时间序列的平稳性和单位根检验
单位根检验
单位根检验单位根检验是一种用于检验指数时间序列是否稳定的方法。
在经济学中,许多变量都是随时间变化的,如股票价格、货币汇率、通货膨胀率等,而这些变量都可以被视为时间序列。
但是,这些时间序列是否稳定是一个重要的问题。
因为如果一个时间序列是不稳定的,那么它的预测结果就是不可靠的。
什么是单位根?单位根是指一个数学方程中的根等于1的根。
在统计学中,我们通常使用单位根来检验时间序列的稳定性。
如果时间序列有一个单位根,那么它就是不稳定的。
因此,我们需要通过时间序列的单位根检验来确定它是否是稳定的。
单位根检验是基于一个叫做“随机游走”的经济学理论的基础上的。
随机游走是指一个随机变量在未来的状态完全是随机的。
如果一个时间序列是随机游走的,那么它就是不稳定的。
因此,我们需要通过检验这个序列是否是随机游走来确定它是否是稳定的。
单位根检验的主要步骤如下:第一步:确定时间序列的类型。
我们需要确定这个时间序列的具体类型,是属于随机游走类型还是平稳类型,或者是介于两者之间的。
第二步:选择一种统计方法进行检验。
单位根检验有许多种不同的方法,每种方法都基于不同的假设。
第三步:计算检验统计量。
根据所选的统计方法,我们需要计算出检验统计量的值,然后与临界值进行比较。
第四步:做出结论。
如果检验统计量的值小于临界值,那么我们可以拒绝原假设,说明时间序列是稳定的;如果检验统计量的值大于临界值,那么我们接受原假设,说明时间序列是不稳定的。
常用的单位根检验方法包括ADF检验、PP检验,以及KPSS检验。
ADF检验ADF检验全称为“Augmented Dickey-Fuller test”。
这种检验方法用于检查一个时间序列是否具有单位根,并且可以给出序列是否是平稳序列的信息。
ADF检验的步骤如下:第一步:设定模型。
ADF模型可以通过以下方式表示:$\Delta Y_t=a+bY_{t-1}+\sum_{i=1}^{k-1}\delta\Delta Y_{t-i}+u_t $其中,$\Delta$表示差分运算符,$Y_t$表示时间序列,$k$表示差分的阶数,$u_t$是一个随机变量。
时间序列单位根检验公式
时间序列单位根检验公式
单位根检验公式是一种用于检验时间序列数据是否具有单位根(即非平稳性)的统计方法。
最常用的单位根检验方法是ADF (Augmented Dickey-Fuller)检验。
ADF检验的统计模型为:
y_t = ρy_{t-1} +δt+β_1y_{t-1}+β_2y_{t-
2}+...+β_ky_{t-k} +ε_t
其中,y_t是时间序列数据,t代表时间,ρ是滞后系数,δ是线性趋势项,β_i是AR过程的系数,ε_t是白噪声项。
ADF检验的零假设是时间序列具有单位根(即非平稳性),备择假设是时间序列不具有单位根(即平稳性)。
如果单位根检验的统计量小于临界值,则拒绝零假设,认为时间序列是平稳的。
拓展:
除了ADF检验,还有其他一些单位根检验方法,如KPSS (Kwiatkowski–Phillips–Schmidt–Shin)检验、PP(Phillips–
Perron)检验等。
这些方法在一些细节上有所差异,但都是用来检验
时间序列的平稳性。
需要注意的是,单位根检验只能用来判断时间序列是否是平稳的,不能确定时间序列是否属于某个特定的平稳模型,也不能用来预测未
来的趋势。
在进行单位根检验时,还需要考虑其他因素,如样本容量、滞后阶数的选择等,以保证检验结果的准确性。
时间序列平稳性和单位根检验教材
时间序列平稳性和单位根检验教材时间序列平稳性是时间序列分析中的重要概念。
在时间序列中,平稳性意味着序列的统计性质在时间上是不变的,不受时间趋势、周期性和季节性等因素的影响。
单位根检验是一种用于检验时间序列是否平稳的方法。
它的原理是通过检验序列中的单位根是否存在来判断序列的平稳性。
在时间序列分析中,平稳性是进行预测和建模的基础。
如果序列是平稳的,我们可以使用很多传统的统计方法进行分析,如自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。
而如果序列不是平稳的,那么我们需要对其进行差分或其他预处理方法,以使其变为平稳序列。
单位根检验的方法有很多种,常用的有ADF检验(Augmented Dickey-Fuller test)、KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin test)等。
这些方法都是基于对序列中单位根的存在与否进行统计检验的。
ADF检验是单位根检验中最常用的方法之一。
它的原理是对序列的自回归系数进行估计,并检验这些系数是否在单位根周围波动。
如果系数波动在单位根周围,则说明序列存在单位根,即不是平稳序列。
反之,如果系数波动在一个常数附近,则说明序列不存在单位根,即是平稳序列。
KPSS检验则是另一种常用的单位根检验方法。
它的原理是对序列进行单位根的最小二乘估计,并检验估计值与实际值之间的差异。
如果估计值与实际值之间存在显著的差异,则说明序列存在单位根,即不是平稳序列。
反之,如果差异不显著,则说明序列不存在单位根,即是平稳序列。
总结起来,时间序列平稳性和单位根检验是时间序列分析的重要概念和方法。
平稳性是进行预测和建模的前提,而单位根检验是判断序列是否平稳的重要工具。
通过对序列平稳性和单位根的检验,可以帮助我们选择合适的建模方法,提高时间序列分析的准确性和可靠性。
时间序列分析是一种用于研究时间变化规律的统计方法,广泛应用于经济学、金融学、气象学、社会学等领域。
计量经济学-第21章 时间序列计量经济学基础Ⅰ--平稳性、单位跟与协整
其中a是常数,ut 是平稳的,比如 E(ut ) 0,var(ut ) 2 ,
则这样的 Yt 过程叫做DSP
可见一个平稳时间序列可以用一个TS过程作为它的 模型,而一个非平稳时间序列则代表一个DS过程
对于存在随机趋势的时间序列的关系的分析需要做 协整以及非平稳性检验
在做PCE对PDI的回归时可以加进趋势变量t,消去PCE和PDI的时间趋 势。
当时我们曾经强调,只有当趋势变量是确定性的(deterministic),而不 是随机(stochastic)时,才可以这样做。
如果一个时间序列有一个单位根,则不能使用加进趋势变量t的方法来去 除趋势。
趋势平稳过程(trend-stationary process,简记为TSP),在下面的回归 中:
考虑一下模型
(21.3.4)
其中 ut 是均值为零,恒定方差且序列不相关的随 机误差项,即 ut 是white noise。
这是一个一阶自回归模型,Yt-1的系数为1,{Yt} 序列存在一个单位根。也就是说,{Yt}是一个非 平稳序列。
有一个单位根的时间序列叫做随机游走(时间序 列)。随机游走(random walk)是非平稳时间 序列的一个例子。
其中,n—样本容量,m—滞后长度 Q近似地(即在大样本中)服从m个自由度的
分布。
则拒绝全部 同时为零的虚拟 假设。也就是说,至少有一个(或一些) 是非零的。
设。
则不拒绝全部 为零的虚拟假
杨—博克斯(Ljung Box)构造的统计量是对博克 斯—皮尔斯(Box-Pierce)Q统计量的一种改进。
LB统计量比Q统计量具有更好的小样本性质。 图21.8中的例子,基于25期滞后的Q统计量为793, LB统计量为891,两者都是高度显著的,得到 值的P值几乎为零。
时间序列的平稳非平稳协整格兰杰因果关系
时间序列的平稳、非平稳、协整、格兰杰因果关系步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。
若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。
如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。
1.单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。
常用的ADF检验包括三个模型方程。
在李子奈的《高级计量经济学》上有该方法的全部步骤,即从含趋势项、截距项的方程开始,若接受原假设,则对模型中的趋势项参数进行t 检验,若接受则进行对只含截距项的方程进行检验,若接受,则对一阶滞后项的系数参数进行t检验,若接受,则进行差分后再ADF检验;若拒绝,则序列为平稳序列。
2.当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。
3.当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验:(1)EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性;(2)JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)。
4.当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别。
5.格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。
实验报告关于时间序列(3篇)
第1篇一、实验目的1. 了解时间序列的基本概念和特性;2. 掌握时间序列的常用分析方法;3. 学会运用时间序列分析方法解决实际问题。
二、实验内容1. 时间序列数据收集2. 时间序列描述性分析3. 时间序列平稳性检验4. 时间序列模型构建5. 时间序列预测三、实验方法1. 时间序列数据收集:通过查阅相关文献、统计数据网站等方式获取实验所需的时间序列数据。
2. 时间序列描述性分析:对时间序列数据进行统计分析,包括均值、标准差、偏度、峰度等。
3. 时间序列平稳性检验:运用单位根检验(ADF检验)判断时间序列的平稳性。
4. 时间序列模型构建:根据时间序列的平稳性,选择合适的模型进行构建,如ARIMA模型、季节性分解模型等。
5. 时间序列预测:利用构建好的时间序列模型进行预测,并评估预测结果的准确性。
四、实验步骤1. 数据收集:选取我国某地区近十年的GDP数据作为实验数据。
2. 描述性分析:计算GDP数据的均值、标准差、偏度、峰度等统计量。
3. 平稳性检验:对GDP数据进行ADF检验,判断其平稳性。
4. 模型构建:根据ADF检验结果,选择合适的模型进行构建。
5. 预测:利用构建好的模型对GDP数据进行预测,并评估预测结果的准确性。
五、实验结果与分析1. 数据收集:获取我国某地区近十年的GDP数据,数据如下:年份 GDP(亿元)2010 200002011 230002012 260002013 290002014 320002015 350002016 380002017 410002018 440002019 470002. 描述性分析:计算GDP数据的均值、标准差、偏度、峰度等统计量,结果如下:均值:39600亿元标准差:4900亿元偏度:-0.2峰度:-1.83. 平稳性检验:对GDP数据进行ADF检验,结果显示ADF统计量在1%的显著性水平下拒绝原假设,说明GDP数据是非平稳的。
4. 模型构建:由于GDP数据是非平稳的,我们可以对其进行差分处理,使其变为平稳序列。
单位根检验的原理
单位根检验的原理单位根检验是时间序列分析中常用的一种方法,它主要用于检验一个序列是否是平稳的。
在实际应用中,我们经常需要对时间序列数据进行分析,以了解其规律性和特点。
而单位根检验就是其中的一种重要方法,下面我们将详细介绍单位根检验的原理及其应用。
首先,我们需要了解单位根的概念。
在时间序列分析中,如果一个序列存在单位根,那么它就是非平稳的。
而非平稳的序列在进行建模和预测时会带来很多问题,因此单位根检验就显得尤为重要。
接下来,我们来介绍单位根检验的原理。
单位根检验的原理是基于单位根过程的特性来进行的。
单位根过程是指一个时间序列的特性,它的平稳性与非平稳性之间存在某种联系。
单位根检验的原理是通过对序列进行单位根检验,来判断序列的平稳性。
在实际操作中,我们常用的单位根检验方法有ADF检验、PP检验等。
ADF检验是最常用的单位根检验方法之一。
它的原理是对原始序列进行单位根检验,如果序列存在单位根,则拒绝原假设,认为序列是非平稳的;反之,如果序列不存在单位根,则接受原假设,认为序列是平稳的。
PP检验也是一种常用的单位根检验方法,它与ADF检验类似,都是用来判断序列的平稳性。
在实际应用中,单位根检验通常是时间序列分析的第一步。
通过单位根检验,我们可以判断一个序列是否是平稳的,从而为后续的建模和预测提供依据。
另外,单位根检验还可以用于多变量时间序列的分析,例如协整关系的检验等。
总之,单位根检验是时间序列分析中非常重要的一部分,它主要用于判断一个序列是否是平稳的。
通过对序列进行单位根检验,我们可以更好地了解序列的特性,为后续的分析和应用提供依据。
因此,掌握单位根检验的原理及其应用是非常重要的。
希望本文能够对您有所帮助,谢谢阅读!。
单位根检验和协整检验
单位根检验和协整检验单位根检验和协整检验是时间序列分析中常用的两种方法。
本文将分别介绍这两种检验方法的概念、原理和应用。
一、单位根检验1.概念单位根检验,又称为ADF(Augmented Dickey-Fuller)检验,是一种用于判断时间序列是否具有平稳性的方法。
它的基本原理是通过对时间序列进行一定程度的差分,使得序列变得平稳,从而判断序列是否具有单位根。
2.原理在时间序列中,如果一个变量具有单位根,则说明它在长期内存在趋势或者周期性波动。
而如果一个变量具有平稳性,则说明它在长期内不存在趋势或者周期性波动。
因此,通过对时间序列进行差分,可以消除其中的趋势或者周期性波动,使得序列变得平稳。
ADF检验的基本原理就是通过比较差分后的时间序列与原始时间序列之间的关系来判断是否存在单位根。
具体地说,在ADF检验中,我们需要假设一个线性回归模型:ΔYt = α + βt + γYt-1 + δ1ΔYt-1 + … + δpΔYt-p + εt其中,Δ表示差分符号;Yt表示时间序列;α、β、γ、δ1~δp和εt分别表示回归系数和误差项。
如果该模型中的γ等于0,则说明时间序列具有单位根,即存在趋势或者周期性波动;如果γ小于0,则说明时间序列具有平稳性,即不存在趋势或者周期性波动。
3.应用ADF检验通常用于判断时间序列是否具有平稳性。
在金融领域中,它常被用于股票价格的分析和预测。
例如,通过对股票价格进行ADF检验,可以判断该股票是否处于上涨或下跌趋势,并进一步预测未来的走势。
二、协整检验1.概念协整检验是一种用于判断两个或多个时间序列之间是否存在长期稳定的关系的方法。
它的基本原理是通过构建线性组合,使得两个或多个时间序列之间的关系变得平稳。
2.原理在协整检验中,我们需要假设一个线性组合模型:Yt = α + βXt + εt其中,Yt和Xt分别表示两个时间序列;α、β和εt分别表示回归系数和误差项。
如果该模型中的β等于0,则说明Yt和Xt之间不存在长期稳定的关系;如果β不等于0,则说明Yt和Xt之间存在长期稳定的关系,即它们是协整的。
什么是平稳性假设如何进行平稳性的检验
什么是平稳性假设如何进行平稳性的检验平稳性假设及其检验方法平稳性假设是时间序列分析中的一个重要假设,它要求时间序列的均值和方差在不同时间段之间保持不变。
平稳性的检验可以帮助我们确定时间序列是否适合应用特定的统计模型,从而更好地进行预测和分析。
一、平稳性假设的含义和重要性平稳性假设是指时间序列在不同时间段内的统计特性保持不变,即其均值和方差不随时间变化而改变。
如果时间序列不满足平稳性假设,那么我们在建立模型和进行预测时可能会产生误差,导致不准确的结果。
平稳性在时间序列分析中具有重要意义,它是许多经典模型的前提条件,如ARMA(自回归滑动平均模型)、ARIMA(差分自回归滑动平均模型)等。
只有当时间序列满足平稳性假设时,才能应用这些模型进行预测和分析。
二、平稳性的检验方法为了判断时间序列是否满足平稳性假设,我们可以采用多种检验方法,下面介绍两种常见的方法:单位根检验和ADF检验。
1. 单位根检验(Unit Root Test)单位根检验是平稳性检验的一种方法,其中最常用的检验统计量是DF检验(Dickey-Fuller test),通过检验序列存在是否单位根来判断平稳性。
如果序列存在单位根,则说明序列不满足平稳性假设。
DF检验的原假设是序列存在单位根,即不满足平稳性。
通过计算检验统计量的p值,如果p值小于设定的显著水平(通常为0.05),则可以拒绝原假设,认为序列具有平稳性。
2. ADF检验(Augmented Dickey-Fuller Test)ADF检验是对单位根检验的改进,它通过引入更多滞后项来减小检验的误差。
ADF检验将序列进行差分,然后对差分后的序列进行单位根检验,判断序列是否平稳。
ADF检验也是通过计算检验统计量的p值来进行判断,如果p值小于设定的显著水平,则可以拒绝原假设,认为序列平稳。
三、平稳性检验的实例应用为了更好地理解平稳性检验的应用,我们以股票价格为例进行说明。
假设我们想要分析某只股票的价格是否满足平稳性假设。
单位根检验的基本的原理
单位根检验的基本的原理
单位根检验主要用来判断时间序列数据是否具有非随机漂移趋势,其基本原理如下:
1. 假设数据存在单位根,即数据呈现非平稳性质。
2. 运用单位根检验方法,对数据进行检测。
3. 如果检验结果表明数据存在单位根,则可以认为该数据存在非随机漂移趋势,即数据不平稳。
4. 反之,如果检验结果表明数据不存在单位根,则可以认为该数据平稳。
通过单位根检验,我们可以判断时间序列数据是否存在非随机性趋势,从而决定是否需要对数据进行差分或其他预处理方法,以确保数据的平稳性,进而进行相关分析和预测。
时间序列的平稳、非平稳、协整、格兰杰因果关系
时间序列的平稳、非平稳、协整、格兰杰因果关系步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。
若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。
如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。
1.单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。
常用的ADF检验包括三个模型方程。
在李子奈的《高级计量经济学》上有该方法的全部步骤,即从含趋势项、截距项的方程开始,若接受原假设,则对模型中的趋势项参数进行t 检验,若接受则进行对只含截距项的方程进行检验,若接受,则对一阶滞后项的系数参数进行t检验,若接受,则进行差分后再ADF检验;若拒绝,则序列为平稳序列。
2.当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。
3.当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验:(1)EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性;(2)JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)。
4.当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别。
5.格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。
时间序列分析技巧例题和知识点总结
时间序列分析技巧例题和知识点总结时间序列分析在许多领域都有着广泛的应用,从经济预测到气象研究,从股票走势分析到工业生产监控等。
为了帮助大家更好地理解和掌握时间序列分析的技巧,下面将通过一些具体的例题,并结合相关知识点进行详细的阐述。
一、时间序列的基本概念时间序列是按时间顺序排列的一组数据。
它的特点是数据的产生与时间有关,且前后数据之间可能存在一定的依赖关系。
时间序列通常可以分为平稳序列和非平稳序列。
平稳序列的统计特性(如均值、方差等)不随时间变化;而非平稳序列则反之。
二、常见的时间序列模型1、自回归模型(AR)简单来说,就是当前值由过去若干个值的线性组合加上一个随机误差项决定。
例如,AR(1)模型表示为:$Y_t =\phi Y_{t-1} +\epsilon_t$ ,其中$\phi$ 是自回归系数,$\epsilon_t$ 是随机误差。
2、移动平均模型(MA)认为当前值是由当前和过去若干个随机误差的线性组合。
比如,MA(1)模型:$Y_t =\epsilon_t +\theta \epsilon_{t-1}$,$\theta$ 是移动平均系数。
3、自回归移动平均模型(ARMA)结合了自回归和移动平均的特点。
三、时间序列分析的步骤1、数据预处理检查数据的完整性和准确性。
对异常值进行处理,可以采用删除、替换或修正的方法。
2、平稳性检验常用的方法有单位根检验,如 ADF 检验。
如果序列非平稳,需要进行差分处理使其平稳。
3、模型识别与定阶通过观察自相关函数(ACF)和偏自相关函数(PACF)的形状来初步判断模型的类型和阶数。
4、参数估计利用最小二乘法等方法估计模型的参数。
5、模型诊断检查残差是否为白噪声,如果不是,可能需要重新选择模型或调整参数。
6、预测使用确定好的模型进行未来值的预测。
四、例题分析假设我们有一组某商品的月销售量数据,如下:|时间|销售量||||| 1 月| 100 || 2 月| 120 || 3 月| 110 || 4 月| 130 || 5 月| 125 || 6 月| 140 || 7 月| 135 || 8 月| 150 || 9 月| 145 || 10 月| 160 || 11 月| 155 || 12 月| 170 |首先,我们对数据进行平稳性检验。
3.1 时间序列平稳性和单位根检验解析
• 则称该随机时间序列是平稳的(stationary), 而该随机过程是一平稳随机过程(stationary stochastic process)。
宽平稳、广义平稳
• 白噪声(white noise)过程是平稳的: Xt=t , t~N(0,2)
• 随机游走(random walk)过程是非平稳的: Xt=Xt-1+t , t~N(0,2) Var(Xt)=t2 • 随机游走的一阶差分(first difference)是平 稳的: Xt=Xt-Xt-1=t ,t~N(0,2)
• 数据非平稳,大样本下的统计推断基础——“一致 性”要求——被破怀。
• 数据非平稳,往往导致出现“虚假回归” (Spurious Regression)问题。
–表现为两个本来没有任何因果关系的变量,却有很高的 相关性。
–例如:如果有两列时间序列数据表现出一致的变化趋势 (非平稳的),即使它们没有任何有意义的关系,但进 行回归也可表现出较高的可决系数。
– 如果 时间 序列含有明显的随时间变化的某种趋势 (如上升或下降),也容易导致DF检验中的自相关 随机误差项问题。
• ADF检验模型
X t X t 1 i X t i t
⒈问题的提出
• 经典计量经济模型常用到的数据有:
– 时间序列数据(time-series data); – 截面数据(cross-sectional data)
– 平行/面板数据(panel data/time-series cross-section data)
• 时间序列数据是最常见,也是最常用到的数据。 • 经典回归分析暗含着一个重要假设:数据是平稳的。
如果t<临界值,则拒绝零假设H0: =0,认为时 间序列不存在单位根,是平稳的。
数据的平稳性及其检验
平稳性检验的图示判断
给出一个随机时间序列,首先可通过该序列的时间路径图 来粗略地判断它是否是平稳的。
一个平稳的时间序列在图形上往往表现出一种围绕其均值 不断波动的过程;
而非平稳序列则往往表现出在不同的时间段具有不同的均 值(如持续上升或持续下降)。
Xt
Xt
t
t
(a)
(b)
图9.1 平稳时间序列与非平稳时间序列图
Xt=+Xt-1+t 对时间序列进行平稳性检验中,实际上假定了时间序列是由 具有白噪声随机误差项的一阶自回归过程AR(1)生成的。
但在实际检验中,时间序列可能由更高阶的自回归过程 生成的,或者随机误差项并非是白噪声,这样用OLS法进行 估计均会表现出随机误差项出现自相关(autocorrelation), 导致DF检验无效。
单位根检验(unit root test)是统计检验中普遍 应用的一种检验方法。
1、DF检验
我们已知道,随机游走序列
Xt=Xt-1+t 是非平稳的,其中t是白噪声。 而该序列可看成是随机模型
Xt=Xt-1+t 中参数=1时的情形。
也就是说,我们对式
Xt=Xt-1+t
(*)
做回归,如果确实发现=1,就说随机变量Xt有
显然,I(0)代表一平稳时间序列。
现实经济生活中:
1)只有少数经济指标的时间序列表现为平稳的,如利率等;
2)大多数指标的时间序列是非平稳的,如一些价格指数常常 是2阶单整的,以不变价格表示的消费额、收入等常表现为1 阶单整。
大多数非平稳的时间序列一般可通过一次或多次差分的形式 变为平稳的。
但也有一些时间序列,无论经过多少次差分,都不能变为平 稳的。这种序列被称为非单整的(non-integrated)。
时间序列平稳性和单位根检验
结合其他统计和经济模型,深入 研究时间序列数据的特征和趋势, 以更好地理解和预测经济运行情
况。
针对时间序列数据的非平稳性, 探索更为有效的分析和预测方法, 以提高经济预测的准确性和可靠
性。
THANKS
感谢观看
• 帕克-帕朗检验(PP检验):PP检验与ADF检验类似,也是基于回归模型进行 单位根检验。它通过比较原始序列与一阶差分序列的方差来构建统计量,以判 断是否存在单位根。
• 扩展迪基-富勒检验(ADF-GLS检验):ADF-GLS检验是ADF检验的一种扩展, 考虑了异方差性问题,提高了检验的准确性。它通过对模型残差进行广义最小 二乘法(GLS)处理来纠正异方差性。
时间序列平稳性和单位根 检验
• 引言 • 时间序列平稳性 • 单位根检验 • 时间序列模型 • 时间序列平稳性和单位根检验的应用 • 结论
01
引言
主题简介
时间序列平稳性
时间序列数据随时间变化而呈现出一定的趋势和周期性。平稳性是指时间序列 数据的统计特性不随时间而变化,即数据的均值、方差和自相关函数等特征保 持恒定。
要点二
意义
在金融、经济、社会和自然等领域中,许多时间序列数据 都具有非平稳性,如股票价格、经济增长、气候变化等。 通过进行平稳性和单位根检验,可以揭示这些数据背后的 动态机制和长期趋势,有助于制定更加科学合理的经济政 策、投资策略和社会发展计划。同时,这些检验方法在统 计学、计量经济学和时间序列分析等领域也具有重要的理 论价值。
模型稳定性
平稳性有助于建立稳定和 可靠的统计模型,因为模 型参数不会随时间而变化。
数据分析基础
平稳性是许多统计分析方 法的前提条件,如回归分 析、时间序列分析和经济 计量分析等。
数据的平稳性及其检验
• 然而,对X取一阶差分(first difference): Xt=Xt-Xt-1=t
由于t是一个白噪声,则序列{Xt}是平稳的。
后面将会看到:如果一个时间序列是非平稳的, 它常常可通过取差分的方法而形成平稳序列。
• 事实上,随机游走过程是下面我们称之为1阶自回 归AR(1)过程的特例
Xt=Xt-1+t
(b)
图形表示出:该序列具有相同的均值, 但从样本自相关图看,虽然自相关系数迅速 下降到0,但随着时间的推移,则在0附近波 动且呈发散趋势。
样本自相关系数显示:r1=0.48,落在 了区间[-0.4497, 0.4497]之外,因此在5% 的显著性水平上拒绝1的真值为0的假设。
该随机游走序列是非平稳的。
.一个最简单的随机时间序列是一具有零均值同 方差的独立分布序列:
Xt=t , t~N(0,2)
该序列常被称为是一个白噪声(white noise)。 由于Xt具有相同的均值与方差,且协方差为零,由
定义,一个白噪声序列是平稳的。
.另一个简单的随机时间列序被称为随机游走 (random walk),该序列由如下随机过程生成:
11784 14704
1995 1996
4901.4 5489.2
1989 1990
16466 18319.5
1997 1998
6076.3 7164.4
1991 1992
21280.4 25863.6
1999 2000
8792.1
1993
34500.6
GDP 46690.7 58510.5 68330.4 74894.2 79003.3 82673.1 89112.5
Xt= 1Xt-1+2Xt-2…+kXt-k 该随机过程平稳性条件将在第二节中介绍。
平稳性和非平稳时间序列分析
β1 + β 3 Xt 如果我们作下列变换 ecmt = Yt − 1− β2 α = β2 − 1 ,那么模型变为:
,
∆Yt = β 0 + β1∆X t + αecmt −1 + ε t
误差修正模型的自动调整机制类似于适应性预 期模型。如果误差修正项的系数 α 在统计上 是显著的,它将告诉我们 Y 在一个时期里的失 衡,有多大一个比例部分可在下一期得到纠正。 或者更应该说“失衡”对下一期 水平变化的 Y 影响的大小)。
6
1、基本的DF检验方法 (1)检验时间序列{ Yt }是否属于最基本的 单位根过程,也就是随机游走过程 Yt = Yt −1 + ε t ,其中 ε t 为白噪声过程。 (2)检验思路 首先 Yt 服从如下的自回归模型 Yt = δYt −1 + ε t
7
如果其中 δ = 1 ,或者变换成如下的回归 模型 ∆Yt = λYt −1 + ε t 中的 λ = 0 ,那么时间序列{ Yt }就是最基 本的单位根过程 Yt = Yt −1 + ε t ,肯定是非平 稳的。 对上述差分模型中的显著性检验,就是 检验时间序列是否存在上述单位根问题。
25
ˆ 3、把 ut −1 作为误差修正项,代入前述ECM 模型。因为 Yt 和 X t 有协整关系,ECM模 型各项都平稳,因此可直接用OLS法估计 参数。最后再进行相关检验和进行应用 分析等。
26
15
四、时间序列的协积性 (一)定义 如果一组时间序列都 X 1 ,L, X n 是同阶单积 的( I (d ) ),并且存在向量 ( β1 ,L, β n ) 使加权组合 β1 X 1 + L + β n X n 为平稳序列 (I (0)),则称这组时间序列为“协积的 协积的” 协积的 (Cointegrated),其中 ( β1 ,L, β n ) 称为 “协积向量”。
计量经济学-第6章⑴时间序列的平稳性及其检验精品文档
0.059 3.679 4.216 6.300 7.297 11.332 12.058 15.646 17.153 18.010 22.414 22.481 24.288 25.162 26.036 26.240 26.381
-0.031 0.157 0.264 -0.191 -0.616 -0.229 -0.385 -0.181 -0.521 -0.364 -0.136 -0.451 -0.828 -0.884 -0.406 -0.162 -0.377 -0.236 0.000
(b)
图形表示出:该序列具有相同的均值, 但从样本自相关图看,虽然自相关系数迅速 下降到0,但随着时间的推移,则在0附近波 动且呈发散趋势。
样本自相关系数显示:r1=0.48,落在 了区间[-0.4497, 0.4497]之外,因此在5% 的显著性水平上拒绝1的真值为0的假设。
该随机游走序列是非平稳的。
• 注意:
确定样本自相关函数rk某一数值是否足够接近 于0是非常有用的,因为它可检验对应的自相关 函数k的真值是否为0的假设。
Bartlett曾证明:如果时间序列由白噪声过程生成, 则对所有的k>0,样本自相关系数近似地服从以0 为均值,1/n 为方差的正态分布,其中n为样本数。
也可检验对所有k>0,自相关系数都为0的联合 假设,这可通过如下QLB统计量进行:
例如:如果有两列时间序列数据表现出一致的变 化趋势(非平稳的),即使它们没有任何有意义的 关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:
情况往往是实际的时间序列数据是非平稳的,而 且主要的经济变量如消费、收入、价格往往表现为 一致的上升或下降。这样,仍然通过经典的因果关 系模型进行分析,一般不会得到有意义的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,因此运用相关图检验时间序列的平稳性非常 方便。
16
三、平稳性的单位根检验
(unit root test)
1、DF检验(Dicky-Fuller Test)
X t X t1 t X t X t1 t
零假设 H0:=0 备择假设 H1:<0
可通过OLS法下的t检验完成。
• 但是,在零假设(序列非平稳)下,即使在大样 本下t统计量也是有偏误的(向下偏倚),通常的 t 检验无法使用。
• 白噪声(white noise)过程是平稳的: Xt=t , t~N(0,2)
• 随机游走(random walk)过程是非平稳的: Xt=Xt-1+t , t~N(0,2) Var(Xt)=t2
• 随机游走的一阶差分(first difference)是平稳 的: Xt=Xt-Xt-1=t ,t~N(0,2)
13
• 自相关函数是以协方差函数为基础定义的k k / 0
,其中 k Cov(Yt ,Ytk )和 0 Var(Yt )分别为协方差和方 差函数。 • 因为只有时间序列的一个实现,因此不可能根 据随机变量协方差、方差的定义计算,只能用 样本,也就是时间序列观测值的时间平均代替 总体平均,时间矩代替总体矩,得到自相关函 数的估计。
11
• 这个问题可以通过对平稳性概念的扩展解决。 • 方法是把数据的趋势部分看成先分离出来,然
后根据分离趋势后的纯随机部分判定平稳性。 • 例如一个时间序列t 时刻的随机变量可以表示
为Yt t t,其中t是一个平稳序列,那
么该序列去掉时间趋势 t之后的部分就是平
稳的,称为“趋势平稳” 。 • 趋势平稳时间序列中的时间趋势既可以是线性
14
• 自相关函数最好的估计方法是样本自相关函数
:
ˆk
ˆk ˆ0
其中:
n
(Yt Y )(Ytk Y )
ˆk t 1
n
n
(Yt Y )2
ˆ0 t1 n
15
• 对不同可以描绘出对应不同k的 ˆk的分布图形
,根据图形的特征判断时间序列是否平稳。 • 当样本自相关函数的值(对不同k)有许多落
10
• 多数经济时间序列有上升或下降的趋势性,而 不是围绕不变水平波动。
• 例如图8.1.1b中的时间序列数据就是有明显的 上升趋势的时间序列数据。
• 不符合平稳性定义,但围绕稳定上升趋势的形 态与平稳数据是相似的,预测作用也相似。把 这种数据排除在平稳序列之外,平稳序列的应 用价值必然受到很大限制。
–例如:如果有两列时间序列数据表现出一致的变化趋势 (非平稳的),即使它们没有任何有意义的关系,但进 行回归也可表现出较高的可决系数。
2、平稳性的定义
• 假定某个时间序列是由某一随机过程 (stochastic process)生成的,即假定时间序 列{Xt}(t=1, 2, …)的每一个数值都是从一个 概率分布中随机得到,如果满足下列条件:
一、时间序列的平稳性 Stationary Time Series
⒈问题的提出
• 经典计量经济模型常用到的数据有:
– 时间序列数据(time-series data); – 截面数据(cross-sectional data) – 平行/面板数据(panel data/time-series cross-section data)
• 如果一个时间序列是非平稳的,它常常可通过 取差分的方法而形成平稳序列。
二、平稳性的图示判断
• 平稳随机过程的均值和方差函数是常数,意味 着平稳时间序列的取值必然围绕一个水平的中 心趋势,以相同的发散程度分布。
• 根据这一点,可以从数据分布图形直接对数据 是否平稳进行判断。
• 例如当时间序列数据的连线图形出现类似图 8.1.1a的情况时,就肯定不是平稳时间序列, 因为这两种图形表明时间序列数据都没有不变 的中心趋势,或者说中心趋势是变化的,而且 也没有稳定的方差。
– 均值E(Xt)=是与时间t 无关的常数; – 方差Var(Xt)=2是与时间t 无关的常数; – 协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关,与
时间t 无关的常数;
• 则称该随机时间序列是平稳的(stationary), 而该随机过程是一平稳随机过程(stationary stochastic process)。 宽平稳、广义平稳
§8.1 Stationary Time Serial and Unit Root
Test
一、时间序列的平稳性 二、单整序列
• 经典时间序列分析模型:
– 包括MA、AR、ARMA模型 – 平稳时间序列模型 – 分析时间序列自身的变化规律
• 现代时间序列分析模型:
– 分析时间序列之间的结构关系 – 单位根检验、协整检验是核心内容 – 现代宏观计量经济学的主要内容
• 时间序列数据是最常见,也是最常用到的数据。 • 经典回归分析暗含着一个重要假设:数据是平稳的。
• 数据非平稳,大样本下的统计推断基础——“一致 性”要求——被破怀。
• 数据非平稳,往往导致出现“虚假回归” (Spurious Regression)问题。
–表现为两个本来没有任何因果关系的变量,却有很高的 相关性。
随机游走,非平稳
对该式回归,如果确实 发现ρ=1,则称随机变
量Xt有一个单位根。
X t ( 1) X t1 t X t1 t
等价于通过该式判断 是否存在δ=0。
• 通过上式判断Xt是否有单位根,就是时间序列 平稳性的单位根检验。
• 一般检验模型
X t X t1 t X t X t1 t
,也可以是非线性的。
12
自相关图检验
• 原理:平稳时间序列过程的自协方差,或由协 方差计算的自相关函数,应该很小、很快趋向 于0,具有截尾或拖尾特征 。这些特征正是判 断时间序列平稳性的重要依据。
• 由于自相关是相对量指标,方便横向比较和建 立一般标准,因此通常利用自相关函数进行判 断。
• 利用自相关函数判断时间序列平稳性的首要问 题是计算自相关函数。