行列式的性质
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行列式的性质
基本性质
性质1 行列式与它的转置行列式相等。
性质2 互换行列式的两行(列),行列式变号。
推论 如果行列式有两行(列)完全相同,则此行列式为零。
性质3 行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。
推论 行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。
性质4 行列式中如果有两行(列)元素成比例,则此行列式等于零。
性质5 若行列式的某一行(列)的元素都是两数之和,例如第j列的元素都是两数之和
性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。
一般利用行列式的定义计算高阶行列式比较繁琐,下面我们将推导出行列式的一些性质,为行列式的计算做准备.
设
解:由于该行列式的所有列加到一起得同一个数a+(n-1)x,我们就根据这一特点,用行列式的性质6,将D n的第2列,第3列,…,第n 列的1倍同时加到第1列上去,再由性质3的推论,将公因子a+(n-1)x 提出来,得