试形式、考试范围、难度及基本要求。
泛读教材:学习教材,并逐步理解其中的基本概念和定义,尤其要注意重点难点概念的理解和记忆完成练习:完成基本的习题,巩固基础知识的理解,通过举一反三来加深掌握和记忆。
第二轮复习:查漏补缺:查漏补缺并巩固难点,强化重点知识,并进行有针对性的辅导和练习。
做和复习真题:做历年高考真题,结合自己的考试情况进行复习和总结,掌握考试趋势和重点难点。
定期做模拟题:进行模拟考试来检测自己复习情况,对弱项进行适量练习与强化,适当调整复习方法。
第三轮复习:总结知识点:逐个知识点进行统计和总结,并按照优先级进行安排,从基础开始巩固,逐步深入,强化重点。
模拟考试:逐步进行模拟考试,找到考试策略,加强考试心态调适。
针对性复习:重点关注易混点、考试重点和应变技巧,针对性进行复习,并强化解题技巧和策略。
局部突破:针对前两轮复习中整理出的薄弱环节和技能要求,进行精细化攻关,进行相应练习以突破局部难题。
如何高效复习高三数学要明确复习计划一般来说,数学学科要进行三轮复习,这是被实践证明了的十分有效的复习策略。
即一轮进行基础知识复习,目的是系统地回顾高中阶段的数学知识点和数学思想方法,扎扎实实地打好基础,全面系统地对知识进行梳理,加强对基础知识的理解和应用,加强对基本技能的训练,掌握知识之间的内在联系,理清知识结构,形成知识网络,在应用中理解其本质,形成能力,实现由知识到能力的跨越。
一轮复习的时间要长一些,要做到细致入微、面面俱到。
一轮复习的时间一般为9月初到次年的3月中旬。
二轮进行专题(即模块)复习,目的是加强对数学知识与方法的整合,也就是在一轮复习的基础上打破章节界限,以专题、板块的形式对重点内容和热点题型进行复习,提升分析问题和解决问题的综合能力。
二轮复习要针对高考的热点进行专题选择、专项训练。
2020年高考数学二轮复习总领复习之第2讲 解题有道——四大数学思想
应用1 数形结合思想在函数与方程中的应用 【例4】 (1)记实数x1,x2,…,xn中最小数为min{x1,x2,…,xn},则定义在区间
[0,+∞)上的函数f(x)=min{x2+1,x+3,13-x}的最大值为( )
A.5
B.6
C.8
D.10
(2)(2019·石家庄模拟)已知函数 f(x)=elnx,x,x≤x>00,, g(x)=f(x)+x+a.若 g(x)存在 2 个零点,
10
应用2 函数与方程思想在数列中的应用 【例2】 设等差数列{an}的前n项和为Sn,若S4=-2,S5=0,S6=3.
(1)求数列{an}的前nБайду номын сангаас和Sn; (2)求nSn的最小值. 解 (1)∵S4=-2,S5=0,S6=3, ∴a5=S5-S4=2,a6=S6-S5=3, 又{an}是等差数列,则公差d=a6-a5=1, 由于 S5=5(a12+a5)=0,所以 a1=-2,故 Sn=-2n+n(n- 2 1)=n2-2 5n.
2
类型一 函数与方程思想 函数与方程思想的实质就是用联系和变化的观点,描述两个量之间的依赖关系,刻画 数量之间的本质特征,在提出数学问题时,抛开一些非数学特征,抽象出数量特征, 建立明确的函数关系,并运用函数的知识和方法解决问题.有时需要根据已知量和未知 量之间的制约关系,列出方程(组),进而通过解方程(组)求得未知量.函数与方程思想是 相互联系、互为所用的.
12
探究提高 1.本题完美体现了函数与方程思想的应用,第(2)问利用数列前n项和公式 求出nSn,构造函数,运用单调性求最值. 2.数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式与前n项和 公式即为相应的解析式,但要注意数列问题中n的取值为正整数,涉及的函数具有离 散性特点.
2020届高三二轮复习数学(全国卷)备考策略最全最新
素养导向下高考数学命题走向
2.能力立意与素养导向比较(强调、特点、目标与 要求)
能
能
力
力
立
立
意
意
与比 较
素 养 导 向
素 养 导 向
强调 特点 目标
强调 特点 要求 目的
知识、智力、能力和技能的全面考查
追求知识覆盖全面,题目结构完整
目标指向明确,要有一定的反应速度
不仅是知识和智力,更是知识迁移和 后天习得
数据分析
收集数据,整理数据,提取信息, 构建模型,进行推断,获得结论.
素养导向下高考数学命题走向
1.中国学生发展素养导向(总体框架、基本内涵确定 考查目标)
中 国 学 生 发提 展出 核 心 素 养
核心素养的总 体框架
高考评价体系
核心素养的基 本内涵
命题
考 确查 标 定目 志
标
能素 力养 立导 意向
探索和表述论证过程,理解命题 体系,有逻辑地表达与交流
数学学 科核心 素养
数学建模
发现和提出问题,建立和求解模型, 检验和完善模型,分析和解决问题.
直观想象
建立数与形的联系,利用几何图 形描述问题,借助几何直观理解 问题,运用空间想象认识事物.
数学运算
理解运算对象,掌握运算法则,探 索运算思路,选择运算方法,设计 运算过程,求得运算结果.
与原理科相比
映射 三视图 算法 系统抽样 几何概型 二元一次不等式组与简单线性规划 推理与证明 定积分与微积分基本定理 统计案例
增加的内容
有限样本空间 百分位数 空间向量与立体几何 数学建模活动与数学探究活动
弱化的内容
计数原理 常用逻辑用语
有限样本空间 百分位数 数学建模活动与数学探究活动
2020届高考数学二轮复习专题《形如f(x)e^x+g(x)型的函数问题》
专题8形如f(x)e x+g(x)型的函数问题用导数的方法研究形如f(x)e x+g(x)的函数问题研究历来是高考的热点和难点,解决此类问题的难点是转化目标的有效选择,本专题主要研究与函数f(x)ex+g(x)有关的恒成立、存在性以及零点等问题,并在解决问题的过程中感悟数学思想方法的灵活运用.已知e x≥1+ax对任意x∈[0,+∞)成立,求实数a的取值范围.本题考查的是结构为e x f(x)+g(x),且含参数a的恒成立问题,由于题目中含有参数a,故解决过程中,先对参数a分类讨论,第一种情况a≤1,证明恒成立,而第二种情况a>1,则利用单调性导入反例,否定结论.已知x+e x2x+1≥t对一切正实数x恒成立,则实数t的最大值为________.已知函数f(x)=e x-1-x-ax2,当x≥0时,f(x)≥0恒成立,求实数a的取值范围.若不等式e x(x-a)+(x+a)>0对任意x∈(0,+∞)成立,求正实数a的取值范围.若f(x)=e x-ax2在(0,+∞)只有一个零点,求实数a的值..(2019·福建卷)已知定义在R上的函数f(x)=e x+1-e x+x2+2m(x-1)(m>0),当x1+x2=1时,不等式f(x1)≥f(x2)恒成立,则实数x1的取值范围为________.(本小题满分14分)已知a∈R,x轴与函数f(x)=e x-1-ax的图像相切.(1)求f(x)的单调区间;(2)当x>1时,f(x)>m(x-1)ln x,求实数m的取值范围.(1)f (x )的单调递减区间为(-∞,1),单调递增区间为(1,+∞);(2)⎝⎛⎦⎥⎤-∞,12. (1)f ′(x )=ex -1-a ,设切点为(x 0,0),依题意,⎩⎪⎨⎪⎧f (x 0)=0,f ′(x 0)=0,即⎩⎪⎨⎪⎧e x 0-1-ax 0=0,e x 0-1-a =0, 解得⎩⎪⎨⎪⎧x 0=1,a =1,2分(求出x 0与a 的值) 所以f ′(x )=e x -1-1,当x <1时,f ′(x )<0;当x >1时,f ′(x )>0,4分(解出不等式f ′(x )>0和f ′(x )<0的解)故f (x )的单调递减区间为(-∞,1),单调递增区间为(1,+∞).6分(写出f (x )的增减区间)(2)令g (x )=f (x )-m (x -1)ln x ,x >0,则g ′(x )=ex -1-m (ln x +x -1x )-1, 令h (x )=g ′(x ),则h ′(x )=e x -1-m (1x +1x2),8分(求出g (x )的二次导函数h ′(x )) ①若m ≤12,因为当x >1时,e x -1>1,m (1x +1x2)<1,所以h ′(x )>0,所以 h (x )即g ′(x )在(1,+∞)上单调递增.又因为g ′(1)=0,所以当x >1时,g ′(x )>0,从而g (x )在[1,+∞)上单调递增,而g (1)=0,所以g (x )>0,即f (x )>m (x -1)ln x 成立;10分(推出m ≤12时,f (x )>m (x -1)ln x 成立)②若m >12,可得h ′(x )=e x -1-m (1x +1x2)在(0,+∞)上单调递增,又因为 h ′(1)=1-2m <0,h ′(1+ln(2m ))=2m -m ⎣⎢⎡⎦⎥⎤11+ln (2m )+1[1+ln (2m )]2>0, 所以存在x 1∈(1,1+ln(2m )),使得h ′(x 1)=0,且当x ∈(1,x 1)时,h ′(x )<0,所以h (x )即g ′(x )在(1,x 1)上单调递减,又因为g ′(1)=0,所以当x ∈(1,x 1)时,g ′(x )<0,从而g (x )在(1,x 1)上单调递减,而g (1)=0,所以当x ∈(1,x 1)时,g (x )<0,即f (x )>m (x -1)ln x 不成立;综上所述,m 的取值范围是(-∞,12]. 14分(推出m >12时,f (x )>m (x -1)ln x 不恒成立,并写出结论) 第一步:由条件求出切点横坐标x 0和a ;第二步:解不等式f ′(x )>0和f ′(x )<0;第三步:写出f (x )的增减区间;第四步:求出g (x )的二次导函数,g ″(x )=h ′(x );第五步:推证:m ≤12时,f (x )>m (x -1)ln x 恒成立; 第六步:推证m >12时,f (x )>m (x -1)ln x 不恒成立,并得出结论.作业评价若函数f (x )=e x -ax 在(1,+∞)上有最小值,则实数a 的取值范围是________. 已知函数f (x )=(ax +1)e x 的单调增区间为(-2,+∞),则实数a 的值为________. 方程|e x -1|+ax +1=0有两个不同的解,则实数a 的取值范围是________.若x =-3是函数f (x )=[x 2+(a +2)x +a ]e x 的极值点,则f (x )的极小值为________. 已知函数f (x )=e x +ax -1(a ∈R ,a 为常数),若对所有x ≥0都有f (x )≥f (-x ),则a 的取值范围是________.如果函数y =f (x )在其定义域内总存在三个不同实数x 1,x 2,x 3,满足|x i -2|f (x i )=1(i =1,2,3),则称函数f (x )具有性质Ω.已知函数f (x )=a e x 具有性质Ω,则实数a 的取值范围为________.已知函数f (x )=(x 2-ax +a +1)e x (a 为常数,e 是自然对数的底数)有两个极值点x 1,x 2(x 1<x 2).(1)求实数a 的取值范围;(2)若a >0且mx 1e x 2-f (x 2)>0恒成立,求实数m 的取值范围.已知函数f (x )=(x -1)e x -a 2x 2,其中a ∈R . (1)求函数f (x )的单调区间;(2)函数f (x )的图象能否与x 轴相切?若能,求出实数a 的值,若不能,请说明理由;(3)若对于任意x 1∈R ,x 2∈(0,+∞),不等式f (x 1+x 2)-f (x 1-x 2)>-2x 2恒成立,求最大的整数a .。
新教材适用2024版高考数学二轮总复习第2篇核心素养谋局思想方法导航第4讲转化与化归思想课件
(2)因 a1=12,n∈N*,an+1=12+anan,
则 a2=12+a1a1=21× +1212=23,a3=12+a2a2=21× +2323=45,a4=12+a3a3=21× +4545=89, a5=12+a4a4=21× +8989=1167, 显然有 a1=202+0 1,a2=212+1 1,a3=222+2 1,a4=232+3 1,a5=242+4 1,
(2)根据递推公式可写出 a2、a3、a4、a5 的值,由此可归纳出数列{an} 的通项公式,然后通过递推公式得出an1+1-1=12a1n-1,可知数列a1n-1 为等比数列,确定该数列的首项和公比,即可求得数列{an}的通项公式.
【解析】 (1)证明:假设 an+1=an,因 n∈N*,an+1=12+anan,则12+anan =an,解得 an=0 或 an=1,
应用3 正与反引起的转化
核 心 知 识·精 归 纳
正难则反,利用补集求得其解,这就是补集思想,一种充分体现对 立统一、相互转化的思想方法.一般地,题目若出现多种成立的情形, 则不成立的情形相对很少,从反面考虑较简单,因此,间接法多用于含 有“至多”“至少”情形的问题中.
典 例 研 析·悟 方 法
算求解.
【解析】 5 名航天员安排三舱,每个舱至少一人至多二人,共有 C15C13C24=90 种安排方法,若甲乙在同一实验舱的种数有 C13C13C12=18 种, 故甲乙不在同一实验舱的种数有 90-18=72 种.故选 C.
(2) (2022·全国高三专题练习)8个点将半圆分成9段弧,以10个点(包
2020届高考数学(文)二轮复习全程方略课件:专题三 数列(2)数列的求和及综合应用
命题视角 1 函数的基本性质
[例 3] 已知数列{an}的前 n 项和为 Sn,点(n, Sn)(n∈N*)均在函数 f(x)=3x2-2x 的图象上.
(1)求数列{an}的通项公式; (2) 设 bn=ana3n+1,Tn 是数列{bn}的前 n 项和,求使 得 2Tn≤λ -2 015 对任意 n∈N*都成立的实数 λ 的取值范 围.
(2)bn=-1-log2|an|=2n-1,数列{bn}的前 n 项和 Tn =n2,
cn=TbnTn+n+1 1=n2(2nn++11)2=n12-(n+1 1)2, 所以 An=1-(n+1 1)2=(nn2++12)n 2.
因此{An}是单调递增数列, 所以当 n=1 时,An 有最小值 A1=1-14=34;An 没有 最大值.
命题视角 2 裂项相消法求和 [例 1-2] (2015·全国卷Ⅰ)Sn 为数列{an}的前 n 项 和.已知 an>0,a2n+2an=4Sn+3. (1)求{an}的通项公式; (2)设 bn=ana1n+1,求数列{bn}的前 n 项和.
解:(1)由 a2n+2an=4Sn+3 可知, a2n+1+2an+1=4Sn+1+3.
[规律方法] 1.给出 Sn 与 an 的关系求 an,常用思路是:一是利 用 Sn-Sn-1=an(n≥2)转化为 an 的递推关系,再求其通项 公式;二是转化为 Sn 的递推关系,先求出 Sn 与 n 之间的 关系,再求 an. 2.形如 an+1=pan+q(p≠1,q≠0),可构造一个新的 等比数列.
(1)求数列{an}与{bn}的通项公式; (2)记 cn=(-1)nbn+an,求数列{cn}的前 2n 项和 S2n.
解:(1)设等差数列{bn}的公差为 d,
备战高考数学二轮复习 思想3.1 函数与方程思想教学案
思想3.1 函数与方程思想1. 函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的思想是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系.2. 和函数与方程思想密切关联的知识点(1)函数与不等式的相互转化.对函数y =f (x ),当y >0时,就化为不等式f (x )>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n 项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)在三角函数求值中,把所求的量看作未知量,其余的量通过三角函数关系化为未知量的表达式,那么问题就能化为未知量的方程来解.(4)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论.(5)立体几何中有关线段的长、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决. 【热点分类突破】类型一 函数与方程思想在数列中的应用例1 .【2018河南林州一中调研】设{}n a 是公比大于1的等比数列, n S 为数列{}n a 的前n 项和,已知37S =,且123,,1a a a - 成等差数列. (1)求数列{}n a 的通项公式;(2)若421log ,1,2,3......n n b a n +== ,求和:12233411111......n nb b b b b b b b -++++.例2 知数列{}n a 中,11a =,且点()()*1n n P a a n N +∈,在直线10x y -+=上.⑴求数列{}n a 的通项公式; ⑵若函数()123123nnf n n a n a n a n a =++++++++…(n N ∈,且2n ≥),求函数()f n 的最小值; ⑶设1n nb a =,n S 表示数列{}n b 的前n 项和,试问:是否存在关于n 的整式()g n ,使得()()12311n n S S S S S g n -++++=-⋅…对于一切不小于2的自然数n 恒成立?若存在,写出()g n 的解析式,并加以证明;若不存在,试说明理由.试题分析:(1)将点)(1,+n n a a P 代入直线01=--y x 得到11=-+n n a a ,∴数列}{n a 是以1为首项,1为公差的等差数列,再由11=a 得到}{n a 的通项公式;(2)由(1)可得nnn n n f 22211)(+++++=, ∴22112213221)1(+++++-+++++=+n n n n n n n n n f ,0)()1(≥-+∴n f n f ,)(n f ∴是单调递增的,故)(n f 的最小值是65)2(=f ;(3)由(1)及nS n b n n 1312111++++=⇒= ,)2(11≥=-∴-n n S S n n ,即1)1(11+=----n n n S S n nS ,1,,1)2()1(112221+=-+=---∴---S S S S S n S n n n n ,,1-n 1211++++=-∴-n n S S S S nS )2()1(121≥⋅-=-=+++∴-n n S n nS S S S n n n ,最后将该式整理即可得出n n g =)(.试题解析:⑴ 点)(1,+n n a a P 在直线01=--y x 上,即11=-+n n a a ,且11=a ,∴数列}{n a 是以1为首项,1为公差的等差数列,)2(1)1(1≥=⋅-+=∴n n n a n ,11=a 也满足,n a n =∴,⑵ n n n n n f 22211)(+++++=,∴22112213221)1(+++++-+++++=+n n n n n n n n n f , 0)()1(≥-+∴n f n f ,)(n f ∴是单调递增的,故)(n f 的最小值是65)2(=f .⑶ n S n b n n 1312111++++=⇒= ,)2(11≥=-∴-n nS S n n ,即1)1(11+=----n n n S S n nS ,1,,1)2()1(112221+=-+=---∴---S S S S S n S n n n n ,,1-n 1211++++=-∴-n n S S S S nS )2()1(121≥⋅-=-=+++∴-n n S n nS S S S n n n ,n n g =∴)(.故存在关于n 的整式n n g =)(,使等式对于一切不小于2的自然数n 恒成立.【规律总结】(1)等差(比)数列中各有5个基本量,建立方程组可“知三求二”;(2)数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式即为相应的解析式,因此在解决数列问题时,应注意用函数的思想求解. 【举一反三】已知等比数列{}n a 的公比1q >,12a =且1a ,2a ,38a -成等差数列.数列{}n b 的前n 项和为n S ,且28n S n n =-.(1)分别求出数列{}n a 和数列{}n b 的通项公式; (2)设n n nb c a =,若n c m £,对于n *"蜰恒成立,求实数m 的最小值.类型二 函数与方程思想在方程中的应用例3已知函数()f x 是定义在R 上的偶函数,若方程()2123f x x x +=+-的零点分别为12,,...,n x x x ,则12n x x x +++=( )A .nB .n - C.2n - D .3n - 【答案】B【解析】函数()f x 是定义在R 上的偶函数,所以函数()f x 的图象关于y 轴对称,函数()1f x +的图象是由函数()f x 的图象向左平移1个单位得到的,所以函数()1f x +的对称轴为直线1x =-,且函数2()23g x x x =+-的对称轴也是直线1x =-,所以方程()2123f x x x +=+-零点关于直线1x =-对称,所以有12n x x x n +++=-,故选B.【规律总结】研究此类含参数的三角、指数、对数函数等复杂方程解的问题,通常有两种处理思路:一是分离参数构建函数,将方程有解转化为求函数的值域;二是换元,将复杂方程问题转化为熟悉的二次方程,进而利用二次方程解的分布情况构建不等式或构造函数加以解决.【举一反三】 定义域为R 的函数|1|251,0,()44,0x x f x x x x -⎧-≥⎪=⎨++<⎪⎩若关于x 的方程22()(21)()0f x m f x m -++=有7个不同的实数解,则m =( )A .6B .4或6C .6或2D .2【答案】D类型三 函数与方程思想在不等式中的应用例4【2018河南名校联考】已知函数()xf x e ax =-.(1)当2a =时,求函数()f x 的单调区间; (2)若存在[],0,2m n ∈,且1m n -≥,使得()()1f m f n =,求证: 11ae e ≤≤-. 试题分析:(1)求函数的单调区间,转化为求函数导数值大于零或小于零的不等式的解;(2)根据题意对a 进行分类讨论,当0a ≤时显然不行, 0a >时,不能有(),ln ,m n a ∈+∞,设02m n ≤<≤,则由0ln 2m a n ≤<<≤即可,利用单调性即可证出.因为()f x 在(),ln m a 上单调递减,在()ln ,a n 上单调递增,且()()1f m f n =,所以当m x n ≤≤时, ()()()f x f m f n ≤=.由02m n ≤<≤, 1m n -≥,可得[]1,m n ∈,故()()()1f f m f n ≤=, 又()f x 在(),ln a -∞上单调递减,且0ln m a ≤<,所以()()0f m f ≤, 所以()()10f f ≤,同理()()12f f ≤,即21{2e a e a e a-≤-≤-,解得21e a e e -≤≤-,所以11ae e ≤≤-. 【规律总结】根据所证不等式的结构特征构造相应的函数,研究该函数的单调性是解决这一类问题的关键,体现了导数的工具性以及函数、方程的数学思想. 【举一反三】已知函数()ln f x ax x =+,其中a ∈R . (Ⅰ)若()f x 在区间[1,2]上为增函数,求a 的取值范围; (Ⅱ)当e a =-时,证明:()20f x +≤; (Ⅲ)当e a =-时,试判断方程类型四 函数与方程思想在解析几何中的应用例5【2018广西柳州摸底联考】已知过抛物线2:2(0)C y px p =>的焦点F 的直线交抛物线于()()112212,,,()A x y B x y x x <两点,且6AB =. (1)求该抛物线C 的方程;(2)已知抛物线上一点(),4M t ,过点M 作抛物线的两条弦MD 和ME ,且M D M E ⊥,判断直线DE 是否过定点?并说明理由.试题分析:(1)利用点斜式设直线直线AB 的方程,与抛物线联立方程组,结合韦达定理与弦长公式求AB ,再根据6AB =解得2p =.(2)先设直线DE 方程x my t =+, 与抛物线联立方程组,结合韦达定理化简MD ME ⊥,得48t m =+或44t m =-+,代入DE 方程可得直线DE 过定点()8,4-()()()2212121212343216y y y y y y y y =-++-++ 22161232160t m t m =--+-=即2212321616t t m m -+=+,得: ()()226421t m -=+,∴()6221t m -=±+,即48t m =+或44t m =-+,代人①式检验均满足0∆>,∴直线DE 的方程为: ()4848x my m m y =++=++或()44x m y =-+.∴直线过定点()8,4-(定点()4,4不满足题意,故舍去).【规律总结】1、在高中数学的各个部分,都有一些公式和定理,这些公式和定理本身就是一个方程,如等差数列的通项公式、余弦定理、解析几何的弦长公式等,当题目与这些问题有关时,就需要根据这些公式或者定理列方程或方程组求解需要的量;2. 当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.【举一反三】【2018江西南昌摸底联考】已知椭圆2222:1(0)x y C a b a b+=>>2.(1)求椭圆C 的标准方程;(2)设直线:l y kx m =+与椭圆C 交于,M N 两点, O 为坐标原点,若54OM ON k k ⋅=,求原点O 到直线l 的距离的取值范围.215204k <≤,∵原点O 到直线l的距离d =()22222259411141k m d k k k -===-++++,又∵215204k <≤,∴2807d ≤<,∴原点O 到直线l的距离的取值范围是0,7⎡⎫⎪⎢⎪⎣⎭函数思想的实质是抛开所研究对象的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立各变量之间固有的函数关系,通过函数形式,利用函数的有关性质,使问题得到解决;方程思想的实质就是将所求的量设成未知数,根据题中的等量关系,列方程(组),通过解方程(组)或对方程(组)进行研究,以求得问题的解决;函数与方程思想在一定的条件下是可以相互转化的,是相辅相成的.函数思想重在对问题进行动态的研究,方程思想则是在动中求解,研究运动中的等量关系.。
备战2023年高考数学二轮复习专题 第二讲 思想方法 融会贯通
6
一
二
三
四
二轮·数学
(2)(2021·山师附中调研)已知函数 h(x)=xln x 与函数 g(x)=kx-1 的图象在
区间1e,e上有两个不同的交点,则实数 k 的取值范围是( B )
A.1+1e,e-1
B.1,1+1e
C.(1,e-1]
D.(1,+∞)
7
一
二
三
四
二轮·数学
[解析] (2)令 h(x)=g(x),得 xln x+1=kx,即1x+ln x=k. 若方程 xln x-kx+1=0 在区间1e,e上有两个不等实根,则函数 f(x)=ln x +1x与 y=k 在区间1e,e上有两个不相同的交点,f′(x)=1x-x12,令1x-x12= 0 可得 x=1,当 x∈1e,1时,f′(x)<0,函数是减函数;当 x∈(1,e]时,
10
一
二
三
四
若 0<x1<x2<1,则( C )
[即学即用]
二轮·数学
11
一
二
三
四
二轮·数学
解析:设 f(x)=ex-ln x(0<x<1),则 f′(x)=ex-1x=xexx-1. 令 f′(x)=0,得 xex-1=0. 根据 y=ex 的图象与 y=1x的图象,可知函数 f(x)在(0,1)上不是单调函数, 故 A,B 选项不正确.
为( B )
A.ea-1<a<ae C.ae<ea-1<a
B.ae<a<ea-1 D.a<ea-1<ae
5
一
二
三
四
二轮·数学
[解析] (1)设 f(x)=ex-x-1,x>0, 则 f′(x)=ex-1>0, ∴f(x)在(0,+∞)上是增函数,且 f(0)=0,f(x)>0, ∴ex-1>x,即 ea-1>a. 又 y=ax(0<a<1)在 R 上是减函数,得 a>ae,从而 ea-1>a>ae.
关于高三数学第二轮复习的思考
关于高三数学第二轮复习的思考摘要:数学是高考必考科目之一,高三数学复习质量的好坏,直接关系到学生高考的成败。
本文谈到了有关高三第二轮复习的几点建议。
如仔细研读《考试说明》;突出对课本基础知识的再挖掘;抓好专题复习,领会数学思想;重视规范训练,提高解题速度与准确性;重视知识交叉点,强化一轮复习中的薄弱点;重视解题教学,关注思维的严密性。
关键词:高三数学第二轮复习数学是高考必考科目之一,高三数学复习质量的好坏,直接关系到学生高考的成败。
知识是能力的载体,能力是建立在基础知识之上的,学生对基础知识的掌握程度,直接影响学生的解题能力。
根据多年的教学实践及对近几年高考试题的分析解读,我认为高三数学的复习应以基本知识点为切入点,注重点面接合,切勿步入题海的误区。
在复习的过程中一般分为三轮复习,现就第二轮的复习谈谈我的感受。
高三数学第一轮复习是以纵向为主,顺序整理,而第二轮复习要注意切换方向,以横向为主,建构网络。
由第一轮的“复习什么,巩固什么”向“解哪类题有哪些方法”过渡。
由于二轮复习时间紧迫,需要复习的知识又很多,在这阶段如何根据所剩时间与第一轮复习状况,提高复习效率,我认为必须重视以下问题。
一、仔细研读《考试说明》高考命题是以《考试说明》为依据的,因此,高三数学二轮复习就必须认真研究《考试说明》,吃透精神实质,抓住考试内容和能力要求,同时还应关注近三年的高考试题以及对试题的评价报告。
在各知识点的难度控制上,应以考试要求中的三个层次界定,必须对每个知识点属于哪个层次清清楚楚,以增加复习的针对性。
只有在复习中做到既有针对性,又避免做无用功,既减轻学生负担,又提高复习效率,才能使复习有的放矢,事半功倍。
二、突出对课本基础知识的再挖掘近几年,高考数学试题坚持“新题不难,难题不怪”的命题方向。
强调对通性通法的考查,并且一些高考试题能在课本中找到“原型”。
因此,课本是高考试题的“策源地”,高考命题遵循一个原则:“植根于教材,来源于教材,着眼于教材”。
【高考数学二轮复习思想方法与解题技巧】正与反的转化与变换与一般与特殊的转化与变换-原卷+解析
第37讲 正与反的转化与变换对于某些数学问题, 当从正面思考难以解决时就转向反面思考,当用直接解法不能奏效时就转用间接解法,当命题难以被证明时就转而举反例加以否定,特别是否定性命题, 常要利用正反的相互转化。
一般地,题目若出现多种成立的情形,则不成立的情形相对较 少,从反面考虑较简单。
有些命题直接证明难度较大, 正难则反,可以采用反证法。
典型例题【例1】(1) 求证:方程 sin x c x += 有唯一解;(2) 若方程 cos26sin 20a θθ++-= 在 263ππθ⎡⎤∈⎢⎥⎣⎦, 时有解, 求实数 a 的取值范围。
【例2】是否存在 02x π⎛⎫∈ ⎪⎝⎭,, 使得 sin cos tan cot x x x x ,,,为等差数列?【例3】一个袋中装有大小相同的黑球、白球和红球,已知袋中有10个球,从中任意摸出来1个球得到黑球的概率是25;从中任意摸出 2 个球, 至少得到 1 个白球的概率是79求: (1) 从中任意摸出 2 个球,得到的都是黑球的概率; (2) 袋中白球的个数。
【例4】试求实数 k 的取值范围,使拋物线 2y x = 的所有弦都不能被直线 ()3y k x =-垂直平分。
第38讲一般与特殊的转化与变换当问题难以入手时,应先对特殊情况或简单情形进行观察、分析,发现问题中特殊的数量关系、结构或部分元素,然后推广到一般情形,以完成从特殊情形的研究到一般问题的解答的过程,这就是特殊化的化归策略,当然,在运用特殊与一般的思想方法解题时,必须认识到一般与特殊的关系是:一般成立,其特殊也成立;一般不成立,其特殊可能成立,也可能不成立;特殊不成立,其一般也不成立;特殊成立,其一般可能成立,也可能不成立。
这种用极端特殊的考虑解使问题迎刃而解的方法体现了一个数学原理,即极端原理,数学问题化难为易、化抽象为具体、化繁杂为简单,化生疏为熟悉等等,都离不开极端原理,这是因为,用一个题目中涉及的对象的极端情形,去代替这一对象,而保留题目其余内容所得的题目,即是题目的极端情形,它往往比较容易、具体、熟悉,又由于极端情形的解与一般情形的解往往有共性。
高三数学第二轮复习策略
高三数学第二轮复习策略(一)1.继续强化对基础知识的理解,掌握抓住重点知识抓住薄弱的环节和知识的缺陷,全面搞好基础知识全面搞好基础知识的复习。
(备考指南与知识点总结)中学数学的重点知识包括:(1)集合、函数与导数。
此专题函数和导数、应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。
(2)三角函数、平面向量和解三角形。
此专题中平面向量和三角函数的图像与性质,恒等变换是重点。
(3)数列。
此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。
(4)立体几何。
此专题注重点线面的关系,用空间向量解决点线面的问题是重点。
(5)解析几何。
此专题中解析几何是重点,以基本性质、基本运算为目标。
突出直线和圆、圆锥曲线的交点、弦长、轨迹等。
(6)概率与统计、算法初步、复数。
此专题中概率统计是重点,以摸球、射击问题为背景理解概率问题。
(7)不等式、推理与证明。
此专题中不等式是重点,注重不等式与其他知识的整合。
2、对基础知识的复习应突出抓好两点:(1)深入理解数学概念,正确揭示数学概念的本质,属性和相互间的内在联系,发挥数学概念在分析问题和解决问题中的作用。
(2)对数学公式、法则、定理、定律务必弄清其来龙去脉,掌握它们的推导过程,使用范围,使用方法(正用逆用、变用)熟练运用它们进行推理,证明和运算。
3、系统地对数学知识进行整理、归纳、沟通知识间的内在联系,形成纵向、横向知识链,构造知识网络,从知识的联系和整体上把握基础知识。
例如以函数为主线的知识链。
又如直线与平面的位置关系中“平行”与“垂直”的知识链。
4、认真领悟数学思想,熟练掌握数学方法,正确应用它们分析问题和解决问题。
数学思想和方法的考查必然要与数学知识的考查结合进行,在平时的做题中必须提炼出其中的数学思想方法,并以之指导自己的解题。
数学思想数学在高考中涉及的数学思想有以下四种:(1)分类讨论思想:分类讨论思想是以概念的划分,集合的分类为基础的解题思想,是一种逻辑划分的思想方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学思想方法【考纲解读】1.熟练掌握函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想.2.能够对所学知识进行分类或归纳,能应用数学思想方法分析和解决问题,系统地把握知识间的内在联系.【考点预测】1.函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点,也是高考的一个热点。
对函数试题的设计仍然会围绕几个基本初等函数和函数的性质、图象、应用考查函数知识;与方程、不等式、解析几何等内容相结合,考查函数知识的综合应用;在函数知识考查的同时,加强对函数方程、分类讨论、数形结合、等价转化等数学思想方法的考查。
2.预测在今年的高考中,数形结合与分类讨论思想仍是考查的一个热点,数形结合的考查方式常以数学式、数学概念的几何意义、函数图象、解析几何等为载体综合考查,分类讨论思想的考查重点为含有参数的函数性质问题、与等比数列的前n 项和有关的计算推证问题、直线与圆锥曲线的位置关系不定问题等。
3.预测在今年的高考中,运用化归与转化思想解题的途径主要有:借助函数、方程(组)、辅助命题、等价变换、特殊的式与数的结构、几何特征进行转化,其方法有:正反转化、数形转化、语义转化、等与不等、抽象问题与具体问题化归,一般问题与特殊问题化归,正向思维与逆向思维化归。
【要点梳理】1.函数与方程思想:我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n 项和的公式,都可以看成n 的函数,数列问题也可以用函数方法解决。
2.数形结合的思想:是解答高考数学试题的一种常用方法与技巧,特别是在解选择与填空题时发挥着奇特功效.具体操作时,应注意以下几点:(1)准确画图,注意函数的定义域;(2)用图象法讨论方程的解的个数.3.与分类讨论有关的知识点有:直线的斜率分为存在和不存在两种情形、等比数列中的公比1q =和1q ≠、由参数的变化引起的分类讨论、由图形的不确定性引起的分类讨论、指对函数的底数a 分为1a >和01a <<两种情形等。
分类的原则是:不重复、不遗漏、分层次讨论。
分类讨论的一般流程是:明确讨论的对象、选择分类的标准、逐类进行讨论、归纳整合。
4.转化与化归常用的方法有:直接转化法、换元法、数形结合法、构造法、坐标法、类比法、特殊化方法等。
【考点在线】考点一 函数与方程思想函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。
它体现了“联系和变化”的辩证唯物主义观点。
一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f-1(x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。
在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。
对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。
另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
例 1. (2020年高考江苏卷8)在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________. 【答案】4【解析】设坐标原点的直线方程为(0)y kx k =>,则由2y kx y x =⎧⎪⎨=⎪⎩解得交点坐标为、(,即为P 、Q 两点,所以线段PQ 长为4≥=,当且仅当1k =时等号成立,故线段PQ 长的最小值是4. 【名师点睛】本小题考察函数与方程,两点间距离公式以及基本不等式,中档题. 【备考提示】:正确理解函数与方程思想是解答好本类题的关键.练习1: (2020年高考山东卷理科16)已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a<3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .【答案】2【解析】方程log (0a 1)a x x b a +-≠>,且=0的根为0x ,即函数log (23)a y x a =<<的图象与函数(34)y x b b =-<<的交点横坐标为0x ,且*0(,1),x n n n N ∈+∈,结合图象,因为当(23)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;当2y =时,对数函数log (23)a y x a =<<的图象上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图象上点的横坐标(5,6)x ∈,故所求的2n =.考点二 数形结合思想数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。
“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。
在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
例2. 若方程lg(-x 2+3x -m)=lg(3-x)在x ∈(0,3)内有唯一解,求实数m 的取值范围。
【解析】 原方程变形为 30332->-+-=-⎧⎨⎩x x x m x ,即:30212->-=-⎧⎨⎩x x m (), 设曲线y 1=(x -2)2, x ∈(0,3)和直线y 2=1-m ,图像如图所示.由图可知:② 当1-m =0时,有唯一解,m =1;②当1≤1-m<4时,有唯一解,即-3<m ≤0,∴ m =1或-3<m ≤0此题也可设曲线y 1=-(x -2)2+1 , x ∈(0,3)和直线y 2=m 后画出图像求解。
【名师点睛】将对数方程进行等价变形,转化为一元二次方程在某个范围内有实解的问题,再利用二次函数的图像进行解决.【备考提示】:一般地,方程的解、不等式的解集、函数的性质等进行讨论时,可以借助于函数的图像直观解决,简单明了。
此题也可用代数方法来讨论方程的解的情况,还可用分离参数法来求(也注意结合图像分析只一个x 值).练习2:(2020年高考北京卷理科13)已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程f(x)=k有两个不同的实根,则数k 的取值范围是____ ___. 【答案】(0,1)【解析】画出函数图象与直线y=k,观察,可得结果.考点三 分类讨论思想例3. (2020年高考全国新课标卷理科21) 已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 【解析】(Ⅰ)22)1()ln 1()(x b x x x x a x f -+-+='Θ,由题意知:⎪⎩⎪⎨⎧-='=21)1(1)1(f f 即⎪⎩⎪⎨⎧-=-=2121b a b1==∴b a(Ⅱ)由(Ⅰ)知xx x x f 11ln )(+-=,所以, ⎥⎦⎤⎢⎣⎡--+-=+--x x k x x x x x x f )1)(1(ln 211)11ln ()(22设)0(,)1)(1(ln 2)(2>--+=x x x k x x h 则,222)1)(1()(xxx k x h ++-=' ⑴如果0≤k ,由222)1()1()(x x x k x h --+='知,当1≠x 时, 0)(<'x h ,而0)1(=h故,由当0)(),,1(,0)()1,0(<'+∞∈>'∈x h x x h x 时当时得:0)(-112>x h x从而,当0>x 时,,0)1ln ()(>+--x k x x x f 即xkx x x f +->1ln )(⑵如果)1,0(∈k ,则当,)11,1(k x -∈时,0)(,02)1)(1(2>'>++-x h x x k Θ而0)1(=h ;0)(>x h 得:0)(-112<x h x与题设矛盾; ⑶如果1≥k ,那么,因为0)(>'x h 而0)1(=h ,),1(+∞∈∴x 时,由0)(>x h 得:0)(-112<x h x 与题设矛盾; 综合以上情况可得:(]0,∞-∈k .【名师点睛】本题综合考察导数的概念、性质、求导法则、导数的应用、分类讨论等概念、性质、方法和思想, 特别是第(2)问通过构造新函数,用导数判定单调性,通过分类讨论确定参数的取值范围,要深入理解和把握并进行拓展.【备考提示】:分类讨论思想是高考的热点,年年必考,深刻领会分类讨论的思想是解决好本类题目的关键.练习3:(2020年高考湖南卷理科22第(1)问)已知函数(),3x x f =().x x x g +=求函数()()()x g x f x h -=的零点个数,并说明理由;【解析】由()x x x x h --=3知,[)+∞∈,0x ,而(),00=h 且()011<-=h ,()0262>-=h ,则0=x 为()x h 的一个零点,且()x h 在()2,1内由零点,因此()x h至少有两个零点.(),2113212---='x x x h 记(),2113212---=x x x ϕ则(),41623-+='x x x ϕ当()+∞∈,0x 时,(),0>'x ϕ因此()x ϕ在()+∞,0上单调递增,则()x ϕ在()+∞,0上至多有一个零点,又因为()01>ϕ,033<⎪⎪⎭⎫⎝⎛ϕ,则()x ϕ在⎪⎪⎭⎫ ⎝⎛1,33内有零点.所以()x ϕ在()+∞,0上有且只有一个零点,记此零点为1x ,则当()1,0x x ∈时,()();01=<x x ϕϕ当()+∞∈,1x x 时,()();01=>x x ϕϕ所以,当()1,0x x ∈时,()x h 单调递减,而(),00=h 则()x h 在(]1,0x 内无零点;当()+∞∈,1x x 时,()x h单调递增,则()x h 在()+∞,1x 内至多只有一个零点,从而()x h 在()+∞,0上至多有一个零点.综上所述,()x h有且只有两个零点.考点四 转化与化归的思想等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。