等腰三角形典型例题
2023年高考数学----《双曲线的 底边等腰三角形》典型例题讲解
2023年高考数学----《双曲线的4a 底边等腰三角形》典型例题讲解【典型例题】例1、(2022·全国·高三专题练习)已知1F ,2F 是双曲线2222:1(0,0)x y C a b a b−=>>的左,右焦点,过点1F的直线l 与双曲线的左,右两支分别交于M ,N 两点,以2F 为圆心的圆过M ,N ,则双曲线C 的离心率为( )ABC .2 D【答案】B【解析】取MN 中点A ,连AF 2,由已知令22||||MF NF m ==,则2AF MN ⊥,如图:因点M ,N 为双曲线左右两支上的点,由双曲线定义得12||||22MF MF a m a =−=−,12||||22NF NF a m a =+=+,则11||||||4,||2MN NF MF a MA a =−==,令双曲线半焦距为c , 12Rt AF F △中,12||,||AF m AF =2Rt AMF中,2||AF =22222m a c =+,因直线l的斜率为2,即12tan 2AF F ∠=,而2121||tan ||AF AF F AF ∠=,即21||||AF AF =, 2221||1||2AF AF =,于是有2222221222c a c a −=+,c =,==c e a 所以双曲线C故选:B例2、(2022·全国·高三专题练习)设双曲线2222:1(0,0)x y C a b a b−=>>的左、右焦点分别为12,F F ,过点1Fl 与双曲线C 的左、右两支分别交于,M N 两点,且()220F M F N MN +⋅=,则双曲线C 的离心率为( )ABCD .2 【答案】A【解析】如图,设D 为MN 的中点,连接2F D . 易知2222F M F N F D +=,所以()22220F M F N MN F D MN +⋅=⋅=,所以2F D MN ⊥. 因为D 为MN 的中点,所以22F M F N =. 设22F M F N t ==,因为212MF MF a −=,所以12MF t a =−. 因为122NF NF a −=,所以12NF t a =+. 所以114MN NF MF a =−=.因为D 是MN 的中点,11F D F M MD =+,所以12,MD ND a F D t ===. 在Rt 12F F D中,2F D 在Rt 2MF D中,2F D22222t a c =+.所以21F D F D t ==因为直线l所以2121tan F D DF F F D ∠===,所以2222221,23c a c a a c −==+,c =,所以离心率为c a =故选:A。
专题03 等腰(直角)三角形中动点问题(老师版)
专题3等腰(直角)三角形中动点问题【典型例题】1.(2021·黑龙江集贤·八年级期末)如图,等腰三角形ABC的底边BC长为3,面积是18,腰AC的垂直平分线分别交AC、AB边于点E、F.若点D为DC边的中点,点M为线段EF上一动点,则CDM周长的最小值为___.【答案】13.5【解析】【分析】连接MA、AD,易得MA=MC,则△CMD的周长为:MC+MD+CD=MA+MD+CD≥AD+CD,当M点在线段AD上时,△CMD的周长最小,再由面积可求得AD的长,从而可求得周长的最小值.【详解】如图,连接MA、AD∵EF垂直平分线段AC∴MA=MC∴△CMD的周长=MC+MD+CD=MA+MD+CD≥AD+CD∵点D为DC边的中点,BC=3∴1 1.52CD BC==∵AB=AC ∴AD⊥BC∴118 2BC AD⨯=即1318 2AD⨯=∴AD=12∴AD+CD=12+1.5=13.5即△MCD的周长的最小值为13.5故答案为:13.5【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质定理,三角形的面积,两点之间线段最短等知识,关键是利用线段的垂直平分线的性质定理作辅助线MA,把MC+MD的最小值问题转化为两点间线段最短来解决.【专题训练】一、填空题1.(2022·江苏昆山·八年级期末)如图,∠ABC=30°,AB=6,动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,设点P的运动时间为t秒,当△ABP是以AB为底的等腰三角形时,t的值为______秒.【答案】【解析】【分析】过点P作PD⊥AB于点D,根据等腰三角形有性质得到BD=3,再根据30度角的直角三角形的性质结合勾股定理即可求解.【详解】解:过点P作PD⊥AB于点D,∵△ABP是以AB为底的等腰三角形,即BP=PA,∴BD=DA=12AB=3,∵∠ABC=30°,∴BP=2PD,即12BP=PD,∵BP2-PD2=BD2,∴BP2-14BP2=32,解得:BP=∵点P的运动速度是每秒1个单位长度,∴t的值为故答案为:【点睛】本题考查了等腰三角形的性质,含30度角的直角三角形的性质,勾股定理等知识点,解答本题的关键是明确题意,找出所求问题需要的条件.2.(2021·浙江·诸暨市暨阳初级中学八年级期中)如图∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=6,动点C从点A出发,以每秒1个单位沿射线AN运动,当运动时间t是_______秒时,△ABC是直角三角形.【答案】3或12【解析】【分析】分∠ACB=90°和∠ABC=90°两种情况,根据含30°角的直角三角形的性质求出AC,再求出答案即可.【详解】解:如图:当△ABC是以∠ACB=90°的直角三角形时,∵∠MAN=60°,∴∠ABC=30°,∴AC=13 2AB=,∴运动时间t=3311AC==秒,当△ABC是以∠ABC=90°的直角三角形时,∵∠MAN=60°,∴∠ACB=30°,∴AC=212AB=,∴运动时间t=121211AC==秒,当运动时间t是3或12秒时,△ABC是直角三角形.故答案为:3或12【点睛】本题考查了三角形的内角和定理和含30°角的直角三角形的性质,能熟记含30°角的直角三角形的性质是解此题的关键.3.(2022·新疆·乌鲁木齐市第四中学八年级期末)如图,在边长为6,面积为ABC中,N为线段AB上的任意一点,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是_______【答案】【解析】【分析】由等边三角形的对称性得到MC=BM,再利用垂线段最段解题.【详解】解:过点C 作CN AB ⊥于点N ,BD Q 平分∠BAC ,△ABC 为等边三角形,BM MC∴=∴BM +MN MC MN =+,当CN AB ⊥时,=MC MN CN +最小等边△ABC 面积为6,CN ∴故答案为:【点睛】本题考查轴对称—最短路径问题、等边三角形的性质等知识,是重要考点,掌握相关知识是解题关键.4.(2021·福建省罗源第二中学八年级期中)如图,在等腰△ABC 中,AB =AC ,∠BAC =120°,BC =30cm ,一动点P 从B 向C 以每秒2cm 的速度移动,当P 点移动____________秒时,PA 与△ABC 的腰垂直.【答案】5或10【解析】【分析】根据等腰三角形性质求出∠B =∠C =30°,分PA ⊥AC 和PA ⊥AB 两种情况分类讨论,得到BP =10cm 或BP =20cm ,即可求出点P 移动的时间.【详解】解:∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°.如图①,当PA ⊥AC 时,∵∠C =30°.∴PC =2AP ,∠APC =60°,∴∠B =∠BAP =30°,∴AP =BP ,∴PC =2BP ,∴BP =13BC =13×30=10cm ,∴P 点移动了10÷2=5(秒);如图②当PA⊥AB时,∵∠B=30°.∴PB=2BP,∠APB=60°,∴∠C=∠CAP=30°,∴AP=CP,∴BP=2CP,∴BP=23BC=23×30=20cm,∴P点移动了20÷2=10(秒).故答案为:5或10【点睛】本题考查了等腰三角形的性质与判定,直角三角形性质等知识,熟知相关定理,根据条件分类讨论是解题关键5.(2022·福建省泉州实验中学八年级期末)如图,在等腰△ABC中,∠BAC=30°,AB=AC,BC=4,点P、Q、R分别为边BC、AB、AC上(均不与端点重合)的动点,△PQR周长的最小值是______.【答案】423【解析】【分析】过BC的中点P作AB,AC的对称点M,N,连接MN交AB与Q,交AC于R,则此时△PQR周长最小,求出MQ,RQ,RN即可解决问题.【详解】过点P作AB,AC的对称点M,N,连接MN交AB于Q,交AC于R,设AP交MN于点D,则PQ MQ =,PR RN =,∴PQR 周长为PQ QR PR MQ QR EN MN ++=++≥,当,,,M Q R N 四点共线时,即当点P 是BC 的中点时,PQR 的周长最小,如图∵30BAC ∠=︒,∴75B C ∠=∠=︒,150MPN ∠=︒,∴15M N ∠=∠=︒,∴75MQB PQB B ∠=∠=∠=︒,∴MN BC ∥,2PQ PB ==,同理2PR PC ==,∵⊥AP BC ,∴AP MN ⊥.DP MN∴⊥PQ PR =DQ DR∴=∵180757530PQR ∠=︒-︒-︒=︒,∴Rt PDQ 中,112QD PQ ==∴==2QR DQ =⨯=,∴PQR 周长的最小值是22PQ QR PR ++=+=4+.故答案为:4+【点睛】本题是三角形综合题,考查了轴对称的性质,等边三角形的性质,等腰三角形的性质,含30度角的直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.6.(2022·辽宁铁西·八年级期末)同学们,我们在今后的学习中会学到这个定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图,在Rt △ABC 中,∠ACB =90°,若∠ABC =30°,则12AC AB =.问题:在Rt △ABC ,∠ACB =90°,∠ABC =30°,AC D 是边BC 的中点,点E 是斜边AB 上的动点,连接DE ,把△BDE 沿直线DE 折叠,点B 的对应点为点F .当直线DF ⊥AB 时,AE 的长为_____.【答案】2或2【解析】【分析】如图1所示,设DF 与AB 交点为G ,先求出AB ==3BC ,由D 是BC 的中点,可以得到1322BD BC ==,由折叠的性质可知∠F =∠B =30°,BE =EF ,即可得到1324DG BD ==,1122EG EF BE ==,BG ==,由此即可求出AE 的长;如图2所示,同理可得1324DG BD ==,4BG ==,1122EG EF BE ==,则32BE BG GE BG =+==,AE AB BE =-=【详解】解:如图1所示,设DF 与AB 交点为G ,∵∠ABC =30°,∠ACB =90°,∴2AB AC ==∴BC =,∵D 是BC 的中点,∴1322BD BC ==,由折叠的性质可知∠F =∠B =30°,BE =EF ,∵DF ⊥AB ,∴∠DGB =∠FGB =90°,∴1324DG BD ==,1122EG EF BE ==,∴4BG ==,∴2332BE BG ==,∴AE AB BE =-=如图2所示,延长FD 与AB 交于点G ,同理可求出1324DG BD ==,4BG ==,1122EG EF BE ==,∴22BE BG GE BG =+==,∴2AE AB BE =-=,故答案为:2【点睛】本题主要考查了含30度角的直角三角形的性质,勾股定理,旋转的性质,熟练掌握含30度角的直角三角形的性质是解题的关键.7.(2021·全国·八年级专题练习)如图,60BOC ∠=︒,点A 是BO 延长线上的一点,10cm OA =,动点P 从点A 出发沿AB 以3cm/s 的速度移动,动点Q 从点O 出发沿OC 以1cm/s 的速度移动,如果点P Q ,同时出发,用(s)t 表示移动的时间,当t =_________s 时,POQ △是等腰三角形;当t =_________s 时,POQ △是直角三角形.【答案】52或54或10【解析】【分析】根据POQ ∆是等腰三角形,分两种情况进行讨论:点P 在AO 上,或点P 在BO 上;根据POQ ∆是直角三角形,分两种情况进行讨论:PQ AB ⊥,或PQ OC ⊥,据此进行计算即可.【详解】解:如图,当PO QO =时,POQ ∆是等腰三角形,103PO AO AP t =-=-,OQ t =,∴当PO QO =时,103t t -=,解得52t =;如图,当PO QO =时,POQ ∆是等腰三角形,310PO AP AO t =-=-,OQ t =,∴当PO QO =时,310t t -=,解得5t =;如图,当PQ AB ⊥时,POQ ∆是直角三角形,且2QO OP =,310PO AP AO t =-=-,OQ t =,∴当2QO OP =时,2(310)t t =⨯-,解得4t =;如图,当PQ OC ⊥时,POQ ∆是直角三角形,且2QO OP =,310PO AP AO t =-=-,OQ t =,∴当2QO OP =时,2310t t =-,解得:t =10.故答案为:52或5;4或10.【点睛】本题主要考查了等腰三角形的性质以及直角三角形的性质,解决问题的关键是进行分类讨论,分类时注意不能遗漏,也不能重复.二、解答题8.(2021·浙江余杭·八年级期中)如图,已知在ABC 中,90B ∠=︒,10AC =,6BC =,若动点P 从点B 开始,按B A C B →→→的路径运动,且速度为每秒2个单位长度,设出发的时间为t 秒.(1)出发2秒后,求CP 的长.(2)出发几秒钟后,CP 恰好平分ABC 的周长.(3)当t 为何值时,BCP 为等腰三角形?【答案】(1)PC 52(2)出发3秒钟后,CP 恰好平分△ABC 的周长(3)t =3或5.4或6或6.5时,△BCP 为等腰三角形【解析】【分析】(1)勾股定理求得AB 的长,进而根据速度求得出发2秒后BP 的长,Rt BCP △中勾股定理求解即可;(2)由于CP 恰好平分ABC 的周长,则P 点不可能位于线段BC 和AC 上,即对P 点在线段AB 上进行探究,根据题意列出一元一次方程,解方程求解即可;(3)①当P 在AB 上时,若BP =BC 时,②当P 在AC 上时,若BP =BC 时,③当P 在AC 上时,若CB =CP 时,④当P 在AB 上时,若PC =PB 时,根据题意列出一元一次方程解方程求解即可(1)由∠B =90°,AC =10,BC =6,∴AB =8,∵P 从点B 开始,按B →A →C →B ,且速度为2,∴出发2秒后,则BP =4,AP =6,∵∠B =90°,∴在Rt BCP △中,由勾股定理得PC 22226452BP BC +=+=;(2)P 点不可能位于线段BC 和AC 上,即对P 点在线段AB 上进行探究,根据题意可得,6+2t =10+8-2t ;解得t =3∴出发3秒钟后,CP 恰好平分△ABC 的周长(3)①当P 在AB 上时,若BP =BC 时,得到2t =6;则t =3,②当P 在AC 上时,若BP =BC 时,过点B 作BD AC ⊥,则68 4.810AB BC BD AB ⨯⨯===在Rt BDP △中,22226 4.8 3.6PD PD BD =-=-=在Rt ADB 中,22228 4.8 6.4AD AB BD =-=-=8 6.4 3.610.8BA AP BA AD PD ∴+=+-=+-=即210.8t =解得 5.4t =③当P 在AC 上时,若CB =CP 时,810612BA PA BA AC PC +=+-=+-=即212t =解得6t =④当P 在AC 上时,若PC =PB 时,15PA AB ==8513BA AP ∴+=+=得到2t=6;则t=6.5.综上可得t=3或5.4或6或6.5时,△BCP为等腰三角形.【点睛】本题考查了勾股定理,一元一次方程的应用,等腰三角形的性质与判定,分类讨论是解题的关键.9.(2022·吉林·八年级期末)如图,△ABC是等腰直角三角形,∠ACB=90°,AB=6.动点P从点A出发,以每秒2个单位长度的速度在射线AB上运动.点P出发后,连接CP,以CP为直角边向右作等腰直角三角形CDP,使∠DCP=90°,连接PD,BD.设点P的运动时间为t秒.(1)△ABC的AB边上高为;(2)求BP的长(用含t的式子表示);(3)就图中情形求证:△ACP≌△BCD;(4)当BP:BD=1:2时,直接写出t的值.【答案】(1)3(2)当0<t≤3时,PB=6-2t;当t>3时,PB=2t-6;(3)见解析(4)t的值为2或6.【解析】【分析】(1)根据等腰直角三角形的性质解答即可;(2)根据两种情况,利用线段之间关系得出代数式即可;(3)根据SAS证明△ACP与△CBD全等即可;(4)利用全等三角形的性质解得即可.(1)解:∵△ABC是等腰直角三角形,∠ACB=90°,AB=6,∴△ABC的AB边上高=12AB=3,故答案为:3;(2)解:∵AB=6,动点P从点A出发,以每秒2个单位长度的速度在射线AB上运动,∴点P在线段AB上运动的时间为62=3(秒),当0<t≤3时,PB=6-2t,当t>3时,PB=2t-6;(3)证明:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∵∠PCD=90°,CP=CD,∴∠ACP+∠PCB=90°,∠PCB+∠BCD=90°,∴∠ACP=∠BCD,在△ACP与△CBD中,AC BC ACP BCD CP CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△CBD (SAS );(4)解:∵△ACP ≌△CBD ,∴AP =BD ,当BP :BD =1:2,即BD =2BP 时,当0<t ≤3时,2t =2(6-2t ),解得:t =2;当BP :BD =1:2,即BD =2BP 时,当t >3时,2t =2(2t -6),解得:t =6,综上所述,t 的值为2或6.【点睛】本题是三角形的综合题,关键是根据等腰直角三角形的性质和全等三角形的判定和性质解答.10.(2022·福建·厦门一中八年级期末)在锐角△ABC 中,∠B =45°,∠C =60°,AD ⊥BC 于点D.(1)如图1,过点B 作BG ⊥AC 于点G ,求证:AC =BF ;(2)动点P 从点D 出发,沿射线DB 运动,连接AP ,过点A 作AQ ⊥AP ,且满足AP AQ =.①如图2,当点P 在线线段BD 上时,连接PQ 分别交AD 、AC 于点M 、N .请问是否存在某一时刻使得△APM 和△AQN 成轴对称,若有,求此刻∠APD 的大小;若没有,请说明理由.②如图3,连接BQ ,交直线AD 与点F ,当点P 在线段BD 上时,试猜想BP 和DF 的数量关系并证明;当点P 在DB 的延长线上时,若27AD FD =,请直接写出PB BD 的值.【答案】(1)证明过程见解析.(2)①存在某一时刻使得△APM 和△AQN 成轴对称,∠APD =30°,理由见解析.②BP =2DF ,47PB BD =【解析】【分析】(1)根据已知条件,证明△BDF 和△ADC 全等,即可得出AC =BF .(2)①因为∠C =60°在Rt △ABC 中∠CAD =30°,∠PAQ =90°,由对称的性质可知∠PAD =∠QAC =30°,所以可以得出∠APD =60°;②过Q 作QE ⊥AD ,交AD 与点E ,可证△APD ≌△QAE ,得出AE =PD ,再证△APD ≌△QAE ,得出EF =DF ,再通过等量代换即可.(1)证明:∵AD ⊥BC∴∠ADB =∠ADC =90°又∵∠B =45°∴△ABD 是等腰直角三角形∴AD =BD∵BG ⊥AC∴∠BGC =90°又∵∠C =60°∴∠DAC =90°-∠C =90°-60°=30°∠FBD =90°-∠C =90°-60°=30°∴∠DAC =∠FBD在△BDF 和△ADC 中,FBD CDA BDF ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△ADC ∴AC =BF(2)①存在某一时刻使得△APM 和△AQN 成轴对称∵AQ ⊥AP∴∠QAP =90°由(1)的证明知∠DAC =30°,根据对称的性质,得∠PAD =∠QAC =2QAP CAD ∠-∠=90︒︒-302=30°∵∠ADP =90°∴∠APD =90°-∠PAD =90°-30°=60°②BP =2DF理由如下:如图4所示,过Q 作QE ⊥AD ,交AD 与点E ,那么∠AEQ =∠FEQ =90°∴∠AQE +∠QAE =90°又∵∠PAD +∠QAE =90°∴∠AQE =∠PAD在△APD 和△QAE 中,AQE PAD AEQ PDA AQ AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APD ≌△QAE ∴AE =PD ;AD =QE∴DE =BP又∵AD =BD∴BD =QE在△QEF 和△BDF 中,QEF BDF EFQ DFB EQ DB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△QEF ≌△BDF∴EF =DF∴BP =2DF当点P 在DB 的延长线上时,如下图所示,由上述证明过程可知PB =2DF ,BD =AD又已知27AD FD∴DF =27AD∴PB =2×27BD =47BD ∴PB BD =47【点睛】本题考查了三角形全等的判定与性质,解题的关键是通过适当的作辅助线找等量关系从而得出三角形全等,再由全等的性质找出线段的关系,本题是一道压轴题,比较难.11.(2022·北京顺义·八年级期末)我们定义:在等腰三角形中,腰与底的比值叫做等腰三角形的正度.如图1,在△ABC 中,AB =AC ,AB BC的值为△ABC 的正度.已知:在△ABC 中,AB =AC ,若D 是△ABC 边上的动点(D 与A ,B ,C 不重合).(1)若∠A =90°,则△ABC 的正度为;(2)在图1,当点D 在腰AB 上(D 与A 、B 不重合)时,请用尺规作出等腰△ACD ,保留作图痕迹;若△ACD的正度是2,求∠A 的度数.(3)若∠A 是钝角,如图2,△ABC 的正度为35,△ABC 的周长为22,是否存在点D ,使△ACD 具有正度?若存在,求出△ACD 的正度;若不存在,说明理由.【答案】(1)22(2)图见解析,∠A =45°(335.【解析】【分析】(1)当∠A=90°,△ABC是等腰直角三角形,故可求解;(2)根据△ACD的正度是22,可得△ACD是以AC为底的等腰直角三角形,故可作图;(3)由△ABC的正度为35,周长为22,求出△ABC的三条边的长,然后分两种情况作图讨论即可求解.【详解】(1)∵∠A=90°,则△ABC是等腰直角三角形∴AB=AC∵AB2+AC2=BC2∴BC∴△ABC2故答案为:2 2;(2)∵△ACD1)可得△ACD是以AC为底的等腰直角三角形故作CD⊥AB于D点,如图,△ACD即为所求;∵△ACD是以AC为底的等腰直角三角形∴∠A=45°;(3)存在∵△ABC的正度为3 5,∴ABBC=35,设:AB=3x,BC=5x,则AC=3x,∵△ABC的周长为22,∴AB+BC+AC=22,即:3x+5x+3x=22,∴x=2,∴AB=3x=6,BC=5x=10,AC=3x=6,分两种情况:①当AC=CD=6时,如图过点A 作AE ⊥BC 于点E ,∵AB =AC ,∴BE =CE =12BC =5,∵CD =6,∴DE =CD −CE =1,在Rt △ACE 中,由勾股定理得:AE =在Rt △AED 中,由勾股定理得:AD =∴△ACD 的正度=AC AD =②当AD =CD 时,如图由①可知:BE =5,AE ,∵AD =CD ,∴DE =CE −CD =5−AD ,在Rt △ADE 中,由勾股定理得:AD 2−DE 2=AE 2,即:AD 2−(5−AD )2=11,解得:AD =185,∴△ACD 的正度=185365AD AC ==.综上所述存在两个点D ,使△ABD 具有正度.△ABD 35.【点睛】此题考查了等腰三角形的性质,解题的关键是理解正度的含义、熟知勾股定理与等腰三角形的性质.12.(2022·北京西城·八年级期末)在ABC 中,120BAC ∠=︒,AB AC =,AD 为ABC 的中线,点E 是射线AD 上一动点,连接CE ,作60CEM ∠=︒,射线EM 与射线BA 交于点F .(1)如图1,当点E 与点D 重合时,求证:2AB AF =;(2)如图2,当点E 在线段AD 上,且与点A ,D 不重合时,①依题意,补全图形;②用等式表示线段AB ,AF ,AE 之间的数量关系,并证明.(3)当点E 在线段AD 的延长线上,且ED AD ≠时,直接写出用等式表示的线段AB ,AF ,AE 之间的数量关系.【答案】(1)见解析;(2)AB AF AE =+,证明见解析;(3)当AD ED >时,AB AF AE =+,当AD ED <时,AB AE AF=-【解析】【分析】(1)根据等腰三角形三线合一的性质得60BAD CAD ∠=∠=︒,90ADC ∠=︒,从而可得在Rt ADB 中,30B ∠=︒,进而即可求解;(2)画出图形,在线段AB 上取点G ,使EG EA =,再证明()BGE FAE ASA ≅,进而即可得到结论;(3)分两种情况:当AD ED >时,当AD ED <时,分别画出图形,证明()BHE FAE ASA ≅或()NEF AEC ASA ≅,进而即可得到结论.【详解】(1)∵AB AC =,∴ABC 是等腰三角形,∵120BAC ∠=︒,∴30B C ∠=∠=︒,18012060FAC ∠=︒-︒=︒,∵AD 为ABC 的中线,∴60BAD CAD ∠=∠=︒,90ADC ∠=︒,∴6060120DAF CAD FAC ∠=∠+∠=︒+︒=︒,∵60CEM ∠=︒,∴906030ADF ∠=︒-︒=︒,∴180(12030)30AFD ∠=︒-︒+︒=︒,∴AD AF =,在Rt ADB 中,30B ∠=︒,∴22AB AD AF ==;(2)AB AF AE =+,证明如下:如图2,在线段AB 上取点G ,使EG EA =,∵60BAC ∠=︒,∴AEG △是等边三角形,∴60AEG ∠=︒,120BGE FAE ∠=∠=︒,∵ABC 是等腰三角形,AD 为ABC 的中线,∴EB EC =,BED CED ∠=∠,∴AEB AEC ∠=∠,即AEG GEB CEF AEF ∠+∠=∠+∠,∵60CEF AEG ∠=∠=︒,∴GEB AEF ∠=∠,在BGE △与FAE 中,GEB AEF EG EA BGE FAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BGE FAE ASA ≅,∴GB AF =,∴AB GB AG AF AE =+=+;(3)当AD ED >时,如图3所示:与(2)同理:在线段AB 上取点H ,使EH EA =,∵60BAD ∠=︒,∴AEH △是等边三角形,∴120BHE FAE ∠=∠=︒,60AEH ∠=︒,∵ABC 是等腰三角形,AD 为ABC 的中线,∴BED CED ∠=∠,∵60CEF AEH ∠=∠=︒,∴HEB AEF ∠=∠,∴()BHE FAE ASA ≅,∴HB AF =,∴AB HB AH AF AE =+=+,当AD ED <时,如图4所示:在线段AB 的延长线上取点N ,使EN EA =,∵60BAD ∠=︒,∴AEN △是等边三角形,∴60AEN FNE ∠=∠=︒,∵60CEF AEN ∠=∠=︒∴NEF AEC ∠=∠,在NEF 与AEC △中,60FNE CAE EN EA NEF AEC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴()NEF AEC ASA ≅,∴NF AC AB ==,=,∴BN AF=-=-,∴AB AN BN AE AF∴AB AE AF=-.【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质以及等边三角形的判定与性质,根据题意做出辅助线找全等三角形是解题的关键.。
专题17 等腰(等边)三角形问题(学生版)
备考2024中考二轮数学《高频考点冲刺》(全国通用)专题17 等腰(等边)三角形问题考点扫描☆聚焦中考等腰(等边)三角形问题近几年各地中考主要以填空题或选择题考查,也有解答题出现,难度系数小,较简单,属于低档题;考查的知识点主要有:等腰三角形的性质与判定、等边三角形的性质与判定、线段的垂直平分线的性质;考查热点主要有:等腰三角形性质与判定、等边三角形性质与判定、线段垂直平分线的性质.考点剖析☆典型例题(2023•宿迁)若等腰三角形有一个内角为110°,则这个等腰三角形的底角是()A.70°B.45°C.35°D.50°2020•青海)已知a,b,c为△ABC的三边长.b,c满足(b﹣2)2+|c﹣3|=0,且a为方程|x ﹣4|=2的解,则△ABC的形状为三角形.2023•益阳)如图,AB∥CD,直线MN与AB,CD分别交于点E,F,CD上有一点G且GE =GF,∠1=122°,求∠2的度数.例4(2023•绵阳)如图,在等边△ABC中,BD是AC边上的中线,延长BC至点E,使CE=CD,若DE=,则AB=()A.B.6C.8D.例5(2021•宁夏)如图,在▱ABCD中,AD=4,对角线BD=8,分别以点A、B为圆心,以大于AB 的长为半径画弧,两弧相交于点E和点F,作直线EF,交对角线BD于点G,连接GA,GA恰好垂直于边AD,则GA的长是()A.2B.3C.4D.5考点过关☆专项突破类型一等腰三角形的性质与判定1.(2023•南京)若一个等腰三角形的腰长为3,则它的周长可能是()A.5B.10C.15D.202.(2023•眉山)如图,△ABC中,AB=AC,∠A=40°,则∠ACD的度数为()A.70°B.100°C.110°D.140°3.(2023•内蒙古)如图,直线a∥b,直线l与直线a,b分别相交于点A,B,点C在直线b上,且CA=CB.若∠1=32°,则∠2的度数为()A.32°B.58°C.74°D.75°4.(2023•菏泽)△ABC的三边长a,b,c满足(a﹣b)2++|c﹣3|=0,则△ABC是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形5.(2022•宁波)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为()A.2B.3C.2D.46.(2023•重庆)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为.7.(2023•西宁)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADB的度数是.8.(2023•山西)如图,在四边形ABCD中,∠BCD=90°,对角线AC,BD相交于点O.若AB=AC=5,BC=6,∠ADB=2∠CBD,则AD的长为.9.(2022•温州)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB.(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.10.(2023•烟台)如图,点C为线段AB上一点,分别以AC,BC为等腰三角形的底边,在AB的同侧作等腰△ACD和等腰△BCE,且∠A=∠CBE.在线段EC上取一点F,使EF=AD,连接BF,DE.(1)如图1,求证:DE=BF;(2)如图2,若AD=2,BF的延长线恰好经过DE的中点G,求BE的长.类型二等边三角形的性质与判定1.(2023•金昌)如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交BC 的延长线于点E,则∠DEC=()A.20°B.25°C.30°D.35°2.(2022•绵阳)下列关于等边三角形的描述不正确的是()A.是轴对称图形B.对称轴的交点是其重心C.是中心对称图形D.绕重心顺时针旋转120°能与自身重合3.(2022•鞍山)如图,直线a∥b,等边三角形ABC的顶点C在直线b上,∠2=40°,则∠1的度数为()A.80°B.70°C.60°D.50°4.(2023•滨州)已知点P是等边△ABC的边BC上的一点,若∠APC=104°,则在以线段AP,BP,CP为边的三角形中,最小内角的大小为()A.14°B.16°C.24°D.26°5.(2019•铜仁市)如图,四边形ABCD为菱形,AB=2,∠DAB=60°,点E、F分别在边DC、BC上,且CE=CD,CF=CB,则S△CEF=()A.B.C.D.6.(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=,则△AOB 与△BOC的面积之和为()A.B.C.D.7.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.8.(2023•雅安)如图,四边形ABCD中,AB=AD,BC=DC,∠C=60°,AE∥CD交BC于点E,BC=8,AE=6,则AB的长为.9.(2023•凉山州)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是.10.(2023•武汉)如图,DE平分等边△ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF 相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是.类型三线段垂直平分线的性质1.(2023•青海)如图,在△ABC中,DE是BC的垂直平分线.若AB=5,AC=8,则△ABD的周长是.2.(2023•丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC的长是.3.(2022•青海)如图,在Rt△ABC中,∠ABC=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E,∠BAE=10°,则∠C的度数是.4.(2021•淮安)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长是()A.2B.4C.6D.85.(2022•宜昌)如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为()A.25B.22C.19D.186.(2022•湖北)如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于AC 的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:①四边形AECF是菱形;②∠AFB=2∠ACB;③AC•EF=CF•CD;④若AF平分∠BAC,则CF=2BF.其中正确结论的个数是()A.4B.3C.2D.17.(2021•河北)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.78.(2021•长沙)如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至E,使得CE=CA,连接AE.(1)求证:∠B=∠ACB;(2)若AB=5,AD=4,求△ABE的周长和面积.。
等腰三角形 典型例题
典型例题例题1 如图,P、Q是边BC上的两点,且,求的度数.分析由已知为等边三角形,故可求得它的外角的度数,又由等腰三角形的性质求得底角的度数.解(已知)∴(等边三角形三个角都为60°)∴(等边对等角)又(三角形的一个外角等于它不相邻的两个内角和)∴同理∴说明几何计算的目的通常是找量与量的关系,等腰三角形的两底角相等,等边三角形三内角均为60°,等腰三角形三线合一的性质等都是建立量与量的关系的依据.例题2 如图,在中,在CA的延长线上,是高.试说明EF与BC的位置关系.并说明理由.分析画出准确的图形,能看出,三角尺也能显示出有这样的关系,但这并不能作为理由.真正的理由应该用我们所学的知识去推理.结论是,从图中看EF、BC没有联系,但AD与BC是垂直的,只要说明,问题就解决了.解∴又为的一个外角∴∴∴∴∴说明(1)在同一三角形中,有边相等,要联想到角相等.(2)在这里AD起到“桥梁”的作用,有的题题目中没有现成的“桥梁”,还可以自己“制造”“桥梁”.拿本题来说,过点A画BC的平行线与EF相交,或者,过点E作BC的平行线与BA的延长线相交,也都可以作为“桥梁”.有兴趣的同学可以试一试.例题3 如图是我们最为熟悉的图形之一,这个图形可以看做是按照一定规则连结正五边形的顶点得到的,被称为正五角形.这个图形有几条对称轴?在这个图形中有哪些个等腰三角形?分析由这个图形与正五边形的关系知过点和B的直线,以及有类似特点的直线都是这个图形的对称轴.由于直线是图形的对称轴,所以图形沿直线进行翻折后,点与点重合,这使得线段与重合,线段与重合,可见与都是等腰三角形,利用同样的思路可以发现图中的其他等腰三角形.解这个图形有五条对称轴.在这个图形中共有十个等腰三角形,可以视为两组:;,以及说明如果你只发现了图中的五个三角形,请不要以“粗心”原谅自己,而应该感到自己从多角度观察、思考问题的意识不强,基本功还差.例题4 一个等腰三角形的周长为18cm,一边长为4cm,求其他两边的长.分析题目中给出“一边长为4”,究竟是腰长为4,还是底边长为4呢?都无法确定,也许这两种情况都有可能,所以应该分两种情况进行讨论.解若以4cm长的边为底边,设腰长为x cm,则 cm.若以4cm长的边为腰,设底边长为x,则 cm.,出现二边之和小于第三边的情况,所以以4cm长为腰不能组成三角形.故其他两边的长为7cm、7cm.说明(1)涉及等腰三角形的边的问题,在未指明腰和底的情况下,要分情况予以讨论.(2)凡涉及三角形三边的长时,一定要检查三边能否构成一个三角形。
等腰三角形典型例题
本次课课堂教学内容知识梳理:线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等。
线段垂直平分线的判定定理:到线段两端点距离相等的点在线段的垂直平分线上。
等腰三角形性质:等腰三角形底角相等等腰三角形两腰相等等腰三角形“三线合一”垂直平分线的性质与判定1.如图,在△ABC中,直线DE垂直平分线段AB,垂足为点E,交BC于点D,连接AD. 已知∠B=60°,∠C=50°,∠CAD的度数为.2.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E. 求证:DE=EC.3.如图,在△ABC中,DE,FG分别是边AB,AC的垂直平分线.(1)若BC=13,求△AEG的周长;(2)若∠BAC=120°,求∠EAG的度数.4.如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15 cm,△BCE的周长等于25 cm.(1)求BC的长;(2)若∠A=36°,并且AB=AC.求证:BE=BC.5.如图,在Rt△ABC中,∠ACB=90°,D是AB上的一点,BD=BC,连接CD,过点D作AB 的垂线,交AC于点E,连接BE,交CD于点F.求证:BE垂直平分CD.6. 如图,在△ABC中,∠ACB=90°,D是BC的延长线上一点,EH是BD的垂直平分线,DE 交AC于点F.求证:点E在AF的垂直平分线上.7.如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O. 已知∠ACB=45°,DE=3,BD=CE+1.(1)求边BC的长;(2)分别连接OA,OB,OC,若△OBC的周长为28 cm,求OA的长.8. 如图,已知锐角三角形ABC中,AB,AC边的中垂线交于点O,∠A=α(0°<α<90°). (1)求∠BOC的度数;(2)试判断∠ABO+∠ACB是否为定值.若是,求出定值;若不是,请说明理由.9.如图1,在△ABC中,若AD是∠BAC的平分线,过D点分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE=DF.探究发现:如图2,在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E,F分别在AB和AC上”.若∠AED+∠AFD=180°,则DE与DF是否仍相等?若相等,请证明之;若不相等,请举反例说明.10.如图,在△ABC中,E、F分别是AB、AC上的点,AD平分∠BAC,DE⊥AB,DF⊥AC,求证:AD垂直平分EF.11.已知:如图,∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.①求证:BE=CF;②若AF=6,BC=7,求△ABC的周长.12.如图,AD是△ABC的角平分线,AD的中垂线分别交AB、BC的延长线于点F、E,求证:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.等腰三角形的分类讨论方法指导:分类讨论思想是解题的一种常用方法,在等腰三角形中,往往会遇到条件或结论不唯一的情况,此时就需要分类讨论.通过正确地分类讨论,可以使复杂的问题得到清晰、完整、严密的解答.其解题策略为:先分类,再画图,后计算.应用1:当顶角或底角不确定时,分类讨论1.若等腰三角形中有一个角等于40°,则这个等腰三角形的顶角度数为( )A.40° B.100°C.40°或70° D.40°或100°2.如果等腰三角形的两个内角的度数之比为1:4,那么这个三角形三个内角各是多少度?应用2:当底和腰不确定时,分类讨论3.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )A.8或10 B.8C.10 D.6或124.等腰三角形的两边长分别为7和9,则其周长为________.5.若x,y满足|x-4|+(y-8)2=0,则以x,y的值为边长的等腰三角形的周长为________.应用3:当高的位置不确定时,分类讨论6.等腰三角形一腰上的高与另一边的夹角为25°,求这个三角形的各个内角的度数.应用4:由腰的垂直平分线引起的分类讨论7.在△AB C中,AB=AC,AB边的垂直平分线与AC所在的直线相交所得的锐角为40°,求底角∠B的度数.应用5:由腰上的中线引起的分类讨论8.等腰三角形ABC的底边BC长为5 cm,一腰上的中线BD把其分为周长差为3 cm的两部分,求腰长.本次课课后练习1.如图,在△ABC中,D是BC边的中点,DE⊥BC,交AC于点E,AD交BE于点F,若已知AD=AB.(1)求证:∠CAD=∠ABE;(2)求证:AF=DF.2.数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.3.【定义】数学课上,陈老师对我们说:如果1条线段将一个三角形分成2个等腰三角形,那么这条线段就称为这个三角形的“好线”;如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.【理解】(1)如图①,在△ABC中,∠A=27°,∠C=72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数;(2)如图②,已知△ABC是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数.【应用】(3)在△ABC中,已知一个内角为42°,若它只有“好线”,请你写出这个三角形中最大内角的所有可能值为____________________________________________;(4)在△ABC中,∠C=27°,AD和DE分别是△ABC的“好好线”,点D在边BC上,点E 在边AB上,且AD=DC,BE=DE,请你根据题意画出示意图,并求∠B的度数.。
等腰三角形(一)
【知识要点】等腰三角形性质 (1)等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合; (3)等腰三角形的是轴对称图形,对称轴是底边上的高所在的直线。
判定 (1)有两条边相等的三角形是等腰三角形; (2)有两个角相等的三角形是等腰三角形;(3)中线、高、角平分线重合的三角形是等腰三角形。
【典型例题】 例1 如图1,已知等边三角形ABC 边BA 延长线上有一点D ,BC 延长线上有一点E ,且AD=BE ,求证:DC=DE 。
例2 已知△ABC 的两边AB 、AC 的长是关于x 的一元二次方程22(23)320x k x k k -++++=的两个实数根,第三边BC 的长为5。
(1)k 为何值时,△ABC 是以BC 为斜边的直角三角形?(2)k 为何值时,△ABC 是等腰三角形?并求出△ABC 的周长。
E 图1∠B )。
例4 如图3,∠ABD=∠ACD=60,∠ADB=90°-12∠BDC ,求证:△ABC 是等腰三角形。
【闯关练习】1.已知等腰三角形ABC 的底边BC=8,AC BC =3,则腰AC 的长为 。
2.若等腰三角形的周长为12,腰长为x ,则腰长x 的取值范围是 。
3.若等腰三角形一腰上的高等于腰长的一半,则这条高与底边的夹角为 。
4.在△ABC 中,AB=AC ,AB 的中垂线与AC 所在直线相交所得的锐角为50°,则底角B 的大小为 。
5.若等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是 。
6.如图4,已知等边△ABC 的周长为6,BD 是AC 边上的高,E 是BC 延长线上一点,CD=CE ,求△BDE 的周长。
F AB CM EP1 2 图2 D 图3【疯狂收获】【冲刺练习】1.如图6,△ABC 中,AB=AC ,D ,E ,F ,分别为AB ,BC ,CA 上的高,且BD=CE ,∠DEF=∠B 。
初中三数学等腰三角形典型例题分析
初中三数学等腰三角形典型例题分析模型一:向两边作垂线得距离相等如下图,由角的平分线上的一点向角的一边或两边作垂线,可以用角的平分线性质定理解题;模型二:角的两边取等线段构全等如下图,以角的平分线为轴,将图形翻折,在角的平分线两侧构造全等三角形,使已知与结论发生关系出现新的条件;模型三:角平分线加垂线得三线合一如下图,当题设有角平分线及与角平分线垂直的线段,可延长这条线段与角的另一边相交,构成等腰三角形,利用等腰三角形的“三线合一”性质证题;模型四:角平分线遇见平行线得等腰三角形如下图,过角的一边上的点,作另一边的平行线,构成等腰三角形——“角平分线+平行,必出等腰”.【典例1】如下图,已知在四边形ABCD中,BC>AB,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.证法一:如下图,过点D作BC、BA的垂线,垂足分别是M、N.∵BD平分∠ABC∴ DM=DN又∵ AD=CD∴Rt△DMC≌Rt△DNA(HL)∴∠NAD=∠C∵∠BAD+∠NAD=180°∴∠BAD+∠C=180°.证法二:如下图,在BC上截取BE=AB,连接DE,可证得△ABD≌△EBD(SAS)∴∠A=∠BED, AD=ED∵AD=CD∴ED=CD∴∠C=∠DEC∴∠A+∠C=∠BED+∠DEC=180°.证法三:如下图,延长BA到E,使BE=BC,连接ED. 可证△BDE≌△BDC(SAS)∴∠E=∠C, ED=CD.∵AD=CD∴ AD=ED.∴∠E=∠DAE,∠C=∠DAE,∴∠BAD+∠C=∠BAD+∠DAE=180°.【典例2】如下图,已知在△ABC是等腰直角三角形,∠BAC=90°,AB=AC,BE平分∠ABC,CE⊥BE.求证:CE=1/2BD.思路分析:注意到BD平分∠ABC,CE⊥BE,这种情况完全和第三种模型吻合,于是延长CE、BA相交于F,如下图,则易证△BEF≌△BEC(ASA)∴ EF=CE ∴ CE=EF=1/2CF.∵ CE⊥BE∴∠1=90°-∠F. 同理∠3=90°-∠F∴∠1= ∠3 又∵AB=AC ∠BAD=∠CAF∴△ABD≌△ACF(ASA)∴BD=CF∴ CE=1/2BD.。
等腰三角形典型例题
等腰三角形典型例题
哎呀呀,啥是等腰三角形啊?让我来给你好好讲讲!
我们在数学课上,老师经常提到等腰三角形。
就好像我们班的同学一样,有的高,有的矮,有的胖,有的瘦,可等腰三角形就特别有特点。
比如说,有这么一道题:一个等腰三角形的两条边分别是5 厘米和10 厘米,那它的周长是多少呢?
这可难不倒我!我就想啊,如果5 厘米是腰长,那另一条腰也是5 厘米,可两条腰加起来才10 厘米,这怎么能围成三角形呢?这就好像用两根短木棍和一根长木棍,根本拼不成三角形嘛!所以啊,腰长只能是10 厘米,那周长不就是10 + 10 + 5 = 25 厘米嘛!
还有一道题,一个等腰三角形顶角是80 度,那底角是多少度呢?我马上就想到,等腰三角形两个底角相等,三角形内角和是180 度,那不就是(180 - 80)÷ 2 = 50 度嘛!这多简单!
我同桌还跟我争论,说他觉得不是这样算的。
我就跟他说:“你好好想想,三角形内角和是不变的呀,这不是明摆着的嘛!”
还有一次,老师在黑板上画了一个大大的等腰三角形,问我们:“如果这个等腰三角形的底边长是12 厘米,高是8 厘米,面积是多少?”我马上举手回答:“面积就是12×8÷2 = 48 平方厘米呀!”老师还表扬我了呢!
你说,这等腰三角形是不是很有趣?它就像一个神秘的小宝藏,等着我们去挖掘里面的秘密!
总之,通过这些典型例题,我发现只要认真思考,等腰三角形也没那么难嘛!。
八年级轴对称典型例题
八年级轴对称典型例题一、等腰三角形与轴对称性质相关例题例题1:已知等腰三角形ABC中,AB = AC,∠A = 36°,请找出这个等腰三角形的所有对称轴。
解析:1. 因为等腰三角形ABC中,AB = AC,等腰三角形是轴对称图形,对称轴是底边上的高(或顶角平分线或底边的中线)所在的直线。
作AD⊥BC于D点,由于AB = AC,根据等腰三角形三线合一的性质,AD所在直线就是等腰三角形ABC的对称轴。
因为∠A=36°,AB = AC,所以∠B=∠C=(180° 36°)/2 = 72°。
这条对称轴将等腰三角形ABC分成两个全等的直角三角形ABD和ACD。
2. 总结:等腰三角形ABC有1条对称轴,即底边上的高AD所在的直线。
二、线段垂直平分线与轴对称例题例题2:如图,在△ABC中,DE是AC的垂直平分线,AE = 3cm,△ABD的周长为13cm,求△ABC的周长。
[此处可自行画一个简单的三角形ABC,其中DE是AC的垂直平分线,D在AC上,E在BC上]解析:1. 因为DE是AC的垂直平分线,根据线段垂直平分线的性质,可得AD = CD。
2. 已知△ABD的周长为AB+BD + AD = 13cm,由于AD = CD,所以AB+BD+CD = 13cm,即AB + BC = 13cm。
3. 又因为AE = 3cm,且DE垂直平分AC,所以AC = 2AE = 6cm。
4. 那么△ABC的周长为AB+BC + AC=13 + 6 = 19cm。
三、角平分线与轴对称例题例题3:如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,连接CD,求证:OP垂直平分CD。
[画一个∠AOB,OP为角平分线,PC垂直OA于C,PD垂直OB于D,连接CD]解析:1. 因为OP平分∠AOB,PC⊥OA,PD⊥OB,根据角平分线的性质,可得PC = PD。
2. 在Rt△OPC和Rt△OPD中,OP = OP(公共边),PC = PD,所以Rt△OPC≌Rt △OPD(HL)。
等腰三角形
等腰三角形◆等腰三角形的性质等腰三角形的性质:等腰三角形的两个底角相等(简写成:等边对等角)几何符号语言:在ABC ∆中, ∵AC AB = ∴C B ∠=∠注:等腰三角形的顶角平分线、底边上的高线、中线相互重合(简写成:三线合一)几何符号语言:∵AC AB = BC AD ⊥∴DC BD = C A D BAD ∠=∠或 ;或 .【典型例题】例1. 如图,ABC ∆中,AC AB =,D 为BC 上一点,且CE BD =,DC BF =.猜想FDE ∠与A ∠的关系并证明.例2.已知:如图,ABC ∆中,AC AB =,D 为边BC 的中点,AC DE ⊥于E ,AB DF ⊥于F . 求证:DF DE =例3.等腰三角形的一个角等于︒100,则另两个角的度数为( )A .︒40,︒40B .︒100,︒20C .︒50,︒50D .︒40,︒40或︒100,︒20例4.等腰三角形的顶角是底角的3倍,则底角的度数为( )A .︒36B .︒52C .︒60D .︒72例5.已知:如图,设P 是等腰直角ABC ∆的直角边AC 的中点,BP AD ⊥于E ,AD 交BC 于D .求证:CPD APB ∠=∠【随堂练习】6-1.如图,ABC ∆中,AC AB =,BD BC =,EB DE AD ==,则A ∠的度数为 .6-2.若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( )A .11cmB .7.5cmC .11cm 或7.5cmD .以上都不对6-3.如图:︒=∠15EAF ,EF DE CD BC AB ====,则DEF ∠等于( )A .90°B .75°C .70°D .60°6-4.等腰三角形的一个角是80°,则它的底角是( )A .50°或80°B . 80°C .50°D .20°或80°6-5.如图,ABC ∆中,AC AB =,D 是BC 中点,下列结论中不正确...的是( ) A. C B ∠=∠ B.BC AD ⊥ C.AD 平分BAC ∠ D. BD AB 2=6-6.在ABC ∆中,AC AB =,︒=∠60CDA ,AC AD ⊥,则BAD ∠的度数为( )A .︒18B .︒30C .︒36D .︒606-7.如图,AD 是ABC ∆的角平分线,且AC AE =,BC EF //交AC 于F .求证:CE 平分DEF ∠6-8.如图,在ABC ∆中,BD AD =,CE AE =,且︒=∠110A .求DAE ∠的度数.6-9.五边形ABCDE 中AE AB =,DE BC =,AED ABC ∠=∠,点F 是CD 的中点.•求证:CD AF ⊥◆等腰三角形的判定等腰三角形的判定:有两个角相等的三角形叫做等腰三角形(等角对等边)几何符号语言:∵C B ∠=∠ ∴AC AB =【典型例题】例6.如图,ABC ∆中,A C ABC ∠=∠=∠2,BD 为ABC ∠的平分线,BC DE //,交AB 于E ,则图中的等腰三角形的个数是( )A .2B .3C .4D .5例7.如图,在四边形ABDC 中,AC AB =,C B ∠=∠.求证:CD BD =例8.如图,ABC ∆中,C B ∠=∠2,AD 是BAC ∠的平分线.求证:BD AB AC +=例9.如图,OA 平分BAC ∠,21∠=∠.求证:ABC ∆为等腰三角形。
等腰三角形典型例题
等腰三角形典型例题【例1】如图所示,△ABC中,AB=AC,D在BC上,且BD=AD,DC=AC,求∠B的度数。
ACB D思路点拨:只要把“等边对等角”这一性质用在三个不同的等腰三角形中,然后用方程思想解题,列方程的依据是三角形的内角和定理。
解:∵AB=CD(已知)∴∠B=∠C(等边对等角)同理:∠B=∠BAD,∠CAD=∠CDA设∠B为X0,则∠C=X0,∠BAD=X0∴∠ADC=2X0,∠CAD=2X0在△ADC中,∵∠C+∠CAD+∠ADC=1800∴X+2X+2X=180∴X=36答:∠B的度数为360注:用代数方法解几何计算题常可使我们换翻为简。
练习1:如图所示,在△ABC中,D是AC上一点,并且AB=AD,DB=DC,若∠C=290,则∠A=___练习2:如图在△ABC 中,AB=AC,点D 在AC 上,且BD=BC=AD,求△ABC 各角的度数?【例2】如图所示,在△ABC 中,AB=AC ,O 是△ABC 内一点,且OB=OC 。
求证:AO ⊥BC思路点拨:要证AO ⊥BC ,即证AO是等腰三角形底边上的高,根据三线合一定理,只要先证AO 是顶角的平分线即可。
B证明:延长AO 交BC 于DAB=AC (已知) 在△ABO 和△ACO 中 OB=OC (已知) AO=AO(公共边) ∴△ABO ≌△ACO (SSS ) ∴∠BAO=∠CAO即∠BAD=∠CAD (全等三角形的对应角相等)∴AD ⊥BC ,即AO ⊥BC (等腰三角形顶角的平分线与底边上的高互相重合)评注:本题用两次全等也可达到目的.。
练习:如图所示,点D 、E 在△ABC 的边BC 上,AB=AC ,AD=AE 求证:BD=CE【例3】求证等腰三角形底边上任一点到两腰的距离之和等于一腰上C的高。
思路点拨:本题为文字题,文字题必须按下列步骤进行:(1)根据题意画出图形;(2)根据图形写出“已知”、“求证”;(3)写出证明过程。
等腰三角形典型例题练习(含答案)
二.填空题(共1小题)3.如图,在正三角形ABC中,的面积与△ ABC的面积之比等于的平分线,E、F分别为AB、AC上的点,且/ EDF+ / EAF=180 °求证5.在△ ABC中,/ ABC、/ ACB的平分线相交于点O,过点O作DE // BC,分别交AB、AC于点D、E.请说明DE=BD+EC .等腰三角形典型例题练习一.选择题(共2小题)AD平分/ BAC交BC于D,若BC=5cm , BD=3cm,则点D到AB的距离为(A. 5 cmB. 3 cmC. 2cmD.不能确定2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD 和等边△BCE,连接AE交CD于M,连接BD交CE于N .给出以下三个结论:①AE=BD②CN=CM③MN // AB 其中正确结论的个数是(A. 0 C. 2 D. 3DE=DF .D, E, F 分别是BC, AC, AB 上的点,DE 丄AC, EF 丄AB , FD 丄BC ,则△ DEF三.解答题(共15小题)4 .在△ ABC 中,AD 是/ BAC6. >已知:如图,D 是^ABC 的BC 边上的中点,DE 丄AB , DF 丄AC ,垂足分别为 E , F ,且DE=DF .请判断△ ABC 是什么三角形?并说明理由.7•如图,△ ABC 是等边三角形,BD 是AC 边上的高,延长 BC 至E ,使CE=CD •连接DE .(1) / E 等于多少度?(2) △ DBE 是什么三角形?为什么?&如图,在 △ ABC 中,/ ACB=90 ° CD 是 AB 边上的高,/ A=30 ° 求证:AB=4BD .△ ABC 中,AB=AC ,点D 、E 分别在AB 、AC 的延长线上,且 BD=CE , DE 与BC 相交于点F .求证:10 .已知等腰直角三角形 ABC , BC 是斜边./ B 的角平分线交 AC 于D ,过C 作CE 与BD 垂直且交BD 延长线 于E ,求证:BD=2CE .9•如图,DF=EF.11. (2012?牡丹江)如图 ①,△ ABC 中.AB=AC , P 为底边BC 上一点,PE 丄AB , PF 丄AC , CH 丄AB ,垂足分 别为E 、F 、H .易证PE+ PF=CH .证明过程如下:如图①,连接AP .•/ PE 丄 AB , PF 丄 AC , CH 丄 AB , 二 S AABP =」AB?PE ,ACP ^AC?PF , S AABC ^AB?CH .2 2 2又SAABP+S A ACP=S AABC ,••• 2AB ?P E +丄 AC ?PF=3AB ?CH .2 2 2•/ AB =AC ,••• P E +PF =CH .(1)如图②,P 为BC 延长线上的点时,其它条件不变, PE 、PF 、CH 又有怎样的数量关系?请写出你的猜想, 并加以证明:(2) 填空:若/ A=30 ° △ ABC 的面积为49,点P 在直线BC 上,且P 到直线ACAB边上的高的距离为PF ,当PF=3时,则.点P 到AB 边的距离PE=12•数学课上,李老师出示了如下的题目: 在等边三角形 ABC 中,点E 在AB 上, 关系,并说明理由”. 小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段或=”).(2 )特例启发,解答题目 解:题目中,AE 与DB 的大小关系是:AE _____________________________EF // BC ,交AC 于点F .(请你完成以下解答过程)(3)拓展结论,设计新题点D 在CB 的延长线上,且 ED=EC ,如图, AE 与DB 的大小关系,请你直接写出结论: 试确定线段 AE 与DB 的大小AE DB (填DB (填、”,或=”).理由如下:如图2,过点E 作CH=图①图②的长(请你直接写出结果)13.已知:如图, AF 平分/ BAC , BC 丄AF 于点E , M .若/ BAC=2 / MPC ,请你判断/ F 与/ MCD 的数量关系,并说明理由.已知 △ ABC 是等边三角形,点 D 、E 分别在BC 、AC 边上,且 AE=CD , AD 与BE 相交于点 AD 与BE 有什么关系?试证明你的结论. BFD 的度数.15.如图,在 △ ABC 中,AB=BC , / ABC=90 ° F 为AB 延长线上一点,点 E 在BC 上,BE=BF ,连接 和CF ,求证:AE=CF .16.已知:如图,在 △ OAB 中,/ AOB=90 ° OA=OB ,在△ EOF 中,/ EOF=90 ° OE=OF ,连接 AE 、 段AE 与BF 之间有什么关系?请说明理由.学习必备 ________ 欢迎下载_在等边三角形 ABC 中,点E 在直线 AB 上,点D 在直线BC 上,且ED=EC . 若^ ABC 的边长为1, AE=2,求CD点D 在AF 上,ED=EA ,点P 在CF 上,连接PB 交AF 于点14.如图, (1) 线段(2) 求/F.AE 、EFBF .问线学习必备 欢迎下载17. (2006?郴州)如图,在 △ ABC 中,AB=AC , D 是BC 上任意一点,过 D 分别向AB , AC 引垂线,垂足分别为 E , F , CG 是AB 边上的高.(1) (2)18.如图甲所示,在 △ ABC 中,AB=AC ,在底边BC 上有任意一点 P ,贝U P 点到两腰的距离之和等于定长(腰上 的高),即PD+ PE=CF ,若P 点在BC 的延长线上,那么请你猜想 PD 、PE 和CF 之间存在怎样的等式关系?写出你 的猜想并加以证明.DE , DF , CG 的长之间存在着怎样的等量关系?并加以证明;若D 在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.甲等腰三角形典型例题练习参考答案与试题解析2.如图,和等边△ BCE ,连接AE 交CD 于M ,连接BD 交CE 于N .给出以下三个结论: ①AE=BD ②CN=CM ③MN // AB 其中正确结论的个数是()平行线分线段成比例;全等三角形的判定与性质;等边三角形的性质.由^ ACD 和^ BCE 是等边三角形,根据 SAS 易证得△ ACE ◎△ DCB ,即可得① 正确;由 △ ACE ◎△ DCB ,可得/ EAC= / NDC ,又由/ ACD= / MCN=60 ° 利用 ASA ,可证得 △ ACM ◎△ DCN ,即可得 ② 正确;又可证得 △ CMN 是等边三角形,即可证得 ③ 正确.解:•••△ ACD 和^BCE 是等边三角形,•/ ACD= / BCE=60 ° AC=DC , EC=BC ,•••/ ACD+ / DCE= / DCE+ / ECB ,即/ACE= / DCB , •△ ACE ◎△ DCB ( SAS ), ••• AE=BD ,故①正确;•••/ EAC= / NDC ,•••/ ACD= / BCE=60 ° DCE=60 ° ACD= / MCN=60 °•/ AC=DC ,•••△ ACM ◎△ DCN (ASA ) , •• CM=CN ,故② 正确;又/ MCN=180 °-/ MCA -/ NCB=180 °- 60。
等腰三角形典型例题练习含答案
添加标题
添加标题
性质:两腰相等,底边与两腰之间 的比例为固定值
应用:在几何问题和实际问题中, 利用等腰三角形的边长比例解决问 题
等腰三角形的边长计算
等腰三角形的两 腰相等,底边与 两腰之间的夹角 相等。
等腰三角形的边 长关系可以根据 勾股定理进行计 算。
等腰三角形的高、 中线和角平分线 等性质可用于计 算边长。
等腰三角形的角度关系
第四章
等腰三角形的角度性质
等腰三角形的顶角与底角互 补,即它们的角度之和为 180度。
等腰三角形的两个底角相等, 即两个角大小相等。
等腰三角形的一个角为顶角, 其余两个角为底角,且三个 角度之和为180度。
等腰三角形的一个角为底角, 其余两个角为顶角,且三个 角度之和为180度。
等腰三角形的角度计算
等腰三角形两底角相等,角度和为180度 顶角与底角的角度关系:顶角 = 180度 - 2 × 底角度数 等腰三角形的高、中线和角平分线重合 等腰三角形中的角度计算可以通过三角函数或勾股定理进行求解
等腰三角形的角度证明
等腰三角形两底角相等,证明方法 为取等腰三角形ABC,作底边BC的 中点D,连接AD,则 ∠BAD=∠CAD。
自然界:蜂巢、蜘蛛网等自然现象 中经常出现等腰三角形的形状。
添加标题
添加标题
添加标题
添加标题
建筑学:等腰三角形在建筑设计中 有广泛的应用,如金字塔、塔楼等。
艺术创作:等腰三角形在绘画、雕 塑和图案设计中常被用作基本构图 元素。
等腰三角形在实际问题中的应用
桥梁设计:利用等腰三角形的性质,实现桥梁的稳定和平衡 建筑结构:等腰三角形在建筑设计中用于增强结构的稳定性 机械零件:等腰三角形的特殊性质使其在某些机械零件中具有特殊用途 自然界中的等腰三角形:例如蜂巢、蜘蛛网等自然现象中存在等腰三角形的实际应用
等腰三角形的性质专题练习
【典型例题分析】题型一:【例1】△ABC中AB=AC,∠A=36°,BD平分∠ABC交AC于D,则图中的等腰三角形有()A.1个B.2个C.3个D.4个题型二:【例2】等腰三角形的一个内角为80°,则另两个内角的度数为.【例3】(变式)等腰三角形的一个内角为35°,则另两个内角的度数为. 【例4】(变式)等腰三角形的一个内角为90°,则另两个内角的度数为. 【例5】(变式)等腰三角形的一个内角为120°,则另两个内角的度数为. 【例6】(变式)等腰三角形的一个内角为170°,则另两个内角的度数为. 【借题发挥】1.等腰三角形的一个内角为50°,则它的底角为()A.50°;B.130°;C.65°;D.50°或65°.2.已知等腰三角形的一个内角是另一个内角的2倍,求此三角形顶角的度数.题型三:【例7】等腰三角形的两边长分别为8cm和10cm,则它的周长为.【例8】(变式)等腰三角形的两边长分别为4cm和9cm,则它的周长为. 【借题发挥】1.等腰三角形的两边长分别为8cm和17cm,则它的周长为.2.等腰三角形的周长为60cm,且其中一边长为18cm,求此等腰三角形的底边长.【例9】已知:AD既是是△ABC的角平分线、高线又是△ABC的中线.求证△ABC为等腰三角形AB CD【借题发挥】1.已知:AD既是△ABC的角平分线又是△ABC的中线.求证△ABC为等腰三角形AB CD2.已知:AD既是△ABC的高线又是△ABC的中线.求证△ABC为等腰三角形AB CD3.已知:AD既是是△ABC的角平分线又是△ABC的高线.求证△ABC为等腰三角形AB CD【例10】已知:等腰三角形一腰上的高与底边的夹角为30°.求该等腰三角形的顶角度数.【例11】已知:等腰三角形的顶角为150度,求该等腰三角形一腰上的高与底边夹角的度数.【借题发挥】1、已知等腰三角形的底角为40°,求该等腰三角形一腰上的高与底边夹角的度数.2、已知等腰三角形的一个内角的度数为40°,求该等腰三角形一腰上的高与底边夹角的度数【例12】已知:如图,在△ABC中,AB=AC,点M、N在BC上,且BM=CN。
等腰三角形的性质与判定
等腰三角形的性质与判定典型例题例1.1.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,∠CAD=25°,则∠ABE的度数为()A.30°B.15°C.25°D.20°【分析】利用全等三角形的性质即可解决问题;例2.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,且AE=BC,求∠BAC的度数.【分析】(1)根据等腰三角形三线合一的性质可得AD垂直平分BC,再根据线段垂直平分线上的点到线段两端点的距离相等可得BE=CE;(2)根据同角的余角相等求出∠EAF=∠CBF,然后利用“角角边”证明△AEF和△BCF全等,根据全等三角形对应边相等,得到△ABF是等腰直角三角形,根据等腰直角三角形的性质即可得到结论例3.如图,△ACB和△DCE均为等腰三角形,点A、D、E在同一直线上,连接BE,若△CAB =△CBA=△CDE=△CED=50°.(1)求证:AD=BE.(2)求△AEB的度数.【分析】(1)欲证明AD=BE,只要证明△ACD△△BCE(SAS)即可.(2)利用:“8字型”可以证明△OEB=△ACO,即可解决问题.一.选择题1.如图,在△ABC中,AB=AC,点D,E分别在边BC和AC上,若AD=AE,则下列结论错误的是()A.△ADB=△ACB+△CAD B.△ADE=△AEDC.△CDE=12△BAD D.△AED=2△ECD2.如图,△ABC中,AB=AC,点D是BC边上的中点,点E在AD上,那么下列结论不一定正确的是()A.AD△BC B.△EBC=△ECB C.△ABE=△ACE D.AE=BE3.如图,在△ABC中,AB=AC,D为BC中点,△BAD=35°,则△C的度数为()A.35°B.45°C.55°D.60°4.如图,在△ABC中,BD平分△ABC,ED△BC,已知AB=3,AD=1,则△AED的周长为()A.2B.3C.4D.55.已知等腰三角形两边长是8cm和4cm,那么它的周长是()A.12cm B.16cm C.16cm或20cm D.20cm6.若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°7.等腰三角形的顶角是底角的2倍,则底角度数为()A.35°B.40°C.45°D.50°8.已知等腰三角形的一个外角等于110°,则该三角形的一个底角是()A.35°B.70°或110°C.70°D.55°或70°9.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC 于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.△EBC=△BAC D.△EBC=△ABE 10.如图,△A=50°,P是等腰△ABC内一点,AB=AC,且△PBC=△PCA,则△BPC为()A.100°B.140°C.130°D.115°11.如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法中正确的有()△AD平分△EDF;△△EBD△△FCD;△BD=CD;△AD△BC.A.1个B.2个C.3个D.4个12.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,下列说法:△AD平分△EDF;△△EBD△△FCD;△BD=CD;△AD△BC其中正确的有()A.1个B.2个C.3个D.4个二、解答题13.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE 交△DAC的平分线于E,交BC于G,且AE△BC.(1)求证:△ABC是等腰三角形.(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.14.如图,在△ABC中,BD平分△ABC,DE平分△ADB,且DE△BC.(1)找出图中所有的等腰三角形,并加以证明;(2)若△A=90°,AE=1,求BC的长.15.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,原题设其它条件不变.求证:∠CAD=∠CBF;(3)在(2)的条件下,连接CE,若∠BAC=45°,判断△CFE的形状,并说明理由.16.如图,△A=△B,AE=BE,点D在AC边上,△1=△2,AE和BD相交于点O.(1)求证:△AEC△△BED;(2)若AD=CE,BE△AD,求△BDE的度数.。
等腰三角形典型例题练习(含答案)1
等腰三角形典型例题练习一.选择题(共2小题)1.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为()A.5cm B.3cm C.2cm D.不能确定2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD 和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论:①AE=BD②CN=CM③MN∥AB其中正确结论的个数是()A.0B.1C.2D.3二.填空题(共1小题)3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF 的面积与△ABC的面积之比等于_________.三.解答题(共15小题)4.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证DE=DF.5.在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.请说明DE=BD+EC.6.>已知:如图,D是△ABC的BC边上的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF.请判断△ABC 是什么三角形?并说明理由.7.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD.连接DE.(1)∠E等于多少度?(2)△DBE是什么三角形?为什么?8.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD.9.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF.10.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,求证:BD=2CE.11.(2012•牡丹江)如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB•PE,S△ACP=AC•PF,S△ABC=AB•CH.又∵S△ABP+S△ACP=S△ABC,∴AB•PE+AC•PF=AB•CH.∵AB=AC,∴PE+PF=CH.(1)如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明:(2)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH=_________.点P到AB边的距离PE=_________.12.数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE_________DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE_________DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).13.已知:如图,AF平分∠BAC,BC⊥AF于点E,点D在AF上,ED=EA,点P在CF上,连接PB交AF于点M.若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.14.如图,已知△ABC是等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)线段AD与BE有什么关系?试证明你的结论.(2)求∠BFD的度数.15.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF 和CF,求证:AE=CF.16.已知:如图,在△OAB中,∠AOB=90°,OA=OB,在△EOF中,∠EOF=90°,OE=OF,连接AE、BF.问线段AE与BF之间有什么关系?请说明理由.17.(2006•郴州)如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明;(2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.18.如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF,若P点在BC的延长线上,那么请你猜想PD、PE和CF之间存在怎样的等式关系?写出你的猜想并加以证明.等腰三角形典型例题练习参考答案与试题解析一.选择题(共2小题)1.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为()A.5cm B.3cm C.2cm D.不能确定考点:角平分线的性质.分析:由已知条件进行思考,结合利用角平分线的性质可得点D到AB的距离等于D到AC的距离即CD 的长,问题可解.解答:解:∵∠C=90°,AD平分∠BAC交BC于D∴D到AB的距离即为CD长CD=5﹣3=2故选C.2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD 和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论:①AE=BD②CN=CM③MN∥AB其中正确结论的个数是()A.0B.1C.2D.3考点:平行线分线段成比例;全等三角形的判定与性质;等边三角形的性质.分析:由△ACD和△BCE是等边三角形,根据SAS易证得△ACE≌△DCB,即可得①正确;由△ACE≌△DCB,可得∠EAC=∠NDC,又由∠ACD=∠MCN=60°,利用ASA,可证得△ACM≌△DCN,即可得②正确;又可证得△CMN是等边三角形,即可证得③正确.解答:解:∵△ACD和△BCE是等边三角形,∴∠ACD=∠BCE=60°,AC=DC,EC=BC,∴∠ACD+∠DCE=∠DCE+∠ECB,即∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD,故①正确;∴∠EAC=∠NDC,∵∠ACD=∠BCE=60°,∴∠DCE=60°,∴∠ACD=∠MCN=60°,∵AC=DC,∴△ACM≌△DCN(ASA),∴CM=CN,故②正确;又∠MCN=180°﹣∠MCA﹣∠NCB=180°﹣60°﹣60°=60°,∴△CMN是等边三角形,∴∠NMC=∠ACD=60°,∴MN∥AB,故③正确.故选D.二.填空题(共1小题)3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF 的面积与△ABC的面积之比等于1:3.考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.分析:首先根据题意求得:∠DFE=∠FED=∠EDF=60°,即可证得△DEF是正三角形,又由直角三角形中,30°所对的直角边是斜边的一半,得到边的关系,即可求得DF:AB=1:,又由相似三角形的面积比等于相似比的平方,即可求得结果.解答:解:∵△ABC是正三角形,∴∠B=∠C=∠A=60°,∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠AFE=∠CED=∠BDF=90°,∴∠BFD=∠CDE=∠AEF=30°,∴∠DFE=∠FED=∠EDF=60°,,∴△DEF是正三角形,∴BD:DF=1:①,BD:AB=1:3②,△DEF∽△ABC,①÷②,=,∴DF:AB=1:,∴△DEF的面积与△ABC的面积之比等于1:3.故答案为:1:3.三.解答题(共15小题)4.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证DE=DF.考点:全等三角形的判定与性质;角平分线的定义.分析:过D作DM⊥AB,于M,DN⊥AC于N,根据角平分线性质求出DN=DM,根据四边形的内角和定理和平角定义求出∠AED=∠CFD,根据全等三角形的判定AAS推出△EMD≌△FND即可.解答:证明:过D作DM⊥AB,于M,DN⊥AC于N,即∠EMD=∠FND=90°,∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN(角平分线性质),∠DME=∠DNF=90°,∵∠EAF+∠EDF=180°,∴∠MED+∠AFD=360°﹣180°=180°,∵∠AFD+∠NFD=180°,∴∠MED=∠NFD,在△EMD和△FND中,∴△EMD≌△FND,∴DE=DF.5.在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.请说明DE=BD+EC.考点:等腰三角形的判定与性质;平行线的性质.分析:根据OB和OC分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DO,OE=EC.然后即可得出答案.解答:解:∵在△ABC中,OB和OC分别平分∠ABC和∠ACB,∴∠DBO=∠OBC,∠ECO=∠OCB,∵DE∥BC,∴∠DOB=∠OBC=∠DBO,∠EOC=∠OCB=∠ECO,∴DB=DO,OE=EC,∵DE=DO+OE,∴DE=BD+EC.6.>已知:如图,D是△ABC的BC边上的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF.请判断△ABC 是什么三角形?并说明理由.考点:等腰三角形的判定;全等三角形的判定与性质.分析:用(HL)证明△EBD≌△FCD,从而得出∠EBD=∠FCD,即可证明△ABC是等腰三角形.解答:△ABC是等腰三角形.证明:连接AD,∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,且DE=DF,∵D是△ABC的BC边上的中点,∴BD=DC,∴Rt△EBD≌Rt△FCD(HL),∴∠EBD=∠FCD,∴△ABC是等腰三角形.7.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD.连接DE.(1)∠E等于多少度?(2)△DBE是什么三角形?为什么?考点:等边三角形的性质;等腰三角形的判定.分析:(1)由题意可推出∠ACB=60°,∠E=∠CDE,然后根据三角形外角的性质可知:∠ACB=∠E+∠CDE,即可推出∠E的度数;(2)根据等边三角形的性质可知,BD不但为AC边上的高,也是∠ABC的角平分线,即得:∠DBC=30°,然后再结合(1)中求得的结论,即可推出△DBE是等腰三角形.解答:解:(1)∵△ABC是等边三角形,∴∠ACB=60°,∵CD=CE,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE,∴,(2)∵△ABC是等边三角形,BD⊥AC,∴∠ABC=60°,∴,∵∠E=30°,∴∠DBC=∠E,∴△DBE是等腰三角形.8.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD.考点:含30度角的直角三角形.分析:由△ABC中,∠ACB=90°,∠A=30°可以推出AB=2BC,同理可得BC=2BD,则结论即可证明.解答:解:∵∠ACB=90°,∠A=30°,∴AB=2BC,∠B=60°.又∵CD⊥AB,∴∠DCB=30°,∴BC=2BD.∴AB=2BC=4BD.9.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF.考点:全等三角形的判定与性质;等腰三角形的性质.分析:过D点作DG∥AE交BC于G点,由平行线的性质得∠1=∠2,∠4=∠3,再根据等腰三角形的性质可得∠B=∠2,则∠B=∠1,于是有DB=DG,根据全等三角形的判定易得△DFG≌△EFC,即可得到结论.解答:证明:过D点作DG∥AE交BC于G点,如图,∴∠1=∠2,∠4=∠3,∵AB=AC,∴∠B=∠2,∴∠B=∠1,∴DB=DG,而BD=CE,∴DG=CE,在△DFG和△EFC中,∴△DFG≌△EFC,∴DF=EF.10.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,求证:BD=2CE.考点:全等三角形的判定与性质.分析:延长CE,BA交于一点F,由已知条件可证得△BFE全≌△BEC,所以FE=EC,即CF=2CE,再通过证明△ADB≌△FAC可得FC=BD,所以BD=2CE.解答:证明:如图,分别延长CE,BA交于一点F.∵BE⊥EC,∴∠FEB=∠CEB=90°,∵BE平分∠ABC,∴∠FBE=∠CBE,又∵BE=BE,∴△BFE≌△BCE (ASA).∴FE=CE.∴CF=2CE.∵AB=AC,∠BAC=90°,∠ABD+∠ADB=90°,∠ADB=∠EDC,∴∠ABD+∠EDC=90°.又∵∠DEC=90°,∠EDC+∠ECD=90°,∴∠FCA=∠DBC=∠ABD.∴△ADB≌△AFC.∴FC=DB,∴BD=2EC.11.(2012•牡丹江)如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB•PE,S△ACP=AC•PF,S△ABC=AB•CH.又∵S△ABP+S△ACP=S△ABC,∴AB•PE+AC•PF=AB•CH.∵AB=AC,∴PE+PF=CH.(1)如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明:(2)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH=7.点P到AB边的距离PE=4或10.考点:等腰三角形的性质;三角形的面积.分析:(1)连接AP.先根据三角形的面积公式分别表示出S△ABP,S△ACP,S△ABC,再由S△ABP=S△ACP+S△ABC即可得出PE=PF+PH;(2)先根据直角三角形的性质得出AC=2CH,再由△ABC的面积为49,求出CH=7,由于CH>PF,则可分两种情况进行讨论:①P为底边BC上一点,运用结论PE+PF=CH;②P为BC延长线上的点时,运用结论PE=PF+CH.解答:解:(1)如图②,PE=PF+CH.证明如下:∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB•PE,S△ACP=AC•PF,S△ABC=AB•CH,∵S△ABP=S△ACP+S△ABC,∴AB•PE=AC•PF+AB•CH,又∵AB=AC,∴PE=PF+CH;(2)∵在△ACH中,∠A=30°,∴AC=2CH.∵S△ABC=AB•CH,AB=AC,∴×2CH•CH=49,∴CH=7.分两种情况:①P为底边BC上一点,如图①.∵PE+PF=CH,∴PE=CH﹣PF=7﹣3=4;②P为BC延长线上的点时,如图②.∵PE=PF+CH,∴PE=3+7=10.故答案为7;4或10.12.数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE=DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).考点:等边三角形的判定与性质;三角形的外角性质;全等三角形的判定与性质;等腰三角形的性质.分析:(1)根据等边三角形性质和等腰三角形的性质求出∠D=∠ECB=30°,求出∠DEB=30°,求出BD=BE 即可;(2)过E作EF∥BC交AC于F,求出等边三角形AEF,证△DEB和△ECF全等,求出BD=EF即可;(3)当D在CB的延长线上,E在AB的延长线式时,由(2)求出CD=3,当E在BA的延长线上,D在BC的延长线上时,求出CD=1.解答:解:(1)故答案为:=.(2)过E作EF∥BC交AC于F,∵等边三角形ABC,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF,∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,在△DEB和△ECF中,∴△DEB≌△ECF,∴BD=EF=AE,即AE=BD,故答案为:=.(3)解:CD=1或3,理由是:分为两种情况:①如图1过A作AM⊥BC于M,过E作EN⊥BC于N,则AM∥EM,∵△ABC是等边三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴△AMB∽△ENB,∴=,∴=,∴BN=,∴CN=1+=,∴CD=2CN=3;②如图2,作AM⊥BC于M,过E作EN⊥BC于N,则AM∥EM,∵△ABC是等边三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴=,∴=,∴MN=1,∴CN=1﹣=,∴CD=2CN=113.已知:如图,AF平分∠BAC,BC⊥AF于点E,点D在AF上,ED=EA,点P在CF上,连接PB交AF于点M.若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.考点:全等三角形的判定与性质;等腰三角形的性质.分析:根据全等三角形的性质和判定和线段垂直平分线性质求出AB=AC=CD,推出∠CDA=∠CAD=∠CPM,求出∠MPF=∠CDM,∠PMF=∠BMA=∠CMD,在△DCM和△PMF中根据三角形的内角和定理求出即可.解答:解:∠F=∠MCD,理由是:∵AF平分∠BAC,BC⊥AF,∴∠CAE=∠BAE,∠AEC=∠AEB=90°,在△ACE和△ABE中∵,∴△ACE≌△ABE(ASA)∴AB=AC,∵∠CAE=∠CDE∴AM是BC的垂直平分线,∴CM=BM,CE=BE,∴∠CMA=∠BMA,∵AE=ED,CE⊥AD,∴AC=CD,∴∠CAD=∠CDA,∵∠BAC=2∠MPC,又∵∠BAC=2∠CAD,∴∠MPC=∠CAD,∴∠MPC=∠CDA,∴∠MPF=∠CDM,∴∠MPF=∠CDM(等角的补角相等),∵∠DCM+∠CMD+∠CDM=180°,∠F+∠MPF+∠PMF=180°,又∵∠PMF=∠BMA=∠CMD,∴∠MCD=∠F.14.如图,已知△ABC是等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)线段AD与BE有什么关系?试证明你的结论.(2)求∠BFD的度数.考点:等边三角形的性质;全等三角形的判定与性质.分析:(1)根据等边三角形的性质可知∠BAC=∠C=60°,AB=CA,结合AE=CD,可证明△ABE≌△CAD,从而证得结论;(2)根据∠BFD=∠ABE+∠BAD,∠ABE=∠CAD,可知∠BFD=∠CAD+∠BAD=∠BAC=60°.解答:(1)证明:∵△ABC为等边三角形,∴∠BAC=∠C=60°,AB=CA.在△ABE和△CAD中,∴△ABE≌△CAD∴AD=BE.(2)解:∵∠BFD=∠ABE+∠BAD,又∵△ABE≌△CAD,∴∠ABE=∠CAD.∴∠BFD=∠CAD+∠BAD=∠BAC=60°.15.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF,求证:AE=CF.考点:全等三角形的判定与性质.分析:根据已知利用SAS即可判定△ABE≌△CBF,根据全等三角形的对应边相等即可得到AE=CF.解答:证明:∵∠ABC=90°,∴∠ABE=∠CBF=90°,又∵AB=BC,BE=BF,∴△ABE≌△CBF(SAS).∴AE=CF.16.已知:如图,在△OAB中,∠AOB=90°,OA=OB,在△EOF中,∠EOF=90°,OE=OF,连接AE、BF.问线段AE与BF之间有什么关系?请说明理由.考点:全等三角形的判定与性质;等腰直角三角形.分析:可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,当然相等了,由此可以证明△AEO≌△BFO;延长BF交AE于D,交OA于C,可证明∠BDA=∠AOB=90°,则AE⊥BF.解答:解:AE与BF相等且垂直,理由:在△AEO与△BFO中,∵Rt△OAB与Rt△OEF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°﹣∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF.延长BF交AE于D,交OA于C,则∠ACD=∠BCO,由(1)知∠OAE=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.17.(2006•郴州)如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明;(2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.考点:等腰三角形的性质.分析:(1)连接AD,根据三角形ABC的面积=三角形ABD的面积+三角形ACD的面积,进行分析证明;(2)类似(1)的思路,仍然用计算面积的方法来确定线段之间的关系.即三角形ABC的面积=三角形ABD的面积﹣三角形ACD的面积.解答:解:(1)DE+DF=CG.证明:连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF,∵AB=AC,∴CG=DE+DF.(2)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上.18.如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF,若P点在BC的延长线上,那么请你猜想PD、PE和CF之间存在怎样的等式关系?写出你的猜想并加以证明.考点:等腰三角形的性质;三角形的面积.分析:猜想:PD、PE、CF之间的关系为PD=PE+CF.根据∵S△PAB=AB•PD,S△PAC=AC•PE,S△CAB=AB•CF,S△PAC=AC•PE,AB•PD=AB•CF+AC•PE,即可求证.解答:解:我的猜想是:PD、PE、CF之间的关系为PD=PE+CF.理由如下:连接AP,则S△PAC+S△CAB=S△PAB,∵S△PAB=AB•PD,S△PAC=AC•PE,S△CAB=AB•CF,又∵AB=AC,∴S△PAC=AB•PE,∴AB•PD=AB•CF+AB•PE,即AB(PE+CF)=AB•PD,∴PD=PE+CF.。
人教版四年级数学下册典型例题系列之第五单元《等腰三角形的实际应用》》专项练习(原卷版)
人教版四年级数学下册典型例题系列之第五单元:等腰三角形的实际应用专项练习(原卷版)1.已知一个等腰三角形中的一个内角是50°,那么这个三角形的另外两个内角可能是多少度?2.一个三角形它有两个角都是60°,它的一条边长是16cm。
另一个等腰三角形的周长与它相等,已知这个等腰三角形的底边长22cm,它的腰长是多少cm?3.有一根铁丝长1.9dm,把它做成一个等腰三角形,腰的长度为0.6dm。
那么它的底边长是多少dm?(接头处忽略不计)4.在一个等腰三角形中,一个角的度数是另一个角的2倍,求这个三角形的顶角和底角各是多少度。
5.一个等腰三角形中有两边的长度分别是5厘米,7厘米,这个等腰三角形的周长是多少?6.—个等腰三角形的顶角是48°,那么它的一个底角是多少度?7.一根铁丝长60厘米。
(1)用这根铁丝围成一个腰长为24厘米的等腰三角形,这个三角形的底边是多少厘米?(2)用这根铁丝围成一个等边三角形,这个三角形的底边是多少厘米?8.有一块等腰三角形的菜地,它的底角是49°,它的顶角是多少度?9.李大伯家有一块等腰三角形的菜园,底边长10米,腰长20米,要在菜园的边上围篱笆,篱笆的长是多少米?10.用一根长26厘米的铁丝圈一个等腰三角形,测的一条边的长度为10厘米,另外两边分别长多少厘米?11.我们的红领巾(等腰三角形),它的最大角是120°,它的另外两个角分别是多少度?12.下面图形是等腰三角形,先求出∠1和∠2的度数,再画出三角形指定底边上的高。
13.一根铁丝可围成边长是6厘米的正方形。
如果围成一个等边三角形,它的边长是多少厘米?14.一个等腰三角形,它的一个底角度数是35°,那么它的顶角是多少度?15.一个风筝的形状是等腰三角形,已知一个底角是42°,你能求出其他两个角的度数吗?16.用一根两米长的铁丝围成一个等边三角形框架后,剩下20厘米。
《等腰三角形的判定》练习
《等腰三角形的判定》练习篇一:等腰三角形经典练习题[1]等腰三角形练习知识梳理说明:①本定理的证明用的是作底边上的高,还有其他证明方法(如作顶角的平分线)。
②证明一个三角形是等腰三角形的方法有两种:1、利用定义2、利用定理。
知识点4:等腰三角形的推论1. 推论:推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
知识点5:等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。
一、知识点回顾等腰三角形的性质:△ABC中,AB=AC.点D在BC边上(1)∵AB=AC,∴∠_____=∠______;(即性质1)(2)∵AB=AC,AD平分∠BAC,∴_______=________;________⊥_________;(即性质2)(3)∵AB=AC,AD是中线,∴∠______=∠______;________⊥________;(即性质2)(4)∵AB=AC,AD⊥BC,∴∠________=∠_______;_______=_______.(即性质2)等腰三角形的判定:△ABC中,∵∠B=∠C∴_____=_____.二、基础题第1题. 已知等腰三角形的一个内角为80°,则它的另两角为________________.第2题. 在△ABC中,∠ABC=∠C=2∠A,BD是∠ABC的平分线,DE∥BC,则图中等腰三角形的个数是() A.2B.3C.4D.5第3题. 如图1,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是()B知识点1:等腰三角形的性质定理1(1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”)(2)符号语言:如图,在△ABC中,因为AB=AC,所以∠B=∠C (3)证明:取BC的中点D,连接AD在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)(4)定理的作用:证明同一个三角形中的两个角相等。
等腰三角形知识点+经典例题
第一讲等腰三角形【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.~作法:1.作线段BC=a;2.分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三角形3.等腰三角形的对称性(1)等腰三角形是轴对称图形;.(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.((2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.推论:等边三角形的三个内角都相等,并且每个内角都等于60°.性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2.等腰三角形中重要线段的性质…等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.要点诠释:这条性质,还可以推广到一下结论:(1)等腰三角形底边上的高上任一点到两腰的距离相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
等腰三角形
CABANBM相交于都是等边三角形,上一点,1.如图,已知点、为线段和QOANCMBMCNP,、、.交于点点,交于点
)求证:.(1
)求的度数.(2
(3)求
证:.
,只需证明它所在的两个三角形全等.(21)欲证)的度【分析】
(
的外角来求,但要注意全等所得到数可用这一条件的使用.(3)要
≌,应该为一个等边三角形,则,,可证明
.从而得到
证明):和都是等边三角形,(1
,,,
,
.即
和在中,
,≌
..
.
(2)由(1 )知,≌,.
,
即
.
(3)在和中,
≌,
,
.
,又
,
即,
.
【点拨】
(1)要证明线段相等(或角相等),找它们所在的三角形全等.
(2)本题的图形规律:共一个顶点的两个等边三角形构成的图形中,存在一对或多对绕公共点旋转变换的三角形全等.
AM的长的平分线,,,中 2.如图,在BC的长.15,求
AM,可得,】【分析由平分,,.
.
,可得所以.中,在,,则
BC由,可求出的
长.
,:在,中,解
.
AM平分,
,
,
.
中,在,
.
度的直角三角形的性质常与直角三角形的两个锐角互余一起运用,此性】含30 【点拨质是求线段长度和证明线段倍分问题的重要方
法.
..,,求证: 3.,如图,
,通过辅”联想到等腰三角形“三线合一”】根据已知“【,分析
.助线将证明转化为证明
FCEBA证明:延长、.交于点
,
.
中,在和
,≌.
.
,
即.
,
.
中,在和
,≌
,
.
【点拨】
(1)利用等腰三角形“三线合一”不仅能得到线段相等、角相等,而且能得到线段的倍半关系.
(2)联系等腰三角形“三线合一”作顶角平分线或底边的中线或底边的高线是常用的辅助线.
ABCABACABDACEBDCE,,在 4.如图,△,使中,延长线上取点==,在边上取点DEBCG.连结于交DGGE. = 求证:
ABCDABEAC延长线上一点,故可考虑为【分析】由于△上一点,是等腰三角形,为DEACAB的平行线,通过构造等腰三角形,可获得结论.作腰过或或
FBCDFACD∥.,交证法1:过(如图)作于ACBDFB∴∠.=∠
ACAB =,又∵ACBB.∴∠=∠
DFBB∠∴∠.=
DBDF.∴ =
.
.
BDCE,∵已知=)(
CEDF = ∴.
EGDFDGFCGE∠,∠,又∠==∠
ECGDFG)AAS≌△.∴△(GEDG∴. =
MABBCEEM交证法2:过.作延长线于∥
MB∴∠.=∠
ACAB又∵,=
ACBB.= ∠∴∠ECMACB = ∠,又∠ECMM =∠∴∠.EMEC =.∴BDCE,已知∵= )(
BDEM = ∴.
MEGBDG与△在△中,
MEGBDG)△.(∴△AAS≌
GEDG∴.=
】【点拨CEBDABC=的底角相等并借助(1)本题的证明方法很多,其思路是通过利用等腰三角形
条件,构造新的等腰三角形来寻求结论.
GEDG为对应边的两个三角形全等时,寻找等边是一个难点,也是、(2)本题在推证含
本题最易出错的CEBD地方,主要表现为把这一条件直接作为三角形全等时的对应边.=
AACABCAB,请你再设计两种不同)=°,仿照图(,∠1.已知:如图,△ 5=36中,ABC.)个三角形,使得每个三角形都是等腰三角形(如图(1)的方法,将△3分割成)供画图用,作图工具不限,不要求写画法,不要求证明;要求标出所(3(2) (2)图.分得的每个等腰三角形三个角的度数)
.
.
【分析】由于所给三角形是一个含36°的等腰三角形,因而将它分成三个等腰三角形时仍只需考虑以36°,72°,108°等为角的等腰三角形即可.
解:本题显然应有多种结果,现提供3种,以供同学们参考,如图中(2)、(3)、(4);
【点拨】像本例这种图形的分割问题的求解,一方面应把握原图形的特征,借助经验予以解决,另一方面还应大胆尝试,在操作中获得结果.
bP,梯子的脚位于.如图,在一个宽度为的小巷,一个梯子的长度为6QQc,此时梯子与地面的夹角为点.将梯子的顶端放于一堵墙上点离地面的高度为点时,
Rd,此时梯子与地面的夹角为点,离开地面的高度为.将梯子顶端放于对面一堵墙上
.可知,为什么?
,可知又,,分析【】由可知,
,可推得为等边三角形,则..
.
RQRB.、证明:连接
,,
.
,又
为等边三角形,
.
在,中,
,
,
,
PQ在线段的垂直平分线上,
.
在中,,
.
中,在,
,
,即.。