八年级数学上册 15.3 分式方程 第2课时 分式方程的应用导学案 (新版)新人教版

合集下载

人教版八年级上册数学15.3.2列分式方程解决行程实际问题教案

人教版八年级上册数学15.3.2列分式方程解决行程实际问题教案
-学会运用分式方程解决行程问题,特别是相遇和追及问题;
-掌握列分式方程的方法和步骤,能够根据实际问题抽象出方程模型。
举例:在讲解速度、时间和路程的关系时,重点强调速度=路程/时间的基本公式,并通过实例让学生看到在不同情况下的应用,如匀速直线运动中,速度保持不变,路程与时间成正比。
2.教学难点
-抽象出实际问题中的数量关系,将现实问题转化为数学模型;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解行程问题的基本概念。行程问题涉及到速度、时间和路程的关系。它是解决现实生活中相遇和追及问题的关键。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过列分式方程来解决相遇问题,以及这一方法如何帮助我们解决实际生活中的问题。
3.重点难点解析:在讲授过程中,我会特别强调如何从实际问题中抽象出分式方程,以及如何区分相遇和追及问题这两个重点。对于难点部分,我会通过具体的例题和对比分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与行程问题相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的模拟实验。这个实验将演示相遇和追及的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
人教版八年级上册数学15.3.2列分式方程解决行程实际问题教案
一、教学内容
人教版八年级上册数学15.3.2列分式方程解决行程实际问题。本节课我们将紧密围绕以下内容展开:
1.了解行程问题的基本概念,理解速度、时间和路程之间的关系;

15.3.2分式方程的实际应用——工程、行程问题+课件+2024-2025学年人教版数学八年级上册

15.3.2分式方程的实际应用——工程、行程问题+课件+2024-2025学年人教版数学八年级上册
在规定日期内完成,问规定日期是多少天?
拓展应用
解:设规定日期为x天,根据题意,得
1
x 3
1


3

1
x x4
x4


解得:x=12.
经检验:x=12是原方程的解且符合题意.
答:规定日期为12天.
回顾反思
1. 本节课探究了分式的哪些问题?
2. 在探寻分式方程的应用时,你经历了哪些数学活动?在
(2)数字问题:在数字问题中要掌握十进制数的表示法;
(3)工程问题:基本公式: 工作量=工时×工效以及它的两个变式 ;
回顾复习
(4)顺水逆水问题:顺水速度= 轮船速度+水流速度 ,
逆水速度= 轮船速度-水流速度 ;
(5)利润问题:基本公式: 利润=售价-进价,利润率=利润÷进价.
探究新知
学生活动一 【一起探究】
的工作效率比原计划提高20%,结果提前2天完成任务.设原计
划每天铺设x米,下面所列方程正确的是( A )
720
720

2
x
( x 20%) x
720
720
C.

2
(1 20%) x
x
A.
720
720

2
(1 20%) x
x
720
720
D.

x 2 (1 20%) x
B.
拓展应用
x
x 2x
解得x=30,
经检验x=30为原方程的根且符合题意.
∴2x=60.
答:甲队单独完成这项工程需30天,乙队单独完成这项工程
需60天.
课后作业
1.课本P154 习题15.3第3,5题.

人教版八年级数学上册导学案 15.3分式方程(第二课时)

人教版八年级数学上册导学案   15.3分式方程(第二课时)

1 / 8 人教版八年级数学上册导学案 第十五章 分式 15.3分式方程(第二课时)【学习目标】1.会分析题意找出等量关系;2.会列分式方程解决实际问题,提高分析问题解决问题的能力.3.经历探索应用分式方程解决实际问题的过程,体会所学知识与实际生活的联系.【课前预习】1.某工程队承接了0米的修路任务,在修好米后,引进了新设备,工作效率是原来的倍,一共用天完成了任务.设引进新设备后平均每天修路米,则的值为( )A .米B .米C .米D .米2.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h ,那么汽车原来的平均速度为( )A .70B .65C .75D .803.某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm ,则根据题意可得方程( )A .B .C .D .4.某商店出售,两种型号的钢笔,已知型号的钢笔比型号的钢笔贵5元,小红用50元买了型号的钢笔,用若干元买了相同数量型号的钢笔,小红手机微信里的余钱共有83元,扫码付完款后发现余钱剩3元,设型号的钢笔每支售价为元,根据题意可列出的方程为( )A .B . 500220x x 20135175200km /km h /km h /km h /km h 240024008(120%)x x-=+240024008(120%)x x -=+240024008(120%)x x -=-240024008(120%)x x -=-A B A B A B A x 50305x x =-50335x x =-。

人教版八年级数学上册15.3.2《分式方程》(第2课时)导学案

人教版八年级数学上册15.3.2《分式方程》(第2课时)导学案

人教版义务教育教科书八年级数学上册15.3.2《分式方程》第2课时 导学案一、学习目标1、了解解分式方程的基本思路和解法;2、理解解分式方程产生增根的原因,并掌握分式方程的验根方法。

二、预习内容1、阅读课本P150 ~ 151页,思考下列问题:(1)什么是分式方程?解分式方程的基本思想是什么?(2)解分式方程为什么必须检验?2、独立思考后我还有以下疑惑:三、探究学习1.若方程2x k x+-=2的根为1,则k= 2.若分式51x -与分式13x +的值相等,则x= 3. 若分式方程2a x -+12ax -=0的解为x=3,则a 的值为 ( ) A .1 B .2 C .3 D .4四、巩固测评1、要把方程 化为整式方程,方程两边可以同时乘以 ( )A .3y-6 B.3y C.3(3y-6) D.3y(y-2)2、分式方程 的最简公分母是3、如果 有增根,那么增根为4、关于x 的方程 =4 的解是x= ,则a=5、若分式方程 有增根x=2,则 a= 6.如果关于x 的方程 无解,则m 的值等于( ) A.-3 B.-2 C.-1 D.37.解分式方程 1211+=-x x x x x --=+-21321xax 1+2104422=-+-x x a 2m =1-x-3x-3035632=--y y x x x 23532)1(-=-)1(516)2(++=+x x x x8. 若方程 会产生增根,试求k 的值作业:解分式方程五、学习心得: 323-=--x k x x 3221)1(+=x x 13321)2(++=+x x x 313.244x x x -+=--25334.322y y y y --=---。

15.3+分式方程第2课时+列分式方程解决实际问题课件2024-2025学年人教版八年级数学上册++

15.3+分式方程第2课时+列分式方程解决实际问题课件2024-2025学年人教版八年级数学上册++
解: 设实际用了 天,则原计划用 天,改建的自行车道距离: , ,解得 ,经检验, 是原分式方程的解, 付给工程队的费用: (万元)答:付给工程队的费用为 万元.
能力提升
7.某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.
4.解题方法:可概括为“321”,即3指该类问题中三量关系,如工程问题有工作效率,工作时间,工作量;2指该类问题中的“两个主人公”如甲队和乙队,或“甲单独和两队合作”;1指该问题中的一个等量关系.如工程问题中等量关系是:两个主人公工作总量之和=全部工作总量.
3.弄清基本的数量关系.如本题中的“合作的工效=甲乙两队工作效率的和”.
解:设运输公司用大货车 辆,小货车 辆,依题意 由②得 ,把④代入③得 解得 .方案一:当 时, ,费用为 元;方案二:当 时, ,费用为 元, 方案二费用最低,最低运输费用是15 900元.
中考链接
8.(2022·北部湾经济区)《千里江山图》是宋代王希孟的作品,它的局部画面装裱前是一个长为 ,宽为 的矩形,装裱后,整幅画宽与长的比是 ,且四周边衬宽度相等,则边衬的宽度应是多少米?设边衬的宽度为 ,根据题意可列方程( ) .
5.某瓶装饮料每箱价格是26元,某商店对该饮料进行“买一送三”的促销活动,即买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,该品牌饮料每瓶多少元?设该品牌饮料每瓶是 元,则可列方程为_ _____________.
6.自行车运动深受市民的喜爱.A地、B地间有一条自行车道.小明从A地出发骑行去B地,小军从B地出发骑行去A地.
(1)小明和小军相约上午8时同时从各自出发地出发,匀速骑行,到上午10时,他们相距 ,到中午12时,两人又相距 .求A,B两地间的自行车道的距离.

新人教版八年级数学上册《分式方程2》导学案

新人教版八年级数学上册《分式方程2》导学案

新人教版八年级数学上册《分式方程2》导学案学习内容第15章:分式方程(第2课时)课型:新课学习目标1.进一步掌握分式方程的解法,;了解分式方程产生增根的原因.2.会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的根.重点与难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的根.时间分配导入3分、自主学习5分举例探究20分课堂小结3分、练习巩固10分学案(学习过程)导案(学法指导)学习过程一、回顾旧知:1.分式方程的概念?2.解分式方程的一般步骤?3.解分式方程为什么要检验?二.举例探究:例1、解方程233x x=-例2、解方程311(1)(2)xx x x-=--+★解分式方程的解的两种情况:①所得的根是原方程的根、②所得的根不是原方程的根三、小结:1.分式方程的概念2.解分式方程的一般步骤3.解分式方程为什么要检验四、练习巩固P150---练习P152—练习(1)(2)五、作业P154—习题15.3—第1题(1)(2)(3)(4)一、导课:以方程223146x x+-=-回忆一元一次方程的解法步骤,引入新课.二、应用举例通过例1,是学生能够辨析分式方程和整式方式。

例2中,(1)小组内讨论交流解法;(2)、在教师的引导下,师生共同探析。

通过例3,引导学生概括解分式方程的基本思想和方法和步骤。

并分析解分式方程产生增根的原因。

★原方程的增根:在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根产生增根的原因:在把分式方程转化为整式方程时,分式的两边同时乘以了零验根:把求得的根代入最简公分母,看它的值是否为零。

使最简公分母值为零的根是增根。

五、练习巩固练习由学生独立完成,(个别问题个别学生可小组内讨论)。

然后集体评议、纠错.板书设计:分式方程1、分式方程的概念2、举例探究3、练习区教学反思。

数学八年级上册《分式方程的应用》导学案

数学八年级上册《分式方程的应用》导学案

数学八年级上册《分式方程的应用》导学案设计人:审核人:【学习目标】1、会列分式方程解决简单的实际问题.2、提高分析问题和解决问题的能力.3、培养解决问题的进取心,体会数学的应用价值.【学习重点】如何结合实际分析问题,找出等量关系,列出分式方程。

【学习难点】分析实际问题的过程,得到等量关系【学习方法】通过类比列一元一次方程解应用题的方法、步骤、解题思路,学习并掌握列分式方程解应用题。

自学认真阅读教材P151-P153内容,并解决下了问题:学法指导:通过类比列一元一次方程解应用题的方法、步骤、解题思路,学习并掌握列分式方程解应用题。

1、认真学习例3,例4,完成“分析”部分填空。

知识链接:列分式方程解应用题的一般步骤如下:(1)审题。

理解题意,弄清已知条件和未知量;(2)设未知数。

合理的设未知数表示某一个未知量,有直接设法和间接设法两种;(3)找出题目中的等量关系,写出等式;(4)用含已知量和未知数的代数式来表示等式两边的语句,列出方程;(5)解方程。

求出未知数的值;(6)检验。

不仅要检验所求未知数的值是否为原方程的根,还要检验未知数的值是否符合题目的实际意。

“双重验根”。

2、仿照例3、例4完成课后练习1.自学中我的困惑:研学1、将自学部分内容中的收获与困惑与同伴交流。

2、归纳出现的问题.列分式方程解应用题的关键是:找等量关系,它也是解应用题的难点。

在此应给学生适时引导。

列分式方程解应用题同样需要验根,学生初学时容易忘记验根。

3、中考链接列分式方程解应用题甲乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程,已知甲队单独完成工程所需的天数是乙队单独完成所需天数的23,求甲、乙两队单独完成各需多少天? 检学必做题:从2010年5月起某列车平均提速v 千米/小时,用相同的时间,列车提速前行驶s 千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?选做题:学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个。

新人教版八年级上《15.3.1分式方程(二)》导学案

新人教版八年级上《15.3.1分式方程(二)》导学案

15.3.1 分式方程(二)【学习目标】1.进一步了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的根.3.理解“增根”和“无解”不是一回事.【学习重点】:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的根.【学习难点】:掌握“增根”和“无解”不是一回事【知识准备】:【自主探究文】【探究一】解分式方程 .⑴11122x x =-- ⑵ 214111x x x +-=--【探究二】X 为何值时,代数式xx x x 231392---++的值等于2?【探究三】利用增根的性质解题。

若分式方程424-+=-x a x x 有增根,求a 的值【探究四】理解“增根”和“无解”.(一)已知分式方程有增根,确定字母系数的值。

例1.当a 为何值时,关于x 的方式方程349332+=-+-x x ax x 有增根?归纳:解决此类问题的一般步骤是:(1)把分式方程化为 方程;(2)求出使最简公分母为 的x 的值;(3)把x 的值分别代入整式方程,求出字母系数的值。

(二)已知分式方程无解,确定字母系数的值。

例2 若关于X 的分式方程132323-=-++--xmx x x 无解,求出m 的值。

【自测自结】1、方程2332x x =--的解是 , 2、若x =2是关于x 的分式方程2372a x x +=的解,则a 的值为 3、解方程①2373226x x +=++ ②2512552x x x +=+-③3233x x x =--- ④ 2211566x x x x =+-++4.如果关于x 的方程7766x m x x --=--有增根,则增根为 , 5.分式方程()2933x x x x x =+--出现增根,那么增根一定是( ) A .0 B .3 C .0或3 D .1通过本节课的学习,你有哪些收获?还有哪些困惑呢?。

八年级数学上册15.3分式方程三导学案新版新人教版2

八年级数学上册15.3分式方程三导学案新版新人教版2

15.3分式方程(三)【学习目标】:能分析工程问题中的等量关系,掌握列分式方程解应用题的方法和步骤【学习重点】:将实际问题中的等量关系用分式方程表示并且求得结论。

【学习难点】:寻求实际问题中的等量关系,正确列出分式方程一、自主学习阅读课本P152 ~ 153页,思考1、列分式方程解决实际问题的一般步骤是什么?分式方程的应用主要就是,它与学习一元一次方程时列方程解应用题的基本思路和方法是一样的,不同的是,表示关系的代数式是分式而已。

一般地,列分式方程(组)解应用题的一般步骤:2、我们现在所学过的应用题有几种类型?每种类型题的基本数学关系是什么?(1)行程问题: _______ _____.而行程问题中又分相遇问题、追及问题.它们常用的数学关系有哪些?(2)工程问题:_______ _____. (3)数字问题(在数字问题中要掌握十进制数的表示法).(4)顺水逆水问题顺水速度=____________; 逆水速度=________________二、合作交流探究与展示:阅读例3 、例4完成下列问题甲,乙两个工程队共同完成一项工程,乙队单独做一天后,再由两队合作2天就完成了全部工程。

已知甲队单独完成工程所需天数是乙队单独完成所需天数的2/3,求甲、乙两队单独完成各需多少天?三、当堂检测:1.填空:(1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;(2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;(3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克.2、p154练习1、23.甲、乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间和乙做60个零件所用时间相等,求甲、乙每小时各做多少个零件?4、某工厂现在平均每天比原计划多生产50台机器,现在生产600台及其所需时间与原计划生产450台机器所需时间相同,现在平均每天生产多少台机器?5、一台收割机的工作效率相当于一个农民工作效率的150倍,用这台机器收割10公顷小麦比100个农民人工收割要少用1小时,这台收割机每小时收割多少公顷小麦?四、学习反思1、这节课你学到了什么?。

人教版初中八年级上册数学《分式方程的应用》导学案

人教版初中八年级上册数学《分式方程的应用》导学案

第2课时 分式方程的应用学教目标:1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.3.在活动中培养学生乐于探究、合作学习的习惯,引导学生努力寻找解决问题的方法,体会数学的应用价值。

学教重点:利用分式方程组解决实际问题.学教难点:列分式方程表示实际问题中的等量关系.学教过程:一、温故知新:1、分式方程的解法步骤是什么?完成 P36 第4题。

2、解决应用问题的一般步骤是什么?3、解分式方程二、学教互动:(自主探究)课本例3分析:这是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程。

基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工作量=1认真审题,然后回答下列问题:1、怎样设未知数,根据哪个关系?2、题中有哪些相等关系?怎样列方程? 132x x=-三、随堂练习:1.为迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务。

这样,这两个小组的每个同学就要比原计划多做4面。

如果这3个小组的人数相等,那么每个小组有多少名学生?2. 学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.四、反馈检测:1、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。

已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。

人教版八年级数学上册15.3.2《分式方程(第2课时)》

人教版八年级数学上册15.3.2《分式方程(第2课时)》

人教版义务教育教科书八年级数学上册
15.3 《分式方程(二)》第2课时教学设计
一、教材分析
1、地位作用:
本节“分式方程”是继一元一次方程,二元一次方程组之后,初中阶段所讲授的又能一种方程的解法。

本节课是在继分式的内容及分式的四则混合运算之后所讲述的一个内容,其实际上就是分式与方程的综合。

因此本节课可以看作是一个综合课,同时分式方程的解法也是初中阶段的一个重点内容,要求学生必须掌握。

2、教学目标:
(1)、了解解分式方程的基本思路和解法;理解解分式方程产生增根的原因,并掌握分式方程的验根方法。

(2)、经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题,解决问题的能力,渗透数学的转化思想,培养学生的应用意识。

3、教学重、难点
重点:解分式方程的基本思路和解法。

难点:理解解分式方程产生增根的原因。

突破难点的方法:以典型例子为范,说明通过去分母得到的解必须经过验根.,当这个解使得分式方程分母不为0时,才是分式方程的解。

二、教学准备:多媒体课件、导学案
三、教学过程
- 4 -。

【导学案】3 分式方程的应用(2)导学案及答案

【导学案】3 分式方程的应用(2)导学案及答案

4 分式方程第3课时分式方程的应用(二)【学习目标】1.能将实际问题中的相等关系用分式方程表示,并进行方法总结.2.通过日常生活中的情境创设,经历探索分式方程应用的过程,提高学生运用方程思想解决问题的能力和思维水平.3.在活动中培养学生乐于探究、合作学习的习惯,引导学生努力寻找解决问题的方法,体会数学的应用价值.【学习策略】让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型作用,关键是引导学生寻找问题中的等量关系,发展学生分析问题、解决问题的能力。

【学习过程】一、情境导入:1.列一元一次方程解应用题的一般步骤分哪几步?2.问题:自从上次龟兔赛跑乌龟大胜兔子以后,它就成了动物界的体育明星,可是偏偏有一只蚂蚁不服气,于是它给乌龟下了一封挑战书.比赛结束后,蚂蚁并没有取胜,已知乌龟的速度是蚂蚁的1.2倍,提前1分钟跑到终点.请你算算它们各自的速度.二.新课学习:例1. 某列车现平均速度v千米/时,用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?例2. 轮船顺水航行40千米所用的时间与逆水航行30千米所用的时间相同,若水流的速度为3千米/时求轮船在静水中的速度?三.尝试应用:1.抗洪抢险时,需要在一定时间内筑起拦洪大坝,甲队单独做正好按期完成,而乙队由于人少,单独做则超期3个小时才能完成.现甲、乙两队合做2个小时后,甲队又有新任务,余下的由乙队单独做,刚好按期完成.求甲、乙两队单独完成全部工程各需多少小时?2.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.3.甲、乙两人练习骑自行车,已知甲每小时比乙多走6千米,甲骑90千米所用的时间和乙骑60千米所用时间相等,求甲、乙每小时各骑多少千米?四、课堂小结列分式方程解应用题的一般步骤1).审:分析题意,找出研究对象,建立等量关系.2).设:选择恰当的未知数,注意单位.3).列:根据等量关系正确列出方程.4).解:认真仔细.5).验:有三种方法检验.6).答:不要忘记写答.五.达标测试一.选择题(共3小题)1. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走半小时后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 ( )A .2115315+=x xB .x x 1521315=-C .2115315-=x xD .2115315⨯=x x 2父子两人沿周长为a 的圆周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11倍.已知儿子的速度为v ,则父亲的速度为( )A .1.1vB .1.2vC .1.3vD .1.4v3.全民健身活动中,组委会组织了长跑队和自行车进行宣传,全程共10千米,自行车队速度是长跑队的速度的2.5倍,自行车队出发半小时后,长跑队才出发,结果长跑队比自行车车队晚到了2小时候,如果设长跑队跑步的速度为x 千米/时,那么根据题意可列方程为 ( )A.215.210210+=+x xB.5.02105.210-=-xx C.5.025.21010-=-x x D.5.025.21010+=-x x 二.填空题(共3小题)4.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x ,则x 的值是 .5. 某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .6.A 、B 两地的距离是80公里,一辆公共汽车从A 地驶出3小时后,一辆小汽车也从A 地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B 地,求两车的速度.根据题意,可列方程 .三.解答题(共3小题)7.甲、乙两座城市的中心火车站A ,B 两站相距360km .一列动车与一列特快列车分别从A ,B 两站同时出发相向而行,动车的平均速度比特快列车快54km /h ,当动车到达B 站时,特快列车恰好到达距离A 站135km 处的C 站.求动车和特快列车的平均速度各是多少?8.吉首城区某中学组织学生到距学校20km 的德夯苗寨参加社会实践活动,一部分学生沿“谷韵绿道”骑自行车先走,半小时后,其余学生沿319国道乘汽车前往,结果他们同时到达(两条道路路程相同),已知汽车速度是自行车速度的2倍,求骑自行车学生的速度.9.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?参考答案4 分式方程第3课时尝试应用:1.解:设甲队单独完成全部工程需x 小时,则乙队单独完成全部工程需(x+3)小时,根据题意,得: 13232x 2=+-+++x x x 解得:x=6,经检验得:x =6是这个分式方程的解.x+3=9答:甲队单独完成全部工程需6小时,则乙队单独完成全部工程需9小时.2.解:(1)400×1.3=520(千米)(2)设普通列车平均速度为x 千米/时,则高铁的平均速度为2.5x 千米/时,由题意,得:35.2400520=-xx 解得:x=120,经检验得:x =120是这个分式方程的解.2.5x=300答:高铁的平均速度为300千米/时.3.甲、乙两人练习骑自行车,已知甲每小时比乙多走6千米,甲骑90千米所用的时间和乙骑60千米所用时间相等,求甲、乙每小时各骑多少千米?解:设乙每小时骑x 千米,则甲每小时骑(x+6)千米,根据题意得x606x 90=+ 解得:x=12,经检验得:x =12是这个分式方程的解.x+6=18答:乙每小时骑12千米,甲每小时骑18千米.达标测试答案:一、选择题1.C2.【解析】:选B .设父亲的速度为x ,根据题意得出:=,解得:x=1.2V .3.C二.填空题(共3小题) 4.6 解析: 根据题意,得到甲、乙的工效都是 1x.根据结果提前两天完成任务,知:整个过程中,甲做了(x-2) 天,乙做了(x-4)天.再根据甲、乙做的工作量等于1,列方程求解.5.22402240220x x-=- 解析: 求的是原计划的工效,工作总量题中已有,那么一定是根据工作时间来列的等量关系.本题的等量关系为:原计划时间-实际用时=2. 6.x 38060203x 80=+- 三.解析题(共3小题)7.解:设特快列车的平均速度为xkm /h ,则动车的速度为(x +54)km /h , 由题意,得:=,解得:x =90, 经检验得:x =90是这个分式方程的解. x +54=144.答:设特快列车的平均速度为90km /h ,则动车的速度为144km /h .8. 【解析】:设骑自行车学生的速度是x 千米/时,由题意得:9. ﹣=,解得:x=20,经检验:x=20是原分式方程的解,答:骑自行车学生的速度是20千米/时.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程要进行检验,这是同学们最容易出错的地方.9. 【解析】:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒,根据题意,得,解得x=2.5.经检验,x=2.5是方程的解,且符合题意.∴甲同学所用的时间为:(秒),乙同学所用的时间为:(秒).∵26>24,∴乙同学获胜.答:乙同学获胜.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式是:路程=速度×时间.。

八年级数学上册-人教版八年级上册数学 15.3第2课时 分式方程的应用15.3.1分式方程的应用导学案

八年级数学上册-人教版八年级上册数学   15.3第2课时  分式方程的应用15.3.1分式方程的应用导学案

15.3.1 分式方程的应用【学习目标】1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;2.通过列分式方程解应用题,渗透方程的思想方法。

【学习重点】列分式方程解应用题.【学习难点】根据题意,找出等量关系,正确列出方程.【知识准备】1.解分式方程的步骤有哪些?每一步你最容易出错在哪些方面?2.列方程应用题的五个步骤是:__________;_______;_______;______;_________。

【自习自疑】一、阅读教材内容P35-37,思考并回答下面的问题我们现在所学过的应用题有几种类型?每种类型题的基本公式是什么?(1)行程问题:基本公式:____________.而行程问题中又分相遇问题、追及问题.它们常.用的公式有哪些?(2)工程问题:基本公式:________________________(3)顺水逆水问题:v顺水=________ ___; v逆水=________________认真阅读课本上的例3,并回答下列问题:(1)工程问题中几个量的关系?(2)问题中的哪个等量关系可以用来列方程?(3)列分式方程解应用题与以前解应用题有哪些主要区别?(4)列分式方程解应用题的步骤:二、预习评估1. 学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.2.一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?我想问:请你将预习中未能解决的问题和有疑问的问题写下来,等待课堂上与老师和同学探究解决。

等级组长签字【自主探究】【探究一】工程问题两个工程队共同参加一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。

人教版八年级上册数学 15.3 第2课时 分式方程的应用优质教案

人教版八年级上册数学 15.3 第2课时 分式方程的应用优质教案

第2课时 分式方程的应用学教目标:1、能将实际问题中的相等关系用分式方程表示,并进行方法总结。

2、通过日常生活中的情境创设,经历探索分式方程应用的过程,提高学生运用方程思想解决问题的能力,和思维水平。

3、在活动中培养学生乐于探究、合作学习的习惯,引导学生努力寻找解决问题的方法,体会数学的应用价值。

学教重点:实际生活中分式方程应用题数量关系的分析。

学教难点:将复杂实际问题中的等量关系用分式方程表示, 并进行归纳总结 学教过程:一、温故知新1.解方程2.列方程(组)解应用题的一般步骤是什么?(1) ;(2) (3)解所列方程;(4)检验所列方程的解是否符合题意;(5)写出完整的答案。

3.列方程(组)解应用题的关键是什么?4、轮船在顺水中航行20千米与逆水中航行10千米所用时间相同,水流速度为2.5千米/小时,求轮船的静水速度。

5. 甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.二、学教互动:(自主探究)例4分析:这是一道行程问题的应用题,本题中涉及到的列车平均提速v 千米/时,提速前行驶的路程为s 千米,基本关系是:速度=路程/时间。

等量关系是:提速前所用的时间=提速后所用的时间。

设未知数、列方程是本章中用数学模型表示和解决实际问题的关键步骤,正确地理解问题情境,分析其中的等量关系是设未知数、列方程的基础. 可以多角度思考,借助图形、表格、式子等进行分析,寻找等量关系,解分式方程应用题必须双检验:(1)检验方程的解是否是原方程的解;(2)检验方程的解是否符合题意.认真审题,然后回答下列问题:3152422236x x x -+-+=-1、速度之间有什么关系?时间之间有什么关系?2、怎样设未知数,根据哪个关系?3、题中有哪些相等关系?怎样列方程?三、拓展延伸:1.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快1/5,结果于下午4时到达,求原计划行军的速度。

八年级数学上册 15.3 分式方程 第2课时 分式方程的实际应用教学设计 (新版)新人教版

八年级数学上册 15.3 分式方程 第2课时 分式方程的实际应用教学设计 (新版)新人教版

八年级数学上册 15.3 分式方程第2课时分式方程的实际应用教学设计(新版)新人教版一. 教材分析本节课是人教版八年级数学上册第15.3节分式方程的实际应用。

分式方程是初中数学中的重要内容,是解决实际问题的基础。

本节课通过实际应用引出分式方程的概念,让学生在解决实际问题的过程中,体会分式方程的作用,培养学生的数学应用意识。

二. 学情分析八年级的学生已经学习了分式的基本概念和性质,对分式有一定的理解。

但解决实际问题的能力还不够强,需要通过实际应用来提高。

学生在学习过程中,需要教师的引导和启发,才能将理论知识与实际问题相结合。

三. 教学目标1.理解分式方程的概念,掌握分式方程的解法。

2.能够将实际问题转化为分式方程,并解决问题。

3.培养学生的数学应用意识,提高解决实际问题的能力。

四. 教学重难点1.分式方程的概念和解法。

2.如何将实际问题转化为分式方程。

五. 教学方法采用问题驱动法,引导学生从实际问题中发现问题,提出问题,通过合作交流,解决问题。

教师在这个过程中,起到引导和启发的角色。

六. 教学准备1.准备相关的实际问题,用于导入和巩固环节。

2.准备分式方程的解法,用于讲解和操练环节。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出分式方程的概念。

例如:一个长方形的长是宽的2倍,长方形的面积是36平方厘米,求长方形的宽。

让学生尝试解决这个问题,引出分式方程的概念。

2.呈现(15分钟)讲解分式方程的解法,并通过例题进行演示。

让学生跟随教师一起解题,巩固分式方程的解法。

3.操练(15分钟)让学生独立完成一些分式方程的练习题,检验学生对分式方程解法的掌握程度。

教师在这个过程中,给予学生个别化的指导。

4.巩固(10分钟)通过一些实际问题,让学生运用分式方程解决问题。

例如:一个水池,注水速度是每分钟1.2立方米,排水速度是每分钟0.8立方米,问多少时间才能注满水池?让学生运用分式方程解决这个问题。

5.拓展(10分钟)让学生尝试解决一些更复杂的实际问题,提高学生解决实际问题的能力。

人教版初中初二八年级数学上册 15.3 第2课时 分式方程的应用 精品导学案

人教版初中初二八年级数学上册 15.3 第2课时 分式方程的应用 精品导学案

第十五章分式.;三、自学自测4.八年级(1)班全体师生义务植树300分钟完成任务.则下面所列方程中,正确的是( ) A .300x -2060=3001.2xB .300x -3001.2x =20 C .300x -300x +1.2x =2060D .300x =3001.2x -2060四、我的疑惑一、要点探究探究点1:列分式方程解决工程问题 例1:两个工程队共同参与一项筑路工程,甲队单独施工1度快?分析:设乙单独完成这项工程需要x 天.表格法分析如下:等量关系:想一想:要点归纳:工程问题:1.题中有“单独”字眼通常可知工作效率;2.通常间接设元,如××单独完成需x (单位时间)3.弄清基本的数量关系.如本题中的“合作的工效=4.解题方法:可概括为“321”,即3指该类问题中三量关系,工作时间,工作量;2指该类问题中的“两个主人公”队合作”;1总量之和=全部工作总量.达,请问小轿车提速多少?提速多少?比提速前多行驶50 km,请问小轿车提速多少?要点归纳:行程问题1.注意关键词“提速”与“提速到”的区别;2.明确两个“主人公”的行程问题中三个量用代数式表示出来;3.行程问题中的等量关系通常抓住“时间线”来建立方程.列分式方程解应用题的一般步骤:1.审:清题意;2.设:未知数;3.找:相等关系;4.列:出方程;5.解:这个分式方程;6.验:根(包括两方面:(1)是否是分式方程的根;(2)是否符合题意);7.写:答案.探究点3:列分式方程解决利润问题例3:佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?同学,结果每个同学比原来少分摊3元车费,若设原来参加旅游的学生有x 人,则所列方程为( )A .180x -180x +2=3B .180x +2-180x =3C .180x -180x -2=3D .180x -2-180x =3 2.一轮船往返于A 、B 两地之间,顺水比逆水快1小时到达.已知A 、B 两地相距80千米,水流速度是2千米/小时,求轮船在静水中的速度.3.农机厂到距工厂15千米的向阳村检修农机,一部分人骑自行车先走,过了40分钟,其余人乘汽车去,结果他们同时到达,已知汽车的速度是自行车的3倍,求两者的速度.4.某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题,信息如下:同学们,请求出篮球和排球的单价各是多少元?参考答案自主学习一、知识链接 1.解:1.2x =2.分析题意,找到等量关系 二、新知预习 3.(1)小红和小丽录入文稿所用的时间相同 (2)(200-x )90007500220x x=- x =120 x =120是原方程的解,且符合题意 小红每分钟各录入120字,小丽每分钟录入100字要点归纳 是否符合题意 三、自学自测 4.A四、我的疑惑 课堂探究二、要点探究例1等量关系:甲队完成的工作总量+乙队完成的工作总量=“1”解:设乙单独完成这项工程需要x 个月.记工作总量为1,甲的工作效率是13,根据题意得 111111322x ⎛⎫⨯++⨯= ⎪⎝⎭,即11122x+=. 方程两边同乘2x ,得x +1=2x .解得x =1.检验:当x =1时,2x ≠0,∴原分式方程的解为x =1,且符合题意. 由上可知,乙队单独施工1个月可以完成全部任务,而甲队单独施工需3个月才可以完成全部任务,所以乙队的施工速度快.想一想 甲队单独完成的工作总量+两队合作完成的工作总量=“1” 设乙单独完成这项工程需要x 天.则乙队的工作效率是1x ,甲队的工作效率是13,合作的工作效率是113x ⎛⎫+ ⎪⎝⎭.此时方程是:11111 1.323x ⎛⎫⨯+⨯+= ⎪⎝⎭解:设甲队单独完成需要x 小时,则乙队需要(x +3)小时. 由题意得2 1.3x x x +=+解得x =6.经检验,x =6是方程的解,且符合题意.∴x +3=9. 答:甲单独完成全部工程需6小时,乙单独完成全部工程需9小时. 探究点2:列分式方程解决行程问题 例2等量关系: 面包车的时间=小轿车的时间解:设小轿车的速度为x km/h ,则面包车速度为(x +10) km/h ,依题意得180200.10x x =+ 解得x =90.经检验,x =90是原方程的解,且x =90,x +10=100,符合题意.答:面包车的速度为100 km/h ,小轿车的速度为90 km/h .解:设小轿车提速x km/h,依题意得50. s sv v x+=+方程两边同乘v(x+v),得s(x+v)=v(x+50).解得50.v xs =检验:由s,v都是正数,得50vxs=时,x(x+v)≠0,所以原分式方程的解为50vxs=,且符合题意.答:小轿车的提速为50vkm/h.20003200.60x x =+解得x =100. 经检验,x =100是原方程的根,且符合题意.则x +60=160. 答:排球的单价为100元,篮球的单价为160元.。

15.3 第2课时 分式方程的应用 人教版数学八年级上册教案

15.3 第2课时 分式方程的应用 人教版数学八年级上册教案

一、创设情境,导入新知设问:应用整式方程解实际问题的步骤:师生活动:让学生自主探究,举手回答问题(学生积极踊跃发言,问答提出的问题.)二、小组合作,探究概念和性质知识点一:列分式方程解决工程问题探究一:两个工程队共同参与一项筑路工程,甲队单独施工 1 个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?师生活动:让学生自主探究,分析题目找出题目当中的等量关系.预设1:甲队单独完成的工作量+两队合作完成的工作量=“1”预设2:甲队完成的工作总量+乙队完成的工作总量=“1”师生活动:分小组用两种方法解这道题.展示预设:引导学生借助列表分析,确定题目中的数量关系:预设1:预设2:然后小组成员在黑板上演算自己的结果.老师针对结果做出评价和讲解,规范过程,并且强调一定要检验结果.最后,带领全班同学一起总结分式方程解决实际问题的基本过程:练一练:1. (武汉开学考)张明3小时清点完一批图书的一半,小时清李强清点另一半图书的工作,两人合作56点完另一半图书. 如果李强单独清点这批图书需要几个小时?师生活动:让学生自主探究,分析题目找出题目当中的等量关系,列出分式解答.知识点二:列分式方程解决行程问题探究二:某次列车平均提速v km/h.用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50 km,提速前列车的平均速度为多少?教师活动:教学中,可以引导学生进行如下的分析:设所求的提速前速度为x km/h,抓住题目中“用相同的时间”这个条件,就能列出方程.借助列表分析,确定题目中的数量关系.师生活动:可以让学生上黑板展示自己的结果.教师对学生的结论给予恰当评析,肯定学生的成绩,对出现的疑问给予鼓励,帮助他们形成正确认知.练一练:2. (广州期末)已知从A地到某市的高铁行驶路程是400 千米,普通列车的行驶路程是高铁行驶路程的 1.3 倍,若高铁的平均速度(千米/时) 是普通列车平均速度(千米/时) 的 2.5 倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短 3 小时,求普通列车和高铁的平均速度.师生活动:让学生自主探究,分析题目找出题目当中的等量关系,列出分式解答.知识点三:列分式方程解决利润问题探究三:(长治阶段考)“四书五经”是一部被中国人读了几千年的教科书,是我们了解中国古代社会的一把钥匙.某学校计划分阶段引导学生读这些书,决定先购买《论语》和《孟子》供学生阅读,已知用1000 元购买《孟子》的数量是用800 元购买《论语》的数量的 2 倍,《孟子》的单价比《论语》的单价少15 元.则《论语》和《孟子》的单价各是多少元师生活动:带领学生找到题目当中的表达关系的语句,给几分钟时间先让学生尝试着解决问题,在学生出现思维盲区时,教师给予详细分析,边讲边演示,在思维的激烈碰撞过程中,逐渐熟悉掌握列分式方程和解分式方程的方法.三、当堂练习,巩固所学1. 几名同学包租一辆面包车去旅游,面包车的租价为180 元,出发前,又增加两名同学,结果每个同学比原来少分摊 3 元车费,若设原来参加旅游的学生有x人,则所列方程为( )2. 一轮船往返于A、B两地之间,顺水比逆水快1 小时到达.已知A、B两地相距80千米,水流速度是 2 千米/时,求轮船在静水中的速度.3. 农机厂工人到距工厂15千米的某村检修农机,一部分人骑自行车先走,过了40 分钟,其余人乘教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.。

人教版八年级数学上册《分式》导学案:分式方程(第二课时)

人教版八年级数学上册《分式》导学案:分式方程(第二课时)

人教版八年级数学上册《分式》导学案分式方程(第二课时)【学习目标】1.了解分式方程增根的含义和产生增根的原因,并会检验分式方程的根;2.掌握分式方程的一般步骤,会解可化为一元一次方程的分式方程.【知识梳理】1.分式方程:分母中含有 的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,即将分式方程的两边都乘 ,把分式方程转化为整式方程.(2)解这个 .(3)检验:将整式方程的根代入分式方程中分式的分母中,使分式方程中有的分母为零时,得到的是原方程的增根,应当舍去.(4)写出分式方程的根.3.分式方程的增根及产生增根的原因.因为解分式方程 ,所以解分式方程必须检验.口诀记忆法:同乘最简公分母 ,化成整式写清楚,求得解后需验根,原(解)留增(根)舍别含糊。

【典型例题】知识点一 分式方程的解法1.解方程xx x x x x x 22222222--=-+-+2.x x 3251=-)( 231322--=--xx x )(知识点二 分式方程的增根3.若关于x 的方程xx x k --=+-3423有增根,试求k 的值.4.若方程132323-=-++--xmx x x 无解,求m 的值.5.已知关于x 的分式方程(1)若分式方程有增根,求m 的值;(2)若分式方程的解是正数,求m 的取值范围.【巩固训练】1.分式方程21221933x x x -=--+的解为( ) A.3 B.-3 C.无解 D.3或-32.下列关于分式方程增根的说法正确的是( )A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根3.解分式方程4223=-+-xx x 时,去分母后得( ) A.)2(43-=-x x B.)2(43-=+x x C.4)2()2(3=-+-x x x D.43=-x4.如果关于x 的方程无解,则m 的值等于( )A .﹣3B .﹣2C .﹣1D .35.若关于x 的分式方程的解为非负数,则m 的取值范围是( )A .m ≤5B .m <5且m ≠3C .m ≠3D .m ≤5且m ≠36.解分式方程:(1)23611y y -=+- (2)28142x x x +=-- (3)3215122=-+-xx x7.已知关于x 的方程+=3 (1)当m 取何值时,此方程的解为x =3;(2)当m 取何值时,此方程会产生增根;(3)当此方程的解是正数时,求m 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 分式方程的应用
能将实际问题中的相等关系用分式方程表示,并进行方法总结.
自学指导:阅读教材P152-153,完成下列问题.
1.列方程解应用题的一般步骤是:
(1)审题设未知数.
(2)找等量关系列方程.
(3)解方程.
(4)验根是否符合实际意义.
(5)答题.
2.类比一般方程,列分式方程解应用题的一般步骤是:
(1)审题设未知数.
(2)找等量关系列方程.
(3)去分母化分式方程为整式方程.
(4)解整式方程.
(5)验根是否符合实际意义.
(6)答题.
自学反馈
重庆市政府打算把一块荒地建成公园,动用了一台甲型挖土机,4天挖完了这块地的一半.后又加一台乙型挖土机,两台挖土机一起挖,结果1天就挖完了这块地的另一半.乙型挖土机单独挖这块地需要几天?
甲型挖土机4天完成了一半,那么甲型挖土机每天挖21÷4=8
1,如果设乙型挖土机单独挖这块地需要x 天,那么一天挖x 1;两台挖土机一天共挖81+x 1;两台一天完成另一半.所以方程为:81+x 1=12;解得x=3
8,即乙单独挖需3
8天.
认真分析题意.根据等量关系列方程.
1.甲乙两人分别从相距36千米的A ,B 两地相向而行,甲从A 出发到1千米时发现有东西遗忘在A 地,立即返回,取过东西后又立即从A 向B 行进,这样两人恰好在AB 中点处相遇.已知甲比乙每小时多走0.5千米,求二人的速度各是多少?
分析: 路程 速度 时间 甲 18+1×2
x+0.5 5.02118+⨯+x 乙
18 x x
18 等量关系:t 甲=t 乙. 解:设乙的速度为x 千米/小时,则甲的速度为(x+0.5)千米/小时.
根据题意,列方程得
5
.02118+⨯+x =x 18. 解得x=4.5.
检验:当x=4.5时,x(x+0.5)≠0.所以,x=4.5是原方程的解.则x+0.5=5.
答:甲的速度为5千米/小时,乙的速度为4.5千米/小时.
等量关系是时间相等,那么就要找到相等时间里每个人所走的路程,甲的路程比乙的路程多两个1千米.
2.A 、B 两地相距135千米,有大、小两辆汽车从A 地开往B 地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知大、小汽车速度的比为2∶5,求两辆汽车的速度.
解:设大汽车的速度为2x 千米/小时,小汽车的速度为5x 千米/小时.
根据题意,列方程得2x 52x -135⨯=5x
5x 21-135⨯. 解得x=9.
检验:当x=9时,10x ≠0.所以,x=9是原方程的解.
则2x=18,5x=45.
答:大汽车的速度是18千米/小时,小汽车的速度是45千米/小时.
等量关系是大汽车5小时后剩下路程所走的时间,等于小汽车去掉30分钟路程所用的时间.
3.一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?
解:设规定日期是x 天,则甲队独做需x 天,乙队独做需(x+3)天,根据题意,列方程得 x 2+3
x x =1.解得x=6. 检验:当x=6时,x(x+3)≠0.所以,x=6是原方程的解.
答:规定日期是6天.
课堂小结
1.列分式方程解应用题,应该注意解题的六个步骤.
2.列方程的关键是要在准确设元(可直接设,也可设间接)的前提下找出等量关系.
3.解题过程注意画图或列表帮助分析题意找等量关系.
4.注意不要遗漏检验和写答案.
教学至此,敬请使用学案当堂训练部分.。

相关文档
最新文档