第二章自由基活性聚合及其应用

合集下载

第二章 自由基链式聚合2

第二章 自由基链式聚合2

要分析清楚影响二者的因素和控制方法,首先应该探讨 自由基聚合机理,从研究聚合动力学问题,描述其基元反应 及其特征开始。
2.4.1
链引发反应是形成单体自由基活性种的反应。 引发剂、光能、热能、辐射能等均能使单体生成单体自 由基。
由引发剂引发时,由两步反应组成: (a) (b)
活化能E ( kJ/mol ) 高/约105 ~150
链终止反应受扩散控制
Tab.自由基聚合的终止方式(60℃)
单体 丙烯腈 苯乙烯 甲基丙烯酸甲酯 醋酸乙烯酯
偶合/% 约100 77 21 0
歧化/% 0 23 79 约100
一般而言,单体位阻大,聚合温度高,多以岐化终止为主。
基元反应
速率常数
(s-1)
反应物浓度
(mol/L)
链增长 链终止
102 ~104 106 ~108
2.5.2 引发剂分解动力学
(a) (b)

CH2 = CH0的一半,[I]/[I]0=0.5时 所需的时间,以t1/2表示。
kd和温度T有关,所以,半衰期t1/2也因T的不同而不同
引发剂分解速率常数kd与温度之间的关系遵循阿累 尼乌斯(Arrhenius)经验公式。
水溶性
HO RO
OH + Fe2+ OH + Fe2+ + Fe2+
HO HO SO42
+ HO + Fe3+ + RO + Fe3+ + SO4 + Fe3+
S2O82
亚硫酸盐和硫代硫酸盐常与过硫酸盐构成氧化—还原体系, 形成两个自由基。
S2O82 + SO32 S2O82 + S2O32 SO42 SO42 + SO4 + SO4 + SO3 + S2O3

活性自由基聚合讲解

活性自由基聚合讲解
17
目前已发现很多可作为引发转移终止剂的化合物, 可分为热分解和光分解两种。
热引发转移终止剂:主要为是C-C键的对称六取 代乙烷类化合物。其中,又以1, 2-二取代的四苯基乙 烷衍生物居多,其通式如下图所示。主要品种包括四 苯基丁二腈TPSTN,五苯基乙烷PPE,四(对-甲氧 基)苯基丁二腈TMPSTN,l,1,2,2-四苯基-1,2-二苯氧 基乙烷TPPE和1,1,2,2-四苯基-l,2-二(三甲基硅氧基) 乙烷(TPSTE)等。
R R' + n M
R [ M ]n R'
16
根据以上反应机理,可将自由基聚合简单地视 为单体分子向引发剂分子中R-R’键的连续插入反 应,得到聚合产物的结构特征是两端带有引发剂碎 片。Otsu等由此得到启示,若能找到满足上述条件 的合适引发剂,则可通过自由基聚合很容易地合成 单官能或双官能聚合物,进而达到聚合物结构设计 之目的。由于该引发剂集引发、转移和终止等功能 于一体,故称之为引发转移终止剂(iniferter)。
C2H5 S
CH2 SCN C2H5 S C2H5
多官能度
C2H5
常用光引发转移终止剂结构式
NCS CH2
CH2 SCN C2H5
C2H5
H2
NCS
C
C2H5 S
C2H5
NCS
C
H2
C2H5
S
易断链
C2H5
H2
C
SCN
S
C2H5
C2H5
C
SCN
H2
S
C2H5
22
适用的单体
Iniferter技术不仅可以用于苯乙烯St和甲基丙烯酸
20
单官能度

第二章自由基聚合

第二章自由基聚合

2.3.2 自由基聚合反应的特征
1、由链引发、增长、终止、转移等基元反应组成 特征为:慢引发、快增长、速终止。 引发速率最小,是控制总聚合速率的关键。
2、链增长反应使聚合度增加
反应混合物中仅由单体和聚合物组成 聚合度变化小。
自由基聚合过程中分子量 与时间的关系
3、对分子量的影响 凝胶效应将使分子量增大。
2
CH3 2C +N2 CN
AIBN一般在45~65℃ 下使用;它分解后形成的异丁腈自由 基是碳自由基,缺乏脱氢能力,故不能作接枝聚合的引发剂。
2、有机过氧类引发剂
代表物:过氧化二苯甲酰(BPO) BPO中O—O键部分的电子云密度大而相互排斥,容 易断裂,通常在60~80℃ 分解。
★ 均裂成苯甲酸基自由基,有单体存在时,即引发聚合; ★ 无单体存在时,进一步分解成苯基自由基,并析出CO2 但分解不完全。
弱键的离解能一般为100~170kJ/mol
常用的引发剂有:偶氮化合物、有机过氧化合物、无机盐 过氧化合物和氧化-还原引发体系等。
2.4.1.1 引发剂的种类
1、偶氮类引发剂
几乎全部为一级反应,只形成一种自由 基,无诱导分解; 比较稳定,能单独安全保存;
代表物:偶氮二异丁腈(AIBN)
CH3 2C N N C CH3 CN CN
自由基聚合过程中转化率与时间的关系
4、少量(0.01%~0.1%)阻聚剂足以使自由基聚合反应终止。
2.4 链引发反应
自由基聚合反应的首要条件是:在聚合体系中产生自由基, 常用方法是在聚合体系中引入引发剂,其次是采用热、光 和高能辐射等方法。
2.4.1 引发剂和引发作用
引发剂:分子结构上具有弱键,容易分解成自由基。

活性自由基聚合

活性自由基聚合
活性自由基聚合可以用于高分子 材料的改性,通过引入功能性基 团或改变高分子链结构,提高高
分子材料的性能和功能。
功能性化
通过活性自由基聚合,可以将功 能性单体引入高分子链中,制备 功能性高分子材料,如具有光敏、 热敏、导电、磁性等功能的高分
子材料。
高分子链结构调控
通过活性自由基聚合,可以精确 调控高分子链的微观结构和聚集 态结构,从而改善高分子材料的 力学性能、流变性能和加工性能
THANKS FOR WATCHING
感谢您的观看
特性
活性自由基聚合具有高分子量、窄分 子量分布、低副反应和易控制等特点 ,能够合成结构规整、性能优异的聚 合物材料。
历史与发展
历史
活性自由基聚合的概念最早由美 国科学家于20世纪50年代提出, 但直到20世纪80年代才得到实际 应用。
发展
随着对活性自由基聚合机理的深 入研究和新型聚合技术的开发, 活性自由基聚合已成为高分子合 成领域的重要研究方向之一。
压力
聚合过程中通常需要加压,以使单体更好地溶解和传递。
引发剂与抑制剂
选择适当的引发剂和抑制剂,以控制聚合反应的速度和产物的分 子量。
聚合产物的特性
高分子量
活性自由基聚合可制备高 分子量的聚合物,分子量 可达到数百万至数千万。
窄分子量分布
活性自由基聚合产物的分 子量分布较窄,有利于提 高聚合物材料的性能。
案例二:高分子改性研究
总结词
采用活性自由基聚合技术对现有高分子材料 进行改性,提高了其性能和应用范围。
详细描述
在案例二中,研究者采用活性自由基聚合方 法对现有高分子材料进行了改性。通过引入 功能性单体和共聚单体,成功改善了高分子 材料的亲水性、生物相容性和光敏性等性能。 此外,研究者还研究了改性后高分子材料的 流变性能和加工性能,为其在实际应用中的 加工和成型提供了理论支持。

第二章 自由基聚合-2.4 自由基聚合反应动力学

第二章 自由基聚合-2.4 自由基聚合反应动力学

Rd=d[R·]/dt=2kd[I] Ri =-d[M]/dt=ki[R·][M] Rp1=-d[M]/dt =kp1[M][M1·] Rp2=-d[M]/dt =kp2[M][M2·]
••••••
Rpn=-d[M]/dt=kpn[M][Mn·]
Rtc=-d[Mx·]/dt=ktc[Mx·][My ·]
2.4.1聚合反应动力学研究方法 二、聚合速率的测定-间接法
C% V Vo K
K Vm Vp 100% Vm
其中,Vo为起始体积,△V为t时刻的
体积收缩值,由高度变化计算得到
Rp

d[M ] dt

[M ]2 t2
[M ]1 t1
C2[M ]o C1[M ]o t2 t1
••••••
Rpn=-d[M]/dt=kpn[M][Mn·]
2.4.2自由基聚合初期反应速率 一 动力学方程的推导
d[M ] R dt Ri Rp1 Rp2 ... Rpn
ki[R][M ] k p1[M1][M ] k p2[M 2][M ] ...... k pn[M n ][M ]
(7) Mx • M y • ktcMxy
(8) Mx • M y • ktd Mx M y
(9) M x • XH kts M x H X •
(无活性)
(10) M x • M ktr,M Mx M • (11) Mx • S ktr,s Mx S • (12) M x • I ktr,I M x I •
H
2.4.2自由基聚合初期聚合反应速率 一 动力学方程的推导
空间效应
空间效应对不同链长自由基的活性影响相同

自由基活性聚合

自由基活性聚合

制备方法: 1.用竞聚率差别较大的两种单体一次加料直接共聚; 2.将一种单体连续加料
例:以2-溴异丁酸乙酯为引发剂,溴化亚铜/联二吡啶/铜为催 化剂,通过原子转移自由基聚合以及连续补加第二单体的方法 制备苯乙烯(St)-甲基丙烯酸甲酯 (MMA)的梯度共聚物。
制备聚合物刷:
聚合物刷是指通过物理吸附或者化学键的方式附着在特定 表面并呈现一定形貌的一层聚合物。聚合物刷的物理化学性质 及构象决定了其润湿特性、腐蚀特性、胶体稳定性、表面智能 及生物传感特性。
不足: 1.过渡金属催化剂的去除有一定困难; 2.需要使用较大量的催化剂来加速反应,却不能提高分子量; 3.对反应体系的pH值较敏感。
ATRP的应用:
大分子设计的有效工具
制备分布较窄的均聚物 制备无规、渐变、交替共聚物 制备具有特殊链端的聚合物 制备梯形、嵌段共聚物、星形聚合物 制备聚合物刷
制备梯形共聚物:
实现可控活性自由基聚合的方法:
1)引发转移终止剂法(Initiator-transfer Agent Terminator, Iniferter); 2)稳定自由基调控聚合法(Stable Free Radical Polymerization,SFRP),稳定自由基主 要是氮氧自由基; 3)可逆加成-裂解链转移聚合(Reversible Addition Fragment Chain Transfer, RAFT); 4)原子转移自由基聚合(Atom Transfer Radical Polymerization, ATRP)。
Rp kp M M
链终止速率方程:
Rt 2kt M 2
链终止反应 对自由基浓度的依赖程度更大
假若能使自由基浓度降低到某一程度,既可以维持可观的链增长速率, 又可以使链终止速率减少到相对于链增长可以忽略不计,这样便消除了自 由基可控聚合的主要症结。

第二章自由基聚合

第二章自由基聚合

第二章 自由基聚合2-1 引言1.连锁聚合的基元反应链引发 R I 2→* **RM M R →+链增长 *2*RM M RM →+ *3*2RM M RM →+︰ ︰()**1n m RM M RM →+-链终止 *n RM → 聚合物分子2.连锁聚合的类型⎩⎨⎧异裂均裂θ:B A :B A R R R +→→∙∙⊕|2|⎪⎪⎩⎪⎪⎨⎧∙⊕配位离子θBAR 配位聚合阴离子聚合阳离子聚合自由基聚合 以上占聚合物总产量的%60 2-2连锁聚合的单体⎪⎪⎩⎪⎪⎨⎧动力学热力学适当的引发剂0〈∆G 等杂环作物羰基化合物烯类共轭二烯类单体类型T ⎪⎩⎪⎨⎧P19表2-1醛、酮中羰基π键异裂后,具有类似离子的特征,可由离子引发聚合::||-+--→=-O C O C乙烯基单体碳—碳π键既可均裂,又可异裂,可进行自由基聚合或离子聚合:--+−→←=−→←∙-∙:||||||||||||C C C C C C1. 取代基电子效应的影响∙-∙−→←=−→←-⊕Θ||||||||||||:C C C C C Cπ键断裂方向⎪⎩⎪⎨⎧⎩⎨⎧活性种的性质外因改变双键电子密度共轭诱导取代基的电子效应内因: : ① 无取代基 CH CH 22=nCH 2=CHatm 43( CH 2---CH 2 )N ( CH 2---CH 2 )N② 取代基是供电基团 R-、 RO-、 、 、 例:CH 2=CH-∴ 唯有1,1-双烷基烯烃才能进行阳离子聚合注: 同一体系中,同时存在两种效应,往往共轭效应占主导地位。

结合有利于阳离子的进攻和Y CH CH −−←=-2δ此外,供电基团可使阳离子增长种共轭稳定 如:乙烯基烷基醚③ 取代基是吸电子基团 -CN 、 例:卤原子的诱导效应是吸电子,而共轭效应却有供电性,但两者较弱,只能进行自由基聚合注:Ⅰ 此类也可进行自由基聚合,独电子基易和带有吸电子基团双键上电子云密度低的单体结合。

丙烯腈、丙烯酸酯等Ⅱ 取代基吸电子能力很强时,只可进行阴离子聚合偏二腈乙烯 硝基乙烯 ④ 取代基是共轭基团如; 苯乙烯、甲基苯乙烯-α 、丁二烯 、异戊二烯 可进行三种聚合,π电子流动性较大,易诱导极化。

第二章 活性自由基聚合

第二章 活性自由基聚合
受温度影响小,可在低温或室温下进行; • 引发剂浓度,单体重量的1/1000~5/1000; • 根据聚合体系的特点,选择油溶性或水溶性引发剂。
24
4
2011/9/23
4. 自由基聚合速度方程(1)
主要描述聚合初期聚合速率与引发剂浓度[I],单体浓度 [M],温度T的关系。
链引发反应:
Kd I R· + M
R H2C C. X
(n-1) Monomer
R H2C CH n X
R3C. > CH2=CH CH2. >
CH2.
>
CH. >
2
CH.
3
5
链引发反应(Initiation)
单体在外界各种能量因素的作用下,成为活化分子,即带 有独电子的单体自由基的过程。
属于中温热引发剂,油溶性
18
3
2011/9/23
偶氮化合物类引发剂(2)
CH3 CH3 HC H2C C N=N
CH3 CH3 C CH2 CH

CH3 CN
CN
CH3
CH3
CH3
2 HC H2C C . + N2
CH3
CN
偶氮二异庚腈, 使用温度50-60℃左右; t1/2=2.4h(60℃)。 属于低温引发剂,油溶性。
N(CH3)2
CO. + O
COO- +
CH3 N+. CH3
20
氧化还原体系(Redox initiation)(2)
2)水溶性:氧化剂:过氧化氢、过硫酸盐、氢过氧化物等; 还原剂:无机还原剂(Fe2+、Cu2+、NaHSO3等)和有机还原 剂(醇、胺、草酸、葡萄糖等)。

第二章 自由基聚合及其应用

第二章 自由基聚合及其应用

产品分子量 的控制因素
PS
PS在生物医药中的应用
培养皿、试剂盒等
1.2.3. HIPS的合成工艺和聚合 物结构特点
(溶液)本体法
橡胶 苯乙烯


本体预聚
本体聚合
挤条造粒
产品
本体-悬浮法
橡胶 溶 解 苯乙烯 引发剂 水、分散剂 悬浮聚合 干燥造粒
本体预聚
产品
粘度-转化率图和在HIPS胶粒形态制造中其构造改变的现象
橡胶相状态
在HIPS中有大量包裹着PS的橡胶颗粒,这样 可使橡胶相体积增加10%-40%。 橡胶中包藏物的存在对橡胶起到增强作用, 而这种被增强的橡胶颗粒又对PS基体起更有 效的增韧作用,一般来说,在橡胶含量相同 的情况下,橡胶相体积越大对HIPS增韧效果 越好,但包藏量为橡胶量两倍左右较为适宜。
熟化处理:
目的是加速单体的反应并驱除残余单体,使 聚合物中残余单体的量降至1%以下。
今后发展方向
残余单体含量高 改进办法:采用负离子聚合方法。 分子量控制
资 料
美国诺瓦公司开发出水发泡聚苯乙烯新工艺 据海外媒体报道,美国诺瓦(Nova)化学 品公司和塑料加工设备企业TeubertMa schineubau公司日前共同开发了利用 水生产发泡聚苯乙烯(EPS)的新工艺。这种 工艺是将淀粉混配到EPS颗粒内,通过吸收水 使EPS发泡以制取成品,解决常规EPS的戊 烷逸散污染 问题。
橡胶颗粒的大小
HIPS中橡胶的粒径通常为1-5m。 橡胶的粒径不能小于裂缝的宽度,否则橡胶颗粒嵌 入裂缝中而起不到增韧作用。 橡胶粒径过大,则颗粒数减少,与裂缝相遇到几率 减少,同样也难于发挥良好的增韧作用。 大粒径橡胶颗粒对终止开裂有良好效果,而小粒径 橡胶颗粒能够有效地诱发和终止银纹。 因此,扩大橡胶颗粒粒径分布有利于提高HIPS的冲 击强度。 橡胶粒径大小及分布主要取决于聚合时的搅拌强度 以及橡胶浓度。

第2讲原子转移自由基活性聚合

第2讲原子转移自由基活性聚合
端基官能化聚合物是指在大分子链末端带有官能团的聚合 物,官能团可以是一端的(---X),也可以是两端的(X--Y)。常见的官能团有卤素、羟基、胺基、羧基、环氧基、 双键等。这些官能团赋于大分子具有特定性能,如反应性 (遥爪聚合物)、引发活性(大分子引发剂)、聚合活性 (大分子单体)等。
端官能化聚合物的用途: 经扩链或交联合成高分子量聚合物,如热塑性弹性体, 液体橡胶,粘合剂等,改变加工方式。(缩聚反应) 经共聚合成梳形接枝共聚物,或交联网络(大分子交 联剂)(加成聚合反应)
• ATRA是有机化学中形成C—C键的有效方法。1963年,铜 催化下,烯类或共轭烯类化合物与烷基卤化物的加成反应, 生成1:1的加成产物。
CuCl + CCl4
. + CCl3 CH2 CH-R
+ CuCl2 CCl3
. CCl3 CH2 CH CuCl2 CCl3
R
CH2 CH Cl + CuCl
1-氯代苯乙烷为引发剂、氯化亚铜与2,2—联二吡啶的络 合物为催化剂,在130℃条件下进行苯乙烯的聚合,获得 了窄分布的聚合物,具有活性聚合的特征。D<1.1
CH3 CH Cl
CuCl2
Ph
2
• 原子转移自由基聚合的概念源于有机化学中的过渡金属催化 原子转移自由基加成 (Atom TransferRadical Addition, ATRA)
配位剂的作用:
① 稳定过渡金属,与过渡金属配位后对其氧化还原电位产 生影响,从而调节催化剂的活性。② 增加过渡金属盐催 化剂在有机相中的溶解性。
N配体,多齿配体,联吡啶,多乙烯多胺类 P配体,PPh3 O配体,有机酸,邻苯二甲酸等。
早期的配位剂是联二吡啶,与卤代烷、卤化铜组成引发体系: 非均相体系,用量大,引发效率低,产物分子量分布较宽 现采用多胺(如N,N,N’,N’’,N’’-五甲基二亚乙

《自由基聚合》课件

《自由基聚合》课件

04
自由基聚合的挑战与解决方案
聚合反应控制问题
总结词
聚合反应速度和分子量控制
详细描述
自由基聚合过程中,聚合反应速度和分子量控制是关键挑战。由于自由基聚合反应速度快,易产生聚合物分子量 分布过宽的问题。
聚合物分子量分布问题
总结词
聚合物分子量分布的调节
详细描述
聚合物分子量分布问题是自由基聚合中常见的挑战之一。为了获得窄分子量分布的聚合物,可以采用 控制引发剂和链增长剂的浓度、选择适当的反应温度和时间等方法。
功能化聚合物
利用自由基聚合的灵活性,合成具有特定功能和 用途的聚合合物材料,用于生物医学 领域,如药物传递、组织工程和生物传感器等。
绿色化学的发展
环保型自由基聚合
研究和发展环境友好的自由基聚合方 法,减少或消除对环境的负面影响。
循环利用
自由基聚合
目录
• 自由基聚合简介 • 自由基聚合反应 • 自由基聚合的应用 • 自由基聚合的挑战与解决方案 • 未来展望
01
自由基聚合简介
定义与特点
定义
自由基聚合是一种常见的聚合物合成 方法,通过引发剂引发单体聚合形成 高分子聚合物。
特点
自由基聚合具有较高的反应速度和较 低的反应活化能,适用于多种单体, 可通过调节反应条件控制聚合物的分 子量和分子量分布。
自由基聚合的重要性
工业应用
自由基聚合在工业上广泛应用于合成塑料、橡胶、涂料、粘 合剂等高分子材料,是现代工业不可或缺的重要技术之一。
科学研究
自由基聚合对于高分子科学、化学工程、材料科学等领域的 研究具有重要的意义,为新材料的开发和应用提供了理论基 础和实践指导。
自由基聚合的原理
引发阶段

第二章 自由基聚合-2.4 自由基聚合反应动力学2

第二章 自由基聚合-2.4 自由基聚合反应动力学2

2. Rp∝[I]n
Rp=kp[M][M ·]
=kp[M]Ri/kt′ =kp[M]Ri1/kt =kp(2fkd/kt )[M][I]1
条件II: 低转化率 假设III:自由基稳态 Ri=Rt 条件III:单基终止 Rt=kt[M·][RH]= [M·] kt′ [M·]=Rt/ kt′= Ri/ kt′
2
ER

Ep (29)
Ed 2
(125)

Et 2
(17)

83k J
/
mol

0
2.4.2自由基聚合初期聚合反应速率 三、反应温度对聚合反应速率的影响
2. 分析
ቤተ መጻሕፍቲ ባይዱ
ER

Ep (29)
Ed 2
(125)
Et 2
(17)
83kJ
/ mol

0
• ①ER>0, T反升高, kR增大,且ER越大,升温影响越 显著
2.4.2自由基聚合初期反应速率 一 动力学方程的推导
1
R

k p
fkd kt

2
[M
][
I
1
]2

6.0 2.0
1
Rp104/(mol/L s·)
实验验证Ⅱ
0.6
2
3 0.2
0.06 10-4 10-3 10-2 10-1 [I] /(mol/L)
图3-5 [M]恒定下聚合速率与[I]的关系
Rt=2kt[M·]2
1
R

Rp

k p[M ]

Ri 2kt
2
普适方程
2.4.2自由基聚合初期反应速率 一 动力学方程的推导

第二章自由基聚合

第二章自由基聚合

CH CH X X
结构对称,空间位阻大 电子效应往往相互抵消
(3)三、四取代,一般不能聚合 氟代乙烯例外
表1 常见烯类单体的聚合类型
单体 中文名称 氟乙烯 四氟乙烯 六氟丙烯 分子式 CH2=CHF CF2=CF2 CF2=CFCF3
聚合类型 自由基 阴离子 ⊕ ⊕ ⊕
阳离 子
配位
续表
偏二氟乙烯
烷基乙烯基 醚 醋酸乙烯酯
RCH2 C CH2 C +
重排
H RCH2 C CH2 C H CH3 CH3
+
三级碳阳离子比二级碳阳离子稳定,不容易再发生反应
§2.2.2 单体可以聚合的条件
(3)—X是吸电基团electron withdrawing group
O C
e.g: —NO2 ,— CN ,
阴离子聚合
大部分也能自由基聚合
CH2=CHCH3
只能配位聚合
CH2=CHCN
不能阳离子聚合
3、下列单体能否进行聚合?并指出聚合 反应机理,简单说明理由。
1)CH2=C(CH3)COOCH3 2)CH2=C(CN)2 3)CH2=CHOC3H7 4)CH2=C(Cl)2 5)CF2=CF2 6)CH2=CH-CH=CH2
7) CH2=C(CH3)2
高 分 子 化学
Free Radical Polymerization Free Radical Polymerization
第 二 章
自由基聚合
Free Radical Polymerization
Free Radical Polymerization
本章主要内容:
1. 引言 2. 连锁聚合的单体 3. 自由机聚合机理 4. 链引发反应 5. 聚合速率 6. 分子量和链转移 7. 阻聚和缓聚 8. 反应速率常数的测定 9. 分子量分布 10. 聚合热力学

第二章-自由基聚合

第二章-自由基聚合

F1
d
d M1 M1 d M
2
F2
d
d M2 M1 d
M2
1
F1
F1 F2
d M1 d M2
把它们带入(3-10)式
F1
r1
r1 f12 f1 f2 f12 2 f1 f2 r2
f
2 2

(3-11)
F2
r1
r2
f
2 2
f1
f2
f12 2 f1 f2 r2
f
2 2
此式称为mol分 数方程。另外还 有瞬时质量方程 和瞬时质量分数 方程,工业上用 得多
(2) r2
1 r1

r1
1 r2
即 k22 k21 k12 k11
表白两种单体结合到共聚物上旳相对速率与增长活性
中心旳性质无关,共聚构成方程为
d d
M1 M2
r1
M M
1 2
d d
M1 M2
M1 r2 M 2
F1
F1
r1
r1 f1 f1
f2

F1
f1 f1 r2 f2
共聚物构成比与单体瞬时构成是一简朴关系,其构成曲
nCH CH + nCH CH
CC OO O
马来酸酐
CH CH CH
CC OO O
CH
n
甚至某些无机物,也能引入共聚合中,如
O
nCH2 CH + nSO2 R
CH2 CH S n RO
另外CO、亚硝基化合物、O2、醌也引入共聚合中, 生产聚酮、聚胺氧化物、聚过氧化物、聚苯醚等。
3、增长聚合物旳品种
1

活性自由基聚合

活性自由基聚合

假活性、准活性 活性/控制自由基聚合
3. 活性/可控自由基聚合体系
3. 1 Iniferter法
Initiator-transfer agent-terminator
Iniferter
引发-转移-终止剂
1982年,日本人 大津隆行等提出
集引发、转移和终止于一体
将其成功地用于自由 基聚合,从此可控自 由基聚合进入了一个 全新的发展阶段
~~~M * + * R
一定条件下
~~~MR
活性阳离子聚合
获得了突破
尽管离子型活性聚合在过去几十年中研究活跃,并取 得了令人瞩目的成就,但它们具有共同的弱点
单体选择范围狭窄 反应条件苛刻
基于活性阳离 子聚合的思想 和成功实践 严重地限制了 它们在工业上 的大规模应用 重 要 性
活性自由基聚合
1. 3 活性自由基聚合
增长反应
一级反应
矛盾
终止反应
二级反应
受活性阳离 子聚合启发
在聚合体系中活性种与暂时失 活的休眠种同时并存,通过在 两者之间建立快速交换反应, 成功地解决和协调上述矛盾
终止的可逆性
2. 3 实现设计思想的途径
三条途径 可逆增长 可逆终止
可逆转移
(1)增长自由基与稳定自由基可逆形成休眠共价化合物 失活反应速率常数
R S
离解后应是活泼的自 由基基团,能有效地 再引发聚合,如异丙 苯基、腈基异丙基等
RAFT适用单体范围较广,分子设计能力较强,可 成功制备嵌段、星形等具有复杂分子结构的聚合物。但 有双硫酯的制备过程复杂等缺点。虽是一很有前途可控 聚合体系,但目前相关文献不多
3. 4 原子转移自由基聚合(ATRP)
在自由基聚合中 既保持离子型活 性聚合的控制反 应能力,又不失 自由基聚合自身 的优越性

第二章自由基活性聚合及其应用

第二章自由基活性聚合及其应用
问题:引发剂的选择;星型聚合物的合成
(3)反向ATRP
目的:针对引发剂毒性大,难制备,过渡金属 还原态不稳定
原理:
A IB N
CH3 C H 3 C . CuX2/bpy
C N nM
P-X +C uX /bpy
CH3 CH3 C X + CuX/bpy
CN
CH3 CH3 C ( M )n-1 M. CuX2/bpy
S R M n -S -C -N ( C 2 H 5 )
可再分解
(5) RAFT过程(Reversible Addition Fragmentation Chain Transfer)
思路:不可逆链转移副反应是导致聚合反应不可 控主要因素之一,若链转移常数和浓度足够大, 链转移反应由不可逆变为可逆,聚合行为也随之 发生变化,由不可逆变为可逆。
M .+ . M
Rp/Rt=(kp/kt)([M]/[I.])
p o l y m e rRt=kt[I.]2
决定因素是活性种浓度
活性自由基聚合示意图
自由基被结合,反应暂停 生成的化合物不稳定,又分解 成原来的自由基 聚合反应再次开始
又一次被暂停
活性自由基聚合的特点和应用
由于R•的作用,反应速度大大减慢,“点爆竹的时 间”—即引发剂分解的速率可忽略不计,整个体系 在同时生长,分子量由引发剂的用量控制, 反应速 度由R• 用量控制。
的速度通常是引发速度的几十万倍,因此,聚合反应的速 度决定于引发剂分解的速度,即点爆竹的速度。
链引发(速度慢)
链增长(速度快)
采取合适手段,使自由基浓度[P. ]降低。
根据动力学来推导: 引发剂分解:
I-I
2I.

第二章自由基聚合(radicalpolymerization)

第二章自由基聚合(radicalpolymerization)

第二章自由基聚合(radical polymerization)【课时安排】2.1 单体的聚合能力2学时2.2 自由基聚合机理4学时2.3 链引发反应3学时2.4 聚合反应动力学2学时2.5 相对分子质量1学时2.6 链转移反应2学时2.7 聚合方法4学时总计18学时【掌握内容】1.单体聚合能力:热力学(△E, △S,T,P);动力学(空间效应-聚合能力,电子效应-聚合类型)2.自由基基元反应每步反应特征,自由基聚合反应特征3.常用引发剂的种类和符号,引发剂分解反应式,表征方法(四个参数),引发剂效率,诱导效应,笼蔽效应,引发剂选择原则4.聚合动力学:聚合初期:三个假设,四个条件,反应级数的变化,影响速率的四因素(M,I,T,P);聚合中后期的反应速率的研究:自动加速现象,凝胶效应,沉淀效应;聚合反应类型5.相对分子质量:动力学链长,聚合度及影响其的四因素(M,I,T,P),6.链转移:类型,聚合度,动力学分析,阻聚与缓聚7.本体,溶液,悬浮,乳液四大聚合方法配方,基本组成,优缺点及主要品种【熟悉内容】1.热、光、辐射聚合。

2.聚合动力学研究方法。

3 自由基聚合的相对分子质量分布。

4 悬浮聚合与乳液聚合所用分散剂种类、聚合过程。

【了解内容】1. 通用单体来源。

2. 自由基聚合进展。

【教学难点】1. 对具体单体聚合热力学与动力学的综合分析2. 终止方式的相对比例及其与体系状态的关系3. 氧化还原类的反应式;笼蔽效应与诱导效应4. 不同条件下反应速率对单体与引发剂浓度的反应级数的推导与分析5. 区别聚合反应速率、动力学链长、平均聚合度的影响因素和变化趋势6. 向不同转移对象的链转移程度的难易分析7. 乳液聚合机理及动力学【教学目标】1. 掌握自由基聚合相关基本概念。

2. 掌握自由基聚合常见单体、引发剂、阻聚剂、聚合方法。

3. 达到如下技能:(1)单体聚合能力的判断与类型的选择(2)引发剂的选择及正确书写引发反应式(3)正确书写任一体系的基元反应式(4)根据动力学方程计算各参数,选择适当方法控制反应进程(5) 根据相对分子质量方程计算各参数,选择适当方法控制产物结构(6)设计聚合工艺,线路与配方2.1 单体的聚合能力【教学内容】2.1.1 聚合热力学一聚合热二聚合熵三聚合温度四小结2.1.2 聚合动力学一连锁聚合种类与活性中心二单体对聚合类型的选择及聚合能力1 取代基对聚合能力的影响(空间效应)2 取代基对聚合类型的选择(电子效应)3 单体共聚能力【授课时间】2学时【教学重点】1影响聚合热的主要因素及其规律2单体对聚合类型的选择及聚合能力【教学难点】1影响聚合热的主要因素及其规律2 对具体单体聚合热力学与动力学的综合分析【教学目标】1 掌握影响聚合热的主要因素及其规律2掌握取代基对单体聚合类型选择及聚合能力的影响规律3 能正确综合分析具体单体的聚合热力学与动力学行为【教学手段】课堂讲授,辅以实例练习【教学过程】聚合能力:化学结构:两个可相互反应官能团常见聚合单体类型两个以上有机官能团单体C=C-X热力学:方向,限度,∆G<0 R-C=O动力学: 聚合方法杂环(O,N,P,S)2.1.1 聚合热力学∆G=∆H-T∆S= ∆E+P∆V-T∆S<0 聚合;=0 达到平衡;>0 解聚一聚合热∆H=∆E+P∆V1 内能变化∆E=∆E f+∆E R+∆E s+∆E’=( E fp - E fm)+( E Rp - E Rm)+( E sp - E sm)+ ∆E’E f------由键能所贡献的内能E R-----由共振效应所贡献的内能E s------由空间张力或位阻效应所贡献的内能∆E’----其它因素引起的内能变化(1) 双键断裂能CH 2=CH 2 -CH 2-CH 2- ∆E f =εm -εp=609.2-2×351.7=-94.2 kJ.mol -1 (实测值∆H=-88.8 kJ.mol -1)(2)共轭效应增强,|—∆H|减小(3)位阻效应增强,|—∆H|减小 (4)氢键与溶剂化作用增强,|—∆H|减小 (5)强电负性取代基的存在使|—∆H|增强(6)需具体综合分析2 压力影响: 压力增大,有利于聚合物进行二 聚合熵 ∆S=-100~-125 kJ.mol -1三 聚合温度1 聚合上限温度∆G=∆H-T ∆S=0→T c =∆H/∆S (不同压力与活度下数值)→T c 有一系列,对应一系列平衡单体浓度→常规定[M] e =1mol/L 时T c 为聚合上限温度→T c =∆H 0/∆S 02 平衡单体浓度eo oM RT S H Tc ]ln[+∆∆= 四 小结增强聚合倾向内因 ∆S 影响不大∆E: 降低共轭效应, 降低位阻效应, 降低氢键与溶剂化作用,增强强电负性取代基 外因 增大压力,降低温度可解释α-甲基苯乙烯(α-MeSt )的聚合现象2.1.2 聚合动力学一 连锁聚合种类与活性中心根据引发活性种与链增长活性中心的不同,链式聚合反应可分为自由基聚合、阳离子聚合、阴离子聚合和配位聚合等二 单体对聚合类型的选择及聚合能力1 取代基对聚合能力的影响(空间效应)(1)单取代能聚合(2)双取代一般可以聚合,但基团太大时难以聚合(3)三、四取代一般不可以聚合,氟取代除外2 取代基对聚合类型的选择(电子效应)(1) 取代基的诱导效应A A 自由基:2A A CH 2CH XA B 阳离子CH =CHX A CH 2H C X离解A +B -δ+B δ-A B 阴离子A CH 2H C X 离解A -B +δ+B δ-带给电子基团的烯类单体易进行阳离子聚合带吸电子基团的烯类单体易进行阴离子聚合与自由基带强给电子基团、强吸电子基团的烯类单体只能分别进行阳离子、阴离子聚合(2) 取代基的共轭效应:流动性大,易诱导极化,可进行多种机理的聚合反应(3) 带不同基团的单体进行几种聚合时的排序 阳离子聚合取代基-X: -NO 2,-CN,-F,-Cl,-COOCH 3,-CONH 2,-OCOR,-CH=CH 2,-C 6H 5,-CH 3,-OR 自由基聚合阴离子聚合3 单体共聚能力:与参与共聚的各种单体均有关2.2 自由基聚合机理【教学内容】2.2.1 自由基2.2.2 自由基聚合的基元反应一 链引发反应(chain initiation )二 链增长反应(chain growth )三 链终止反应(chain termination )四 链转移反应(chain transfer )2.2.3 自由基聚合的反应特征【授课时间】4学时【教学重点】自由基聚合的基元反应;自由基聚合反应特征【教学难点】终止方式的相对比例及其与体系状态的关系【教学目标】1 掌握自由基聚合机理2 掌握自由基聚合反应特征3 能正确写出具体聚合物的基元反应式【教学手段】课堂讲授,配以Flash 动画演示,辅以学生讨论【教学过程】2.2.1 自由基一 分类与产生二 活性1 影响因素:共轭效应大,吸电子诱导效应大,位阻效应强,稳定性强,活性小2 活性顺序三 反应:加成反应,氧化还原反应,偶合反应,脱氢反应,消去反应2.2.2 自由基聚合的基元反应一 链引发反应(chain initiation ) 慢 单体自由基引发剂引发为例二 链增长反应(chain growth ) 快 活性高分子链I 2 Ik I k i I CH 2引发活性种,初级自由基,引发自由基H 2C CHX +CHX M链结构在该步形成:序列结构→头尾为主顺反结构→温度升高有利于顺式结构生成立体结构→无规结构三 链终止反应(chain termination) 速 稳定大分子1 双基终止(均相体系,主要方式) PS,PAN 偶合为主; PMMA 偶合歧化兼有; PVAc 歧化为主问题:k t >>k p , 为何还可得到大分子?2 单基终止四 链转移反应(chain transfer )一定条件下 不同活性的链自由基 2.2.3 自由基聚合的反应特征 1 慢反应,快增长,速终止234 放热反应,低温有利2.3 链引发反应k I CH 2H 2C CH+CH XMCH 2CH CH 2CH 2偶合:CH 2CH CH CH 2歧化:CH 2CH 2CH 2CH 2CH CH X +k k k CH 2+CH S + SCH 2CH 2【教学内容】2.3.1 引发剂类型一 热分解型二 氧化还原类2.3.2 引发剂活性(表征方法)2.3.3 引发剂效率f2.3.4 引发剂的选择【授课时间】2学时【教学重点】典型类型引发剂;引发剂活性表征方法;引发剂效率及影响因素;引发剂的选择原则【教学难点】氧化还原类的反应式;笼蔽效应与诱导效应【教学目标】1 掌握引发剂活性表示方法及其计算方法2掌握引发剂效率、笼蔽效应、诱导效应等基本概念3能正确写出典型引发剂的结构式与引发反应式4 能根据具体要求选择匹配的引发剂【教学手段】课堂讲授,辅以多媒体幻灯图片及实例【教学过程】2.3.1 引发剂类型一 热分解型(Ed=80~140kJ/mol ,中高温使用)1 偶氮类引发剂2 过氧类引发剂(1) 有机过氧类a 烷基过氧化氢(RC-O-O-H):异丙苯过氧化氢(CHP ),叔丁基过氧化氢(t-BHP)b 二烷基过氧化物(R-O-O-R ’):过氧化二异丙苯c 过氧化酯(RCOOCR ’)d 过氧化二酰(RCOOOCOR ’)R 1C R 2N N C R 1R 2R C R N N C R 1R 2对称不对称(X=吸电子取代基)H 3C C CH 3CN N N C CH 3CH 3CN H 3C C CH 3CN 2+ N 2偶氮二异丁腈(AIBN)Ph C O C O Ph 2Ph C O O Ph C O OPh + CO 2过氧化苯甲酰(BPO )e 过氧化二碳酸酯(ROOC-O-O-COOR ’):过氧化二碳酸二异丙酯(IPP)(2) 无机过氧类:S 2O 82─→2 SO 4‧─二 氧化还原类(Ed=40~60kJ/mol ,低温使用)1 水溶性(1) 生成一种R ‧HOOH + Fe 2+→HO ‧+OH ─+Fe 3+S 2O 82─+ Fe 2+ →SO 42─ + SO 4‧─+Fe 3+用量:还原剂<氧化剂,否则Fe 2++‧OH →Fe 3++OH ─白白消耗自由基(2) 生成一种R ‧S 2O 82─+ SO 32─→SO 42─+ SO 4‧─+ SO 3‧─2 油溶性2.3.2 引发剂活性(表征方法)一 分解速率常数kd 越大,引发剂活性越大I k dt I d R d d =-=][二 分解活化能Ed 越小,引发剂活性越大三 半衰期t 1/2越小,引发剂活性越大2/12/][][ln t k I I d o o = 四 残留分率[I]/[I]o 越小,引发剂活性越大2.3.3 引发剂效率f一二 笼蔽效应(Cage Effect)引发剂分解产生的初级自由基,在开始的瞬间被溶剂分子所包围,不能与单体分子接触,无法发生链引发反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C N nM
P-X +C uX /bpy
CH3 CH3 C X + CuX/bpy
CN
CH3 CH3 C ( M )n-1 M. CuX2/bpy
CN
(4)Iniferter法
热活化型
N=N C
Δ
. + .C
MONOMER
X
[ CH2 C ]n C
Y
光活化型
S
S
R -S -C -N (C 2 H 5 ) h r R .+ .S -C -N (C 2 H 5 )
P R .
.
kd
ka
Pn. PL R ktr
PR
可分解
Pn RPL.
转移剂





(1)基于氮氧稳定自由基的体系(TEMPO)
A: 基本原理 TEMPO, 2,2,6,6-四甲基哌啶氧化物
自由基捕捉剂
N O . +P.
Δ
NO P
(B)简介
发现:1993年,加拿大,Xerox公司 Rizzardo
又一次被暂停
活性自由基聚合的特点和应用
由于R•的作用,反应速度大大减慢,“点爆竹的时 间”—即引发剂分解的速率可忽略不计,整个体系 在同时生长,分子量由引发剂的用量控制, 反应速 度由R• 用量控制。
得到的高分子的分子量比较均一。
可以用来制备一些具有特殊结构的聚合物。如梳状 聚合物,树状聚合物等。
自由基聚合是连锁反应,每个聚合物分子都在瞬间生成。 引发剂分解需要的能量高,链增长需要的能量低,链增长
的速度通常是引发速度的几十万倍,因此,聚合反应的速 度决定于引发剂分解的速度,即点爆竹的速度。
链引发(速度慢)
链增长(速度快)
采取合适手段,使自由基浓度[P. ]降低。
根据动力学来推导: 引发剂分解:
n为引发剂官能度
Dw P1 DnP 1 1
DnP (DnP1)2
DnP
c.聚合物分子量与单体转化率成正比
Mn 分 子 量
0
100
单体转化率/C%
d. 聚合完成后,在加入单体能够继续聚合
第二次加料 可以是不同单体
第一次加料
嵌段聚合物 合成基础
Mn GPC
2.自由基活性聚合实现的思路
自由基聚合反应的特点:
Y
B:简介
发现:1995年,Carnegie-Mellon大学,王锦山 思路:ATRA反应(atom transfer radical addition)
C H 2 = C H +R X Cu催化 Y
优缺点:
RC H 2 C HX Y
优点:对杂质不敏感,过程简单
局限:单体范围窄,催化剂难脱除,反应温度高
第二章 自由基活性聚合及其应用
§1 自由基活性聚合
1. 活性聚合(Living Polymerization) 的基本概念:
活性种
聚 合
单体

食物、水等营养
活性聚合
一个同时成长的过程
活性聚合的特征
a. 快引发、慢增长、无终止和无连转移 b.聚合物分子量可控、分子量分布窄
DP n[M ] [C ]
I-I
2I.
增长:
引发: I.+M
I-M .
I-M .+ n M
终止:
M . Rp=kp[M][I.]
M .+ . M
Rp/Rt=(kp/kt)([M]/[I.])
p o l y m e rRt=kt[I.]2
决定因素是活性种浓度
活性自由基聚合示意图
自由基被结合,反应暂停 生成的化合物不稳定,又分解 成原来的自由基 聚合反应再次开始
R. + nM
RM.n
S R M .n + .S -C -N ( C 2 H 5 )
S R M n -S -C -N ( C 2 H 5 )
可再分解
(5) RAFT过程(Reversible Addition Fragmentation Chain Transfer)
思路:不可逆链转移副反应是导致聚合反应不可 控主要因素之一,若链转移常数和浓度足够大, 链转移反应由不可逆变为可逆,聚合行为也随之 发生变化,由不可逆变为可逆。
聚合体系:引发剂;单体;催化剂 聚合方法:本体、溶液、悬浮、乳液 聚合温度:Cl-ATRP,100-130℃;Br-
ATRP,80-110 ℃
问题:引发剂的选择;星型聚合物的合成
(3)反向ATRP
目的:针对引发剂毒性大,难制备,过渡金属 还原态不稳定
原理:
A IB N
CH3 C H 3 C . CuX2/bpy
实验:BPO+St+TEMPO
MWD<1.3,计量聚合
局限性:限于苯乙烯及其衍生物;TEMPO
价格昂贵;反应速度慢(为什么?)
改进:可聚合引发剂;滴加引发剂;混合引发剂
CH3 C H 2= C C = O
O
N O.
不同活 性的引 发剂
为什么?
(2)ATRP (atom transfer radical polymerization)原子转移自由基聚合
A:基本原理
CH3 CH X + CuX/bpy
CH3 CH. + CuX2/bpy
bpy:
N
N
Z CH 3 CH . + nCH 2=C
Y
Z CH3 CH [ CH2 C
Y
Z ]n-1 CH2 C .
Y
Z CH3 CH [ CH2 C
Y
Z ]n-1 CH2 C . CuX2/bpy
Y
Z C H 3 C H [ C H 2 C ]n X + CuX/bpy
PU-PS合成
大分子引发剂思路
实验结果
均匀聚合物颗粒制备
乳液聚合 MMA
链转移剂:双硫酯(ZCS2R)
S CR ZS
Z: Ph, CH3 R:
反应机理:
S
P. +
ቤተ መጻሕፍቲ ባይዱ
CR
ZS
请考虑R选择原则
.S R
PSC Z
S C P + R. ZS
§2. 活性自由基聚合应用
1. 嵌段共聚物 ATRP方法:
2. 接枝
3.星型聚合物
4. 超支化聚合物
一些研究 工作举例:
相关文档
最新文档