初中几何基础证明题(初一)
初中几何证明题(完整版)
初中几何证明题初中几何证明题第一篇:初中几何证明题初中几何证明题己知m是△ab边b上的中点,,d,e分别为ab,a上的点,且dm⊥em。
求证:bd+e≥de。
1.延长em至f,使mf=em,连bf.∵bm=m,∠bmf=∠me,∴△bfm≌△em如图,在三角形ab中,bd,e是高,fg分别为ed,b的中点,o是外心,求证ao∥fg 问题补充:证明:延长ao,交圆o于m,连接bm,则:∠abm=90°,且∠m=∠ab.∠ae=∠adb=90°,∠ea=∠dab,则⊿ae∽⊿adb,a ead=aab;又∠ead=∠ab,则⊿ead∽⊿ab,得∠aed=∠ab=∠m.∴∠aed+∠bam=∠m+∠bam=90°,得ao⊥de.-------------------同理可证:eg=b故dg=eg.又f为de的中点,则fg⊥de.所以,ao∥fg.已知梯形abd中,对角线a与腰b相等,m是底边ab的中点,l 是边da延长线上一点连接lm并延长交对角线bd于n点延长lm至e,使lm=me。
∵am=mb,lm=me,∴albe是平行四边形,∴al=be,al∥eb,∴lnen=dnbn。
延长n交ab于f,令l与ab的交点为g。
∵ab是梯形abd的底边,∴bf∥d,∴nfn=dnbn。
由lnen=dnbn,nfn=dnbn,得:lnen=dnbn,∴l∥fe,∴∠glm=∠feb。
由al∥eb,得:∠lag=∠ebf,∠alm=∠bem。
由∠alm=∠bem,∠glm=∠feb,得:∠alm-∠glm=∠bem-∠feb,∴∠alg=∠bef,结合证得的∠lag=∠ebf,al=be,得:△alg≌△bef,∴ag=bf。
∵a=b,∴∠ag=∠bf,结合证得的ag=bf,得:△ag≌△bf,∴al=∠bn。
如图,三角形ab中,d,e分别在边ab,a上且bd=e,f,g分别为be,d 的中点,直线fg交ab于p,交a于q.求证:ap=aq取b中点为h连接hf,hg并分别延长交ab于m点,交a于n点由于h,f均为中点易得:hm‖a,hn‖abhf=e2,hg=bd2得到:∠bmh=∠a∠nh=∠a又:bd=e于是得:hf=hg在△hfg中即得:∠hfg=∠hgf即:∠pfm=∠qgn于是在△pfm中得:∠apq=180°-∠bmh-∠pfm=180°-∠a-∠qgn在△qng中得:∠aqp=180°-∠nh-∠qgn=180°-∠a-∠qgn即证得:∠apq=∠aqp在△apq中易得到:ap=aqabd为圆内接凸四边形,取△dab,△ab,△bd,△da的内心o,o,o,o.求证:oooo为矩形. 12341234已知锐角三角形ab的外接圆o,过b,作圆的切线交于e,连结ae,m为b的中点。
初中经典几何证明练习题(含答案)
初中几何证明题经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .证明:过点G 作GH ⊥AB 于H ,连接OE∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90°∴∠EGO+∠EFO=180°∴E 、G 、O 、F 四点共圆∴∠GEO=∠HFG∵∠EGO=∠FHG=90°∴△EGO ∽△FHG ∴FG EO =HGGO ∵GH ⊥AB ,CD ⊥AB∴GH ∥CD ∴CDCO HG GO = ∴CD CO FG EO =∵EO=CO∴CD=GF2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。
求证:△PBC 是正三角形.(初二)证明:作正三角形ADM ,连接MP∵∠MAD=60°,∠PAD=15°∴∠MAP=∠MAD+∠PAD=75°∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75°∴∠BAP=∠MAP∵MA=BA ,AP=AP∴△MAP ≌△BAP∴∠BPA=∠MPA ,MP=BP同理∠CPD=∠MPD ,MP=CP∵∠PAD =∠PDA =15°∴PA=PD ,∠BAP=∠CDP=75°∵BA=CD∴△BAP ≌∠CDP∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .证明:连接AC ,取AC 的中点G,连接NG 、MG∵CN=DN ,CG=DG∴GN ∥AD ,GN=21AD∴∠DEN=∠GNM∵AM=BM ,AG=CG∴GM ∥BC ,GM=21BC ∴∠F=∠GMN∵AD=BC∴GN=GM∴∠GMN=∠GNM∴∠DEN=∠F 经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M .(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G∵OG ⊥AF∴AG=FG∵AB⌒ =AB ⌒ ∴∠F=∠ACB又AD ⊥BC ,BE ⊥AC∴∠BHD+∠DBH=90°∠ACB+∠DBH=90°∴∠ACB=∠BHD∴∠F=∠BHD∴BH=BF 又AD ⊥BC∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD又AD ⊥BC ,OM ⊥BC ,OG ⊥AD∴四边形OMDG 是矩形∴OM=GD ∴AH=2OM(2)连接OB 、OC∵∠BAC=60∴∠BOC=120°∵OB=OC ,OM ⊥BC∴∠BOM=21∠BOC=60°∴∠OBM=30° ∴BO=2OM由(1)知AH=2OM ∴AH=BO=AO2、设MN 是圆O 外一条直线,过O 作OA ⊥MN 于A ,自A 引圆的两条割线交圆O 于B 、C 及D 、E ,连接CD 并延长交MN 于Q ,连接EB 并延长交MN 于P .求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接AF 、CF 、QF∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆∴∠AEF+∠FCQ=180°∵EF ⊥AG ,PQ ⊥AG∴EF ∥PQ∴∠PAF=∠AFE∴∠AFE=∠AEF∴∠AEF=∠PAF∵∠PAF+∠QAF=180°∴∠FCQ=∠QAF∴F 、C 、A 、Q 四点共圆∴∠AFQ=∠ACQ又∠AEP=∠ACQ∴∠AFQ=∠AEP3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG∵C 、D 、B 、E 四点共圆∴∠B=∠D ,∠E=∠C∴△ABE ∽△ADC ∴DFBG FD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF∴∠AGB=∠AFD∴∠AGE=∠AFC∵AM=AN ,∴OA ⊥MN又OG ⊥BE ,∴∠OAQ+∠OGQ=180°在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ∴O、A、Q、E四点共圆∴∠AOQ=∠AGE同理∠AOP=∠AFC∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA∴△OAQ≌△OAP∴AP=AQ4、如图,分别以△ABC的AB和AC为一边,在△ABC的外侧作正方形ABFG和正方形ACDE,点O是DF的中点,OP⊥BC求证:BC=2OP(初二)证明:分别过F、A、D作直线BC的垂线,垂足分别是L、M、N∵OF=OD,DN∥OP∥FL∴PN=PL∴OP是梯形DFLN的中位线∴DN+FL=2OP∵ABFG是正方形∴∠ABM+∠FBL=90°又∠BFL+∠FBL=90°∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB∴△BFL≌△ABM∴FL=BM同理△AMC≌△CND∴CM=DN∴BM+CN=FL+DN∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)证明:连接BD 交AC 于O 。
初中几何基础证明题初一
初中几何基础证明题初一Document number:PBGCG-0857-BTDO-0089-PTT1998初一几何证明题1.如图,AD ∥BC ,∠B=∠D ,求证:AB ∥CD 。
2.如图CD ⊥AB ,EF ⊥AB ,∠1=∠2,求证:∠AGD=∠ACB 。
3. 已知∠1=∠2,∠1=∠3,求证:CD ∥OB 。
4. 如图,已知∠1=∠2,∠C=∠CDO ,求证:CD ∥OP 。
B DE /FCA 2G3BDCABD /PCAO23BD/PCO25. 已知∠1=∠2,∠2=∠3,求证:CD∥EB。
6. 如图∠1=∠2,求证:∠3=∠4。
7. 已知∠A=∠E,FG∥DE,求证:∠CFG=∠B。
8.已知,如图,∠1=∠2,∠2+∠3=1800,求证:a∥b,c∥d。
B DE/CO23BD /C A234BDE FCAG213a c db9.如图,AC ∥DE ,DC ∥EF ,CD 平分∠BCA ,求证:EF 平分∠BED 。
10、已知,如图,∠1=450,∠2=1450,∠3=450,∠4=1350,求证:l 1∥l 2,l 3∥l 5,l 2∥l 4。
11、如图,∠1=∠2,∠3=∠4,∠E=900,求证:AB ∥CD 。
12、如图,∠A=2∠B ,∠D=2∠C ,求证:AB ∥CD 。
ABCDF E21l l l 3412345l 21ABCD34E13、如图,EF ∥GH ,AB 、AD 、CB 、CD 是∠EAC 、∠FAC 、∠GCA 、∠HCA 的平分线,求证:∠BAD=∠B=∠C=∠D 。
14、已知,如图,B 、E 、C 在同一直线上,∠A=∠DEC ,∠D=∠BEA ,∠A+∠D=900,求证:AE ⊥DE ,AB ∥CD 。
15、如图,已知,BE 平分∠ABC ,∠CBF=∠CFB=650,∠EDF=500,,求证:BC ∥AE 。
BCDOABCDF EAGHB CDEABCDEA16、已知,∠D=900,∠1=∠2,EF ⊥CD ,求证:∠3=∠B 。
初一下册几何证明题(完整版)
初一下册几何证明题初一下册几何证明题第一篇:初一下册几何证明题初一下册几何证明题1.已知在三角形ab中,be,f分别是角平分线,d是ef中点,若d到三角形三边b,ab,a的距离分别为x,,z,求证:x=+z证明;过e点分别作ab,b上的高交ab,b于m,n点.过f点分别作a,b上的高交于p,q点.根据角平分线上的点到角的2边距离相等可以知道fq=fp,em=en.过d点做b上的高交b于o点.过d点作ab上的高交ab于h点,过d点作ab上的高交a于j点.则x=do,=h,z=dj.因为d是中点,角ane=角ahd=90度.所以hd平行me,me=2hd同理可证fp=2dj。
又因为fq=fp,em=en.fq=2dj,en=2hd。
又因为角fq,do,en都是90度,所以四边形fqne是直角梯形,而d是中点,所以2do=fq+en又因为fq=2dj,en=2hd。
所以do=hd+jd。
因为x=do,=h,z=dj.所以x=+z。
在正五边形abde中,m、n分别是de、ea上的点,bm与n相交于点o,若∠bon=108°,请问结论bm=n是否成立?若成立,请给予证明;若不成立,请说明理由。
当∠bon=108°时。
bm=n还成立证明;如图5连结bd、e.在△bi)和△de中∵b=d,∠bd=∠de=108°,d=de∴δbd≌δde∴bd=e,∠bd=∠ed,∠db=∠en∵∠de=∠de=108°,∴∠bdm=∠en∵∠ob+∠ed=108°,∠ob+∠od=108°∴∠mb=∠nd又∵∠db=∠ed=36°,∴∠dbm=∠en∴δbdm≌δne∴bm=n3.三角形ab中,ab=a,角a=58°,ab的垂直平分线交a与n,则角nb=3°因为ab=a,∠a=58°,所以∠b=61°,∠=61°。
初中数学-几何证明经典试题(含答案)
初中数学-⼏何证明经典试题(含答案)初中⼏何证明题已知:如图,O 是半圆的圆⼼,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF 已知:如图,P 是正⽅形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三⾓形.3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正⽅形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正⽅形.4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(⼆)A P C DB A F GC EBO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF 1、已知:△ABC 中,H 为垂⼼(各边⾼线的交点),O(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初⼆)2、设MN 是圆O 外⼀直线,过O 作OA ⊥MN 于A ,⾃A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初⼆)3、如果上题把直线MN 由圆外平移⾄圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN于P 、Q .求证:AP =AQ .(初⼆)4、如图,分别以△ABC 的AC 和BC 为⼀边,在△ABC 的外侧作正⽅形ACDE 和正⽅形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的⼀半.经典题(三)1、如图,四边形ABCD 为正⽅形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初⼆)2、如图,四边形ABCD 为正⽅形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初⼆)3、设P 是正⽅形ABCD ⼀边求证:PA =PF .(初⼆)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD .(初三)经典题(四)E1、已知:△ABC 是正三⾓形,P 是三⾓形内⼀点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初⼆)2、设P 是平⾏四边形ABCD 内部的⼀点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初⼆)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平⾏四边形ABCD 中,设E 、F 分别是BC 、AB 上的⼀点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初⼆)经典难题(五)1、设P 是边长为1的正△ABC 内任⼀点,L =PA +PB +PC ,D求证:≤L<2.2、已知:P是边长为1的正⽅形ABCD内的⼀点,求PA+PB+PC的最⼩值.3、P为正⽅形ABCD内的⼀点,并且PA=a,PB=2a,PC=3a,求正⽅形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(⼀)1.如下图做GH⊥AB,连接EO。
初一数学几何证明题答案
初一典型几何证明题1、已知: AB=4,AC=2,D是 BC中点, AD是整数,求 AD解:延长 AD到 E, 使 AD=DE∵D是 BC中点∴ BD=DC在△ ACD和△ BDE中AAD=DE∠BDE=∠ADC BD=DC∴△ ACD≌△ BDE ∴AC=BE=2∵在△ ABE中AB-BE<AE< AB+BE ∵AB=4即4-2 <2AD< 4+2 1<AD<3∴AD=2B CD2、已知: BC=DE,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2A12B EC F D证明:连接 BF 和 EF∵BC=ED,CF=DF,∠ BCF=∠EDF∴△ BCF≌△ EDF (S.A.S)∴BF=EF,∠ CBF=∠ DEF连接 BE在△ BEF中 ,BF=EF∴ ∠ EBF=∠ BEF。
∵ ∠ ABC=∠ AED。
∴ ∠ ABE=∠ AEB。
∴AB=AE。
在△ ABF和△ AEF中AB=AE,BF=EF,∠ABF=∠ ABE+∠ EBF=∠AEB+∠BEF=∠AEF∴△ ABF≌△ AEF。
∴ ∠ BAF=∠ EAF ( ∠1=∠ 2) 。
3、已知:∠ 1=∠2,CD=DE, EF//AB,求证: EF=ACA12FCDEB过C 作 CG∥EF 交 AD的延长线于点G CG∥EF,可得,∠ EFD= CGDDE=DC∠FDE=∠ GDC(对顶角)∴△ EFD≌△ CGDEF=CG∠CGD=∠ EFD又, EF∥AB∴,∠ EFD=∠1∠1=∠2∴∠ CGD=∠2∴△ AGC为等腰三角形,AC=CG又EF=CG∴EF=AC4、已知: AD平分∠ BAC,AC=AB+BD,求证:∠ B=2∠C证明:延长 AB取点 E,使 AE=AC,连接 DE∵AD平分∠ BAC∴∠ EAD=∠ CAD∵AE=AC,AD= AD∴△ AED≌△ ACD (SAS)∴∠ E=∠ C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠ BDE=∠ E∵∠ ABC=∠ E+∠BDE∴∠ ABC=2∠E∴∠ ABC=2∠C5、已知: AC平分∠ BAD,CE⊥ AB,∠ B+∠D=180°,求证: AE=AD+BE证明:在AE上取 F,使 EF=EB,连接 CF∵CE⊥AB∴∠ CEB=∠ CEF=90°∵EB=EF,CE= CE,∴△ CEB≌△ CEF∴∠ B=∠ CFE∵∠ B+∠ D=180°,∠ CFE+∠ CFA=180°∴∠ D=∠ CFA∵AC平分∠ BAD∴∠ DAC=∠ FAC∵AC=AC∴△ ADC≌△ AFC(SAS)∴AD=AF∴AE=AF+FE= AD+BE6、如图,四边形 ABCD中, AB∥DC,BE、CE分别平分∠ ABC、∠BCD,且点 E 在 AD上。
(完整版)初中经典几何证明练习题集(含答案解析),推荐文档
初 中 几 何 证 明 题经 典 题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .证明:过点 G 作 GH ⊥AB 于 H ,连➓ OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴EO = GOFG HG∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD∴GO = COHG CD ∴ EO = CO FG CD∵EO=CO ∴CD=GF2、已知:如图,P 是正方形 ABCD 内部的一点,∠PAD =∠PDA =15°。
求证:△PBC 是正三角形.(初二) 证明:作正三角形 ADM ,连➓ MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ➴△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ➴∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形 ABCD 中,AD =BC ,M 、N 分别是 AB 、CD 的中点,AD 、BC 的延长线交 MN 于E 、F .求证:∠DEN =∠F .证明:连➓ AC ,取 AC 的中点 G,连➓ NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 1AD2∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 1 BC2∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F经 典 题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且 OM ⊥BC 于 M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)证明:(1)延长 AD 交圆于 F ,连➓ BF ,过点 O 作 OG ⊥AD 于 G ∵OG ⊥AF ∴AG=FG ⌒ ⌒ AB AB ∵ =∴∠F=∠ACB又 AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又 AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又 AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形 OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连➓ OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC∴∠BOM= 1∠BOC=60°∴∠OBM=30°2∴BO=2OM由(1)知 AH=2OM ∴AH=BO=AO2、设 MN 是圆 O 外一条直线,过 O 作 OA ⊥MN 于 A ,自 A 引圆的两条割线交圆 O 于 B 、C 及 D 、E ,连➓ CD 并延长交 MN 于 Q ,连➓ EB 并延长交 MN 于 P. 求证:AP =AQ .证明:作点 E 关于 AG 的对称点 F ,连➓ AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ3、设 MN 是圆 O 的弦,过 MN 的中点 A 任作两弦 BC 、DE ,设 CD 、EB 分别交 MN 于 P 、Q . 求证:AP =AQ .(初二)证明:作 OF ⊥CD 于 F ,OG ⊥BE 于 G ,连➓ OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC ∴AB = BE = 2BG =BGAD DC 2FD DF∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN又 OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ➴△OAP ∴AP=AQ4、如图,分别以△ABC 的 AB 和 AC 为一边,在△ABC 的外侧作正方形 ABFG 和正方形 ACDE ,点 O 是 DF 的中点,OP ⊥BC求证:BC=2OP (初二)证明:分别过 F 、A 、D 作直线 BC 的垂线,垂足分别是 L 、M 、N ∵OF=OD ,DN ∥OP ∥FL ∴PN=PL∴OP 是✲形 DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形 ∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ➴△ABM ∴FL=BM同理△AMC ➴△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP经 典 题(三)1、如图,四边形 ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与 CD 相交于 F . 求证:CE =CF .(初二)证明:连➓ BD 交 AC 于 O 。
初一数学几何图形的性质与证明练习题及答案
初一数学几何图形的性质与证明练习题及答案几何图形是数学中的一个重要概念,它们具有独特的性质和特征。
在初一的数学学习中,学生需要了解不同几何图形的性质,并且能够通过证明来验证这些性质。
本文将提供一些初一数学几何图形的性质与证明练习题及答案,帮助学生深入理解几何图形。
一、直线和线段的性质及证明性质1:两点确定一条直线。
证明:设有两点A和B,我们可以通过连接这两个点的直线来得到一条直线。
性质2:直线上的任意一点都在直线的同一侧。
证明:设直线上有一点C,在直线上我们可以找到一点D,并通过连接点C和D得到一条直线。
点C和点D的连接线与原始直线重合,因此点C和原始直线上的点A、B都在直线的同一侧。
性质3:线段的中点即为线段上到两个端点距离相等的点。
证明:设线段AB上有一点E,若点E到点A和点B的距离相等,则点E为线段AB的中点。
二、三角形的性质及证明性质4:三角形的内角和等于180度。
证明:设三角形ABC,我们可以通过在点B处做一条平行于边AC的直线,连接点A和点C,构成直线ABCD。
由于直线ABCD是一条直线,所以角ABC + 角BCD = 180度。
因此,三角形ABC的内角和等于180度。
性质5:等腰三角形的底边上的高线也是中位线。
证明:设等腰三角形ABC中,AB = AC,点D为底边BC上的中点,我们需要证明AD是三角形ABC的高线。
通过连接点A和点D,我们可以得到线段AD。
由于AB=AC,所以角BAD =角CAD,即角B = 角C。
又因为线段AD是BC的中点,所以BD = CD。
根据三角形的SAS相等性质,我们可以得知三角形ABD与三角形ACD全等。
根据全等三角形的性质,我们可以得出AD是三角形ABC的高线。
性质6:直角三角形的斜边平方等于两直角边平方和。
证明:设直角三角形ABC ,其中∠C为直角。
我们需要证明AB² = AC² + BC²。
通过在边AC上做一条垂直于AC的高线AD,我们可以将直角三角形ABC分为两个矩形,分别为ABCD和ABDE。
七年级数学典型几何证明50题
初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S)ADBCA BC DEF 21∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在△ABF 和△AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。
∴ ∠BAF=∠EAF (∠1=∠2)。
3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CBA CDF2 1 EA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6、如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
初一几何证明题及答案
初一几何证明题及答案【篇一:七年级数学几何证明题(典型)】3.已知,如图,在△ abc中,ad,ae分别是△ abc的高和角平分线,若∠b=30dc4、一个零件的形状如图,按规定∠a=90o ,∠c=25o,∠b=25o,检验已量得∠bdc=150o,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
db5、如图,已知df∥ac,∠c=∠d,你能否判断ce∥bd?试说明你的理由 aebc8、如图,ad⊥bc于d,eg⊥bc于g,∠e =∠1,求证ad平分∠bac。
e3gdc10、如图,将一副三角板叠放在一起,使直角的顶点重合于o,则∠aoc+∠dob11、如图,将两块直角三角尺的直角顶点c叠放在一起. (1)若∠dce=35,求∠acb的度数;(2)若∠acb=140,求∠dce的度数;(3)猜想:∠acb与∠dce有怎样的数量关系,并说明理由12、已知:直线ab与直线cd相交于点o,∠boc=45,(1)如图1,若eo⊥ab,求∠doe的度数;(2)如图2,若eo平分∠aoc,求∠doe的度数.13、已知?aob,p为oa上一点.(1)过点p画一条直线pq,使pq∥ob;(2)过点p画一条直线pm,使pm⊥oa交ob于点m;(3)若?aob?40?,则?pmo? ?adecodbad cob16、已知:线段ab=5cm,延长ab到c,使ac=7cm,在ab的反向延长线上取点d,使bd=4bc,设线段cd的中点为e,问线段ae 是线段cd的几分之一?【篇二:初中数学几何证明经典试题(含答案)】题(一)1、已知:如图,o是半圆的圆心,c、e是圆上的两点,cd⊥ab,ef⊥ab,eg⊥co.求证:cd=gf.(初二).如下图做gh⊥ab,连接eo。
由于gofe四点共圆,所以∠gfh=∠oeg, 即△ghf∽△oge,可得eogf=gogh=cocd,又co=eo,所以cd=gf得证。
eadofb2、已知:如图,p是正方形abcd内点,∠pad=∠pda=150.求证:△pbc是正三角形.(初二) a.如下图做gh⊥ab,连接eo。
初一几何证明题
初一几何证明题1.已知AB∥CD,∠1=∠2,证明:∠XXX∠XXX。
根据平行线内角相等的性质,可得∠1=∠2=∠XXX。
同时,因为AB∥CD,所以∠BEF+∠EFC=180°,即∠BEF=180°-∠XXX。
代入前面的等式,可得∠XXX∠XXX。
2.如图2,AB∥CD,∠3∶∠2=3∶1,求∠1的度数。
根据平行线内角相等的性质,可得∠1=180°-∠2.又因为∠3∶∠2=3∶1,所以∠3=3x,∠2=x。
代入前面的等式,可得∠1=180°-x。
因此,∠1+∠2+∠3=180°,即4x=180°,x=45°。
代入前面的等式,可得∠1=135°。
3.如图3,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,求∠XXX的度数。
根据直角三角形的性质,可得∠CEA=90°。
又因为CE⊥AF,所以∠EAF=90°-∠F=50°。
根据三角形内角和为180°的性质,可得∠EFA=180°-∠F-∠EAF=90°。
因为AB∥CD,所以∠XXX∠EFA=90°。
4.如图4,EF∥AD,∠1=∠2,∠BAC=80°。
求证:∠AGD=100°。
因为EF∥AD,所以∠AGD=∠AGE。
又因为∠BAC=80°,所以∠XXX°-∠BAC/2=50°。
因为∠1=∠2,所以∠DGE=∠AGE=180°-∠1-∠GAC=50°。
因此,∠AGD=∠AGE=50°+∠DGE=100°。
5.如图5,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的XXX°方向。
求∠C的度数。
根据题意,可画出如图6所示的图形。
(完整word版)七年级数学几何证明题
初一七年级数学几何证明题经典练习题1. 如图,在ABC 中,D 在AB 上,且△ CAD^P A CBE 都是等边三角形, 求证:(1)DE=AB (2)Z EDB=602. 如图,在A ABC 中, AD 平分/ BAC DE||AC,EF 丄AD 交BC 延长线于F 。
求证: / FAC " B3. 已知,如图,在厶ABC 中,AD ,AE 分别是 △ ABC 的高和角平分线,若/ B=30 B D C5、如图,已知DF // AC, / C=Z D,你能否判断CE // BD?试说明你的理由/ C=50°求:(1),求/ DAE 的度数 何关系?(不必证明)(2)试写出 / DAE 与 / C - / B 有6、如图,△ ABC中,D在BC的延长线上,过D作DE丄AB于E,交AC于F.已知/ A=30 ° ,Z FCD=80° ,求/D。
A87、如图,BE 平分/ ABD , CF 平分/ ACD , BE 、CF 交于 G , 若/ BDC = 140。
,/ BGC = 110。
,则 / A ?8、如图,AD 丄BC 于D , EG 丄BC 于G ,Z E =Z 1,求证 AD 平分/ BAC9、如图,直线。
丘交厶ABC 的边AB AC 于 D E,交BC 延长线于F , 若/ B = 67°,/ ACB= 74°,/ AED= 48°,求/ BDF 的度数•10、如图,将一副三角板叠放在一起,使直角的顶点重 合于O,贝U/ AOC / DOB11、如图,将两块直角三角尺的直角顶点C 叠放在一起 (1) 若/ DCE=3&求/ ACB 的度数;(2) 若/ ACB=140,求/ DCE 的度数; (3) 猜想:/ ACB 与/ DCE 有怎样的数量关系,并说明理由 AE12、已知:直线AB 与直线CD 相交于点O ,/ B0C= 45° ,(1) 如图1,若E0丄AB ,求/ D0E 的度数;(2) 如图2,若E0平分/ AOC ,求/ DOE 的度数.13、已知 AOB , P 为0A 上一点. (1)过点P 画一条直线PQ ,使PQ // 0B ;(2)过点P 画一条直线PM ,使PM 丄0A 交0B 于点M ;14、如图。
初中几何基础证明题(初一)
初中几何基础证明题(初一)第一篇:初中几何基础证明题(初一)几何证明题(1)1.如图,AD∥BC,∠B=∠D,求证:AB∥CD。
ADC2.如图CD⊥AB,EF⊥AB,∠1=∠2,求证:∠AGD=∠ACB。
AD/F2BG BE3.已知∠1=∠2,∠1=∠3,求证:CD∥OB。
APC 3D /2 BO4.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP。
D P/2CBO3C5.已知∠1=∠2,∠2=∠3,求证:CD∥EB。
C3D / BOE6.如图∠1=∠2,求证:∠3=∠4。
/3BADC427.已知∠A=∠E,FG∥DE,求证:∠CFG=∠B。
ABCG F ED8.已知,如图,∠1=∠2,∠2+∠3=1800,求证:a∥b,c∥d。
cd ab329.如图,AC∥DE,DC∥EF,CD平分∠BCA,求证:EF平分∠BED。
ADFEBC10、已知,如图,∠1=450,∠2=1450,∠3=450,∠4=1350,求证:l1∥l2,l3∥l5,l3l2∥l4。
l11l22344 l511、如图,∠1=∠2,∠3=∠4,∠E=900,求证:AB∥CD。
BA 12E CD12、如图,∠A=2∠B,∠D=2∠C,求证:AB∥CD。
CDOAB13、如图,EF∥GH,AB、AD、CB、CD是∠EAC、∠FAC、∠GCA、∠HCA的平分线,求证:∠BAD=∠B=∠C=∠D。
AFEBDGHC14、已知,如图,B、E、C在同一直线上,∠A=∠DEC,∠D=∠BEA,∠A+∠D=900,求证:AE⊥DE,AB∥CD。
ADCEB15、如图,已知,BE平分∠ABC,∠CBF=∠CFB=650,∠EDF=500,求证:BC∥AE。
ECDBA16、已知,∠D=900,∠1=∠2,EF⊥CD,求证:∠3=∠B。
AD1E3FBC17、如图,AB∥CD,∠1=∠2,∠B=∠3,AC∥DE,求证:AD∥BC。
DA 312BCE第二篇:初一几何证明题三角形1、已知ΔABC,AD是BC边上的中线。
初中经典几何证明练习题(含答案).doc
又∠OAQ=∠OAP=90°,OA=OA
∴△OAQ≌△OAP
∴AP=AQ
4、如图,分别以△ABC的AB和AC为一边,在△ABC的外侧作正方形ABFG和正方形ACDE,点O是DF的中点,
OP⊥BC
求证:BC=2OP(初二)
证明:分别过F、A、D作直线BC的垂线,垂足分别是L、M、N
初中几何证明题
经典题(一)
1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.
求证:CD=GF.
证明:过点G作GH⊥AB于H,连接OE
∵EG⊥CO,EF⊥AB
∴∠EGO=90°,∠EFO=90°
∴∠EGO+∠EFO=180°
∴E、G、O、F四点共圆∴∠GEO=∠HFG
∴CG=GF
设AB=x,BP=y,CG=z
∵AP⊥FP
z:y=(x-y+z):x
∴∠APB+∠FPG=90°
化简得(x-y)·y=(x-y)·z
∵∠APB+∠BAP=90°
∵x-y≠0
∴∠FPG=∠BAP
∴y=z
又∠FGP=∠PBA
即BP=FG
∴△FGP∽△PBA
∴△ABP≌△PGF
∴FG:PB=PG:AB
4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.
求证:AB=DC,BC=AD.(初三)
证明:过点E作EK∥BD,分别交
连接OH、MH、EC
∵EH=FH
∴OH⊥EF,∴∠PHO=90°
又PC⊥OC,∴∠POC=90°
AC、AF于M、K,取EF的中点H,
∴EM=KM
(完整word版)七年级数学几何证明入门专项练习
几何证明题专项训练1 1、(1 )•.•/ 仁/A (已知),•- _________ 〃__________ ,((2 ) •/ Z 3= / 4 (已知),••• ____________ // _____________ ( )(3) •/ Z 2= / 5 (已知),• _________________ // _____________ ( );(4 )•••/ ADC+/ C=180o (已知),• _________ // __________ ( ).2,如图,(1 )•••/ ABD=/ BDC(已知),• — //—,( );(2)vZ DBC M ADB(已知),•- _________ // _________ ,( );(3)vZ CBE=/ DCB (已知),•- _________ // _________ ,( );(4)vZ CBE=/ A,(已知),• _______________ // __________ ,((5)______________________________________ vZ A+ZADC=180 (已知),•__________________________ // _________ ,( (6)______________________________________ vZ A+ZABC=18(0 (已知),•__________________________ // _________ ,( 3、如图,Z 1 = Z 2, AC平分Z DAB 试说明:DC// AB.4,如图,Z ABC=/ ADC BF和DE分别平分Z ABC和Z ADC Z 1 = Z 2,试说明:DE// FB.);r r);5、作图题(用直尺和圆规作图,保留作图痕迹,要求写出作法)已知Z 1,求作ZACB,使Z ACB= Z 1。
-1 -106 .如图2-67,已知/ 1 = / 2,求/ 3+ / 4的度数.7、如图2-56①••• AB//CD (已知),•••/ ABC=( )=(两直线平行,内错角相等)•••/ BCD+ ____________ = 180 ()② •••/ 3= / 4 (已知),•- ____________ 〃 _______________ ( ) ③ •••/ FAD= / FBC (已知),•- ____________ 〃 _______________ ( )8、如图 2-57,直线 AB , CD , EF 被直线 GH 所截,/ 仁 70,/ 2=110,/ 3=70 .求 证:AB//CD .证明:•••/ 仁 70,/ 3= 70 (已知),•••/ 仁/ 3 ()•- ________ // __________ ( )•••/ 2=110,/ 3= 70(),•- ___________ + __________ = _____________ , •- ___________ // ______________ ,• AB//CD ().9•如图2-58,①直线DE , AC 被第三条直线 BA 所截, 则/ 1和/ 2是 __________________________ ,如果/ 1= / 2 ,则// , 其理由是( ).BC图 2-56E£H iM2 57②/ 3和/ 4是直线 ______________ 、 ___________ ,/ 3 ________ /4,其理由是().10. 如图2-59,已知AB//CD , BE 平分/ ABC , CE 平分/ BCD,求证/ 1+ / 2=90 .证明:••• BE 平分/ ABC (已知),•••/ 2= _______ ()同理/ 1= ______________ ,1• / 1 + Z 2= ()2_又••• AB//CD (已知),•••/ ABC+ / BCD= __________________ ():丄 1 + Z 2=90 ()11、如图2-60 , E、F、G 分别是AB、AC、BC 上一点.①如果/ B= / FGC,则// ,其理由是()②/ BEG= / EGF,贝U _______ // _______ ,其理由是()③如果/ AEG+ / EAF= 180,则___________ // _____ ,其理由是(12.如图2-61,已知AB//CD , AB//DE,求证:/ B+ / D= / BCF+ / DCF . 证明:•/ AB//CF (已知),_____ = / ________ (两直线平行,内错角相等).•/ AB//CF , AB//DE (已知),• CF//DE ()••/ _________ = / _________ ()•••/ B+ / D= / BCF+ / DCF (等式性质).几何证明题专项训练21 如图,/ B= / C, AB // EF,试说明:/ BGF= / C。
初一几何证明题
初一几何证明题初一几何证明题1. 证明等腰三角形底角相等设等腰三角形ABC,其中AB=AC,要证明∠B=∠C。
证明:由已知可知∠A=180-∠B-∠C。
又因为∠B=∠C,代入可得∠A=180-2∠B。
由于三角形内角和定理,可得∠A+∠B+∠C=180。
代入上式可得180-2∠B+∠B+∠C=180。
化简得∠C-∠B=0。
即∠C=∠B。
所以等腰三角形底角相等得证。
2. 证明垂直的两条直线互相垂直设有两条直线AB和CD,其中AB⊥CD,要证明CD⊥AB。
证明:由于AB⊥CD,可以得到∠ABC=90度。
假设CD不⊥AB,即CD与AB不垂直,那么就存在另一条直线CE平行于AB,并且与CD相交于点E。
可以得到∠CED=90度。
那么∠CED+∠ABC=90+90=180度,这与角的和为180度的基本定理相矛盾。
所以假设不成立,CD⊥AB。
证毕。
3. 证明平行线的内错角相等设有两条平行线AB和CD,要证明∠1=∠2。
证明:由已知可以得到直线AB∥CD。
假设∠1≠∠2,即∠1>∠2。
通过点C引一条平行于AB的直线CE,并且与CD相交于点E。
根据平行线的性质,可以得到∠3=∠1>∠2。
由于∠2和∠3是同位角,所以∠2>∠3,这与刚才得到的结论相矛盾。
所以假设不成立,∠1=∠2。
证毕。
通过上述证明题,我们可以学习到几何证明的基本方法和常用推理。
几何证明是一种严谨的推理和论证,需要运用已知条件和几何性质来得出结论。
同时,几何证明也需要大量的绘图和图形分析。
进一步研究和掌握几何证明对于提高数学思维和解决实际问题有一定的帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一几何证明题
1.如图,AD ∥BC ,∠B=∠D ,求证:AB ∥CD 。
2.如图CD ⊥AB ,EF ⊥AB ,∠1=∠2,求证:∠AGD=∠ACB 。
3. 已知∠1=∠2,∠1=∠3,求证:CD ∥OB 。
4. 如图,已知∠1=∠2,∠C=∠CDO ,求证:CD ∥OP 。
B
D
E /
F
C
A 2
G
3
B
D
C
A
B
D /
P
C A
O 2
3
B
D
/
P
C
O
2
5. 已知∠1=∠2,∠2=∠3,求证:CD∥EB。
6. 如图∠1=∠2,求证:∠3=∠4。
7. 已知∠A=∠E,FG∥DE,求证:∠CFG=∠B。
8.已知,如图,∠1=∠2,∠2+∠3=1800,求证:a∥b,c∥d。
B D
E
/
C
O
2
3
B
D /
C A
2
3
4
B
D
E F
C
A
G
21
3
a c d
b
9.如图,AC ∥DE ,DC ∥EF ,CD 平分∠BCA ,求证:EF 平分∠BED 。
10、已知,如图,∠1=450,∠2=1450,∠3=450,∠4=1350,求证:l 1∥l 2,l 3∥l 5,l 2∥l 4。
11、如图,∠1=∠2,∠3=∠4,∠E=900,求证:AB ∥CD 。
12、如图,∠A=2∠B ,∠D=2∠C ,求证:AB ∥CD 。
A
B
C
D
F E
2
1l l l 3
4
1
23
45
l 2
1A
B
C
D
34
E
B
C
D
O
A
13、如图,EF ∥GH ,AB 、AD 、CB 、CD 是∠EAC 、∠FAC 、∠GCA 、∠HCA 的平分线,求证:∠BAD=∠B=∠C=∠D 。
14、已知,如图,B 、E 、C 在同一直线上,∠A=∠DEC ,∠D=∠BEA ,∠A+∠D=900,求证:AE ⊥DE ,AB ∥CD 。
15、如图,已知,BE 平分∠ABC ,∠CBF=∠CFB=650,∠EDF=500,,求证:BC ∥AE 。
16、已知,∠D=900,∠1=∠2,EF ⊥CD ,求证:∠3=∠B 。
17、如图,AB ∥CD ,∠1=∠2,∠B=∠3,AC ∥DE ,求证:AD ∥BC 。
B C
D F E
A G H
B C D E A B
C
D
E
A
2
1
B
C
D
F
3
E
A
2
1
D
3A
初一常用几何证明的定理总结
对顶角相等:
几何语言:∵∠1、∠2是对顶角
∴∠1=∠2(对顶角相等)
垂线:
几何语言:正用反用:
∵∠AOB=90°∵AB⊥CD
∴AB⊥CD(垂直的定义)∴∠AOB=90°(垂直的定义)证明线平行的方法:
1、平行公理
如果两条直线都与第三条直线平行,那么,这两条直线也平行。
简述为:平行于同一直线的两直线平行。
几何语言叙述:
如图:∵AB∥EF,CD∥EF
∴AB∥CD(平行于同一直线的两直线平行。
)
2、同位角相等,两直线平行。
几何语言叙述:
如图:∵直线AB、CD被直线EF所截
∠1=∠2
∴AB∥CD(同位角相等,两直线平行。
)
3、内错角相等,两直线平行。
几何语言叙述:
如图:∵直线AB、CD被直线EF所截,∠1=∠2
∴AB∥CD(内错角相等,两直线平行。
)
4、同旁内角互补,两直线平行。
几何语言叙述:
如图:∵直线AB、CD被直线EF所截,∠1+∠2=180O
∴AB∥CD(同旁内角互补,两直线平行。
)
5、垂直于同一直线的两直线平行。
几何语言叙述:
如图:∵直线a⊥c,b⊥c
∴a∥b(垂直于同一直线的两直线平行。
)
平行线的性质:
1、两直线平行,同位角相等。
几何语言叙述:∵AB∥CD
∴∠1=∠2(两直线平行,同位角相等。
)2、两直线平行,内错角相等。
几何语言叙述:
如图:∵AB∥CD
∴∠1=∠2(两直线平行,内错角相等。
)
3、两直线平行,同旁内角互补。
几何语言叙述:
如图:∵AB∥CD
∴∠1+∠2=180O(两直线平行,同旁内角互补。
)
证明角相等的其余常用方法:
1、余角的性质:
同角或等角的余角相等。
例:∵如图∠AOB+∠BOC=90°
∠BOC+∠COD=90°
∴∠AOB=∠COD(同角的余角相等)
2、补角的性质:
同角或等角的补角相等。
例:∵如图∠AOB+∠BOD=180°,∠AOC+∠COD=180°且∠BOD=∠AOC
∴∠AOB=∠COD(同角的补角相等)
三角形中三种重要线段:
1、三角形的角平分线:
几何语言叙述:∵如图BD 是△ABC 的角平分线 ∴∠ABD =∠CBD=
1
2
∠ABC
2、三角形的中线:
几何语言叙述:∵如图BD 是△ABC 的中线 ∴AD =BD =
12
AB
3、三角形的高线:
几何语言叙述:∵如图AD 是△ABC 的高 ∴∠ADB =∠ADC =90°
三角形的分类:
⎧⎪
⎧⎨
⎨⎪⎩⎩不等边三角形三角形(按边分)底和腰不等的等腰三角形等腰三角形等边三角形
⎧⎪
⎧⎨
⎨⎪⎩⎩
直角三角形
三角形(按角分)锐角三角形斜三角形钝角三角形
三角形三边的关系:
三角形两边之和大于第三边,两边之差小于第三边。
如图:|AB -AC|<BC<AB +AC
三角形内角和定理及推论
三角形内角和定理:三角形三个内角的和等于180° 几何语言叙述:
如图:∠A +∠B +∠C =108°(三角形三个内角的和等于180°)
三角形内角和定理推论1: 直角三角形的两锐角互余。
几何语言叙述:如图:∵△ABC 中,∠C =90° ∴∠A +∠B =90°(直角三角形的两锐角互余)
三角形内角和定理推论2:
三角形的一个外交等于和它不相邻的两内角之和。
几何语言叙述:如图:∵∠ACD 是△ABC 的外角 ∴∠ACD =∠A +∠B (三角形的一个外角等
于和它不相邻的两内角之和)
三角形内角和定理推论3:
三角形的一个外角大于任何一个与它不相邻的内角。
几何语言叙述:如图:∵∠ACD是△ABC的外角
∴∠ACD>∠B(三角形的一个外角大于任何
一个与它不相邻的内角)
平面直角坐标系各个象限内和坐标轴的点的坐标的符号规律:
(1)x轴将坐标平面分为两部分,x轴上方的纵坐标为正数;x轴下方的点纵坐标为负数。
即第一、二象限及y轴正方向(也称y轴正半轴)上的点的纵坐标为正数;第三、四象限及y轴负方向(也称y轴负半轴)上的点的纵坐标为负数。
反之,如果点P(a ,b)在x轴上方,则b>0;如果P(a ,b)在x轴下方,则b<0。
(2)y轴将坐标平面分成两部分,y轴左侧的点的横坐标为负数;y轴右侧的点的横坐标为正数。
即第二、三象限和x轴的负半轴上的点的横坐标为负数;第一、四象限和x轴正半轴上的点的横坐标为正数。
(3)规定坐标原点的坐标为(0 ,0)
(4)各个象限内的点的符号规律如下表:
坐标
符号
点所在位置
横坐标纵坐标
第一象限++
第二象限-+
第三象限--
第四象限+-
(5)
坐标
符号
点所在位置
横坐标纵坐标
X轴正半轴+0负半轴-0
Y轴
正半轴0+负半轴0-原点00
(1)关于x轴对称的两点:横坐标相同,纵坐标互为相反数。
如点P(x 1 ,y 1)与Q(x
2 ,y 2)关于x 轴对称,则12
12
x x y 0y ⎧⎨
+=⎩=反之也成立。
如P (2 ,-3)与Q (2 ,3)关于x 轴对称。
(2)关于y 轴对称的两点:纵坐标相同,横坐标互为相反数。
如点P (x 1 ,y 1)与Q (x
2 ,y 2)关于y 轴对称,则12
12
0y x x ⎧⎨
+=⎩=y 反之也成立。
如P (2 ,-3)与Q (-2 ,-3)关于y 轴对称。
(3)关于原点对称的两点:纵坐标、横坐标都互为相反数。
如点P (x 1 ,y 1)与Q (x 2 ,y 2)关于原点对称,则1212x + x 0
y 0
y =⎧⎨+=⎩反之也成立。
如P (2 ,-3)与Q (-2 ,3)关于
原点对称。