高考数学中的线性规划问题的总结分析

合集下载

高考数学丨线性规划知识点汇总

高考数学丨线性规划知识点汇总

高考数学丨线性规划知识点汇总一、知识梳理1 目标函数:P=2x+y是一个含有两个变量x和y的函数,称为目标函数。

2 可行域:约束条件表示的平面区域称为可行域。

3 整点:坐标为整数的点叫做整点。

4 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题。

只含有两个变量的简单线性规划问题可用图解法来解决。

5 整数线性规划:要求量整数的线性规划称为整数线性规划。

线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科,主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定和条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务。

1 对于不含边界的区域,要将边界画成虚线。

2 确定二元一次不等式所表示的平面区域有种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。

若直线不过原点,通常选择原点代入检验。

3 平移直线y=-kx+P时,直线必须经过可行域。

4 对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点。

5 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等于表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解。

基础知识:一、1.占P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+ y0+C=02.点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+ y0+C >0;当B<0时,Ax0+ y0+C<03.点P(x0+,y0)D在直线Ax0+ y0+C=0下方(左下或右下),当B>0时,Ax0+ y0+C<0;当B>0时,Ax0+ y0+C>0注意:(1)在直线Ax+ By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+ By+C=0,所得实数的符号都相同。

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

在经济管理、交通运输、工农业生产等领域都有着广泛的应用。

下面我们通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。

一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。

其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。

二、线性规划问题的求解方法常见的求解线性规划问题的方法有图解法和单纯形法。

1、图解法适用于只有两个决策变量的线性规划问题。

步骤如下:画出直角坐标系。

画出约束条件所对应的直线。

确定可行域(满足所有约束条件的区域)。

画出目标函数的等值线。

移动等值线,找出最优解。

例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10 \\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件对应的直线:$x + 2y = 8$,$2x + y =10$,以及$x = 0$,$y = 0$。

高三数学高考基础复习课件:第七章第3课时线性规划

高三数学高考基础复习课件:第七章第3课时线性规划
返回
延伸·拓展
4. 设 x≥0 , y≥0 , z≥0 , p=-3x+y+2z , q=x-2y+4z ,
x+y+z=1求点P(p,q)的活动范围.
【解题回顾】本题实际上是借助二元一次不等式表 示平面区域有关知识求解.不能将其转化为二元一次 不等式表示的平面区域问题是出错主要原因.
返回
5.某人上午7时,乘摩托艇以匀速V海里/时(4≤V≤20) 从A港出发到距50海里的B港去,然后乘汽车以匀速 W千米/时(30≤W≤100)自B港向距300千米的C市驶去, 应该在同一天下午4至9点到达C市.设汽车、摩托艇所
【解题回顾】(1)用线性规划的方法解题的一般步 骤是:设未知数、列出约束条件及目标函数、作 出可行域、求出最优解、写出答案.
(2)本例的关键是分析清楚在哪一个点取最大值. 可
以先将z=7x+12y化成 y- 7 x z ,利用直线的 12 12
斜截式方程可以看出在何处取得最大值.
3.要将两种大小不同的钢板截成A,B,C三种规 格,每张钢板可同时截成三种规格小钢板块数如下 表:
块数 规格
A
种类
第一种钢板
1
B
C
2
1
第二种钢板
1
1
3
每块钢板面积第一种1平方单位,第二种2平方单位, 今需要A,B,C三种规格的成品各式各12,15,27 块,问各截这两种钢板多少张,可得到所需三种规 格成品,且使所用钢板面积最小.
【解题回顾】由于钢板的张数为整数,所以必须寻 找最优整数解.调优的办法是在以z取得最值的附近 整数为基础通过解不等式组可以找出最优解.
2.线性规划 (1)对于变量x,y的约束条件,都是关于x,y的一次不 等式,称为线性约束条件,z=f(x,y)是欲达到最值 所涉及的变量x,y的解析式,叫做目标函数.当f(x,y) 是关于x,y的一次解析式时,z=f(x,y)叫做线性目标 函数. (2)求线性目标函数在约束条件下的最值问题称为 线性规划问题,满足线性约束条件的解(x,y)称为可 行解.由所有解组成的集合叫可行域,使目标函数 取得最值的可行解叫最优解.

线性规划知识总结

线性规划知识总结

线性规划知识总结1. 二元一次不等式(组)表示的平面区域(1)直线0:=++C By Ax l 把平面内不在直线上的点分成两部分,对于同一侧所有点的坐标代入Ax +By +C 中所得的值的符号都相同,异侧所有点的坐标代入Ax +By +C 所得的值的符号都相反。

(2)对于直线:l Ax +By +C =0,当B ≠0时,可化为:y =kx +b 的形式。

对于二元一次不等式b kx y +≥表示的平面区域在直线y =kx +b 的上方(包括直线y =kx +b )。

对于二元一次不等式b kx y +≤表示的平面区域在直线y =kx +b 的下方(包括直线y =kx +b )。

注意:二元一次不等式)0(0<>++或C By Ax 与二元一次不等式)0(0≤≥++C By Ax 所表示的平面区域不同,前者不包括直线Ax +By +C =0,后者包括直线Ax +By +C =0。

2. 线性规划我们把求线性目标函数在线性目标条件下的最值问题称为线性规划问题。

解决这类问题的基本步骤是:(1)确定好线性约束条件,准确画出可行域。

(2)对目标函数z =ax +by ,若b >0,则bz取得最大值(或最小值)时,z 也取得最大值(或最小值);若b <0,则反之。

(3)一般地,可行域的边缘点有可能是最值点,有些问题可直接代入边缘点找最值。

(4)注意实际问题中的特殊要求。

说明:1. 线性目标函数的最大值、最小值一般在可行域的顶点处取得;2. 线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无数个。

知识点一:二元一次不等式(组)表示的平面区域 例1:基础题1. 不等式组201202y x x y -->⎧⎪⎨-+≤⎪⎩表示的平面区域是( )A B C D2. 如图,不等式组5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩表示的平面区域面积是________________。

高中数学解线性规划问题的方法与思路总结

高中数学解线性规划问题的方法与思路总结

高中数学解线性规划问题的方法与思路总结一、引言线性规划是高中数学中的重要内容,也是数学建模和实际问题求解中常用的方法之一。

本文将总结解线性规划问题的方法与思路,帮助高中学生和他们的父母更好地理解和应用线性规划。

二、线性规划问题的基本概念线性规划问题是在一组线性约束条件下,求解一个线性目标函数的最优值的问题。

其中,线性约束条件可以用一组线性不等式或等式表示,线性目标函数是一次函数。

三、线性规划问题的解题步骤1. 建立数学模型:根据实际问题,确定决策变量、目标函数和约束条件,并将其转化为数学表达式。

2. 确定可行域:根据约束条件,确定决策变量的取值范围,即可行域。

3. 确定最优解:通过图像、代数或单纯形表等方法,确定最优解的存在性和唯一性。

4. 求解最优解:利用图像、代数或单纯形表等方法,求解最优解,并进行验证。

5. 分析最优解:对最优解进行解释和分析,得出结论。

四、线性规划问题的解题技巧1. 图像法:将线性规划问题转化为几何问题,在平面直角坐标系中绘制可行域和目标函数的图像,通过观察图像找到最优解。

例如,解决如下问题:求函数 f(x, y) = 3x + 4y 在约束条件x ≥ 0, y ≥ 0, 2x + y ≤ 6 的可行域中的最大值。

通过绘制可行域和目标函数的图像,可以观察到最优解在可行域的顶点处取得。

2. 代数法:通过代数计算,利用不等式关系和线性目标函数的性质,求解最优解。

例如,解决如下问题:求函数 f(x, y) = 2x + 3y 在约束条件x ≥ 0, y ≥ 0, x + y ≤ 4 的可行域中的最大值。

通过列出不等式组成的方程组,利用代数方法求解方程组,得到最优解。

3. 单纯形表法:适用于多个决策变量和多个约束条件的线性规划问题。

通过构建单纯形表,利用迭代计算的方法求解最优解。

例如,解决如下问题:求函数 f(x, y, z) = 5x + 4y + 3z 在约束条件x ≥ 0, y ≥ 0, z ≥ 0, x + y + z = 6 的可行域中的最大值。

高中数学中的线性规划问题解析

高中数学中的线性规划问题解析

高中数学中的线性规划问题解析在高中数学学习中,线性规划是一个重要的概念和工具。

它是一种数学建模方法,用于解决在给定约束条件下的最优化问题。

线性规划通常涉及到一组线性方程和不等式,以及一个目标函数,我们的目标是找到满足约束条件的最优解。

一、线性规划的基本概念线性规划的基本概念包括目标函数、约束条件和可行域。

目标函数是需要最大化或最小化的函数,通常表示为一个线性方程。

在线性规划中,我们的目标是找到使目标函数取得最大或最小值的变量值。

约束条件是限制变量取值的条件,通常表示为一组线性不等式。

这些约束条件可以是资源的限制、技术条件或其他限制。

可行域是满足所有约束条件的变量取值集合。

可行域通常是一个多边形或多维空间中的区域,它表示了问题的可行解的范围。

二、线性规划的求解方法线性规划可以使用图像法、代数法或单纯形法等方法进行求解。

图像法是一种直观的方法,通过绘制约束条件和目标函数的图像来找到最优解。

在二维平面上,可行域是一个多边形,最优解是目标函数与可行域的交点。

在三维空间中,可行域是一个多面体,最优解是目标函数与可行域的交点。

代数法是一种代数计算的方法,通过解线性方程组来找到最优解。

我们可以将约束条件转化为等式,然后求解线性方程组。

通过代数方法,我们可以得到最优解的具体数值。

单纯形法是一种高效的算法,通过迭代计算来找到最优解。

单纯形法将线性规划问题转化为一个线性规划表格,并通过一系列的操作来逐步逼近最优解。

单纯形法是一种通用的求解线性规划问题的方法,可以处理任意维度的问题。

三、线性规划的应用线性规划在实际生活中有广泛的应用。

例如,在生产计划中,我们可以使用线性规划来确定最优的生产数量和资源分配方案,以最大化利润或最小化成本。

在物流管理中,我们可以使用线性规划来确定最优的运输路径和货物分配方案,以最小化运输成本或最大化运输效率。

线性规划还可以应用于金融领域、市场营销、资源管理等各个领域。

通过合理地建立数学模型,我们可以利用线性规划的方法来解决实际问题,提高决策的科学性和有效性。

高中数学增量代换法处理高考线性规划问题

高中数学增量代换法处理高考线性规划问题

重庆市武隆县武隆中学数学组 梁承勇 邮编408500 liaceny@增量代换法处理高考线性规划问题(重庆市武隆中学 梁承勇 408500)线性规划问题在高中数学中是一个新增加的内容,在近几年的高考中都是一个热点问题,各省市自主命题中都要考察这一内容,因此显得特别地重要。

纵观该问题的解法均是:先画出不等式组的图象得到可行域,再作直线mx+ny=0的一组平行直线:mx+ny=t ,通过平移并保持与可行域有公共点,求出在y 轴上的截距t 的最大值和最小值,进而求出z 的最大值和最小值。

这种解法要在同一坐标系内画出很多复杂的直线即可行域的边界直线和平行移动的直线。

能否不画图象,通过代数问题代数求解的原则进行呢?本文就举例谈谈增量代换法在高考线性规划问题的使用,引入变量t ,p 来处理这类问题。

现举例说明:例1:设y x z +=2,式中x ,y 满足下列条件⎪⎩⎪⎨⎧-≤-≤+≥3425531y x y x x 求z 的最大值和最小值。

解:由于1≥x 可设)0(1≥+=t t x 引入变量t 带入不等式组有 ⎪⎩⎪⎨⎧++≥≤++31425533t y y t 由314++≥t y 又可设)0(314≥+++=p p t y 所以)0(44≥++=p p t y 带入25533≤++y t 化简有68517≤+p t 同时0≥t ,0≥p由442222p t t y x z +++++=+= 4493p t ++= )52855517(413t p t +++= 57)517(2013t p t +++= 结合68517≤+p t 同时0≥t ,0≥p 易知0==p t 时z 取最小值3 又572068357)517(2013t t p t z ++≤+++=知当4=t ,0=p 时 z 取最大值12。

例2:(06天津,3)设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+-≥xy y x x y 263 则目标函数y x z +=2的最小值为( ) A .2 B 。

高考数学中的线性规划算法解题技巧

高考数学中的线性规划算法解题技巧

高考数学中的线性规划算法解题技巧高考数学中的线性规划是一种非常重要的问题类型,在考试中经常被考查,对于学生来说是必须掌握的一项技能。

而在线性规划中,解题的算法是关键,正确运用算法不仅能够提高解题效率,还能避免不必要的错误。

本文将介绍一些线性规划解题的算法和技巧,帮助学生在考试中取得更好的成绩。

一、线性规划的基本概念在解题之前,我们需要熟悉线性规划的一些基本概念。

线性规划是指在一定的限制条件下,求解一个线性函数的最大或最小值。

在这个过程中,我们需要确定目标函数、约束条件以及变量的取值范围。

通常情况下,我们可以将线性规划问题表示为标准型或非标准型。

标准型的形式如下:$$\max(z)=c_1x_1+c_2x_2+...+c_nx_n$$$$s.t.\begin{cases}a_{11}x_1+a_{12}x_2+...+a_{1n}x_n\le b_1\\a_{21}x_1+a_{22}x_2+...+a_{2n}x_n\le b_2\\...\\a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n\le b_m\\\end{cases}$$变量取值范围为$x_i\ge0(i=1,2,...,n)$而非标准型的形式则可以被转化为标准型。

二、单纯形法的原理和步骤单纯形法是解决线性规划问题的一种经典算法,其基本原理是通过不断地构造可行解和寻找可行解中的最优解来达到最终的优化目标。

其具体步骤如下:1、将标准型问题中的目标函数系数、约束条件系数和右端项系数分别组成一个矩阵。

2、选择其中一个非基变量(即取值为0的变量)作为入基变量,计算出使目标函数增大的最大步长。

3、选择其中一个基变量(即取值不为0的变量)作为出基变量,计算出使目标函数增大的最小步长。

4、通过第2步和第3步计算出的步长来更新目标函数和约束条件,得到一个新的可行解。

5、使用新的可行解重复进行第2-4步的计算,直到找到最优解。

需要注意的是,单纯形法有两种可能的结果:一是存在最优解,二是存在无穷多个最优解。

高考数学线性规划常见题型及解法[1]

高考数学线性规划常见题型及解法[1]

高考数学线性规划常见题型与解法线性规划问题是高考的重点,也是常考题型,属于中等偏简单题,易得分,高考中要求会从实际问题中建立一格二元线性规划的模型,使实际问题得到解决。

现就常见题型与解决方法总结如下: 一、求线性目标函数的最值;例题:(2012年广东文5)已知变量,x y 满足条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为 A.3 .1 C5 6解析:利用线性规划知识求解。

可行域如图阴影所示,先画出直线01:2l y x =-,平移直线0l ,当直线过点A 时,2z x y =+的值最小,得110,x x y =-⎧⎨--=⎩12,x y =-⎧⎨=-⎩min (1,2),12(2)5A z ∴--∴=-+⨯-=- 探究提高:本题主要考查线性规划求最值,同时考查学生的作图能力,数形结合思想与运算求解能力,难度适中。

二、求目标函数的取值范围;例题:(2012山东文6)设变量,x y 满足约束条件2224,41x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是解析:作出不等式组表示的区域,如图阴影部分所示,作直线30x y -=,并向上、向下平移,由图可得,当直线过点C 时,目标函数取得最大值,当直线过点A 是,目标函数取得最小值,由210,(2,0)240x y A x y ++=⎧⎨+-=⎩得;由4101,(,3)2402x y x y -+=⎧⎨+-=⎩得B 探究提高:本题设计有新意,作出可行域,寻求最优解条条件,取得目标函数的最大(小)值,进一步确定取值范围 三、求约束条件中参数的取值;例题:(2012福建文10)若直线2x y =上存在点(,)x y 满足条件-30-2-30,x y x y x m +≥⎧⎪≤⎨⎪≥⎩则实数m 的最大值为( )解析:在同一直角坐标系中函数2x y =的图像与30230x y x y +-≤⎧⎨--≤⎩,所表示的平面区域图阴影部分所示。

2022年新高考数学总复习:简单的线性规划

2022年新高考数学总复习:简单的线性规划

2022年新高考数学总复习:简单的线性规划Ax+By+C__=0__上,另两类分居直线Ax+By+C=0的两侧,其中一侧半平面的点的坐标满足Ax+By+C__>0__,另一侧半平面的点的坐标满足Ax+By+C__<0__.(2)二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧的平面区域且不含边界,作图时边界直线画成__虚线__,当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包知识点一二元一次不等式表示的平面区域(1)在平面直角坐标系中,直线Ax+By+C=0将平面内的所有点分成三类:一类在直线括边界直线,此时边界直线画成__实线__.知识点二二元一次不等式(组)表示的平面区域的确定确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法.(1)直线定界,即若不等式不含__等号__,则应把直线画成虚线;若不等式含有__等号__,把直线画成实线.(2)特殊点定域,由于在直线Ax+By+C=0同侧的点,实数Ax+By+C的值的符号都__相同__,故为确定Ax+By+C的值的符号,可采用__特殊点法__,如取(0,0)、(0,1)、(1,0)等点.由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的__公共部分__.知识点三线性规划中的基本概念名称意义约束条件由变量x,y组成的__不等式(组)__线性约束条件由x,y的__一次__不等式(或方程)组成的不等式(组)目标函数关于x,y的函数__解析式__,如z=2x+3y等线性目标函数关于x,y的__一次__解析式可行解满足约束条件的解__(x,y)__可行域所有可行解组成的__集合__最优解使目标函数取得__最大值__或__最小值__的可行解线性规划问题在线性约束条件下求线性目标函数的__最大值__或__最小值__问题归纳拓展1.判断二元一次不等式表示的平面区域的常用结论把Ax+By+C>0或Ax+By+C<0化为y>kx+b或y<kx+b的形式.(1)若y>kx+b,则区域为直线Ax+By+C=0上方.(2)若y<kx+b,则区域为直线Ax+By+C=0下方.2.最优解与可行解的关系最优解必定是可行解,但可行解不一定是最优解,最优解不一定存在,存在时不一定唯一.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)二元一次不等式组所表示的平面区域是各个不等式所表示的平面区域的交集.(√)(2)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.(×)(3)点(x 1,y 1),(x 2,y 2)在直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0,异侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0.(√)(4)第二、四象限表示的平面区域可以用不等式xy <0表示.(√)(5)最优解指的是使目标函数取得最大值或最小值的可行解.(√)(6)目标函数z =ax +by (a ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.(×)题组二走进教材2.(必修5P 86T3改编)-3y +6<0,-y +2≥0表示的平面区域是(C)[解析]x -3y +6<0表示直线x -3y +6=0左上方部分,x -y +2≥0表示直线x -y +2=0及其右下方部分.故不等式组表示的平面区域为选项C 所示部分.3.(必修5P 91练习T1(1)改编)已知x ,y ≤x ,+y ≤1,≥-1,则z =2x +y +1的最大值、最小值分别是(C)A .3,-3B .2,-4C .4,-2D .4,-4[解析]作出可行域如图中阴影部分所示.A (2,-1),B (-1,-1),显然当直线l :z =2x +y +1经过A 时z 取得最大值,且z max =4,当直线l 过点B 时,z 取得最小值,且z min =-2,故选C .题组三走向高考4.(2020·浙江,3,4分)若实数x ,y x -3y +1≤0,x +y -3≥0,则z =x +2y 的取值范围是(B)A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞)[解析]由约束条件画出可行域如图.易知z =x +2y 在点A (2,1)处取得最小值4,无最大值,所以z =x +2y 的取值范围是[4,+∞).故选B .5.(2019·北京)若x ,y x ≤2,y ≥-1,4x -3y +1≥0,则y -x 的最小值为__-3__,最大值为__1__.[解析]由线性约束条件画出可行域,为图中的△ABC 及其内部.易知A (-1,-1),B (2,-1),C (2,3).设z =y -x ,平移直线y -x =0,当直线过点C 时,z max =3-2=1,当直线过点B 时,z min =-1-2=-3.考点突破·互动探究考点一二元一次不等式(组)表示的平面区域——自主练透例1(1)(2021·郑州模拟)在平面直角坐标系xOy ||≤|y |,||<1的点(x ,y )的集合用阴影表示为下列图中的(C)(2)(2021·四川江油中学月考)已知实数x ,y x +y -3≤0x -2y -3≤0,0≤x ≤4则其表示的平面区域的面积为(D)A .94B .272C .9D .274(3)x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是(D)A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43[解析](1)|x |=|y |把平面分成四部分,|x |≤|y |表示含y 轴的两个区域;|x |<1表示x =±1所夹含y 轴的区域.故选C .(2)线性约束条件所表示的平面区域如图中阴影部分所示,其中A (0,3)B0,-32,C (3,0),∴S =12|AB |·|OC |=12×92×3=274,故选D .(3)x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分(含边界)所示.且作l 1:x +y =0,l 2:x +y =1,l 3:x +y =43.由图知,要使原不等式组表示的平面区域的形状为三角形,只需动直线l :x +y =a 在l 1,l 2之间(包含l 2,不包含l 1)或l 3上方(包含l 3).即a 的取值范围是0<a ≤1或a ≥43.名师点拨(1)画平面区域的步骤:①画线:画出不等式所对应的方程表示的直线.②定侧:将某个区域内的特殊点的坐标代入不等式,根据“同侧同号、异侧异号”的规律确定不等式所表示的平面区域在直线的哪一侧,常用的特殊点为(0,0),(±1,0),(0,±1).③求“交”:如果平面区域是由不等式组决定的,则在确定了各个不等式所表示的区域后,再求这些区域的公共部分,这个公共部分就是不等式组所表示的平面区域,这种方法俗称“直线定界,特殊点定域”.(2)计算平面区域的面积时,通常是先画出不等式组所对应的平面区域,然后观察区域的形状,求出有关的交点坐标、线段长度,最后根据相关图形的面积公式进行计算,如果是不规则图形,则可通过割补法计算面积.(3)判断不等式表示的平面区域和一般采用“代点验证法”.考点二简单的线性规划问题——多维探究角度1求线性目标函数的最值例2(2018·课标全国Ⅰ,13)若x ,y -2y -2≤0,-y +1≥0,≤0.则z =3x +2y 的最大值为__6__.[解析]本题主要考查线性规划.由x ,y 满足的约束条件画出对应的可行域(如图中阴影部分所示).由图知当直线3x +2y -z =0经过点A (2,0)时,z 取得最大值,z max =2×3=6.[引申1]本例条件下z =3x +2y 的最小值为__-18__.[解析]由例2-y +1=0-2y -2=0,∴B (-4,-3),当直线y =-32x +12z ,过点B 时,z最小,即z min =-18.[引申2]本例条件下,z =3x -2y 的范围为__[-6,6]__.[解析]z =3x -2y 变形为y =32x -12z ,由本例可行域知直线y =32x -12z ,过A 点时截距取得最小值,而z 恰好取得最大值,即z =6.过B 点时截距取得最大值而z 恰好取得最小值,即z =-6,∴z =3x -2y 的范围为[-6,6].[引申3]本例条件下,z =|3x -2y +1|的最大值为__7__,此时的最优解为__(2,0)__.[解析]由引申2得-6≤3x -2y ≤6,∴-5≤3x -2y +1≤7,∴0≤z ≤7,z 最大值为7,此时最优解为(2,0).名师点拨利用线性规划求目标函数最值的方法:方法1:①作图——画出线性约束条件所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l .(注意表示目标函数的直线l 的斜率与可行域边界所在直线的斜率的大小关系).②平移——将l 平行移动,以确定最优解所对应的点的位置.③求值——解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.方法2:解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值.角度2由目标函数的最值求参数例3(1)(2021·东北三省三校模拟)已知实数x,y x-y-1≤0,-x+2y-2≤0,2x+y-2≥0,若目标函数z=ax+y(a>0)最大值为5,取到最大值时的最优解是唯一的,则a的取值是(C)A.14B.13C.12D.1(2)变量x,y x+y≥0,x-2y+2≥0,mx-y≤0,若z=2x-y的最大值为2,则实数m等于(C)A.-2B.-1 C.1D.2[解析](1)x-y-1≤0,x-2y+2≥0,2x+y-2≥0,作可行域如图所示.目标函数z=ax+y可化为y=-ax+z,因为y=-ax+z表示斜率为-a的直线,且-a<0,由图形可知当y=-ax+z经过点C时,z取到最大值,这时点C坐标满足x-2y+2=0,x-y-1=0,解得x=4,y=3,C点坐标为(4,3),代入z=ax+y得到a=12.故选C.(2)解法一:当m≤0时,可行域(示意图m<-1)如图中阴影部分所示,z=2x-y⇔y=2x-z,显然直线的纵截距不存在最小值,从而z不存在最大值,不合题意,当m>0时,可行域(示意图)如图中阴影部分所示.若m ≥2,则当直线z =2x -y 过原点时,z 最大,此时z =0,不合题意(故选C .)若0<m <2,则当直线z =2x -y 过点A 时z 取最大值2,mx -y =0,x -2y +2=0,x =22m -1,y =2m2m -1,即22m -1,2m2m -1.∴42m -1-2m 2m -1=2,解得m =1.故选C .解法二:画出约束条件x +y ≥0,x -2y +2≥0的可行域,如图,作直线2x -y =2,与直线x -2y +2=0交于可行域内一点A (2,2),由题知直线mx -y =0必过点A (2,2),即2m -2=0,得m =1.故选C .[引申]在本例(1)的条件下,若z =ax +y 的最大值为4a +3,则a 的取值范围是-12,+∞__.名师点拨求参数的值或范围:参数的位置可能在目标函数中,也可能在约束条件中.求解步骤为:①注意对参数取值的讨论,将各种情况下的可行域画出来;②在符合题意的可行域里,寻求最优解.也可以直接求出线性目标函数经过各顶点时对应参数的值,然后进行检验,找出符合题意的参数值.角度3线性规划中无穷多个最优解问题例4x ,y x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值一定为(C)A .1B .12C .-1或2D .2或12[分析]利用目标函数取得最大值的最优解有无数个,即目标函数对应的直线与可行域的边界重合.[解析]作出可行域(如图),为△ABC 内部(含边界).由题设z =y -ax 取得最大值的最优解不唯一可知:线性目标函数对应直线与可行域某一边界重合.由k AB =-1,k AC =2,k BC =12可得a =-1或a =2或a =12,验证:a =-1或a =2时,成立;a =12时,不成立.故选C .[引申]若z =y -ax 取得最小值的最优解不唯一,则实数a 的值为__12__.〔变式训练1〕(1)(角度1)(2020·课标Ⅰ,5分)若x ,y 2x +y -2≤0,x -y -1≥0,y +1≥0,则z =x +7y 的最大值为__1__.(2)(角度2)(2021·福建莆田模拟)若实数x ,y y ≥02x -y -1≥0x +y -m ≤0,且目标函数z =x -y 的最大值为2,则实数m =__2__.(3)(角度3)已知实数x ,y x -y +1≥0x +2y -8≤0x ≤3,若使得ax -y 取得最小值的可行解有无数个,则实数a 的值为__1或-12__.[解析](1)作出可行域如图,由z =x +7y 得y =-x 7+z 7,易知当直线y =-x 7+z7经过点A (1,0)时,z 取得最大值,z max =1+7×0=1.(2)由线性约束条件画出可行域(如图所示),∵目标函数z =x -y 的最大值为2,由图形知z =x -y 经过平面区域的A 时目标函数取得最大值2,-y =2=0,解得A (2,0),∴2-m =0,则m =2,故答案为2.(3)作出可行域如图中阴影部分所示,记z =ax -y ⇒y =ax -z .当直线y =ax -z 纵截距最大时,z 最小,此时a =1或-12.考点三线性规划的实际应用——师生共研例5(2020·试题调研)某研究所计划利用“神舟十一号”飞船进行新产品搭载试验,计划搭载若干件新产品A ,B ,要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查,搭载每件产品有关数据如表:因素产品A 产品B 备注研制成本、搭载试验费用之和(万元)2030计划最大投资金额300万元产品重量(千克)105最大搭载质量110千克预计收益(万元)8060——则使总预计收益达到最大时,A ,B 两种产品的搭载件数分别为(A )A .9,4B .8,5C .9,5D .8,4[解析]设“神舟十一号”飞船搭载新产品A ,B 的件数分别为x ,y ,最大收益为z 万元,则目标函数为z =80x+60y .根据题意可知,约束条件为x +30y ≤300,x +5y ≤110,≥0,≥0,,y ∈N ,x +3y ≤30,x +y ≤22,≥0,≥0,,y ∈N ,不等式组所表示的可行域为图中阴影部分(包含边界)内的整数点,作出目标函数对应直线l ,显然直线l 过点M 时,z 取得最大值.x +3y =30,x +y =22,=9,=4,故M (9,4).所以目标函数的最大值为z max =80×9+60×4=960,此时搭载产品A 有9件,产品B 有4件.故选A .名师点拨利用线性规划解决实际问题的一般步骤(1)审题:仔细阅读,明确题意,借助表格或图形理清变量之间的关系.(2)设元:设问题中要求其最值的量为z ,起关键作用的(或关联较多的)量为未知量x ,y ,并列出约束条件,写出目标函数.(3)作图:准确作出可行域,确定最优解.(4)求解:代入目标函数求解(最大值或最小值).(5)检验:根据结果,检验反馈.〔变式训练2〕(2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料,生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为__216000__元.[解析]设生产产品A x件,产品B y≥0,y≥0,x+0.5y≤150,+0.3y≤90,x+3y≤600,设生产产品A,产品B的利润之和为z元,则z=2100x+900y.画出可行域(如图),易知=60,=100,则z max=216000.名师讲坛·素养提升非线性目标函数的最值问题例6(1)(2016·江苏高考)已知实数x,y-2y+4≥0,x+y-2≥0,x-y-3≤0,则x2+y2的取值范围是__45,13__.(2)(2021·河南中原名校质量考评)若方程x2+ax+2b=0的一个根在区间(0,1)内,另一根在区间(1,2)内,则b-3a-2的取值范围是(D)A.25,1B.1,52CD[分析](1)本题中x2+y2的几何意义是点(x,y)到原点的距离的平方,不能遗漏平方.(2)b-3a-2表示点(a,b)与(2,3)连线的斜率k,根据题意列出a、b应满足的约束条件,在此约束条件下求k的取值范围即可.[解析](1)不等式组所表示的平面区域是以点(0,2),(1,0),(2,3)为顶点的三角形及其内部,如图所示.因为原点到直线2x +y -2=0的距离为25,所以(x 2+y 2)min =45,又当(x ,y )取点(2,3)时,x 2+y 2取得最大值13,故x 2+y 2的取值范围是45,13.(2)记f (x )=x 2+ax +2b ,0)>0,1)<0,2)>0.>0,+2b +1<0,+b +2>0.作出可行域如图中阴影部分所示.+2b +1=0+b +2=0=-3=1,∴C (-3,1),显然A (-1,0),B (-2,0)b -3a -2表示点(a ,b )与点(2,3)连线的斜率,由图可知当(a ,b )取(-1,0)时,b -3a -2=1;当(a ,b )取(-3,1)时,b -3a -2=25,∴b -3a -2的取值范围是D .[引申]在本例(1)条件下:①x 2+(y +1)2的最小值为__2__;②y +1x +1的取值范围是__12,3__;③x +2y +1x +3的取值范围是__12,95__.[解析]①由图可知当(x ,y )取点(1,0)时,x 2+(y +1)2取最小值2;②y +1x +1表示点(x ,y )与点(-1,-1)连线的斜率.由图可知当(x ,y )取点(1,0)时,y +1x +1取最小值12,当(x ,y )取点(0,2)时,y +1x +1取最大值3,∴y +1x +1的取值范围是12,3.③x +2y +1x +3=1+2·y -1x +3,y -1x +3表示(x ,y )与点(-3,1)连线的斜率,-2y +4=0,x -y -3=0,得=2,=3,∴B (2,3).由图可知(x ,y )取(1,0)时y -1x +3,取最小值-14,(x ,y )取点(2,3)时,y -1x +3取最大值25.∴x +2y +1x +3的取值范围是12,95.名师点拨非线性目标函数最值的求解(1)对形如z =(x -a )2+(y -b )2型的目标函数均可化为可行域内的点(x ,y )与点(a ,b )间距离的平方的最值问题.(2)对形如z =ay +bcx +d(ac ≠0)型的目标函数,可先变形为z =ac ·x为求可行域内的点(x,y)-dc,-连线的斜率的ac倍的取值范围、最值等.(3)对形如z=|Ax+By+C|型的目标函数,可先求z1=Ax+By的取值范围,进而确定z=|Ax+By+C|的取值范围,也可变形为z=A2+B2·|Ax+By+C|A2+B2的形式,将问题化为求可行域内的点(x,y)到直线Ax+By+C=0的距离的A2+B2倍的最值,或先求z1=Ax+Bx+C的取值范围,进而确定z=|Ax+By+C|的取值范围.〔变式训练3〕(1)(2021·百校联盟尖子生联考)已知x,y +y≤2≤2x+2,≥0则(x-2)2+(y-1)2的取值范围为__12,10__.(2)(2021·河南省八市重点高中联考)若x,y满足2y≤x≤y-1,则y-2x的取值范围是(B)A∪32,+∞B,32C-∞,12∪32,+∞D.12,32[解析](1)可行域如图阴影部分,M=(x-2)2+(y-1)2的几何意义是点(2,1)与可行域中点的距离,最小值为点(2,1)到x+y-2=0的距离|2+1-2|2=22,最大值为点(2,1)与点(-1,0)的距离10,所求M2的取值范围是12,10.(2)由x,y满足2y≤x≤y-1,作可行域如图,2y =x x =y -1,解得A (-2,-1).∵y -2x 的几何意义为可行域内的动点与Q (0,2),连线的斜率,∴动点位于A 时,y -2x max =32,直线2y =x 的斜率为12,则y -2x的取值范围12,32.故选B .。

高考线性规划知识点

高考线性规划知识点

高考线性规划知识点高考是对学生综合能力的一次全面考查,其中数学是不可避免的一项内容。

而线性规划作为数学中的一个重要章节,也广泛出现在高考中。

本文将围绕高考线性规划知识点展开讨论。

一、线性规划的定义和基本思想线性规划是一种数学优化方法,用于在一组线性约束条件下,求解一个线性目标函数的最大值或最小值。

其基本思想是将求解问题转化为求解函数的最值问题。

二、线性规划的基本要素1. 决策变量:表示问题中需要决策的量或者参数,常用字母表示。

2. 目标函数:表示问题的优化目标,通常是一个线性函数。

3. 约束条件:表示问题的限制条件,常常是一组线性不等式或等式。

4. 可行解集:满足所有约束条件的解的集合。

5. 最优解:在可行解集中使得目标函数取得最大或最小值的解。

三、线性规划的图形解法对于线性规划问题,我们可以通过图形解法快速找到最优解。

具体步骤如下:1. 根据约束条件,将可行解集用直线或者线段表示出来;2. 根据目标函数的方向,确定最优解在可行解集中的位置;3. 在可行解集与目标函数的交点中,寻找最优解。

四、单纯形法除了图形解法外,线性规划还可以通过单纯形法求解。

单纯形法是一种基于表格的算法,通过迭代计算不断逼近最优解。

具体步骤如下:1. 构造初始单纯形表格,包括决策变量、目标函数系数、约束条件等;2. 计算单纯形表格中的各个元素;3. 判断是否达到最优解,若未达到则进行下一次迭代;4. 重复上述步骤,直到获得最优解。

五、常见题型及解题方法在高考中,线性规划题目的形式多样,其中常见题型包括:1. 单纯形表格的构造与迭代计算;2. 最大最小值的求解;3. 边界条件下的最优解;4. 多目标线性规划等。

针对不同题型,我们需要选择合适的解题方法。

对于单纯形表格,按照步骤计算即可。

对于最大最小值的求解,可以使用图形解法或者单纯形法。

对于边界条件下的最优解,需要利用线性规划的基本性质进行推导。

对于多目标线性规划,可以通过目标函数的线性组合转化为单一目标的线性规划等。

高考数学必修五 第三章 3.3.2 第1课时线性规划的有关概念及图解法

高考数学必修五 第三章 3.3.2 第1课时线性规划的有关概念及图解法

3.3.2 简单的线性规划问题第1课时 线性规划的有关概念及图解法学习目标 1.了解线性规划的意义.2.理解约束条件、目标函数、可行解、可行域、最优解等基本概念.3.掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题.引例 已知x ,y 满足条件⎩⎪⎨⎪⎧x +2y ≤8,4x ≤16,4y ≤12,x ≥0,y ≥0.①该不等式组所表示的平面区域如图阴影部分所示,求2x +3y ②的最大值.以此为例,尝试通过下列问题理解有关概念. 知识点一 线性约束条件及目标函数1.在上述问题中,不等式组①是一组对变量x ,y 的约束条件,这组约束条件都是关于x ,y 的一次不等式,故又称线性约束条件.2.在上述问题中,②是要研究的目标,称为目标函数.因为它是关于变量x ,y 的一次解析式,这样的目标函数称为线性目标函数. 知识点二 线性规划问题一般地,在线性约束条件下求线性目标函数的最大值或最小值问题,统称为线性规划问题. 知识点三 可行解、可行域和最优解满足线性约束条件的解(x ,y )叫做可行解.由所有可行解组成的集合叫做可行域.其中,使目标函数取得最大值或最小值的可行解叫做线性规划问题的最优解.在上述问题的图中,阴影部分叫可行域,阴影区域中的每一个点对应的坐标都是一个可行解,其中能使②式取最大值的可行解称为最优解.1.可行域内每一个点都满足约束条件.(√)2.可行解有无限多个,最优解只有一个.(×)3.不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.(×)类型一 最优解问题命题角度1 问题存在唯一最优解例1 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤8,4x ≤16,4y ≤12,x ≥0,y ≥0,该不等式组所表示的平面区域如图阴影部分所示,求2x +3y 的最大值.考点 线性目标最优解 题点 求线性目标函数的最值解 设区域内任一点P (x ,y ),z =2x +3y , 则y =-23x +z3,这是斜率为-23,在y 轴上的截距为z3的直线,如图.由图可以看出,当直线y =-23x +z 3经过直线x =4与直线x +2y -8=0的交点M (4,2)时,截距z3的值最大,此时2x +3y =14.反思与感悟 图解法是解决线性规划问题的有效方法,基本步骤(1)确定线性约束条件,线性目标函数; (2)作图——画出可行域;(3)平移——平移目标函数对应的直线z =ax +by ,看它经过哪个点(或哪些点)时最先接触可行域或最后离开可行域,确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. 跟踪训练1 已知1≤x +y ≤5,-1≤x -y ≤3,求2x -3y 的取值范围. 考点 线性目标最优解 题点 求线性目标函数的最值解 作出二元一次不等式组⎩⎪⎨⎪⎧1≤x +y ≤5,-1≤x -y ≤3所表示的平面区域(如图阴影部分所示)即为可行域.设z =2x -3y ,变形得y =23x -13z ,则得到斜率为23,且随z 变化的一组平行直线.-13z 是直线在y 轴上的截距, 当直线截距最大时,z 的值最小, 由图可知,当直线z =2x -3y 经过可行域上的点A 时,截距最大, 即z 最小.解方程组⎩⎪⎨⎪⎧x -y =-1,x +y =5,得A 点坐标为(2,3),∴z min =2x -3y =2×2-3×3=-5.当直线z =2x -3y 经过可行域上的点B 时,截距最小, 即z 最大.解方程组⎩⎪⎨⎪⎧x -y =3,x +y =1,得B 点坐标为(2,-1).∴z max =2x -3y =2×2-3×(-1)=7.∴-5≤2x -3y ≤7,即2x -3y 的取值范围是[-5,7]. 命题角度2 问题的最优解有多个例2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若目标函数z =ax +y 的最大值有无数个最优解,求实数a 的值.考点 线性规划中的参数问题 题点 无数个最优解问题解 约束条件所表示的平面区域如图(阴影部分),由z =ax +y ,得y =-ax +z .当a =0时,最优解只有一个,过A (1,1)时取得最大值;当a >0,y =-ax +z 与x +y =2重合时,最优解有无数个,此时a =1; 当a <0,y =-ax +z 与x -y =0重合时,最优解有无数个,此时a =-1. 综上,a =1或a =-1.反思与感悟 当目标函数取最优解时,如果目标函数与平面区域的一段边界(实线)重合,则此边界上所有点均为最优解.跟踪训练2 给出平面可行域(如图阴影部分所示),若使目标函数z =ax +y 取最大值的最优解有无穷多个,则a 等于( )A.14B.35C.4D.53考点 线性规划中的参数问题 题点 无数个最优解问题 答案 B解析 由题意知,当直线y =-ax +z 与直线AC 重合时,最优解有无穷多个,则-a =5-21-6=-35,即a =35,故选B.类型二 生活中的线性规划问题例3 营养专家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06 kg 的蛋白质,0.06 kg 的脂肪.1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1 kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少kg? 将已知数据列成下表:考点 实际生活中的线性规划问题 题点 线性规划在实际问题中的应用解 设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,则⎩⎪⎨⎪⎧ 0.105x +0.105y ≥0.075,0.07x +0.14y ≥0.06,0.14x +0.07y ≥0.06,x ≥0,y ≥0,即⎩⎪⎨⎪⎧7x +7y ≥5,7x +14y ≥6,14x +7y ≥6,x ≥0,y ≥0.目标函数为z =28x +21y .作出二元一次不等式组所表示的平面区域,如图阴影部分所示,把目标函数z =28x +21y 变形为y =-43x +z21,它表示斜率为-43,且随z 变化的一族平行直线,z21是直线在y 轴上的截距,当截距最小时,z 的值最小.由图可知,当直线z =28x +21y 经过可行域上的点M 时,截距最小,即z 最小.解方程组⎩⎪⎨⎪⎧7x +7y =5,14x +7y =6,得M 点的坐标为⎝⎛⎭⎫17,47. 所以为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 17 kg ,食物B 47 kg.反思与感悟 (1)目标函数z =ax +by (b ≠0)在y 轴上的截距zb 是关于z 的正比例函数,其单调性取决于b 的正负.当b >0时,截距z b 越大,z 就越大;当b <0时,截距zb 越小,z 就越大.(2)求解的最优解,和目标函数与边界函数的斜率大小有关.跟踪训练3 某厂拟用集装箱托运甲、乙两种货物,集装箱的体积、重量、可获利润和托运能力等限制数据列在下表中,那么为了获得最大利润,甲、乙两种货物应各托运的箱数为________.考点 生活实际中的线性规划问题题点 线性规划在实际问题中的应用 答案 4,1解析 设甲、乙两种货物应各托运的箱数为x ,y ,则⎩⎪⎨⎪⎧5x +4y ≤24,2x +5y ≤13,x ≥0,x ∈N ,y ≥0,y ∈N .目标函数z =20x +10y ,画出可行域如图阴影部分所示.由⎩⎪⎨⎪⎧2x +5y =13,5x +4y =24,得A (4,1). 易知当直线z =20x +10y 平移经过点A 时,z 取得最大值,即甲、乙两种货物应各托运的箱数分别为4和1时,可获得最大利润.1.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A.-52B.0C.53D.52考点 线性目标最优解 题点 求线性目标函数的最值答案 C解析 画出可行域如图阴影部分(含边界)所示.设z =x +2y ,即y =-12x +12z ,平行移动直线y =-12x +12z ,当直线y =-12x +z 2过点B ⎝⎛⎭⎫13,23时,z 取最大值53,所以(x +2y )max =53. 2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值为( )A.6B.7C.8D.23 考点 线性目标最优解 题点 求线性目标函数的最值 答案 B解析 作出可行域如图阴影部分(含边界)所示.由图可知,z =2x +3y 经过点A (2,1)时,z 有最小值,z 的最小值为7.3.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的值为( )A.-3B.3C.-1D.1 考点 线性规划中的参数问题 题点 无数个最优解问题答案 A解析 -1a =2-14-1=13,∴a =-3.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A.⎣⎡⎦⎤-32,6 B.⎣⎡⎦⎤-32,-1 C.[-1,6]D.⎣⎡⎦⎤-6,32 考点 线性目标最优解 题点 求目标函数的取值范围 答案 A解析 作出不等式表示的平面区域,如图阴影部分(含边界)所示,由z =3x -y ,可得y =3x -z ,则-z 为直线y =3x -z 在y 轴上的截距,截距越大,z 越小,结合图形可知,当直线y =3x -z 平移到B 时,z 最小,平移到C 时,z 最大,可得B ⎝⎛⎭⎫12,3,z min =-32,C (2,0),z max =6,∴-32≤z ≤6. 5.给出平面区域如图阴影部分所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为________.考点 线性规划中的参数问题 题点 无数个最优解问题 答案 35解析 将z =ax +y 变形,得y =-ax +z .当它与直线AC 重合时,z 取最大值的点有无穷多个. ∵k AC =-35,∴-a =-35,即a =35.1.用图解法解决简单的线性规划问题的基本步骤(1)寻找线性约束条件,线性目标函数;(2)作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ;(3)平移——将直线l 平行移动,以确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.2.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.3.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.一、选择题1.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域内,则2x -y 的最小值为( ) A.-6 B.-2 C.0 D.2 考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分(含边界)所示,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点A (-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6. 2.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为( )A.9B.157C.1D.715考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 画出可行域如图阴影部分(含边界)所示,令z =x +y ,则y =-x +z .当直线y =-x +z 过点A 时,z 最大.由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0,得A (4,5),∴z max =4+5=9.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A.-7B.-4C.1D.2 考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 可行域如图阴影部分(含边界)所示,令z =0,得直线l 0:y -2x =0,平移直线l 0知, 当直线l 0过D 点时,z 取得最小值.由⎩⎪⎨⎪⎧y =3,x -y -2=0,得D (5,3). ∴z min =3-2×5=-7,故选A.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为( )A.3,-11B.-3,-11C.11,-3D.11,3考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 作出可行域如图阴影部分(含边界)所示,由图可知z =3x -4y 经过点A 时,z 有最小值,经过点B 时,z 有最大值.易求得A (3,5),B (5,3).∴z max =3×5-4×3=3,z min =3×3-4×5=-11. 5.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a 等于( )A.14B.12C.1D.2 考点 线性规划中的参数问题 题点 线性规划中的参数问题 答案 B解析 作出不等式组表示的可行域,如图阴影部分(含边界)所示.易知直线z =2x +y 过交点B 时,z 取最小值,由⎩⎪⎨⎪⎧ x =1,y =a (x -3),得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1,解得a =12,故选B.6.已知⎩⎪⎨⎪⎧x ≥1,x -y +1≥0,2x -y -2≤0,若z =ax +y 的最小值是2,则a 的值为( )A.1B.2C.3D.4考点 线性规划中的参数问题 题点 线性规划中的参数问题 答案 B解析 作出可行域,如图中阴影部分所示,又z =ax +y 的最小值为2,若a >-2,则(1,0)为最优解,解得a =2;若a ≤-2,则(3,4)为最优解,解得a =-23,舍去,故a =2.7.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y确定.若M (x ,y )为D 上的动点,点A的坐标为(2,1),则z =OM →·OA →的最大值为( ) A.3 B.4 C.3 2 D.4 2 考点 线性目标最优解 题点 求线性目标函数的最值 答案 B解析 由线性约束条件 ⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y ,画出可行域如图阴影部分(含边界)所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,当目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.8.已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( ) A.-1 B.3 C.7 D.8 考点 线性目标最优解 题点 求线性目标函数的最值 答案 C解析 作出线段AB ,如图所示,作直线2x -y =0并将其向下平移至直线过点B (4,1)时,2x -y 取最大值,为2×4-1=7. 二、填空题9.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________.(答案用区间表示) 考点 线性目标最优解 题点 求线性目标函数的最值 答案 [3,8]解析 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分(含边界)所示. 在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值, z min =2×3-3×1=3;当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值, z max =2×1+3×2=8. 所以z ∈[3,8].10.在线性约束条件⎩⎪⎨⎪⎧x +3y ≥12,x +y ≤10,3x +y ≥12下,z =2x -y 的最小值是________.考点 线性目标最优解 题点 求线性目标函数的最值 答案 -7解析 如图作出线性约束条件⎩⎪⎨⎪⎧x +3y ≥12,x +y ≤10,3x +y ≥12下的可行域,包含边界.三条直线中x +3y =12与3x +y =12交于点A (3,3), x +y =10与x +3y =12交于点B (9,1), x +y =10与3x +y =12交于点C (1,9),作一族与直线2x -y =0平行的直线l :2x -y =z .即y =2x -z ,然后平行移动直线l ,直线l 在y 轴上的截距为-z ,当l 经过点C 时,-z 取最大值,此时z 最小,即z min =2×1-9=-7.11.某公司租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,则所需租赁费最少为________元. 考点 生活实际中的线性规划问题 题点 线性规划在实际问题中的应用 答案 2 300解析 设需租赁甲种设备x 台,乙种设备y 台,则⎩⎪⎨⎪⎧5x +6y ≥50,10x +20y ≥140,x ∈N ,y ∈N .目标函数为z =200x +300y .作出其可行域(图略),易知当x =4,y =5时,z =200x +300y 有最小值2 300. 三、解答题12.设x ,y 满足⎩⎪⎨⎪⎧2x +y ≥4,x -y ≥-1,x -2y ≤2,求z =x +y 的取值范围.考点 线性目标最优解 题点 求线性目标函数的最值解 作出约束条件表示的可行域,如图所示,z =x +y 表示直线y =-x +z 过可行域时,在y 轴上的截距,当目标函数平移至过可行域内的A 点时,z 有最小值.联立⎩⎪⎨⎪⎧2x +y =4,x -2y =2,解得A (2,0).z min =2,z 无最大值.∴x +y ∈[2,+∞).13.某运输公司接受了向抗洪救灾地区每天送至少180 t 支援物资的任务.该公司有8辆载重为6 t 的A 型卡车与4辆载重为10 t 的B 型卡车,有10名驾驶员,每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次;每辆卡车每天往返的成本费A 型为320元,B 型为504元.请为公司安排一下,应如何调配车辆,才能使公司所花的成本费最低? 考点 生活实际中的线性规划问题 题点 线性规划在实际问题中的应用解 设需A 型、B 型卡车分别为x 辆和y 辆.列表分析数据.由表可知x ,y 满足线性约束条件⎩⎪⎨⎪⎧x +y ≤10,24x +30y ≥180,0≤x ≤8,0≤y ≤4,x ,y ∈N ,且目标函数z =320x +504y .作出可行域,如图阴影部分(含边界)所示.可知当直线z =320x +504y 过A (7.5,0)时,z 最小,但A (7.5,0)不是整点,继续向上平移直线z =320x +504y ,可知点(8,0)是最优解.这时z min =320×8+504×0=2 560(元),即用8辆A 型车,成本费最低.所以公司每天调出A 型卡车8辆时,花费成本最低. 四、探究与拓展14.若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A.355B. 2C.322 D. 5考点 线性目标最优解 题点 求线性目标函数的最值 答案 B解析 画出不等式组所表示的平面区域如图(阴影部分)所示,由⎩⎪⎨⎪⎧ x -2y +3=0,x +y -3=0,得A (1,2), 由⎩⎪⎨⎪⎧2x -y -3=0,x +y -3=0,得B (2,1).由题意可知当斜率为1的两条直线分别过点A 和点B 时,阴影部分夹在这两条直线之间,且与这两条直线有公共点,所以这两条直线为满足条件的距离最小的一对直线,即|AB |=(1-2)2+(2-1)2= 2.故选B.15.已知变量x ,y 满足的约束条件为⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0.若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,求a 的取值范围.考点 线性规划中的参数问题 题点 线性规划中的参数问题 解 依据约束条件,画出可行域.∵直线x +2y -3=0的斜率k 1=-12,目标函数z =ax +y (a >0)对应直线的斜率k 2=-a , 若符合题意,则需k 1>k 2.即-12>-a ,得a >12.。

高中数学解线性规划问题的应用题解析与实例分析

高中数学解线性规划问题的应用题解析与实例分析

高中数学解线性规划问题的应用题解析与实例分析一、引言线性规划是数学中的一种重要方法,广泛应用于各个领域,如经济、管理、工程等。

在高中数学中,线性规划也是一个重要的考点,往往需要学生掌握解题的方法和技巧。

本文将通过具体的应用题例子,详细解析线性规划问题的解题过程和思路,帮助高中学生和他们的父母更好地理解和掌握这一知识点。

二、线性规划问题的基本概念线性规划问题是指在一定的约束条件下,求解线性目标函数的最大值或最小值的问题。

一般形式可以表示为:Max(或Min)Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,c₁, c₂, ..., cₙ为目标函数的系数;a₁₁, a₁₂, ..., aₙₙ为约束条件的系数;b₁, b₂, ..., bₙ为约束条件的常数;x₁, x₂, ..., xₙ为决策变量。

三、线性规划问题的解题步骤1. 确定决策变量:根据题目中的要求,确定需要求解的决策变量,例如某种产品的生产数量、某种资源的分配比例等。

2. 建立目标函数:根据题目中的要求,建立目标函数,即需要最大化或最小化的函数。

目标函数的系数由题目中的条件确定。

3. 建立约束条件:根据题目中的要求,建立约束条件,即限制决策变量的取值范围。

约束条件的系数由题目中的条件确定。

4. 求解最优解:根据线性规划的特点,最优解一定在可行域的顶点上取得。

因此,通过解方程组或图像法找到可行域的顶点,并计算目标函数在每个顶点处的取值,最终确定最优解。

四、应用题解析与实例分析下面通过一个具体的应用题来进行解析和分析,以帮助读者更好地理解线性规划问题的解题过程。

例题:某工厂生产两种产品A和B,每单位产品A需耗费2小时的人工和3小时的机器时间,每单位产品B需耗费1小时的人工和4小时的机器时间。

高考数学中线性规划在解题中的应用有哪些

高考数学中线性规划在解题中的应用有哪些

高考数学中线性规划在解题中的应用有哪些在高考数学中,线性规划是一个重要的知识点,它不仅在数学学科中具有广泛的应用,对于培养学生的数学思维和解决实际问题的能力也有着重要的意义。

线性规划是一种优化方法,旨在在满足一系列线性约束条件的情况下,寻求线性目标函数的最优解。

一、线性规划的基本概念线性规划问题通常由决策变量、目标函数和约束条件三部分组成。

决策变量是我们需要确定其取值的变量,目标函数是我们希望最大化或最小化的线性函数,而约束条件则是对决策变量取值的限制,通常以线性不等式或等式的形式表示。

例如,一个简单的线性规划问题可能是:在满足 2x +3y ≤ 12,x ≥ 0,y ≥ 0 的条件下,求 z = 5x + 4y 的最大值。

二、线性规划在实际问题中的建模1、生产安排问题假设一家工厂生产两种产品 A 和 B,生产一件 A 产品需要 2 小时的加工时间和 3 单位的原材料,生产一件 B 产品需要 3 小时的加工时间和 2 单位的原材料。

每天工厂的加工时间不超过 12 小时,原材料不超过 10 单位。

已知 A 产品的利润为 5 元/件,B 产品的利润为 4 元/件,那么工厂应该如何安排生产才能获得最大利润?我们可以设生产 A 产品 x 件,B 产品 y 件。

则目标函数为 z = 5x + 4y(总利润),约束条件为 2x +3y ≤ 12(加工时间限制),3x +2y ≤ 10(原材料限制),x ≥ 0,y ≥ 0。

2、资源分配问题例如,一个学校有一定数量的教师和教室资源,要安排不同课程的教学。

已知每门课程需要的教师数量和教室数量不同,如何分配才能满足所有课程的需求,同时使教学资源得到最合理的利用?可以设安排课程 A 的数量为 x,课程 B 的数量为 y 等等,然后根据具体的资源限制建立约束条件和目标函数。

3、运输调度问题一家物流公司要将货物从多个发货地运输到多个收货地,不同的运输路线运输成本不同,同时车辆的载重量也有限制。

高三数学线性规划知识点

高三数学线性规划知识点

高三数学线性规划知识点线性规划是数学中的一个重要分支,广泛应用于经济、管理、工程等领域。

它通过建立数学模型,寻找一组最佳决策方案,以实现特定的目标。

在高三数学学习中,线性规划是一个重要的知识点,本文将介绍线性规划的基本概念、常见问题类型以及解题方法。

一、线性规划的基本概念1. 目标函数:线性规划的目标是在一组约束条件下,最大化或最小化一个线性函数,这个线性函数就是目标函数。

通常用Z表示目标函数的值。

2. 变量:目标函数中的每个变量都代表一个决策变量,这些变量的取值将影响目标函数的计算结果。

3. 约束条件:线性规划的一个重要特点是存在一组约束条件,这些约束条件限制了决策变量的取值范围。

约束条件通常是由一组线性不等式或等式表示。

4. 可行解:满足所有约束条件的解称为可行解。

5. 最优解:在所有可行解中,使得目标函数达到最大值或最小值的解称为最优解。

二、线性规划的问题类型1. 单纯形法:单纯形法是一种常用的线性规划求解方法。

它通过不断优化目标函数的值,逐步接近最优解。

单纯形法通过迭代计算一系列基础可行解,直到找到最优解为止。

2. 对偶性定理:线性规划中的对偶性定理是指对于一个标准型的线性规划问题,它与其对偶问题具有相同的最优解。

3. 整数线性规划:当决策变量要求为整数时,这就是一个整数线性规划问题。

整数线性规划的求解更加困难,常常需要借助于分支定界等特殊算法。

4. 网络流线性规划:网络流线性规划是线性规划与图论相结合的一种问题类型。

它通常用于解决最小费用流、最大流等网络优化问题。

三、线性规划的解题方法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。

首先绘制出约束条件所构成的区域,然后绘制目标函数的等高线,并找到最优解所在的点。

2. 单纯形法:对于高维的线性规划问题,可以使用单纯形法进行求解。

单纯形法通过迭代计算一系列基础可行解,直到找到最优解为止。

3. 对偶问题:通过建立原始问题与对偶问题之间的关系,可以将原始问题的求解转化为对偶问题的求解。

线性规划的常见题型及其解法学生版题型全面归纳好

线性规划的常见题型及其解法学生版题型全面归纳好

课题 线性规划旳常见题型及其解法题目线性规划问题是高考旳重点,而线性规划问题具有代数和几何旳双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题旳解答变得愈加新奇别致.归纳起来常见旳命题探究角度有: 1.求线性目旳函数旳最值. 2.求非线性目旳函数旳最值. 3.求线性规划中旳参数. 4.线性规划旳实际应用.本节重要讲解线性规划旳常见基础类题型.【母题一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目旳函数z =2x +3y 旳取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]【母题二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 旳最小值;(2)设z =x 2+y 2,求z 旳取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 旳取值范围.角度一:求线性目旳函数旳最值1.(·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 旳最大值为( )A .10B .8C .3D .22.(·高考天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目旳函数z =x +6y 旳最大值为( )A .3B .4C .18D .403.(·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成旳封闭区域,则2x -y 旳最小值为( ) A .-6 B .-2 C .0D .2角度二:求非线性目旳旳最值4.(·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所示旳区域上一动点,则直线OM 斜率旳最小值为( )A .2B .1C .-13D .-125.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1旳取值范围 . 6.(·郑州质检)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2旳取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]7.(·高考北京卷)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所示旳平面区域,区域D 上旳点与点(1,0)之间旳距离旳最小值为________.8.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所示旳平面区域是Ω1,平面区域Ω2与Ω1有关直线3x -4y -9=0对称.对于Ω1中旳任意点A 与Ω2中旳任意点B ,|AB |旳最小值等于( )A .285B .4C .125D .2角度三:求线性规划中旳参数 9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所示旳平面区域被直线y =kx +43分为面积相等旳两部分,则k 旳值是( )A .73B .37C .43D .3410.(·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 旳最小值为-4,则k 旳值为( )A .2B .-2C .12D .-1211.(·高考安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 获得最大值旳最优解不唯一,则实数a 旳值为( )A .12或-1B .2或12C .2或1D .2或-112.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目旳函数z =3x +2y 旳最大值旳取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8] 13.(·通化一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1旳最小值为32,则a 旳值为________.角度四:线性规划旳实际应用14.A ,B 两种规格旳产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A 产品需要在甲机器上加工3小时,在乙机器上加工1小时;B 产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一种工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产品每件利润300元,B 产品每件利润400元,则这两台机器在一种工作日内发明旳最大利润是________元.15.某玩具生产企业每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一种卫兵需5分钟,生产一种骑兵需7分钟,生产一种伞兵需4分钟,已知总生产时间不超过10小时.若生产一种卫兵可获利润5元,生产一种骑兵可获利润6元,生产一种伞兵可获利润3元.(1)试用每天生产旳卫兵个数x与骑兵个数y表达每天旳利润w(元);(2)怎样分派生产任务才能使每天旳利润最大,最大利润是多少?一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0旳两侧,则a 旳取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)2.(·临沂检测)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 旳最小值是( )A .-3B .0C .32D .33.(·泉州质检)已知O 为坐标原点,A (1,2),点P 旳坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP→旳最大值为( )A .-2B .-1C .1D .24.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1旳取值范围是( )A .⎣⎡⎦⎤53,5B .[0,5]C .⎣⎡⎭⎫53,5 D .⎣⎡⎭⎫-53,5 5.假如点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取旳整数值为( )A .2B .1C .3D .06.(·郑州模拟)已知正三角形ABC 旳顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 旳取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)7.(·成都二诊)在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所示旳平面区域上一动点,则直线OP 斜率旳最大值为( )A .2B .13C .12D .18.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }旳面积为( )A .2B .1C .12D .149.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目旳函数z =ax +by (a >0,b >0)旳最大值为4,则ab旳取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω旳公共部分为线段AB ,则以AB 为直径旳圆旳面积旳最大值为( )A .πB .2πC .3πD .4π11.(·东北三校联考)变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 获得最大值旳最优解有无穷多种,则实数a 旳取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}12.(·新课标全国Ⅰ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 旳最小值为7,则a =( )A .-5B .3C .-5或3D .5或-313.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定旳平面区域旳面积是( )A .12B .π4C .1D .π214.(·高考北京卷)设有关x ,y 旳不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表达旳平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 旳取值范围是( )A .⎝⎛⎭⎫-∞,43 B .⎝⎛⎭⎫-∞,13 C .⎝⎛⎭⎫-∞,-23D .⎝⎛⎭⎫-∞,-53 15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表达旳平面区域为D .若指数函数y =a x 旳图象上存在区域D 上旳点,则a 旳取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)16.(·高考福建卷)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2旳最大值为( )A .5B .29C .37D .4917.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k (x -1)-1表达一种三角形区域,则实数k 旳取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)18.(·武邑中学期中)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 旳最大值为( )A .4B .6C .8D .1019.(·衡水中学期末)当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m 时,z =x -3y 旳最大值为8,则实数m 旳值是( )A .-4B .-3C .-2D .-120.(·湖州质检)已知O 为坐标原点,A ,B 两点旳坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan ∠AOB旳最大值等于( )A .94B .47二、填空题21.(·高考安徽卷)不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表达旳平面区域旳面积为________.23.(·重庆一诊)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目旳函数z =3x -y 旳最大值为____.24.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8旳最小值为________.25.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所示旳区域上一动点,则|OM |旳最小值是________.26.(·汉中二模)某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一种生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得旳最大利润是______万元.27.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜旳产量、成本和售价如下表:________亩.28.(·日照调研)若A 为不等式组⎩⎪⎨⎪⎧ x ≤0,y ≥0,y -x ≤2表达旳平面区域,则当a 从-2持续变化到1时,动直线x +y =a 扫过A 中旳那部分区域旳面积为________.29.(·高考浙江卷)当实数x ,y 满足⎩⎪⎨⎪⎧ x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 旳取值范围是________.30.(·石家庄二检)已知动点P (x ,y )在正六边形旳阴影部分(含边界)内运动,如图,正六边形旳边长为2,若使目旳函数z =kx +y (k >0)获得最大值旳最优解有无穷多种,则k 旳值为________.31.设m >1,在约束条件⎩⎪⎨⎪⎧ y ≥x ,y ≤mx ,x +y ≤1下,目旳函数z =x +my 旳最大值不不小于2,则m 旳取值范围 .32.已知实数x ,y 满足⎩⎪⎨⎪⎧ y ≥1,y ≤2x -1,x +y ≤m ,若目旳函数z =x -y 旳最小值旳取值范围是[-2,-1],则目旳函数旳最大值旳取值范围是________.33.(·高考广东卷)给定区域D :⎩⎪⎨⎪⎧ x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y在D 上获得最大值或最小值旳点},则T 中旳点共确定________条不一样旳直线.34.(·湖北改编)已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 旳取值范围为__________.35.(·衡水中学模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多种点(x ,y )使目旳函数z=x+my获得最小值,则m=________.。

高考数学中的线性规划中的最优解策略

高考数学中的线性规划中的最优解策略

高考数学中的线性规划中的最优解策略数学是现代科学体系中一门不可或缺的学科,而高中数学是学习数学的重中之重。

在高二学年的数学课上,同学们开始学习线性规划,相信大家都不陌生。

线性规划是一种建立在线性函数和线性等式不等式约束下的优化方法。

在学习线性规划的过程中,最优解策略是非常重要的一部分。

下面,我将分享一些有关高考数学中的线性规划最优解策略的内容。

一、什么是线性规划?线性规划是指在一定约束条件下,求解线性目标函数所能达到的最大或最小值的一种优化方法。

最常见的例子是如何使得生产或者运输成本最小化或利润最大化等。

线性规划一般包括以下三个要素:①决策变量:即各个选择的量,是模型中未知量的部分。

②约束条件:即决策变量的取值范围,是模型中已知条件的部分。

③目标函数:即决策变量取值下的一个数学公式,最终需要优化的数学函数。

二、高考数学中的线性规划题型在高中数学中,线性规划一般作为高二上学期学习的内容。

在高考中,线性规划题型属于选择题和简答题的范畴。

一般可分为以下三种:①线性规划的建模题:给出某种情况的限制条件,需要学生自己设计出目标函数并求解。

②线性规划的图形解法题:通过绘制限制条件与目标函数的图形,求出最优解。

③线性规划的单纯形法求解题:通过单纯形表格法,求解最优解。

三、高考数学中的线性规划最优解策略在学习线性规划时,最优解策略是至关重要的。

下面将介绍一些最优解策略的相关知识。

①最优解的存在性和唯一性在线性规划中,最优解不一定存在,具体要视题目和限制条件而定。

对于存在最优解的情况,最优解可能是唯一的,也可能有多个。

如果最优解存在且唯一,那么它一般可以通过图形法或单纯性表格法得到。

②最优解的特征在线性规划中,最优解往往是在约束条件限制下,得到目标函数最大或最小值的点。

这个点可能处于多个约束条件的交点上。

另外,当线性规划的目标函数为最小值问题时,在满足约束条件的前提下,最优解总是在可行解中的最小值点;而目标函数为最大值问题时,则在可行解中的最大值点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划问题的专题研究
新教材试验修订本中简单的线性规划是新增的内容,在线性约束条件下研究目标函数的最值问题是一类常见的问题,在近几年高考试题中均有出现,而且灵活多变。

本文结合08年高考出现的几个线性规划问题,对常见的线型规划问题作以专题总结研究。

一、08年高考中的线性规划问题的总结分析
1.基本问题
(1)(08年安徽理)如果实数x y 、满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩
,那么2x y
-的最大值为( )
A .2
B .1
C .2-
D .3- 解:本题为较基本的线性规划问题,解决方式应该是: 画定可行域;做目标函数对应平行线束;找到最
大值,如图所示显然是平行线过A 点时取
最大值,将A 点坐标代入有
max 1Z =,故选择B
(2)(08年福建文)
已知实数x 、y 满足1,1,y y x ≤⎧⎪⎨≥-⎪⎩
则2x y +的最大值是____ 解:本题也是一个基本题型,但从给定的约束条件来看,难度加大了,解法如图所示
当平行线过点()2,1B 时,2x y +
区的最大值为4
(3)(08年山东理)某公司招收男职员x 名,女职员y 名,x 和y 须
满足约束条件⎪⎩
⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则z =10x +10y 的最大值是
(A)80 (B) 85 (C) 90 (D)95
解:本题是一个应用性的线性规划问题,经转化实质上是一个整点问题,实际的约束条件应为
51122,239,211,
,x y x y x x N y N
-≥-⎧⎪+≥⎪⎨≤⎪⎪∈∈⎩,画出区域如右图 过A 点时z 值最大,但由于A 点不是整点
故不能取到,所以应该是图中过整点(5,4)的直线使z 取最大值90 整点问题是线性规划部分的一个难点,但本题由于只是求最大值,唯有涉及到取整点是什么,所以难度降低了,但鉴于它是个应用题,还是比较灵活的。

(4)(08年辽宁理)双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是
(A)0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩ (B)0003x y x y x -≥⎧⎪+≤⎨⎪≤≤⎩ (C) 0003x y x y x -≤⎧⎪+≤⎨⎪≤≤⎩ (D) 0003x y x y x -≤⎧⎪+≥⎨⎪≤≤⎩
解:本题是一个综合性问题,既考查了线性规划又考查了双曲线的渐近线问题,但从难度上来说不大,但从此题可以看出,线性规划题型的灵活性,此题结果如下:双曲线224x y -=的两条渐近线方程为
y x =±,与直线3x =围成一个三角形区域时有0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩
(5)(08年浙江理)在平面直角坐标系中,不等式组⎪⎩
⎪⎨⎧≤≥+-≥-+2,02,02x y x y x 表
示的平面区域的面积是 (A)21 (B)23 (C)81 (D)8
9
解:本题考查简单的线性规划的可行域、三角形的面积 由题知可行域为ABC ∆, 42204=⨯-=
∆ABC S ,故选择B
(6)(08年四川理)某厂生产甲产品每千克需用原料A 和原料B 分别为11a b 、千克,生产乙产品每千克需用原料A 和原料B 分别为22a b 、千克 甲、乙产品每千克可获利润分别为12d d 、元 月初一次性购进本
月用原料A 、B 各12c c 、千克 要计划本月生产甲、乙两种产品各多少千克才能使月利润总额达到最大 在这个问题中,设全月生产甲、乙两种产品分别为x千克、y千克,月利润总额为z元,那么,用于求使总利润12z d x d y =+最大的数学模型中,约束条件为
(A )121122,,0,0a x a y c b x b y c x y +≥⎧⎪+≥⎪⎨≥⎪⎪≥⎩(B )111222,,0,0a x b y c a x b y c x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩ (C )121122,,0,0a x a y c b x b y c x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩ (D )121122,,0,
a x a y c
b x b y
c x y +=⎧⎪+=⎪⎨≥⎪⎪≥⎩ 解:在这个问题中,设全月生产甲、乙两种产品分别为x 千克,y 千克,月利润总额为z 元,那么,用于求使总利润12z
d x d y =+最大的数
学模型中,约束条件为12112200a x a y c b x b y c x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,选 C. 本题应该说是一个基本的
线性规划应用题,而且只需要列出约束条件,所以难度不大
总结:以上6个题,从考查的知识点及题目形式上看,都考查了线性规划的基本问题,但每个题的侧重点又有所不同,而且(3),(4),
(5)又有一定的综合性,可见在学习线性规划时,要加强对学生基础知识的同时,还要适度培养学生的综合能力。

2.变形题
(1)(08年重庆理)
已知变量,x y 满足约束条件14,2 2.x y x y ≤+≤-≤-≤若目标函数z ax y =+(其中0a >)仅在点()3,1处取得最大值,则a 的取值范围为 解:本题是一个逆向思维问题,已知变量,x y 满足约束条件 14,2 2.x y x y ≤+≤-≤-≤ 在坐标系中画出可行域,
如图为四边形ABCD ,其中()3,1,1,1AD AB A k k ==-,
目标函数z ax y =+(其中0a >)中的z 表示斜率为a -
的直线系中的截距的大小,若仅在点()3,1处取得最大值,
则斜率应小于1AB k =-,即1a -<-,所以a 的取值范围
为(1,+∞) 由解决问题的过程可见,本题的难度加大了,学生需要要良好逆向思维能力,问题转化能力和几何直观能力。

(2)(08
年广东)在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是 A [6,15] B [7,15] C [6,8] D [7,8] 解:本题的约束条件中出现了变量s ,由此使问题的难度一下子加大了,具体解决方法如下
由⎩⎨⎧-=-=⇒⎩⎨⎧=+=+4
2442s y s x x y s y x 交点为(2,0),(4,24),(0,),(0,4)A B s s C s C '--,
(1) 当43<≤s 时可行域是
四边形OABC 内部包括边界,此
时,87≤≤z ,如图1,可知
3s =时,z 值最大,最大值为 直线过点B 时的值,z 值最大为7;如图2 可知,4s =时,z 值最大,最大值为直线过点C ’(
此时B 与C ’重合)时的值,z 值最大为8
(2) 当54≤≤s 时,如右图,可行域
是△OA C '此时,8max =z ,故选D
综上所得,32z x y =+的最大值的变化范围是[7,8]。

本题从题干上来讲,好像是基本的线性规划,但实际上
由于变量s 的引入,使此题的查考的范围就不仅仅是基
本的线性规划问题了,还要用到分类讨论的思想,最后
实现问题的解决还要很好的做到形与数的统一。

总结:以上两题在问题设置上摆脱了线性规划问题的常规模式,比较新颖,且很灵活,尤其(2),要想正确解答,很困难,可见培养学生的综合运用知识能力很关键,尤其是对于高三的学生来说。

3.扩展题
图1
图2
(1)(08北京理)已知点 P (x ,y )的坐标满足条件4,1,x y y x y +≤⎧⎪≥⎨⎪≥⎩
点O
为坐标原点,
那么z =的最小值等于________,最大值等于________. 解:画出可行域,如图所示:
易得A (2,2),OA
=B (1,3),OB
C (1,1),OC
故|OP|
本题约束条件是线性的,但目标函数却是非线性的,问题的解决关键
是能够很好的利用目标函数的几何特点,将求z =的最值问题转化为区域内的点到原点的距离问题,从而实现问题的解决 类似的选取05年高考江西卷的一道题
设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩
⎪⎨⎧≤->-+≤-- . 解:求y x
的最大值问题可转化为区域内的点和原点的连线的斜率的最大值,画出可行域,如图所示,当原点和31,2C ⎛⎫ ⎪⎝⎭连线时,斜率最大,为32
, 由此说明y x 的最大值为32
总结:以上两题说明,在给定约束条件情况下,要利用好目标函数的几何意义,可以使我们能够站在系统的高度,把握问题的规律,有效地实现问题解决,而且有助于加深学生对数学知识的理解和深化。

二、从08年高考题中得到的反思
1.在线性规划问题的教学中夯实基础,不能存在任何侥幸心理,对约束条件的建立,目标函数把握上要做到灵活。

2.在线性规划问题的教学中要注意知识的综合运用能力的培养,注意线性规划问题与函数,解析几何中其他问题的联系。

3.在线性规划问题的教学中还要注意理论联系实际,尤其是在应用性问题的教学中更要注意把握应用问题的实质。

相关文档
最新文档