脱硫系统浆液中毒及调整措施
脱硫吸收塔内浆液中毒的原因与解决措施
影响浆液中毒得因素:1、塔内ph值对吸收反应得影响控制塔内ph值就就是控制烟气脱硫反应得一个重要步骤,ph值就就是综合反应得碳酸根、硫酸根以及亚硫酸根含量得重要判断依据。
控制ph值就就就是控制烟气脱硫化学反应正常进行得重要手段。
控制ph值必须明确:so2溶解过程中会产生大量得氢离子,ph值高有利于氢离子得吸收,也就有利于二氧化硫得溶解;而低得ph值则有助于浆液中caco3得溶解。
因为caco3、/2h2o以至于Caso4、2H2o得最终形成都就就是在So2、Caco3溶解得前提下进行得。
所以,过高得ph值会严重抑制Caco3得溶解,从而降低脱硫效率。
而过低得ph值又会严重影响对so2得吸收,导致脱硫效率严重下降。
因此,必须及时调整并时刻保证塔内ph值在5、0~6、2、2、塔内氧化风对吸收反应得影响氧化风量决定了浆液内亚硫酸得氧化效果及氧化程度,从而影响着塔内反应得连续性。
氧量充足,即氧化充分,生成石膏晶体就会粗壮,易脱水。
反之,则会产生含有大量亚硫酸得小晶体,亚硫酸得大量存在不仅会使石膏脱水困难,而且亚硫酸根就就是一种晶体污染物,含量高时会引起系统设备结垢。
另一方面,亚硫酸根得溶解还会形成碱性环境,当亚硫酸盐相对饱与浓度较高时,亚硫酸盐所形成碱性环境也会增强,而碱性环境会抑制碳酸钙得溶解,从而使浆液中不溶解得碳酸钙分子大量增加,不仅增加浆液密度,也会降低吸收率。
此时,如果有大量二氧化硫进入浆液,浆液ph值会快速降低,从而出现浆液密度高、ph值却偏低得浆液中毒情况。
3、塔内灰尘、杂质离子对吸收反应得影响浆液中得杂质多数来源于烟气,少数来源于石灰石原料,有时电除尘经常发生故障,导致带入吸收塔内得灰尘量超标。
所以,了解灰尘对吸收塔内浆液吸收率得影响非常重要。
灰尘得主要影响:(1)、因烟尘颗粒小,很容易进入石膏晶体间得游离通道,从而将其堵塞。
由于烟尘微粒堵塞了水分子通道,不仅造成石膏脱水困难,而且还会阻止石膏得形成与成长。
600MW机组石灰石-石膏湿法烟气脱硫浆液中毒案例分析及防范措施
600MW机组石灰石-石膏湿法烟气脱硫浆液中毒案例分析及防范措施作者:陈俊来源:《科学与财富》2020年第35期摘要:目前脱硫过程中经常会遇到“脱硫系统浆液中毒”这一现象。
为了分析产生脱硫系统浆液中毒这一现象的具体原因,本文主要通过某公司的脱硫系统浆液中毒案例进行详细分析,最终根据分析出的中毒原因而提出相应的防范措施,以期能够在未来保证脱硫系统的正常运行,进而保证电厂脱硫系统烟气可以达标排放。
关键词:600MW机组;脱硫浆液中毒;防范措施引言目前,国内主要有两种湿法烟气脱硫装置得到广泛应用,一个是石灰石-石膏湿法烟气脱硫,另一个则是海水法烟气脱硫装置。
但是经过调查发现,海水法烟气脱硫工艺在实际应用过程中有如下缺点:第一、电厂必须设置在海边;第二、如今我国在这方面的技术还未成熟,在工艺流程上会对海洋造成环境污染。
因此,国内电厂600MW机组大多数使用石灰石-石膏湿法烟气脱硫工艺。
一、改造背景国内某发电公司有1台600MW机组,烟气系统则采用石灰石-石膏湿法烟气脱硫。
在该机组刚运行的那段时间,脱硫系统一切正常。
但是自从将脱硫系统改为随机启动后,就发生了浆液 pH 值变低的情况,经过进一步的分析发现,这一现象是由于浆液中毒而引起的。
该公司在经过一系列的调整措施后,最终解决了浆液中毒的问题,从而保证机组的正常运行。
二、浆液中毒的原因分析(一)浆液中毒的直接原因分析经过调查发现,出现浆液中毒这一现象的原因是将600MW机组的启动方式调整为随机启动。
这样做的后果就是会使得大量没有燃烧干净的煤粉被吸入到吸收塔内,之后这些煤粉会在吸收塔的浆液内进行化学反应,最终会形成一个稳定的化合物,这些化合物又会附着在石灰石颗粒的表面,由于石灰石表面附着物太多就会进一步影响到石灰石颗粒的溶解反应,这一系列连锁反应下来就会导致石灰石浆液对 pH 值的调整无效,因此最终就会导致浆液中毒。
值得注意的是,如果在这个时候工作人员往其中加入大量的石灰石浆液,则会产生相反的效果,这并不会加快石灰石的溶解,反而会使浆液的pH 值持续下降。
火电厂脱硫吸收塔浆液品质差的原因及控制措施
火电厂脱硫吸收塔浆液品质差的原因及控制措施一、浆液品质差的可能原因:1.冬季废水系统无法投运,造成吸收塔内重金属离子,如氯离子等长期累计超标,造成石灰石反应速率降低。
2.吸收塔浆液长期使用,机组启停机时投油燃烧,吸收塔内有油污进入,造成石灰石浆液表面形成油膜,阻碍SO₂的吸收。
3.因煤质较差,煤中含灰量较高,电除尘出口粉尘较高,除尘效率欠佳,导致吸收塔浆液内粉尘超标,石灰石颗粒表面被包裹,抑制了石灰石的溶解和SO₂的吸收。
4.工艺水氯离子偏高,长期用水导致吸收塔内氯离子富集。
5.石灰石内氯离子含量偏高,长期使用累计导致。
6.燃煤内氯离子偏高,长期随烟气到吸收塔内导致氯离子持续增加。
7.锅炉吹灰频繁,灰中含有氯离子较多,氯离子浓度持续增高,长期积累,导致吸收塔内浆液被污染,致使塔内浆液被粘稠的灰包裹,抑制了塔内石灰石浆液和SO2吸收。
8.吸收塔浆液“中毒”。
(1)烟气中HF浓度偏高。
烟气中HF浓度较高形成F-,与石灰石中及烟气飞灰中的Al3+形成氟铝络合物,这种络合物会包裏石灰石表面,阻止石灰石的溶解,形成反应封闭,导致浆液“中毒”。
(2)浆液中飞灰富集。
煤中飞灰含量高,超过除尘器除尘能力、除尘效率下降,引起进入烟气脱硫系统中烟尘偏高,烟气中飞灰的Al3+与HF形成络合物,封闭吸收剂,造成浆液“中毒”。
(3)锅炉频繁燃油导致油污进入吸收塔。
燃油中的油烟、碳核、沥青等物质在吸收塔内富集超过一定程度后使石灰石闭塞和石膏结晶受阻,导致吸收剂失效、浆液“中毒”。
(4)吸收塔内离子浓度富集。
正常情况下吸收塔内离子应控制在一定浓度,如Ca2+及SO42-浓度过高会导致大量的晶核形成,同时会附着在其他物质或设备表面,造成设备结垢,在石灰石表面析出会影响石灰石的反应速度;同时离子浓度富集会形成“共离子效应”,抑制石灰石颗粒的溶解及其他化学反应过程,影响各种反应物质的传质过程,导致浆液“中毒”。
二、浆液品质差对脱硫运行的影响:1.加剧吸收塔内金属件腐蚀:一是氯离子对不锈钢造成腐蚀,破坏钝化膜;二是不断富集的氯离子,会直接降低浆液的PH值,会引起金属腐蚀、缝隙腐蚀及应力腐蚀。
脱硫、脱硝系统异常事件处置方案
脱硫、脱硝系统异常事件处置方案1 事故危险分析1.1 可能导致脱硫系统异常的事件1.1.1脱硫、脱硝设施设计标准低,以及锅炉燃煤供应紧张,入厂煤含硫量不稳超过设计值,使得烟气中SO2、NOx超过锅炉、FGD 处理能力,造成烟囱SO2、NOx排放超标;1.1.2当烟气系统、脱硝系统、尿素制备系统故障影响脱硝效率时,也会造成烟气NOx排放超标的事件发生,设备故障严重时影响脱硝系统的安全运行;1.1.3当烟气系统、吸收塔系统、浆液制备系统故障影响脱硫效率时,也会造成烟气SO2排放超标的事件发生,设备故障严重时影响脱硫系统的安全运行。
1.2 脱硫、脱硝系统异常事件类型1.2.1烟气中SO2超过FGD的处理能力,造成烟囱SO2排放超标;1.2.2烟气中NOx超过脱硝的处理能力,造成烟囱NOx排放超标;1.2.3设备故障严重时影响脱硫、脱硝系统的安全运行。
1.3 事件可能发生的地点和危害1.3.1脱硫系统异常突发事件可能发生的区域主要有脱硫吸收塔、浆液循环系统等区域。
1.3.2脱硝系统异常突发事件可能发生的区域主要有脱硝喷枪、尿素制备系统等区域。
1.3.3当烟气系统、吸收塔系统、浆液制备系统故障影响脱硫效率时,造成烟气SO2排放超标的环保事件发生,设备故障严重时影响脱硫系统的安全运行,甚至导致机组降负荷或者停运。
1.4发生的原因1.4.1脱硫效率降低、脱硝效率降低。
1.4.2吸收塔浆液中毒,石灰石浆液系统故障。
2应急工作职责2.1应急领导小组公司应急领导小组是公司日常应急管理与突发事件应对的最高领导和决策机构。
组长:总经理副组长:副总经理总工程师安环部主任成员:各部门主任、副主任职责:1)贯彻落实国家和上级机关有关应急管理的法律法规和规定;2)研究和部署重大应急决策;3)审批公司应急管理规章制度和应急预案;4)负责审批预警和应急响应指令;5)统一领导和指挥公司突发事件的应急处理、抢险救援和事故调查等工作。
2.2应急办公室公司应急领导小组下设应急办公室,履行应急值守、信息汇总和综合协调职责,发挥运转枢纽作用。
如何消化脱硫系统事故浆液罐内浆液及使用注意事项
如何消化脱硫系统事故浆液罐内浆液及使用注意事项首先我们了解事故浆液箱内浆液成分理论上包含有部分剩余石灰石、大量未氧化完全的亚硫酸盐、少量未饱和二水硫酸钙。
注意事项原则:1、事故浆液箱内浆液是从那台吸收塔内排放过来的,排放前的吸收塔浆液品质化验数据和石膏浆品质化验数据要清楚。
具体有PH值、氯离子含量、含固量、密度、亚硫酸盐含量。
详见SMS系统2、准备消化事故浆液箱内浆液时的吸收塔内运行浆液的品质化验数据、石膏浆品质化验数据都要清楚。
石膏浆品质数据具体有含固量、亚硫酸盐含量、碳酸盐含量、含水量。
详见SMS系统。
3、准备消化事故浆液箱内浆液时的FGD脱硫系统运行参数要计算清楚;如含氧空气量。
使用方法原则:1、运行中吸收塔内浆液氯离子≥10000mg/L,谨慎消化,最好不消化,所以要消化,前期就要做好准备大量降低氯离子含量。
2、运行中吸收塔内分选出的石膏浆中碳酸钙含量>3%,谨慎消化,最好不消化,所以要消化前期就不要产生过于富裕的碳酸钙含量。
3、氧化风量不富裕或者不足就不要消化,氧化接触时间短就不要消化,所以要消化前期就要计算好,提供更多的含氧空气量和提高吸收塔氧化层。
4、吸收塔浆液内密度≥1130kg/m3,石膏浆液中亚硫酸盐含量≥0.4%,谨慎消化,最好不要消化,所以要消化前期就要把密度下降到安全值内(1120kg/m3、0.35%以下)计算方法:1、空气需求量=氧的摩尔系数×30/0.21氧的摩尔系数=需氧量/32需氧量==要求脱硫量×1000/64/0.5×32要求脱硫量=烟气实际排放硫量×0.93(按脱硫效率93%计算)要求脱硫耗石灰石量=要求脱硫量/64×1.03×100/0.9烟气实际SO2排放量==2×0.9×锅炉总煤量×1×燃煤基硫×(1-锅炉未燃烧损失固定值/100)/100锅炉总煤量和燃煤基硫我们可以从SMS软件系统中查到,锅炉未燃烧损失固定值=2.4假设锅炉总煤量280t/h,燃煤基硫1.2,我们理论上大概可以算出要达到脱硫效率93%需耗石灰石量约9.8t/h,按我厂湿磨料水研磨配比率1:3计算吸收塔需供石灰石浆液39.2t/h,再通过上述计算可以算出吸收塔要处理脱硫效率93%过程中产生的亚硫酸盐的空气需求量大约是24000NM3/h;一台氧化风机额定出力7500NM3/h空气量,所以我们理论上最少需要三台氧化风机运行,但是实际中锅炉排放烟气中带有约5%氧量,所以实际运行中我们可能短时24小时内用两台氧化风机运行马马虎虎,但是时间一长还是要用三台氧化风机来满足。
超低排放背景下湿法脱硫中毒原因分析及评价和处理方法
◼引言石灰石-石膏湿法烟气脱硫(Wet Flue Gas Desulfuri-zation,WFGD)技术,是世界上技术最成熟、应用范围最广的烟气脱硫技术之一。
近年来,国家对大气污染物排放控制要求日趋严格,为了积极贯彻《煤电节能减排升级与改造行动计划》要求,污染物脱除系统进行了超低排放改造,脱硫系统进行增加浆液循环泵或托盘改造,脱硝系统新增一层催化剂,除尘系统由电除尘改为电袋除尘或增加低温省煤器和湿式电除尘系统。
超低排放改造后原有脱硫系统运行工况发生了较大变化,常出现浆液起泡、中毒等现象,严重影响环保系统安全运行。
本文从工程实际出发结合现有理论研究成果,寻求中毒问题分析和解决方法,为WFGD系统安全运行提供指导。
◼1 湿法脱硫系统及原理某电厂超低排放改造后环保设施配备中SCR布置于省煤器出口后空预器入口前,配备三层催化剂;空预器后布置四室五场静电除尘器,为提高除尘效率在入口处布置四列低低温省煤器;WFGD系统新增一层金属托盘;其后安装湿式电除尘系统(WESP),整体设置可以满足超低排放要求。
脱硫系统的工艺流程图由图1所示。
石灰石-石膏浆液沿喷淋塔下落与由侧面进入吸收塔上升的烟气充分接触,烟气中的SO2溶入水溶液中,中和溶液中碱性介质碳酸钙,达到硫脱出效果。
吸收了SO2的再循环浆液落入吸收塔反应池中,处理后的烟气经过除雾器排至烟道。
氧化风机将氧化空气鼓入吸收塔反应池,与浆液中的亚硫酸盐发生反应,并最终生成石膏。
当石膏浆液浓度达到20%时由辅助设备从吸收塔反应池中排出,经浓缩、脱水和洗涤后的石膏排入石膏库,再根据实际情况,进行综合利用。
超低排放背景下湿法脱硫中毒原因分析 及评价和处理方法"王晓芍 王鑫(江苏国信靖江发电有限公司,江苏 靖江 214500)摘要:针对燃煤电厂湿法烟气脱硫浆液中毒问题,结合现场运行实际,得出了表征浆液中毒现象时浆液和石膏特性参数,给出了不同中毒程度下存在的危害,揭示了杂质离子Fe3+、Al3+、Mg2+、cl-等中毒机理。
火电厂烟气脱硫系统浆液中毒原因分析及处理方法研究
火电厂烟气脱硫系统浆液中毒原因分析及处理方法研究随着环保意识的提高,火电厂普遍采用烟气脱硫系统来减少烟气中的二氧化硫排放量。
然而,在脱硫过程中,由于浆液中毒问题的出现,对于环境和工作人员的安全带来了一定的风险。
本文将针对火电厂烟气脱硫系统浆液中毒问题进行原因分析并提出相应的处理方法。
首先,我们来分析火电厂烟气脱硫系统浆液中毒的可能原因。
主要包括以下几个方面:1. 气体泄漏:烟气脱硫过程中,由于设备老化、管道破损等原因,烟气中的二氧化硫泄漏至浆液中,导致浆液中毒。
2. 高温作用:火电厂烟气中的高温烟气接触浆液后,可能引发化学反应,产生有毒物质,导致浆液中毒。
3. 浆液贮存条件不当:火电厂烟气脱硫系统中的浆液贮存条件对浆液中毒至关重要,不当的贮存条件可能导致浆液中的有毒物质释放。
4. 浆液处理方法不当:对于浆液的处理方法不当,可能导致有毒物质的积累和溢出,引发浆液中毒。
明确了火电厂烟气脱硫系统浆液中毒的可能原因之后,我们可以提出相应的处理方法,以确保工作人员的安全和环境的保护。
1. 加强设备维护和检修:定期对烟气脱硫设备进行维护和检修,确保设备的完好和正常运行,避免气体泄漏的发生。
2. 强化防护措施:在烟气接触浆液的过程中,采取有效的防护措施,如安装防护罩、配备防护装备等,阻止高温烟气引发毒性化学反应。
3. 优化浆液贮存条件:确保浆液贮存容器密封性好,并且保持适宜的温度和湿度,避免有毒物质的释放。
4. 规范浆液处理方法:采取正确的浆液处理方法,确保浆液中的有毒物质被有效处理和清除,防止毒性物质的积累和溢出。
除了以上的处理方法,还应加强对工作人员的培训和防护设备的配备,提高他们应对浆液中毒事件的能力和自我防护能力。
在实施上述处理方法时,还需要不断进行监测和评估,及时发现和解决问题。
同时,火电厂应加强与环保部门的合作,遵守相关法律法规,确保烟气脱硫系统的安全运行。
综上所述,火电厂烟气脱硫系统浆液中毒是一个严重的环境和人员安全问题。
吸收塔浆液中毒的原因及处理方法
吸收塔浆液中毒的原因及处理方法
吸收塔浆液中毒的原因可能包括以下几点:
1. 气体中毒:吸收塔浆液中可能存在有毒气体,如氨气、硫化氢等。
与这些有毒气体接触过多或长时间,会导致中毒。
2. 化学物质中毒:吸收塔浆液中可能含有化学物质,如酸、碱等,过量接触或误食会导致中毒。
处理方法如下:
1. 紧急撤离:如果发现有毒气体泄漏或存在危险物质,应立即撤离现场,确保安全。
2. 寻求医疗救助:如果中毒症状较轻,可以先将中毒者移到空气清新的地方,并观察他们的症状。
如果情况严重,应立即拨打急救电话或送往医院。
3. 清洗:如果中毒者沾染了有毒物质,应迅速用大量清水冲洗受污染的皮肤或眼睛,摘除污染的衣物或饰物。
4. 干预治疗:根据中毒情况,医生可能会采取各种干预措施,如吸氧、注射抗毒药物、洗胃、促进排泄等治疗方法。
5. 预防措施:加强对吸收塔的检修和维护,确保操作人员穿戴适当的防护装备,以减少中毒风险的发生。
请注意,这里提供的是一般性的处理建议,最好根据具体的中毒情况和医生的指导来进行处理。
脱硫吸收塔内浆液中毒的原因及处理研究
脱硫吸收塔内浆液中毒的原因及处理研究在脱硫系统运行中,浆液“中毒”现象严重影响着脱硫塔内的脱硫效率,并且伴随着石膏脱水困难的情况发生。
本文以实际运行为基础,分析了脱硫运行中浆液“中毒”变质的原因,并介绍了针对这些原因的一些应对措施,以期对实际中脱硫系统的正常运行起到一定的参考价值。
标签:浆液中毒;脱硫系统;环保1 前言目前我国脱硫系统内主要使用的烟气脱硫技术为石灰石-石膏烟气脱硫法。
随着这种工艺的不断投产,浆液中毒现象成为脱硫系统运行时经常会发生的状况。
脱硫系统浆液中毒的主要表现是内部脱硫效率的降低和石膏脱水难度的增大。
下面,笔者将这种情况加以仔细分析并且分析其原因,并针对原因提出有效的预防处理措施。
2 湿法脱硫的一般反应过程湿法脱硫在吸收塔内一般的反应过程,是把碳酸钙浆液注入脱硫系统内进行烟气的洗涤以获得脱硫的效果。
首先,浆液中富含的碳酸钙会和塔内烟气中富含的二氧化硫进行反应,生成半水亚硫酸钙。
然后半水亚硫酸钙会以细小颗粒的状态向中下部的氧化区流动,在氧化区内氧化成二水硫酸钙。
二水硫酸钙会在反应的持续进行中逐渐聚集,长大为颗粒状的晶体。
最后,通过系统内的浆液排出泵将吸收塔下部结晶区的石膏浆液抽出来,送往石膏旋流站进行下一级的脱水旋转分离。
细小颗粒的浆液会重新吸收进吸收塔,而浓度较高的浆液则会被通过真空皮带过滤机进行二级浆液脱水。
通过脱水,将浆液的含水率降低到百分之十一下,从而生成副产品石膏。
3 关于脱硫系统内浆液中毒原因的几点分析。
3.1 吸收塔内ph值对于反应的影响。
浆液的ph值是脱硫系统的一个重要的参数,因为ph值与整个反应中碳酸根、硫酸根以及亚硫酸根的含量有着直接的关系,是衡量整个反应的反应物和生成物的一个重要依据。
同时,控制ph值也是控制吸收塔内烟气脱硫反应的一个重要手段,过高或过低的ph值对塔内反应都有着不利的影响。
如果ph值过高,有利于二氧化硫的溶解吸收,脱硫效率高,但是碳酸钙利用率低,容易造成设备堵塞,石膏脱水困难。
脱硫运行系统浆液中毒与水平衡调整措施
脱硫运行系统浆液中毒与水平衡调整措施关键词:脱硫系统脱硫技术湿法脱硫1.脱硫系统的运行管理的必要性随着国家环保环境排放监管力度的加强,对火力发电厂烟气污染环境的问题对社会环境的影响逐步要求改进。
如何提高火力发电厂脱硫系统运维管理工作水平,以确保火电厂烟气的脱硫效率问题越来越受到各个管辖单位的重视。
1.1机组运行应坚持“安全第一”的方针,同时应考虑机组的经济运行;1.2运行值班员应按规程及相关的规定,认真操作、检查、监视和调整,随时注意各种仪表的指示变化,采取相应正确的维护措施,调节各参数在允许范围内;1.3认真填写运行日志,保证设备的正常、安全、经济运行和正常使用寿命;1.4机组运行中要充分利用和发挥自动控制系统的作用,确保设备运行工况的稳定和运行参数的调节品质。
在控制系统自动运行时,运行人员要加强画面参数的监视和运行参数的分析。
只有在自动控制系统、测量元件发生故障或机组发生异常且无法自动调整时,才能解除自动进行手动调整,并立即联系热控人员进行处理;1.5当出现参数异常报警时,要认真进行检查、核实、分析并积极进行调整,必要时要联系检修人员到就地进行核实、检查,禁止不加分析盲目复位报警。
1.6处理各种可能发生的故障和事故,通过充分的日常工作保持装置运行的可靠性;为了尽量减小浆液沉积的可能性,对于工作介质是浆液的箱、罐、管道,应保证一直处在运行状态。
如果不能保证其在运行状态,应将相应的箱、罐、管道排空,并进行冲洗。
2.脱硫的原理分析2.1石灰石-石膏湿法脱硫原理采取石灰石—石膏湿法烟气脱硫技术方式,用石灰石浆液做为反应剂,系统形成了石灰石原料经磨机磨碎后,与适量的水配成石灰石浆液进入吸收塔内与烟气中的SO2发生反应生成亚硫酸钙(CaSO3),亚硫酸钙CaSO3与氧气进一步反应生成硫酸钙(CaSO4),结晶形成石膏(CaSO4˙2H2O)。
在循环泵的强制作用下,吸收塔浆液从塔顶喷淋而下,与上升的烟气中的SO2发生如下反应脱硫中吸收塔的主要功能是利用碳酸钙浆液从烟气中脱除二氧化硫(SO2)。
电厂脱硫一次浆液中毒事件处理经过及分析
电厂脱硫一次浆液中毒事件处理经过及分析摘要】:本文主要通过一次火电厂2套脱硫浆液先后出现脱膏异常前后处理经过及分析,介绍目前脱硫系统处理类似现象可能采取的处理手段,以及出现异常的原因分析。
0.引言该电厂一、二期分别为2×630MW、2×660MW超临界、超超临界燃煤发电机组,配套四电场静电除尘器和石灰石—石膏湿法烟气脱硫装置。
为坑口电厂,机组燃煤基本固定,典型的高灰分、低硫分,此次2套脱硫浆液脱膏异常,到最后影响脱硫效率以前从未发生过。
本文主要介绍事件发生及处理经过,以及原因分析,希望能给出现类似情况的电厂脱硫处理提供参考。
1.事件发生前状态1.1.2018年9月1日,1号机组调停检修,对脱硫吸收塔浆液进行更新,11日启动,到9月20日10天左右时间,1号吸收塔浆液及石膏脱水状况良好,塔内浆液CL-浓度比停系统前有明显下降,在5000mg/L左右,亚硫酸盐含量及其它指标正常(详见下图)。
1.2.9月15~30日,1号、2号、3号脱硫系统运行,全厂机组燃煤平均硫分0.3%,1、3号机组平均负荷421.9MW、476.3MW,进口SO2平均浓度743.2mg/Nm3、818.8mg/Nm3,吸收塔浆液及石膏化验分析指标在正常范围内;4号脱硫系统检修。
2.事件过程2.1.9月20日左右,1号脱硫系统出现浆液脱膏变差现象,至22日左右1号脱硫浆液脱膏继续恶化,浆液密度不断上升,石膏浆液外观呈灰白色且有粘性,手测1号石膏旋流器4个旋流子密度均在1250kg/m3左右,更换旋流子及部分旋流器后密度无明显变化。
2.2.22日开始,从1号吸收塔导浆至事故浆液罐4次,合计液位8.0m左右,从9月23日开始,至29日间断将事故浆液罐浆液打至3号吸收塔消耗,前期消耗主要为原4号吸收塔浆液,期间3号塔脱膏正常,石膏品质较好。
2.3.9月30日,3号吸收塔浆液脱膏也出现水分大、不成型情况,立即停止事故罐向3号吸收塔导浆。
燃煤电厂石灰石- 石膏湿法脱硫系统浆液异常分析与处理
1燃煤电厂石灰石-石膏湿法脱硫系统浆液异常的现象1.1浆液“中毒”对FGD 运行过程中出现的SO 2去除效率急剧降低、pH 值无法控制、吸收塔起泡溢流等现象,俗称为浆液“中毒”。
在运行中可以发现,浆液“中毒”通常发生在升炉后1~2周或是石灰石粉、工业水水质、煤种变换或设备故障时,通常出现的现象是浆液颜色发黑、流动性降低变“黏”,数天之后在液位计显示正常情况下溢流管出现溢流。
1.2浆液反应闭塞吸收塔浆液“中毒”的根本原因是浆液与SO 2的吸收与氧化过程放缓或反应闭塞,“闭塞”石灰石的物质主要有亚硫酸钙、石膏、粉尘、Al 2O 3生成的络合物[1]。
其表现为:pH 值突降至4左右,增大供浆量pH 值仍无明显上升、浆液中碳酸钙含量高、脱硫效率大幅度降低、石膏呈现灰白色等。
1.3石膏脱水困难石膏浆液脱水困难也是浆液品质恶化的表现之一。
在运行中出现吸收塔溢流和浆液反应闭塞的情况通常采用浆液置换的方式进行调整,当在正常的皮带转速和真空度的情况下出现石膏滤饼呈稀泥状,则说明浆液中毒严重,通常需要加大废水排放和浆液置换才能缓解。
对湿石膏检测发现:含水率>12%、CaSO 4·H 2O<90%、CaCO 3>1.5%;检测浆液发现:F -、Cl -、盐酸不溶物含量高于正常值,浆液中CaCO 3含量高,浆液沉淀分层不明显,电镜下石膏晶体结构呈针状或片状。
实验室条件下加大抽滤真空度对石膏含水率无明显影响,用酒精冲洗石膏表面抽滤效果明显改善,分析得出是由于杂质离子的引入改变了分子间作用力,当溶剂极性改变,去除了毛细管结合水之间的张力,从而能够脱水。
2燃煤电厂石灰石-石膏湿法脱硫系统浆液异常的原因2.1杂质离子的引入2.1.1工业水水质异常目前大多数电厂执行“废水零排放”制度,厂区中水回用即为工业水。
如果工业水水质不达标,其中Cl -、SO 42-、金属离子(Ca 2+、Mg 2+)、悬浮物等会在吸收塔内形成碱性物质、络合物及粘性杂质,吸收塔内浆液析出CO 2,在扰动作用下形成大量泡沫[2],在使用循环冷却水作为补水的电厂,循环冷却水中使用的杀菌剂也起到表面活性的作用,使浆液表面张力降低。
吸收塔浆液中毒原因分析及处置措施
吸收塔浆液中毒的原因分析及处置措施运行部二零二三年六月二十日吸收塔浆液中毒原因分析及处置措施一、浆液中毒原因:1.除尘器除尘效率下降,吸收塔进入大量粉尘。
粉尘会封闭石灰石颗粒的表面,阻止石灰石浆液的溶解。
因此出现“中毒”时,加入石灰石吸收剂浆液的pH值不会升高,脱硫效率大大下降。
2.吸收塔入口SO2浓度超过设计值(2000mg/Nm3)。
入口SO2浓度过高,超出吸收塔的处理能力。
吸收塔氧化风量不足,产生的CaSO3(亚硫酸钙)和CaSO4(硫酸钙)增加,对石灰石颗粒的溶解产生“封闭”,阻止石灰石浆液的溶解;同时为防止出口SO2浓度超标,需增加供浆量,可能造成吸收塔浆液中未反应的CaSO4(硫酸钙)增加,浆液pH值降低至4.8以下。
3.吸收塔氯离子浓度升高。
氯离子浓度升高,氯离子极易与钙离子结合,造成石灰石溶解度降低。
即使大量供浆,pH值不升高反而下降。
4.氧化系统故障,氧化能力不足。
吸收塔浆液中的CaSO3(亚硫酸钙)得不到氧化形成CaSO4(硫酸钙)。
亚硫酸钙难溶于水,在浆液中呈“粘稠”状,不容易形成晶体,富集在石灰石颗粒表面,阻止石灰石的溶解,导致pH值降低。
另一方面CaSO3长期存在浆液中,阻碍SO2气体的吸收。
5.吸收塔浆液密度过高。
吸收塔浆液密度>1250kg/m3时,阻碍石灰石浆液的溶解,导致石灰石浆液过剩。
二、浆液“中毒”现象及判断依据:1.浆液pH值降低至4.8以下,且在大量供浆的前提下pH值仍然无法提升,甚至逐渐降低;烟囱出口SO2浓度超标。
2.石膏脱水困难,石膏呈稀泥状态;3.吸收塔浆液外观略显白色,用手触摸呈“粘稠”状;4.吸收塔浆液密度在线值>1180kg/m3,超设计值。
5.化验浆液品质:亚硫酸钙含量>0.1%,碳酸钙含量>3%。
综合以上几种现象,可判断为浆液“中毒”。
三、高负荷期间,预防浆液中毒措施。
1.脱硫运行班组各岗位人员学习吸收塔浆液“中毒”原因、现象。
在巡视检查及监盘操作时,认真检查及监视。
04吸收塔浆液中毒事故预案
04吸收塔浆液中毒事故预案华能荆门热电有限责任公司运行部吸收塔浆液中毒事故预案一、后果吸收塔浆液中毒处理过程中引起二氧化硫超标排放,脱硫效率低下,脱硫投入率下降;如中毒严重,PH值无法通过添加高纯度石灰石粉得到提高反而逐渐下降时会引起脱硫系统无法脱硫,需采取停止脱硫系统运行,吸收塔浆液全部排空后重新对吸收塔配制晶种方能恢复正常运行。
由于我厂无脱硫旁路挡板、无浆液外排系统,一旦发生吸收塔浆液因中毒无法脱硫的情况将造成严重后果:(1)脱硫停运,主机必须停运;(2)只有一个事故浆液箱,最多只能容纳一台吸收塔的浆液;(3)事故浆液箱无外排管线,箱内浆液外排困难,影响吸收塔浆液腾空;(4)吸收塔浆液腾空需要增加脱硫非计划停运时间;(5)重新配制晶种需要增加脱硫非计划停运时间;(6)查找原因需要时间,如因石灰石粉问题造成,还将同时对石灰石浆液箱的浆液进行外排,对石灰石粉仓的石灰石粉进行外排,增加脱硫非计划停运时间。
(7)因上述原因造成脱硫系统长时间停运,主机也长时间停运,造成非停,影响甚大。
二、现象1、吸收塔石灰石供浆量大大超出设计值但浆液PH值低于4.5,并在不添加高纯度石灰石粉的情况下PH呈下降趋势;2、在设计工况下且石灰石供浆最大、循泵及氧化风机正常运行的情况下脱硫系统脱硫效率低于90%,出口二氧化硫排放超标;3、吸收塔浆液取样,呈泥状;4、石膏含水率上升至15%以上,甚至不能脱水。
三、原因1、石灰石粉品质差,碳酸钙含量低于90%;2、石灰石浆液颗粒粗大,比表面积小,反应能力差;3、电除尘器多个电场发生故障,FGD入口粉尘浓度长时间顶表运行;4、烟气中含有引起浆液中毒的成分;5、工艺水含有大量杂质;6、原烟气二氧化硫长时间严重超过设计值;8、氧化风机故障或氧化风管堵塞,长时间出力不足;9、废水长时间不排放。
三、处理运行中要加强监视、调整,及时发现浆液异常,确保提前处理,防止事故扩大,采取以下方式进行处理:1、保持四台浆液循环泵运行,尽可能减少石灰石浆液供给量;2、往#1、#2吸收塔地坑添加碳酸钙含量97%以上的高纯度石灰石粉,增强吸收塔浆液活性,提高PH值至5.0左右,尽可能确保达标排放,脱硫效率90%以上;3、加强配煤,保持FGD进口二氧化硫浓度在5700mg/Nm3以下运行;4、加强脱水,进行浆液置换;5、尽快处理氧化风机系统故障,尽早投入运行;6、加强废水处理;7、处理过程中密切监视吸收塔浆液PH值变化与供浆量、负荷、硫份之间的关系,及时对供浆量及石灰石粉剂添加量进行调整,确保PH值稳中有升;8、吸收塔PH值在正常供应石灰石浆液的情况下稳步上升至5.5以上时,确认吸收塔反应已基本恢复正常,停止石灰石粉添加工作,恢复脱硫系统正常调整。
脱硫高负荷、高含硫量、高氯离子应对措施
脱硫高负荷、高含硫量、高氯离子应对措施近期,#1、#2脱硫装置先后出现石灰石浆液反应抑制现象,其主要产生原因为塔内浆液氯离子含量较高引起。
现就脱硫高负荷、高含硫量、高氯离子的应对方法进行分部说明如下:一、石灰石抑制和闭塞:1)石灰石抑制主要现象:正常范围内提升吸收塔浆液pH时,脱硫率反应迟钝、无反应或略下降,浆液中Cl-高于正常控制值。
形成机理:系统内Cl-主要以可溶性的CaCl2存在,随着系统的连续运行,Cl-会不断富集,由于Ca2+和Cl-形成离子对CaCl2,溶解的Ca2+速度随着Cl-浓度的增加而增加,反过来抑制了石灰石的溶解,降低脱硫效率,此种石灰石抑制的机理称为“共离子效应”。
2)石灰石闭塞主要现象:初期,吸收塔pH超过正常值,脱硫率变化迟钝并呈下降趋势;如继续正常供浆,pH开始下降,同时脱硫率伴随pH的下降而下降至低值后保持平稳运行,此时pH一般会降至4.5,此时脱硫率一般下降至88%~91%,吸收塔浆液和石膏中CaCO3、亚硫酸盐含量高,一般CaCO3>5%、亚硫酸盐>2%;石膏含水率增加,甚至达到无法正常脱水的地步。
形成机理:石灰石闭塞主要出现在锅炉负荷、烟气含硫量突增,氧化风机跳闸、初期石灰石抑制处理不当、pH自动控制系统异常等场合。
例如,烟气含硫量的突然大幅上升,吸收塔浆液pH在短时内下降,为维持正常的脱硫率,就需加大石灰石浆液量,与此同时,浆液中有大量的SO32-形成,但来不及全部氧化,导致部分CaSO3.1/2H2O过饱和沉积在石灰石细粒表面,阻碍了石灰石的溶解,从而使浆液pH进一步下降,使系统进入盲区。
二、高负荷、高含硫量应对措施1)根据日常运行经验,保持吸收塔、AFT塔在正常PH值范围变化;2)正确选择循环泵启动时机,严禁出现采用大量供浆而不启动循环泵来控制脱硫效率及出口SO2的运行方式,根据化验指标严格控制两塔内CaCO3的残余量。
3)随着供浆量的相对增加,吸收塔及AFT塔CaCO3必然呈现上升趋势,此时应严防亚硫酸钙在浆液中的含量。
脱硫系统浆液中毒及调整措施
湿法脱硫浆液中毒原因及调整防范措施湿法脱硫系统存在浆液“中毒”现象,就此问题脱硫运维部做如下预防和解决措施:名词解释:浆液中毒;吸收塔浆液中毒是指:在入口SO2总量不变的情况下,脱硫效率迅速下降,检查分析仪CEMS正常;在高密度高流量的进浆量,也无法控制脱硫效率下降;吸收塔浆液中毒的现象:1、吸收塔反应闭塞,吸收塔PH无法控制,于5.9左右且在供浆量较小或不进浆的情况下,PH下降缓慢甚至不下降;2、脱硫效率明显下降,低于90%;3、石膏呈泥状,品质变差,无法脱水;4、吸收塔浆液无法沉降;5、吸收塔浆液中毒的原因;6、为分析中毒原因,取吸收塔浆液样化验,如表1;从表中分析,可以发现浆液中的CaSO4·2H2O偏低,CaSO3·1/2H2O、CaCO3 偏高;根据运行状况,近期硫份偏高,为保证负荷率,保证出口排放SO2达标,表1浆液异常时化验主要参数PH密度Cl-/mg/CaSO4·2H2CaSO3·1/2H2CaCO3/值/g/L L O/% O/% %6.10 1171.1 1590.1 54.5 17.68 24.965.9 1185.3 1672.4 56.27 22.94 13.71二、调整措施在脱硫浆液中毒后,只有在运行的过程中才能调整相关参数,采取补救措施,我们及时采取了相关方案调整:1、适当供配石灰石浆液,降低PH值,大量置换浆液约50小时,增大脱石膏量;待脱水正常后,对浆液做化验分析,指标合格后重新加入石灰石浆液的加入量,使PH值逐步上升,脱硫率缓慢回升;2、增开氧化风机,加大氧化量,进一步增强吸收反应;3申请烧结机组负荷降低,减少SO2进入脱硫系统量,4根据化验结果,加强废水排放,降低吸收塔中的氯离子含量和重金属含量;三、防范措施1、密切监视车间原料配比,对于影响或抑制脱硫浆液反应成份,及时汇报相关部门领导,停配或调整配料,做到早发现、早处理;2、关注运行中的烟尘含量,必须确保主电除尘器正常运行出口粉尘必须<150mg/m³,当烟尘超过150mg/m³时必须联系车间对电除尘进行仔细检查,当问题严重时,应选择停机处理;3、定期对脱硫浆液进行置换外排;4、运行中加强石膏保持低密度运行同时应连续排真空滤液和废水;5、确保氧化风充足,加强石膏速度形成;6、通过取样化验浆液品质;7、每班对吸收塔浆液取样沉降观察;若出现吸收塔长时间维持高PH 运行、入口硫份过高、进浆量过多,需增加吸收塔取样次数;做到提前发现,提前控制;。
浆液中毒的原因
浆液中毒的原因9月3日,3号吸收塔补浆时PH值最高只能补到5.4多,脱硫效率96%左右,用工艺水冲洗PH计显示7.7/7.4,均正常,4号塔用同一浆液箱补浆后PH值变化正常,怀疑3号吸收塔浆液异常。
下表记录了8月26日以后150MW和300MW负荷时补浆前后的PH值和脱硫效率的变化趋势。
(均是3台浆液循环泵运行)至9月3日,各个负荷段,PH值仅能补到5.4多,脱硫效率96%左右。
由表可以看出,自8月31日起,3号机脱硫效率就开始偏低,补浆时间较之前延长,从9月1日后,PH值就偏低了。
原因分析:1、FGD进口SO2浓度突变引起石灰石盲区;基本机理:由于烟气量或FGD进口原烟气SO2浓度突变,造成吸收塔内反应加剧,CaCO3含量减少,PH值下降,此时若石灰石供浆流量自动投入为保证脱硫效率则自动增加石灰石供浆量以提高吸收塔的PH值,但由于反应加剧吸收塔浆液中的CaSO3.1/2H2O含量大量增加,若此时不增加氧量使CaSO3.1/2H2O迅速反应成CaSO4.2H2O,则由于CaSO3.1/2H2O可溶解性强先溶于水中,而CaCO3溶解较慢,过饱和后形成固体沉积,这种现象称为“石灰石盲区”。
2、工艺水水质差,系统中的氯离子浓度高,CL-能抑制吸收塔内的化学反映,改变PH值,降低(SO4)2-的去除率;消耗石灰石等吸收剂;氯化物有仰制吸收剂的溶解,降低脱硫效率。
处理方法:1、若石灰石盲区发生,首先不考虑脱硫率,暂停石灰石浆液的加入,待PH值下降至4.0左右,再进行补浆,使PH值逐步上升,脱硫率缓慢回升。
2、若氯离子含量高,加强废水排放,降低吸收塔中的氯离子含量和重金属含量。
现在采取的措施:已开启滤液水外排门,9月4日化验班报浆液化验数据,3号塔浆液氯离子含量12200mg/l,(控制在5000以下最好),已超标,但4号机浆液氯离子含量14000mg/l,并没有出现3号机的现象,所以不排除引起石灰石盲区的可能。
脱硫吸收塔内浆液中毒的原因与应对措施
脱硫吸收塔内浆液中毒的原因与应对措施摘要:随着政府、社会机构以及民众对环境保护的日益重视,确保脱硫系统的有效运行,不仅是企业发展的必要条件,也是改善人民生活质量的重要举措。
本篇文中重在分析导致浆液中毒的有关影响因素,并在此基础上提出对应的解决对策以及预防措施,期望本文所述能够为确保脱硫系统的有效运行提供有益的建议和指导。
关键词:脱硫吸收塔;浆液中毒;脱硫效率;应对措施现下,中国的脱硫系统采用了以石灰石-石膏为基础的烟气脱硫技术,取得了良好的效果。
由于这项技术的持续推广应用,浆液中毒已成为脱硫系统运行过程中的一个普遍问题。
一种常见的浆液中毒现象是内部脱硫效率低下且石膏脱水变得更困难。
结合相关资料本文就浆液中毒问题展开深入分析,探讨这一现象产生的根源,并提出有效的预防和解决方案。
一、浆液中毒的相关影响因素(一)塔内pH值控制塔中pH值对于保障烟气脱硫反应的有效性至关重要。
pH值可以用来衡量碳、硫和亚硫酸根的浓度,这对于评估反应的效率至关重要。
通过调节pH值,可以有效地保证烟气脱硫化学反应的顺利进行。
在此需要了解:在SO2溶解的过程中,氢离子的浓度会发生变化,较高的pH值可以促进氢离子的吸收,从而提升SO2的溶解效率;相反,较低的pH值可以促进浆液中的CaCO3的溶解。
pH值偏高可能导致CaCO3的溶解受到阻碍,进而导致吸收效率显著下降。
pH值太低,将会大大削弱SO2的吸附能力,从而显著降低脱硫的效果。
为了确保塔内pH值处于最佳状态,应该对其展开动态化地调节,从而确保其始终控制在5.2~5.6的水平。
(二)塔内氧化风量氧化风量的变化会对CaSo3·1/2H2O的氧化作用及程度产生重要影响,进而影响塔内反应的进行和持续性。
当氧化充沛时,CaSo4·2H2O石膏晶体的结构将变得更加坚固,并且更容易脱水。
如果氧化风量不佳,就可能产生大量的亚硫酸钙,这种物质的过多会导致石膏的脱水变得极其困难,而且亚硫酸根的积聚也可能导致系统设备的结垢。
脱硫浆液中毒失效的原因分析和处理措施
脱硫浆液中毒失效的原因分析和处理措施脱硫浆液中毒失效是在石灰石-石膏法烟气脱硫运行时常发生的现象,主要突出表现为脱硫效率急剧降低、石膏脱水困难,文章对于脱硫浆液中毒失效的原因以及处理措施进行了分析。
标签:脱硫浆液中毒;失效;原因;处理前言某电厂烟气脱硫从2008年12月运行以来,曾经发生过数次浆液中毒的现象,总结归纳大致分为3类。
1类为因机组开机锅炉燃油点火(取消旁路烟道的机组)或因煤质差需喷油助燃和稳燃,致使浆液含油中毒;2类为除尘效果特差,吸收塔浆液因烟气携带大量飞灰,密度大增而中毒;3类为因脱硫系统长期运行,没有排浆,或脱硫废水被本系统循环利用,造成脱硫塔浆液电解质(盐类)富集而中毒。
第1、2类脱硫浆液中毒一般只表现为效率下降,脱膏很少受影响。
第3类浆液中毒在影响脱硫效率的同时,还伴有脱膏困难的现象。
浆液中毒一般易发生在气温高的夏季,或烟气温度高的机组脱硫系统。
现就脱硫浆液中毒失效原因分类进行分析和介绍处理方法。
1 脱硫浆液中毒失效原因分析烟气在脱硫吸收塔(反应器)中进行简单的物理、复杂的化学变化过程。
而这些变化许多是可逆的,存在着动态平衡,随着外界条件的改变,既有平衡被打破,并建立新的平衡。
脱硫主要存在以下控制步骤:①SO2扩散和穿过液体表面气膜的阻力;②SO2的溶解作用;③SO2水合后生成H2SO3、H+和HSO3-;④HSO3-离解生成SO32-;⑤H2SO3及离子的扩散和离子通过液滴表面的液膜而进入其内部;⑥CaSO3的溶解和离解;⑦Ca2+与SO32-起反应生成CaSO3沉淀;⑧CaSO3的氧化生成CaSO4,并水合成CaSO4.2H2O晶体。
脱硫的目的是要将烟气中的SO2转化为CaSO4.2H2O,而实现脱除烟气中SO2。
1.1 脱硫浆液含油失效原因因含油,使浆液经喷嘴的液滴部分被油膜包裹,油膜阻隔了SO2向液体的扩散溶解不能进入水中而逃逸,影响脱硫的第一个步骤,降低了脱硫效率。
吸收塔浆液中毒的原因及处理方法
吸收塔浆液中毒的原因及处理方法
吸收塔浆液中毒的原因可能包括以下几点:
1. 吸入毒性气体:吸收塔在工业生产中常用于吸收废气中的有害气体,如二氧化硫、氯气等。
如果操作不当,可能导致吸入毒性气体而中毒。
2. 接触有毒液体:吸收塔中常使用的吸收液可能含有毒性化学物质,如果接触皮肤、眼睛或口腔黏膜等易受伤处,可能会导致中毒。
3. 缺乏个人防护措施:如果在操作吸收塔时没有佩戴适当的个人防护设备,如呼吸面具、防护服等,就增加了中毒的风险。
针对吸收塔浆液中毒的处理方法包括以下几点:
1. 立即转移至空气流通良好的地方:如果中毒者仍处于吸收塔附近的有毒环境中,应立即将其转移到空气流通良好的地方,以减少毒物接触的风险。
2. 拨打急救电话:拨打当地的急救电话,向有关医疗机构报告中毒事件,告知具体情况,并按照医生或急救人员的指示行动。
3. 洗净受影响部位:如果皮肤接触到有毒液体,应立即用大量清水冲洗受影响部位,同时脱掉被污染的衣物。
4. 不自行进行呕吐:不论是吸入还是接触有毒物质,中毒者都
不应自行引导呕吐,以免进一步伤害已经受损的口腔、食道等部位。
5. 就医治疗:中毒者应尽快就医,接受专业医生的治疗。
根据中毒程度的不同,医生可能会采取洗胃、吸入纯氧、补充液体等治疗措施。
需要注意的是,以上处理方法仅供参考,实际应根据具体情况和专业医生的指导进行处理。
同时,在操作吸收塔或接触有毒物质时,应始终确保操作规范,并正确使用个人防护设备,以避免中毒的发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湿法脱硫浆液中毒原因及调整防范措施
湿法脱硫系统存在浆液“中毒”现象,就此问题脱硫运维部做如下预防和解决措施:
名词解释:
浆液中毒。
吸收塔浆液中毒是指:在入口SO2总量不变的情况下,脱硫效率迅速下降,检查分析仪CEMS正常。
在高密度高流量的进浆量,也无法控制脱硫效率下降。
吸收塔浆液中毒的现象:
1、吸收塔反应闭塞,吸收塔PH无法控制,于5.9左右且在供浆量较小或不进浆的情况下,PH下降缓慢甚至不下降。
2、脱硫效率明显下降,低于90%。
3、石膏呈泥状,品质变差,无法脱水。
4、吸收塔浆液无法沉降。
5、吸收塔浆液中毒的原因。
6、为分析中毒原因,取吸收塔浆液样化验,如表1。
从表中分析,可以发现浆液中的CaSO4·2H2O偏低,CaSO3·1/2H2O、CaCO3 偏高。
根据运行状况,近期硫份偏高,为保证负荷率,保证出口排放SO2达标,
表1浆液异常时化验主要参数
PH 值密度
/g/L
Cl-/mg/
L
CaSO4·2H2
O/%
CaSO3·1/2H2
O/%
CaCO3/
%
6.10 1171.1 1590.1 54.5 1
7.68 24.96
5.9 1185.3 1672.4 5
6.27 22.94 13.71
二、调整措施
在脱硫浆液中毒后,只有在运行的过程中才能调整相关参数,采取补救措施,我们及时采取了相关方案调整:
1、适当供配石灰石浆液,降低PH值,大量置换浆液(约50小时),增大脱石膏量。
待脱水正常后,对浆液做化验分析,指标合格后重新加入石灰石浆液的加入量,使PH值逐步上升,脱硫率缓慢回升;
2、增开氧化风机,加大氧化量,进一步增强吸收反应;
3申请烧结机组负荷降低,减少SO2进入脱硫系统量,
4根据化验结果,加强废水排放,降低吸收塔中的氯离子含量和重金属含量。
三、防范措施
1、密切监视车间原料配比,对于影响或抑制脱硫浆液反应成份,及时汇报相关部门领导,停配或调整配料,做到早发现、早处理。
2、关注运行中的烟尘含量,必须确保主电除尘器正常运行出口粉尘必须<150mg/m³,当烟尘超过150mg/m³时必须联系车间对电除尘
进行仔细检查,当问题严重时,应选择停机处理。
3、定期对脱硫浆液进行置换外排。
4、运行中加强石膏保持低密度运行同时应连续排真空滤液和废水。
5、确保氧化风充足,加强石膏速度形成。
6、通过取样化验浆液品质。
7、每班对吸收塔浆液取样沉降观察。
若出现吸收塔长时间维持高PH 运行、入口硫份过高、进浆量过多,需增加吸收塔取样次数。
做到提前发现,提前控制。