量子力学与统计力学各章习题Word版

合集下载

第一章 量子力学基础 例题与习题

第一章 量子力学基础 例题与习题

第一章量子力学基础例题与习题一、练习题1.立方势箱中的粒子,具有的状态量子数,是A. 211 B. 231 C. 222 D. 213。

解:(C)。

2.处于状态的一维势箱中的粒子,出现在处的概率是多少?A.B.C.D.E.题目提法不妥,以上四个答案都不对。

解:(E)。

3.计算能量为100eV光子、自由电子、质量为300g小球的波长。

( )解:光子波长自由电子300g小球。

4.根据测不准关系说明束缚在0到a范围内活动的一维势箱中粒子的零点能效应。

解:。

5.链状共轭分子在波长方向460nm处出现第一个强吸收峰,试按一维势箱模型估计该分子的长度。

解:6.设体系处于状态中,角动量和有无定值。

其值是多少?若无,求其平均值。

解:角动量角动量平均值7.函数是不是一维势箱中粒子的一种可能的状态?如果是,其能量有没有确定值?如有,其值是多少?如果没有确定值,其平均值是多少?解:可能存在状态,能量没有确定值,8.求下列体系基态的多重性。

(2s+1) (1)二维方势箱中的9个电子。

(2)二维势箱中的10个电子。

(3)三维方势箱中的11个电子。

解:(1)2,(2)3,(3)4。

9.在0-a间运动的一维势箱中粒子,证明它在区域内出现的几率。

当,几率P怎样变?解:10.在长度l的一维势箱中运动的粒子,处于量子数n的状态。

求 (1)在箱的左端1/4区域内找到粒子的几率?(2)n为何值,上述的几率最大?(3),此几率的极限是多少?(4)(3)中说明什么?解:11.一含K个碳原子的直链共轭烯烃,相邻两碳原子的距离为a,其中大π键上的电子可视为位于两端碳原子间的一维箱中运动。

取l=(K-1)a,若处于基组态中一个π电子跃迁到高能级,求伴随这一跃迁所吸收到光子的最长波长是多少?解:12.写出一个被束缚在半径为a的圆周上运动的质量为m的粒子的薛定锷方程,求其解。

解:13.在什么条件下?解:14.已知一维运动的薛定锷方程为:。

和是属于同一本征值得本征函数,证明常数。

量子统计力学经典习题(大题)参考资料

量子统计力学经典习题(大题)参考资料

一.简述理想波色气体波色—爱因斯坦凝聚产生的原因及其特征。

解:产生的原因:理想玻色系统最突出的特征是粒子间存在统计吸引,因此玻色粒子倾向于具有相同的量子数。

对一个粒子数守恒的系统,这一性质导致出现玻色—爱因斯坦凝聚。

玻色子具有整体特性,在低温时集聚到能量最低的同一量子态(基态);而费米子具有互相排斥的特性,它们不能占据同一量子态,因此其它的费米子就得占据能量较高的量子态,原子中的电子就是典型的费米子。

在1924年玻色和爱因斯坦就从理论上预言存在另外的一种物质状态—玻色爱因斯坦冷凝态,即当温度足够低、原子的运动速度足够慢时,它们将集聚到能量最低的同一量子态。

此时,所有的原子就象一个原子一样,具有完全相同的物理性质。

根据量子力学中的德布洛意关系,λdb=h/p 。

粒子的运动速度越慢(温度越低),其物质波的波长就越长。

当温度足够低时,原子的德布洛意波长与原子之间的距离在同一量级上,此时,物质波之间通过相互作用而达到完全相同的状态,其性质由一个原子的波函数即可描述; 当温度为绝对零度时,热运动现象就消失了,原子处于理想的玻色爱因斯坦凝聚态特征:玻色—爱因斯坦凝聚是粒子凝聚到k=0的状态,本质上是粒子在动量空间的凝聚,而不是坐标空间的凝聚,实质上是一级相变,具有一级相变的特征。

这种凝聚来源于体系的量子力学效应,即波函数的对称性,它与粒子间是否存在相互作用无关。

但是,玻色—爱因斯坦凝聚只能出现在粒子数固定的系统中,对于总粒子数N 不等于常数的系统,不可能出现这样的凝聚。

例如,光子声子便是这样的系统。

二. (7.1)通过研究占有数><εn 的数量级,试证明:我们把级数(7.1.2)式中)0(≠ε的有限的项数与)0(=ε的部分合并,或者把它们包括在对ε的积分之内,这对(7.1.6)式右边的各个部分都是无差别的。

解:z z V ez d m V N -+-=⎰∞-111)2(20121233βεεελπ∑∑-==-εβεεε11111e z V n V V N V n V n V n V n n V i ki i μ+++++=∑= 2111 考察其中任一项1111-=-ie z V Vn i βεm p i 22=ε → )(122322i l V m (和归一化的分立谱) 0≠i ε ∴2i l 为三项不同时为零的整数的平方和又0≠i ε0>i βε 10≤≤ξ223112*********ii i l h mV V e V e z V Vn i iββεβεβε=≤-≤-=- 当∞→V 时,0→V n i即:011→∑=ki i n V ()(∞→V从数量级来看V n g V N 0233)(1+=ςλ加上∑=ki i n V 11后无影响 又考虑∑=ki i n V 11的积分形式,02)2(21)2(2121233121323→≤-⎰-εβπεεπεβεm he zd h m V V )(∞→V 从数量级看:Vn g V N 0233)(1+=ςλ 加上⎰--εβεεεπ01213231)2(21e zd h m V V 后无影响.三、(8.1)设用虚线表示在低温下的费米分布,如图8.11所示,该虚线在Fεε=处与实际曲线相切。

量子力学习题及答案

量子力学习题及答案
?2k ( 7 )
(7)代入(6)
csin2kk22a?dcos2k2a??kccos2k2a?
k21
kdsin2k2a
1
利用(4)、(5),得
k1k2kasin2k2a?acos2k2a??acos2k2a?2kdsin2k2a
1
a[(
k1k2k?2k)sin2k2a?2cos2k2a]?0
1?a?0
?
2
2?
??4
??0?e?4(b?x)对于区域Ⅰ,u(x)??,粒子不可能到达此区域,故?1(x)?0
而. ????2? (u0?e)
2
0?
2
?2?①
??2? (u1?e)
3
???
2
?3?0 ②
??2?e4
???
2
?
4
?0
对于束缚态来说,有?u?e?0
∴ ????k21?2?0 k22? (u0?e)
因此k1x
??1?ae ?
3
?fe
?k
1x
由波函数的连续性,有
?1(0)??2(0),?a?d(4)
?1?(0)???2
(0),?k1a?k2c (5)??(2a)??1a
3?(2a),?k2ccos2k2a?k2dsin2k2a??k?2k2
1fe(6)
?1a
2(2a)??3(2a),?csin2k2a?dcos2k2a?fe
1???k1?1?1?2?(u0?e)?????2??k22?2?0 (2) k22?2?e?2
束缚态0<e<u0 ??
??3??k2
1?3?0 (3)?1x
1?ae
?k?be
?k1x

量子力学练习题题库(可编辑)

量子力学练习题题库(可编辑)

量子力学练习题题库量子力学练习题本练习题共352道,其中(一)单项选择题 145题,(二)填空题100题,(三) 判断题50题,(四) 名词解释32题,(五)证明题25题,(六)计算题40题。

做题时应注意的几个问题:1.强调对量子力学概念、知识体系的整体理解。

2.注重量子力学基本原理的理解及其简单的应用,如:无限深势阱、谐振子和氢原子等重要问题的求解及其结论,并与其对应的经典理论进行比较,力争把量子力学理论融汇贯通。

3.数学手段上,应多看示例,尽量避免陷入过多的、繁难的数学计算中。

4.通过完成练习题,使自己加深对理论内容的理解,通过把实际物理过程用数学模型求解,培养自己独立解决实际问题的能力。

(一) 单项选择题 (共145题)1.能量为100ev的自由电子的De Broglie 波长是A. 1.2B. 1.5C.2.1D. 2.5.2. 能量为0.1ev的自由中子的De Broglie 波长是 A.1.3 B.0.9C. 0.5D. 1.8.D. 2.0.4.温度T1k时,具有动能为Boltzeman常数的氦原子的De Broglie 波长是A.8B. 5.6C. 10D. 12.6.5.用Bohr-Sommerfeld的量子化条件得到的一维谐振子的能量为()AB C D6.在0k附近,钠的价电子的能量为3ev,其De Broglie波长是A.5.2B. 7.1C. 8.4D. 9.4.7.钾的脱出功是2ev,当波长为3500的紫外线照射到钾金属表面时,光电子的最大能量为C. 0.25JD. 1.25J.8.当氢原子放出一个具有频率的光子,反冲时由于它把能量传递给原子而产生的频率改变为ABC D9pton 效应证实了A.电子具有波动性B. 光具有波动性.C.光具有粒子性D. 电子具有粒子性.10.Davisson 和Germer 的实验证实了电子具有波动性. B. 光具有波动性. C. 光具有粒子性 D. 电子具有粒子性.11.粒子在一维无限深势阱中运动,设粒子的状态由描写,其归一化常数C为A BC D12. 设,在范围内找到粒子的几率为A B C D13. 设粒子的波函数为 ,在范围内找到粒子的几率为ABCD14.设和分别表示粒子的两个可能运动状态,则它们线性迭加的态的几率分布为 A B. + C. + D. +.A.单值、正交、连续B.归一、正交、完全性C.连续、有限、完全性D.单值、连续、有限.A.波动性是由于大量的微粒分布于空间而形成的疏密波B.微粒被看成在三维空间连续分布的某种波包C.单个微观粒子具有波动性和粒子性D. A, B, C.17.已知波函数, ,,其中定态波函数是A B.和C D.和.18.若波函数归一化,则19.波函数、为任意常数,A.与描写粒子的状态不同 B.与所描写的粒子在空间各点出现的几率的比是1: C.与所描写的粒子在空间各点出现的几率的比是 D.与描写粒子的状态相同.20.波函数的傅里叶变换式是A BC D21.量子力学运动方程的建立,需满足一定的条件:1方程中仅含有波函数关于时间的一阶导数. 2方程中仅含有波函数关于时间的二阶以下的导数.3方程中关于波函数对空间坐标的导数应为线性的. 4 方程中关于波函数对时间坐标的导数应为线性的.5 方程中不能含有决定体系状态的具体参量. 6 方程中可以含有决定体系状态的能量. 则方程应满足的条件是A. 1、3和6B. 2、3、4和5. C. 1、3、4和5. D.2、3、4、5和6.22.两个粒子的薛定谔方程是A B C D.23.几率流密度矢量的表达式为 A B CD24.质量流密度矢量的表达式为A B C D25. 电流密度矢量的表达式为AB CD26.下列哪种论述不是定态的特点A.几率密度和几率流密度矢量都不随时间变化 B.几率流密度矢量不随时间变化 C.任何力学量的平均值都不随时间变化 D.定态波函数描述的体系一定具有确定的能量.27.在一维无限深势阱中运动的质量为的粒子的能级为A.,B.,C., D28. 在一维无限深势阱中运动的质量为的粒子的能级为 A., B., C., D29. 在一维无限深势阱中运动的质量为的粒子的能级为A.,B., C., D30. 在一维无限深势阱中运动的质量为的粒子处于基态,其位置几率分布最大处是 A., B.,C.,D31. 在一维无限深势阱中运动的质量为的粒子处于第一激发态,其位置几率分布最大处是A., B., C., D32.在一维无限深势阱中运动的粒子,其体系的A.能量是量子化的,而动量是连续变化的 B.能量和动量都是量子化的 C.能量和动量都是连续变化的D.能量连续变化而动量是量子化的.AB C D34.线性谐振子的第一激发态的波函数为,其位置几率分布最大处为ABCD35.线性谐振子的 A.能量是量子化的,而动量是连续变化的B.能量和动量都是量子化的 C.能量和动量都是连续变化的D.能量连续变化而动量是量子化的.36.线性谐振子的能量本征方程是AB C D37.氢原子的能级为A..B..CD38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为AB C D39. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为A B C D40.波函数和是平方可积函数,则力学量算符为厄密算符的定义是A B C D41. 和是厄密算符,则A.必为厄密算符.B.必为厄密算符C.必为厄密算符D. 必为厄密算符42.已知算符和,则A.和都是厄密算符B.必是厄密算符C.必是厄密算符D.必是厄密算符.43.自由粒子的运动用平面波描写,则其能量的简并度为A.1B. 2C. 3D. 4.A B C D.45.角动量Z分量的归一化本征函数为A BC D是的本征函数,不是的本征函数 B.不是的本征函数,是的本征函数.C 是、的共同本征函数. D. 即不是的本征函数,也不是的本征函数.47.若不考虑电子的自旋,氢原子能级n3的简并度为 A. 3 B. 6 C.9 D. 12.48.氢原子能级的特点是 A.相邻两能级间距随量子数的增大而增大 B.能级的绝对值随量子数的增大而增大 C.能级随量子数的增大而减小 D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为,这种性质是库仑场特有的B.中心力场特有的. C.奏力场特有的 D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为,则其几率分布最大处对应于Bohr原子模型中的圆轨道半径是 A B C D51.设体系处于状态,则该体系的能量取值及取值几率分别为 A BC D52.接51题,该体系的角动量的取值及相应几率分别为 A B C D53. 接51题,该体系的角动量Z分量的取值及相应几率分别为 A BC D54. 接51题,该体系的角动量Z分量的平均值为A B C D55. 接51题,该体系的能量的平均值为A..B..CD56.体系处于状态,则体系的动量取值为A B C D57.接上题,体系的动量取值几率分别为 A. 1,0. B. 1/2,1/2C. 1/4,3/4/ D. 1/3,2/3.58.接56题, 体系的动量平均值为A B C D59.一振子处于态中,则该振子能量取值分别为A BC D60.接上题,该振子的能量取值的几率分别为A B. ,. C.,D61.接59题,该振子的能量平均值为 B C D62.对易关系等于为的任意函数 A..B..CD63. 对易关系等于 A BC D64.对易关系等于A B CD65. 对易关系等于A B C D66. 对易关系等于A B C D67. 对易关系等于A B CD68. 对易关系等于A B CD69. 对易关系等于A B C D70. 对易关系等于A B C D71. 对易关系等于A B C D72. 对易关系等于A B C D73. 对易关系等于A B C D74. 对易关系等于A B C D75. 对易关系等于A B C D76. 对易关系等于A B C DA B C D78. 对易式等于m,n为任意正整数A B C DA B C D80对易式等于c为任意常数A B C D81.算符和的对易关系为,则、的测不准关系是A BC D82.已知,则和的测不准关系是A B C D83. 算符和的对易关系为,则、的测不准关系是A B CD84.电子在库仑场中运动的能量本征方程是A BC D85.类氢原子体系的能量是量子化的,其能量表达式为A B C D86. 在一维无限深势阱中运动的质量为的粒子,其状态为,则在此态中体系能量的可测值为A., B,C., D87.接上题,能量可测值、出现的几率分别为 A.1/4,3/4B. 3/4,1/4C.1/2, 1/2D. 0,1.88.接86题,能量的平均值为A., B., C., D89.若一算符的逆算符存在,则等于A. 1B. 0C. -1D. 2.90.如果力学量算符和满足对易关系, 则A. 和一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值B. 和一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值.C. 和不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值.D. 和不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值.可取一切实数值 B.只能取不为负的一切实数 C.可取一切实数,但不能等于零. D.只能取不为正的实数.92.对易关系式等于A BCD93.定义算符, 则等于A B C D94.接上题, 则等于AB C D95. 接93题, 则等于AB C D96.氢原子的能量本征函数A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z分量算符的本征函数 B.只是体系能量算符、角动量Z分量算符的本征函数,不是角动量平方算符的本征函数 C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z 分量算符的本征函数 D.是体系能量算符、角动量平方算符、角动量Z分量算符的共同本征函数.97.体系处于态中,则A.是体系角动量平方算符、角动量Z分量算符的共同本征函数 B.是体系角动量平方算符的本征函数,不是角动量Z分量算符的本征函数 C.不是体系角动量平方算符的本征函数,是角动量Z分量算符的本征函数 D.即不是体系角动量平方算符的本征函数,也不是角动量Z分量算符的本征函数.98.对易关系式等于A B C D99.动量为的自由粒子的波函数在坐标表象中的表示是,它在动量表象中的表示是ABCD100.力学量算符对应于本征值为的本征函数在坐标表象中的表示是AB C D101.一粒子在一维无限深势阱中运动的状态为,其中、是其能量本征函数,则在能量表象中的表示是A..B..C..D102.线性谐振子的能量本征函数在能量表象中的表示是 A B CD103. 线性谐振子的能量本征函数在能量表象中的表示是 A B C D104.在的共同表象中,波函数,在该态中的平均值为AB CD. 0.105.算符只有分立的本征值,对应的本征函数是,则算符在表象中的矩阵元的表示是以本征值为对角元素的对角方阵B一个上三角方阵. C.一个下三角方阵.D.一个主对角线上的元素等于零的方阵.107.力学量算符在动量表象中的微分形式是 ABCD108.线性谐振子的哈密顿算符在动量表象中的微分形式是 A B CD109.在表象中,其本征值是 AB0 C D110.接上题, 的归一化本征态分别为 A BC D111.幺正矩阵的定义式为 ABCD112.幺正变换 A.不改变算符的本征值,但可改变其本征矢. B.不改变算符的本征值,也不改变其本征矢 C.改变算符的本征值,但不改变其本征矢D.即改变算符的本征值,也改变其本征矢.113.算符,则对易关系式等于 ABC D114.非简并定态微扰理论中第个能级的表达式是考虑二级近似ABC D115. 非简并定态微扰理论中第个能级的一级修正项为 A BC D116. 非简并定态微扰理论中第个能级的二级修正项为 A B C D 117. 非简并定态微扰理论中第个波函数一级修正项为 ABC D118.沿方向加一均匀外电场,带电为且质量为的线性谐振子的哈密顿为 A BCD119.非简并定态微扰理论的适用条件是A B C D 120.转动惯量为I,电偶极矩为的空间转子处于均匀电场中,则该体系的哈密顿为A B C D121.非简并定态微扰理论中,波函数的一级近似公式为A B C D122.氢原子的一级斯塔克效应中,对于的能级由原来的一个能级分裂为五个子能级 B. 四个子能级C. 三个子能级 D. 两个子能级.123.一体系在微扰作用下,由初态跃迁到终态的几率为A BC D写出体系的哈密顿 B选取合理的尝试波函数.C 计算体系的哈密顿的平均值 D体系哈密顿的平均值对变分参数求变分.电子具有波动性B.光具有波动性. C. 原子的能级是分立的. D. 电子具有自旋.126.为自旋角动量算符,则等于A BC .D127. 为Pauli算符,则等于A B CD128.单电子的自旋角动量平方算符的本征值为A B C D129.单电子的Pauli算符平方的本征值为A0 B1 C. 2D. 3.130.Pauli算符的三个分量之积等于A. 0 B1CD131.电子自旋角动量的分量算符在表象中矩阵表示为A B C D 132. 电子自旋角动量的y分量算符在表象中矩阵表示为A B C D 133. 电子自旋角动量的z分量算符在表象中矩阵表示为A B C D 134.是角动量算符,,则等于A BC. 1 D. 0135.接上题, 等于A B C D. 0.136.接134题, 等于A B C D. 0.137.一电子处于自旋态中,则的可测值分别为A B .C D138.接上题,测得为的几率分别是A B CD139.接137题, 的平均值为0 B C D140.在表象中,,则在该态中的可测值分别为 ABC D141.接上题,测量的值为的几率分别为A B.1/2,1/2. C.3/4,1/4. D.1/4, 3/4.142.接140题,的平均值为A B C D143.下列有关全同粒子体系论述正确的是A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系 B.氢原子中的电子、质子、中子组成的体系是全同粒子体系 C.光子和电子组成的体系是全同粒子体系 D.粒子和电子组成的体系是全同粒子体系.144.全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数 A.是对称的 B.是反对称的 C.具有确定的对称性. D.不具有对称性.145.分别处于态和态的两个电子,它们的总角动量的量子数的取值是0,1,2,3,4B.1,2,3,4. C. 0,1,2,3 D.1,2,3.(二) 填空题(共100题)1pton效应证实了。

量子力学课后习题答案

量子力学课后习题答案

Wnl (r)dr Rnl2 (r)r 2dr
例如:对于基态 n 1, l 0
W10 (r) R102 (r)r 2

4 a03
r e2 2r / a0
求最可几半径
R e 2 r / a0
10
a03 / 2
dW10 (r) 4 (2r 2 r 2 )e2r / a0
x)

k
2
2
(
x)

0
其解为 2 (x) Asin kx B cos kx
根据波函数的标准条件确定系数A、B,由连续性条件,得
2 (0) 1(0) B 0
2 (a) 3 (a) Asin ka 0
A0
sin ka 0
ka n
(n 1, 2, 3,)
[1 r
eikr
r
(1 r
eikr )

1 r
eikr
r
(1 r
eikr )]er
i1 1 11 1 1

2
[ r
(
r2
ik
) r

r
(
r2
ik
r )]er

k
r2
er
J1与er 同向。 1 表示向外传播的球面波。
习题
(2)
J2

i
2
(
2
* 2
2*
解:U (x)与t 无关,是定态问题
薛定谔方程为

2
2
d2 dx2

(x) U (x) (x)

E (x)
在各区域的具体形式为:
x0

量子力学第三章习题与解答(doc)

量子力学第三章习题与解答(doc)

第三章习题解答3.1 一维谐振子处在基态t i x e x ωαπαψ2222)(--=,求:(1)势能的平均值2221x U μω=; (2)动能的平均值μ22p T =;(3)动量的几率分布函数。

解:(1) ⎰∞∞--==dx e x x U x 2222222121απαμωμωμωμωππαμω ⋅==⋅=2222221111221ω 41= (2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ ⎰∞∞----=dx e dx d e x x 22222122221)(21ααμπα ⎰∞∞---=dx e x x 22)1(22222αααμπα][222222222⎰⎰∞∞--∞∞---=dx e x dx e x xααααμπα]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222 ω 41=或 ωωω 414121=-=-=U E T (3) ⎰=dx x x p c p )()()(*ψψ 212221⎰∞∞---=dx ee Px i xαπαπ⎰∞∞---=dx eePx i x222121απαπ⎰∞∞--+-=dx ep ip x 2222222)(21 21αααπαπ ⎰∞∞-+--=dx ee ip x p 222222)(212 21αααπαπ παπαπα2212222p e -=22221απαp e-=动量几率分布函数为 2221)()(2απαωp ep c p -==#3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。

解:(1)ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/23020⎰⎰⎰⎰∞-==⎰∞-=0/233004dr a r a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr e a e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω 0/2030)22(4)(a r re r a a dr r d --=ω令 0321 , ,0 0)(a r r r drr d =∞==⇒=,ω当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。

(完整)高等量子力学习题汇总,推荐文档

(完整)高等量子力学习题汇总,推荐文档

第一章1、简述量子力学基本原理。

答:QM 原理一 描写围观体系状态的数学量是Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。

QM 原理二 1、描写围观体系物理量的是Hillbert空间内的厄米算符(Aˆ);2、物理量所能取的值是相应算符A ˆ的本征值;3、一个任意态总可以用算符A ˆ的本征态ia 展开如下:ψψi i i iia C a C==∑;而物理量A 在ψ中出现的几率与2i C 成正比。

原理三 一个微观粒子在直角坐标下的位置算符i x ˆ和相应的正则动量算符i pˆ有如下对易关系:[]0ˆ,ˆ=j i x x ,[]0ˆ,ˆ=j i p p ,[]ij j i i p x δη=ˆ,ˆ 原理四 在薛定谔图景中,微观体系态矢量()t ψ随时间变化的规律由薛定谔方程给()()t H t ti ψψˆ=∂∂η在海森堡图景中,一个厄米算符()()t A H ˆ的运动规律由海森堡方程给出:()()()[]H A i t A dt d H H ˆ,ˆ1ˆη= 原理五 一个包含多个全同粒子的体系,在Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。

服从前者的粒子称为玻色子,服从后者的粒子称为费米子。

2、薛定谔图景的概念?答:()()t x t ψψ|,x =<>式中态矢随时间而变而x 不含t ,结果波函数()t x ,ψ中的宗量t 来自()t ψ而x 来自x ,这叫做薛定谔图景.3、 已知.10,01⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=βα (1)请写出Pauli 矩阵的3个分量; (2)证明σx 的本征态).(211121|βα±=⎪⎪⎭⎫ ⎝⎛±>=±x S 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为:求证:答案:设:C 1=x 1+iy 1,C 2=x 2+iy 2则:P x =2(x 1x 2+y 1y 2) P y =2(x 1y 2-x 2y 1) P z =x 12+y 12-x 22-y 22 P 2=P x 2+P y 2+P z 2=4(x 1x 2+y 1y 2)2+4(x 1y 2-x 2y 1)2+(x 12+y 12-x 22-y 22)2=4(x 12x 22+y 12y 22+x 12y 22+x 22y 12)+(x 14-2x 12x 22-2x 12y 22-2x 22y 12-2y 12y 22-2x 22y 22+y 14+x 24+y 24) =(x 14+2x 12x 22+2x 12y 22+2x 22y 12+2y 12y 22+2x 22y 22+y 14+x 24+y 24) =(x 12+y 12+x 22+y 22)2 =(|C 1|2+|C 2|2)2 5、6、证明不确定关系.————答案:对于两个可观测量A ∧和B ∧成立不等式:(1)先证明一个引理----schwarz 不等式:对于两个态矢|α〉和|β〉,必有:(2)此不等式类似于对实欧式空间的两个矢量a,b ,必有:(3)对任意复常数λ,我们有:(4)取||βαλββ〈〉=-〈〉,代入上式可得(2).现在证明(1)式:取(5)这里用态|〉来强调对任何ket 矢量都适用,于是(2)式给出:(6)因:(7)其中对易子,,A B A B ∧∧∧∧⎡⎤⎡⎤⎢⎥⎢⎥∆∆=∆⎢⎥⎢⎥⎣⎦⎣⎦是一个反厄米算符,它的平方值恒为纯虚数,而反对易子},A B ∧∧⎧∆∆⎨⎩是厄米算符,它的平方值恒为实数,于是:的模的平方等于。

量子力学与统计物理习题解答完整版

量子力学与统计物理习题解答完整版

量子力学与统计物理习题解答 第一章1. 一维运动粒子处于⎩⎨⎧≤>=-)0(0)0()(x x Axe x xλψ的状态,式中λ>0,求(1)归一化因子A ; (2)粒子的几率密度;(3)粒子出现在何处的几率最大? 解:(1)⎰⎰∞-∞∞-*=0222)()(dx e x Adx x x x λψψ令 x λξ2=,则323232023202224!28)3(88λλλξξλξλA AA d e A dx ex Ax=⨯=Γ==-∞∞-⎰⎰由归一化的定义1)()(=⎰∞∞-*dx x x ψψ得 2/32λ=A(2)粒子的几率密度xe x x x x P λλψψ2234)()()(-*==(3)在极值点,由一阶导数0)(=dxx dP 可得方程0)1(2=--xe x x λλ 而方程的根0=x ;∞=x ;λ/1=x 即为极值点。

几率密度在极值点的值0)0(=P ;0)(lim =∞→x P x ;24)/1(-=e P λλ由于P(x)在区间(0,1/λ)的一阶导数大于零,是升函数;在区间(1/λ,∞)的一阶导数小于零,是减函数,故几率密度的最大值为24-e λ,出现在λ/1=x 处。

2. 一维线性谐振子处于状态t i x Aet x ωαψ212122),(--=(1)求归一化因子A ;(2)求谐振子坐标小x 的平均值;(3)求谐振子势能的平均值。

解:(1)⎰⎰∞∞--∞∞-*=dx e Adx x222αψψ⎰∞-=02222dx e A xα⎰∞-=222ξαξd e Aαπ2A =由归一化的定义1=⎰∞∞-*dx ψψ得 πα=A (2) ⎰⎰∞∞-∞∞--==dx xe A dx x xP x x222)(α因被积函数是奇函数,在对称区间上积分应为0,故 0=x (3)⎰∞∞-=dx x P x U U )()(⎰∞∞--=dx e kx x 22221απα ⎰∞-=0222dx e x k x απα⎰∞-=222ξξπαξd e k⎥⎦⎤⎢⎣⎡+-=⎰∞-∞-0022221ξξπαξξd e e k⎰∞-=02221ξπαξd e k 2212ππαk=24αk =将2μω=k 、μωα=2代入,可得02141E U ==ω 是总能量的一半,由能量守恒定律U T E +=0可知动能平均值U E U E T ==-=0021和势能平均值相等,也是总能量的一半。

量子力学习题答案9页word

量子力学习题答案9页word

2.1 如图所示右设粒子的能量为,下面就和两种情况来讨论(一)的情形此时,粒子的波函数所满足的定态薛定谔方程为其中其解分别为(1)粒子从左向右运动右边只有透射波无反射波,所以为零由波函数的连续性得得解得由概率流密度公式入射反射系数透射系数(2)粒子从右向左运动左边只有透射波无反射波,所以为零同理可得两个方程解反射系数透射系数(二)的情形令,不变此时,粒子的波函数所满足的定态薛定谔方程为其解分别为由在右边波函数的有界性得为零(1)粒子从左向右运动得得解得入射反射系数透射系数(2) 粒子从右向左运动左边只有透射波无反射波,所以为零 同理可得方程由于全部透射过去,所以反射系数 透射系数2.2如图所示在有隧穿效应,粒子穿过垒厚为的方势垒的透射系数为总透射系数2.3以势阱底为零势能参考点,如图所示 (1)左 中 0 a x时只有中间有值在中间区域所满足的定态薛定谔方程为其解是由波函数连续性条件得∴∴ 相应的因为正负号不影响其幅度特性可直接写成由波函数归一化条件得所以波函数(2) ∞∞左 中 右0 x显然时只有中间有值在中间区域所满足的定态薛定谔方程为其解是由波函数连续性条件得当,为任意整数,则当,为任意整数,则综合得∴当时,,波函数归一化后当时,,波函数归一化后2.4如图所示左中0 a 显然其中其解为由在右边波函数的有界性得为零∴再由连续性条件,即由得则得得除以得再由公式 ,注意到令,其中,不同n对应不同曲线, 图中只画出了在的取值范围之内的部分65n=0只能取限定的离散的几个值,则E 也取限定的离散的几个值,对每个E ,确定归一化条件得2.5则该一维谐振子的波函数的定态薛定谔方程为令则上式可化成令则只有当有解2.6由 和已知条件可得第三章3.1能量本征值方程为即分离变量法,令则有令则同理令则式中能级简并度为3.2角动量算符在极坐标系下则由能量本征值方程令其解为由周期性得归一化条件则3.4由能量本征值方程令当令 此时 满足的方程为时时只考虑时令其解分别为由波函数有界性得由波函数连续性得再由公式,注意到令,其中 , 不同n 对应不同曲线,图中只画出了在的取值范围之内的部分65只能取限定的离散的几个值,则E也取限定的离散的几个值,对每个E,确定归一化条件得 1 可求得3.5同理方差算符则由测不准关系代入,验证该式是成立的第四章4.1在动量表象中,则代入得令得则归一化后的4.5本征方程的矩阵形式上式存在非零解的条件是即解得当再由得当,同样第六章6.3解:在z S ˆ 表象,nS ˆ的矩阵元为 其相应的久期方程为 即所以nS ˆ的本征值为2±。

(完整word版)量子力学典型例题分析解答

(完整word版)量子力学典型例题分析解答

量子力学例题第二章一.求解一位定态薛定谔方程1.试求在不对称势井中的粒子能级和波函数[解] 薛定谔方程:当,故有利用波函数在处的连续条件由处连续条件:由处连续条件:给定一个n 值,可解一个, 为分离能级. 2.粒子在一维势井中的运动求粒子的束缚定态能级与相应的归一化定态波函数[解]体系的定态薛定谔方程为当时对束缚态解为在处连续性要求将代入得又相应归一化波函数为:归一化波函数为:3分子间的范得瓦耳斯力所产生的势能可近似地表示为求束缚态的能级所满足的方程[解] 束缚态下粒子能量的取值范围为当时当时薛定谔方程为令解为当时令解为当时薛定谔方程为令薛定谔方程为解为由波函数满足的连续性要求,有要使有非零解不能同时为零则其系数组成的行列式必须为零计算行列式,得方程例题主要类型:1。

算符运算;2。

力学量的平均值; 3.力学量几率分布.一。

有关算符的运算1。

证明如下对易关系(1)(2)(3)(4)(5)[证](1)(2)(3)一般地,若算符是任一标量算符,有(4)一般地,若算符是任一矢量算符,可证明有(5)=0同理:。

2。

证明哈密顿算符为厄密算符[解]考虑一维情况为厄密算符,为厄密算符,为实数为厄密算符为厄密算符3已知轨道角动量的两个算符和共同的正交归一化本征函数完备集为,取: 试证明:也是和共同本征函数, 对应本征值分别为: 。

[证].是的对应本征值为的本征函数是的对应本征值为的本征函数又:可求出:二。

有关力学量平均值与几率分布方面1. (1)证明是的一个本征函数并求出相应的本征值;(2)求x在态中的平均值[解]即是的本征函数.本征值2. 设粒子在宽度为a的一维无限深势阱中运动,如粒子的状态由波函数描写.求粒子能量的可能值相应的概率及平均值【解】宽度为a的一维无限深势井的能量本征函数注意:是否归一化波函数能量本征值出现的几率, 出现的几率能量平均值另一做法3 。

一维谐振子在时的归一化波函数为所描写的态中式中,式中是谐振子的能量本征函数,求(1)的数值;2)在态中能量的可能值,相应的概率及平均值;(3)时系统的波函数;(4)时能量的可能值相应的概率及平均值[解](1) ,归一化,,,(2),,;,;,;(3)时,所以:时,能量的可能值、相应的概率、平均值同(2).4.设氢原子处于状态求氢原子的能量,角动量平方以及角动量z分量的可能值,这些可能值出现的几率和这些力学量的平均值.[解] 能量本征值能量本征态当n=2 时本征值为的,出现的几率为100%可能值为出现的几率分别为:.5 。

量子力学习题汇集

量子力学习题汇集

第一章习题1.证明下列算符等式[][][][][][][][][][][][][][][]0,,,,,,,,,,,,,,,=+++=+=+=+B A C A C B C B A BC A C B A C AB CB AC A B BC A C A B A C B A2.设粒子波函数为),,(z y x ψ,求在()dx x x +, 范围内找到粒子的几率.3.在球坐标中,粒子波函数为()ϕϑψ,,r ,试求: 1)在球壳(r,r+dr)中找到粒子的几率;2)在()ϕϑ,方向的立体角Ωd 中找到粒子的几率.4.已知力学量F 的本征方程为n n n F ϕλϕ=求在状态波函数332211ϕϕϕψc c c ++=下测力学量F 的可能值,相应的几率及平均值(假设波函数ψ已归一或不归一的情况).第二章习题1.一粒子在二维势场⎩⎨⎧∞=,,0),(y x V 其它by a x <<<<0,0中运动,求粒子的能级和波函数.能级是否简并?2.由哈密顿算符()2232222212222z y x m m H ωωω+++∇-=所描述的体系,称各向异性谐振子.求其本征态和本征值.3.利用递推关系⎪⎪⎭⎫ ⎝⎛--=+-11212)(n n n n n x dx d ψψαψ 证明()22222)2)(1()12()1(2+-++++--=n n n n n n n n n dx d ψψψαψ并由此证明在n ψ态下2,0nE T P ==第 四 章 习 题1. 证明 )cos sin (cos ϕϑϑi A +=ψ为2L 和y L 的共同本征态,并求相应的本征值。

说明当体系处在此状态时,z L 没有确定值。

2. 对于一转动惯量为I 的平面转子,其能量算符为IL H z 2=,求体系的能量本征态。

如ϕϕψsin )0,(A =,求),(t ϕψ。

3.量子化对称陀螺的哈密顿量可写成()222212121z y x L I L L I H ++=试求该对称陀螺的能量本征值。

量子力学习题集

量子力学习题集

量⼦⼒学习题集量⼦⼒学习题第⼀章绪论1.1 由⿊体辐射公式导出维恩位移定律:能量密度极⼤值所对应的波长λm 与温度T 成反⽐,即λm T=b (常量);并近似计算b 的数值,准确到⼆位有效数字。

1.2 在0K 附近,钠的价电⼦能量约为3eV ,求其德布罗意波长。

1.3 氦原⼦的动能是E=3kT/2(k 为玻⽿兹曼常数),求T=1K 时,氦原⼦的德布罗意波长。

1.4 利⽤玻尔-索末菲的量⼦化条件,求:(1)⼀维谐振⼦的能量;(2)在均匀磁场中作圆周运动的电⼦轨道的可能半径。

已知外磁场H =10特斯拉,玻尔磁⼦M B =9×10-24焦⽿/特斯拉,试计算动能的量⼦化间隔?E ,并与T =4K 及T =100K 的热运动能量相⽐较。

1.5 两个光⼦在⼀定条件下可以转化为正负电⼦对。

如果两光⼦的能量相等,问要实现这种转化,光⼦的波长最⼤是多少?第⼆章波函数和薛定谔⽅程2.1 由下列两定态波函数计算⼏率流密度: (1) ψ1=e ikr /r , (2) ψ2=e -ikr /r .从所得结果说明ψ1表⽰向外传播的球⾯波,ψ2表⽰向内(即向原点)传播的球⾯波。

2.2 ⼀粒⼦在⼀维势场ax a x x x U >≤≤∞∞=00,,0,)(中运动,求粒⼦的能级和对应的波函数。

2.3 求⼀维谐振⼦处在第⼀激发态时⼏率最⼤的位置。

2.4 ⼀粒⼦在⼀维势阱ax a x U x U ≤>??>=,0,0)(0中运动,求束缚态(02.5 对于⼀维⽆限深势阱(0x 和?x ,并与经典⼒学结果⽐较。

2.6 粒⼦在势场xa a x x V x V ≤<<≤??-∞=00,0,,)(0中运动,求存在束缚态(E <0)的条件( ,m ,a ,V 0关系)以及能级⽅程。

2.7 求⼆维各向同性谐振⼦[V =21k (x 2+y 2)]的能级,并讨论各能级的简并度。

2.8粒⼦束以动能E =mk222从左⽅⼊射,遇势垒00,,0)(0≥=x x V x V求反射系数、透射系数。

《量子力学与统计力学》各章习题

《量子力学与统计力学》各章习题

2 《量子力学与统计力学》各章习题习题一1.1、一颗质量为20克的子弹以仰角30º初速率500米/秒从60米的高度处射出。

求在重力作用下该子弹着地前的轨道以及射出50秒后对射出点的位矢、速度、动量、角动量、动能和机械能。

(不考虑空气阻力,重力加速度取10米/秒2,地面为零重力势能面)。

1.2、在极坐标平面中任取两点P 1和P 2,但它们和极点三者不共线。

试分别画出在P 1和P 2处的极坐标单位矢。

1.3、在球坐标系中任取一点P ,试画出P 点的球坐标单位矢。

1.4、对于做斜上抛运动的子弹,以抛出点为坐标系原点建立直角坐标系。

试分别选取两组不同的广义坐标,并用之表示子弹在任一时刻的直角坐标。

1.5、氢原子由一个质子和一个电子组成。

试说明一个孤立氢原子体系是基本形式的Lagrange方程适用的体系。

1.6、证明: Lagrange 方程的基本形式(1.59)式可写为如下的Nielsen 形式:αααQ q T q T =∂∂-∂∂2 ,s ,,2,1 =α 1.7、设一个s 自由度的体系的广义坐标为αq ),,2,1(s =α。

试证明存在一个任意可微函数),,,,(21t q q q F s ,由它与该体系的Lagrange 函数构成的如下函数dtt q q q dF s ),,,,(L L 21 +=' 满足Langrange 方程(1.67)式。

1.8、设一个s 自由度的体系的广义坐标为αq ),,2,1(s =α,满足Langrange 方程(1.67)式的Lagrange 函数为),,,,,,,,(L 2121t q q q q q q s s 。

设存在另一组广义坐标αξ,),,2,1(s =α,且有变换方程),,,,(21t q q s ξξξαα =,s ,,2,1 =α此变换叫做点变换。

证明: 若通过上述点变换将),,,,,,,,(L 2121t q q q q q q s s 变换为),,,,,,,,(L L 2121t s s ξξξξξξ =,则有 s dt d , ,2 ,1 ,0L )L ( ==∂∂-∂∂αξξαα 这就是说,Lagrange 方程的形式与所选用的广义坐标无关。

量子力学课后习题复习资料

量子力学课后习题复习资料

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学基础知识习题解答可修改全文

量子力学基础知识习题解答可修改全文

01.量子力学基础知识本章主要知识点一、微观粒子的运动特征 1. 波粒二象性:,hE h p νλ==2. 测不准原理:,,,x y z x p h y p h z p h t E h ∆∆≥∆∆≥∆∆≥∆∆≥3. 能量量子化; 二、量子力学基本假设1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数(,,,)x y z t ψ来描述,它包括体系的全部信息。

这一函数称为波函数或态函数,简称态。

不含时间的波函数(,,)x y z ψ称为定态波函数。

在本课程中主要讨论定态波函数。

由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于*ψψ,所以通常将用波函数ψ描述的波称为几率波。

在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将*ψψ称为几率密度,它就是通常所说的电子云;*d ψψτ为空间某点附近体积元d τ中电子出现的几率。

对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born )统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。

波函数ψ可以是复函数,ψψψ⋅=*2合格(品优)波函数:单值、连续、平方可积。

2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。

算符:作用对象是函数,作用后函数变为新的函数。

线性算符:作用到线性组合的函数等于对每个函数作用后的线性组合的算符。

11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 自厄算符:满足**2121ˆˆ()d ()d A A ψψτψψτ=∫∫的算符。

自厄算符的性质:(1)本证值都是实数;(2)不同本证值的本证函数相互正交。

3. 假设3:若某一物理量A 的算符ˆA作用于某一状态函数ψ,等于某一常数a 乘以ψ,即:ˆAa ψψ=,那么对ψ所描述的这个微观体系的状态,物理量A 具有确定的数字a 。

量子力学习题集及解答

量子力学习题集及解答

量子力学习题集及解答目录第一章量子理论基础 (1)第二章波函数和薛定谔方程 (5)第三章力学量的算符表示 (28)第四章表象理论 (48)第五章近似方法 (60)第六章碰撞理论 (94)第七章自旋和角动量 (102)第八章多体问题 (116)第九章相对论波动方程 (128)第一章 量子理论基础1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000A (可见光),1A (x 射线)以及0.001A (γ射线)时,加速电子所需的电势差是多少?[解] 电子在电势差V 加速下,得到的能量是eV m =221υ这个能量全部转化为一个光子的能量,即λνυhc h eV m ===221 )(1024.1106.11031063.6419834A e hc V λλλ⨯=⋅⨯⨯⨯⨯==∴--(伏) 当 A 50001=λ时, 48.21=V (伏)A 12=λ时 421024.1⨯=V (伏)A 001.03=λ时 731024.1⨯=V (伏)2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。

[解] 普朗克公式为18/33-⋅=kT hv v e dvc hvd πνρ单位体积辐射的总能量为⎰⎰∞∞-==00/3313T hv v e dv v c h dv U κπρ令kThvy =,则 440333418T T e dy y c h k U y σπ=⎪⎪⎭⎫ ⎝⎛-=⎰∞ (★) 其中 ⎰∞-=0333418y e dyy c h k πσ (★★)(★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。

这个公式就是斯忒蕃——玻耳兹曼公式。

其中σ是比例常数,可求出如下:因为)1()1(1121 +++=-=-------y y y y y ye e e e e e ∑∞=-=1n ny edy e y e dy y n ny y ⎰∑⎰∞∞=-∞⎪⎭⎫ ⎝⎛=-013031 令 ny x =,上式成为dx e x n e dy y xn y ⎰∑⎰∞-∞=∞=-03140311 用分部积分法求后一积分,有⎰⎰⎰∞-∞∞--∞∞--+-=+-=0220332333dx xe e x dx e x e x dx e x x xx xx66660=-=+-=∞∞--∞-⎰xx x e dx e xe又因无穷级数 ∑∞==144901n nπ故⎰∞=⨯=-0443159061ππye dy y 因此,比例常数⎰∞-⨯==-=015334533341056.715818ch k e dy y c h k y ππσ尔格/厘米3·度43.求与下列各粒子相关的德布罗意波长:(1)能量为100电子伏的自由电子; (2)能量为0.1电子伏的自由中子; (3)能量为0.1电子伏,质量为1克的质点; (4)温度T =1k 时,具有动能kT E 23=(k 为玻耳兹曼常数)的氦原子。

量子力学习公式概念和习题共33页文档

量子力学习公式概念和习题共33页文档
量子力学习公式概念和习题
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 —、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《量子力学与统计力学》各章习题
习题一
1.1、一颗质量为20克的子弹以仰角30º初速率500米/秒从60米的高度处射出。

求在重力
作用下该子弹着地前的轨道以及射出50秒后对射出点的位矢、速度、动量、角动量、动
能和机械能。

(不考虑空气阻力,重力加速度取10米/秒2
,地面为零重力势能面)。

1.2、在极坐标平面中任取两点P 1和P 2,但它们和极点三者不共线。

试分别画出在P 1和P 2处
的极坐标单位矢。

1.3、在球坐标系中任取一点P ,试画出P 点的球坐标单位矢。

1.4、对于做斜上抛运动的子弹,以抛出点为坐标系原点建立直角坐标系。

试分别选取两组不
同的广义坐标,并用之表示子弹在任一时刻的直角坐标。

1.5、氢原子由一个质子和一个电子组成。

试说明一个孤立氢原子体系是基本形式的Lagrange
方程适用的体系。

1.6、证明: Lagrange 方程的基本形式(1.59)式可写为如下的Nielsen 形式:
αα
αQ q T q T =∂∂-∂∂2 ,s ,,2,1 =α 1.7、设一个s 自由度的体系的广义坐标为αq ),,2,1(s =α。

试证明存在一个任意可微函
数),,,,(21t q q q F s ,由它与该体系的Lagrange 函数构成的如下函数
dt
t q q q dF s )
,,,,(L L 21 +
='
满足Langrange 方程(1.67)式。

1.8、设一个s 自由度的体系的广义坐标为αq ),,2,1(s =α,满足Langrange 方程(1.67)
式的Lagrange 函数为),,,,,,,,(L 2121t q q q q q q s s 。

设存在另一组广义坐标αξ,),,2,1(s =α,且有变换方程
),,,,(21t q q s ξξξαα =,s ,,2,1 =α 此变换叫做点变换。

证明: 若通过上述点变换将),,,,,,,,(L 2121t q q q q q q s s 变
换为),,,,,,,,(L L 2121t s s ξξξ
ξξξ =,则有 s dt d , ,2 ,1 ,0L )L ( ==∂∂-∂∂αξξα
α 这就是说,Lagrange 方程的形式与所选用的广义坐标无关。

1.9、一个质量为m 的物体在地球(质量为M )引力场中做周期运动。

以地心为极点在轨道平面
上建立极坐标系),(ϕr ,并选极坐标为广义坐标。

1)、写出该物体的Lagrange 函数,广义动量,所受的广义力,并由Lagrange 方程导出
该物体的径向和横向运动方程; 2)、写出该物体的Hamilton 函数, 并由Hamilton 正则方程导出该物体的径向和横向运动方程。

1.10、一个体系由n 个粒子组成,粒子质量分别为i m ),,2,1(n i =。

此体系在外势场中运
动,第i 个粒子在此外势场中的势能为)(i i r V ,第i 个粒子的动量为i p
, 这n 个粒子间
的相互作用能为),,(1n r r V。

1)、写出该体系的Lagrange 函数和Hamilton 函数;
2)、写出原子序数为Z 的原子中的电子体系的Lagrange 函数和Hamilton 函数。

1.11、写出一个自由粒子在球坐标系中的广义动量及Hamilton 函数。

1.12、若函数φ及ψ均为正则变量αq 、αp ),,2,1(s =α及时间t 的函数,即
, );,,,;,,,(,
);,,,;,,,(21212121t q q q p p p t q q q p p p s s s s ψψφφ==
它们的泊松括号],[ψφ定义为
∑=⎪⎪⎭


⎛∂∂∂∂-∂∂∂∂=s
q
p p q ,1][αααααψ
φψφψφ 证明: 1)、
][,H t
dt d φφφ+∂∂=; 2)、Hamilton 正则方程可有如下形式
s 1,2,..., ],[ ],[===ααααα,H q q ,H p p
其中,H 是体系的Hamilton 量。

3)、s 1,2,...,, ,],[==βαδαββαp q 。

1.13、试写出一个单原子分子的能量曲面方程,并计算能量曲面所包围的相体积。

1.14、一个双原子分子的运动通常包括分子质心的平动、两个原子绕质心的转动和原子间的
相对振动。

试写出一个刚性双原子分子(即不考虑原子间的相对振动)的能量曲面方程,并计算能量曲面所包围的相体积。

1.15、一容器内装有一种单原子分子组成的理想气体,设容器体积为V ,分子总数为N ,分子
质量为m 。

1)、写出此单原子分子气体的哈密顿量H 。

2)、计算此系统能量的曲面E H =所包围的相体积的大小。

1.16、已知一个质量为m 的质点在力F
的作用下在一个固定的光滑水平面上运动。

若在此水
平面上建立直角坐标系,则y x e y K e x K F
21--=,其中,1K 和2K 均为常量。

试计算 该粒子能量为ε时能量曲面所包围的相体积。

1.17、试利用Kronecker 符号、Levi-Civita 符号的定义、行列式运算规则和Einstein 求和
约定验证或证明:
1)

k
j i k
j i k j i ijk
333222111 δδδδδδδδδε=; 2)、
kr
kq kp jr
jq jp ir iq ip pqr
ijk δδδδδδδδδεε =;
3)、jm
jl im
il im jl jm il lmk ijk δδδδδδδδεε =
-=;
4)、il ljk
ijk δεε2=; 5)、6=ijk ijk εε
1.18、试利用Einstein 求和约定证明:
1)、B A A B B A A B B A
)( )() ( )()(∇•+∇•+⨯∇⨯+⨯∇⨯=•∇
2)、)()()(B A A B B A
⨯∇•-⨯∇•=⨯•∇。

1.19、一个质量为m 荷电q 的粒子在相互垂直的匀强电场E 和匀强磁场B
中运动。

试选直角
坐标为广义坐标, 坐标原点为电势零点, 分别写出在对称规范和Landau 规范下该粒子的Lagrange 函数和Hamilton 函数,并分析Hamilton 函数表达式的能量组成形式。

1.20、试由Maxwell 方程组(1.159),并利用式(1.150)推导式(1.179)。

复习总结要求一
1a 、用一句话概述本章内容。

1b 、用一段话扼要叙述本章内容。

1c 、以两粒子体系为例,推导基本形式的Lagrange 方程、保守系的Lagrange 方程和Hamilton
正则方程。

1d 、以习题1.19中的体系为例,仿照§ 1.7,从基本形式的Lagrange 方程出发推导Lagrange
方程。

1e 、系统地总结本章的基本概念、基本公式、重要结论和结果以及基本技能。

(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档