(完整版)中值定理的应用方法与技巧.doc
中值定理的应用方法与技巧
中值定理的应用方法与技巧中值定理是微积分中的一个重要定理,描述了一种函数的平均斜率与函数其中一点的斜率之间的关系。
下面将介绍中值定理的应用方法与技巧。
一、介值定理的应用方法1.求函数的零点:根据介值定理,如果$f(a)$和$f(b)$异号,那么在区间$(a,b)$内至少存在一个点$c$,使得$f(c)=0$。
因此,通过寻找$f(a)$和$f(b)$异号的区间,可以确定函数的零点的存在性和位置。
2.确定函数的最值:根据介值定理,如果$f(a)$和$f(b)$是函数$f(x)$在区间$(a,b)$上的最小值和最大值,那么在区间$(a,b)$内必然存在一个点$c$,使得$f(c)$是函数的最小值和最大值。
因此,可以通过求解极值点来确定函数的最值。
3.求解方程与不等式:根据介值定理,如果$f(a)<0$且$f(b)>0$,那么在区间$(a,b)$内至少存在一个点$c$,使得$f(c)=0$。
因此,可以通过将方程或不等式转化为函数,然后求解函数的零点来求解方程或不等式。
4.判断函数的增减性:根据介值定理,如果函数$f'(x)>0$在一些区间上恒成立,那么函数$f(x)$在该区间上是递增的;如果函数$f'(x)<0$在一些区间上恒成立,那么函数$f(x)$在该区间上是递减的。
因此,可以通过求导并分析导数的符号来判断函数的增减性。
二、中值定理的技巧1.构造辅助函数:有时候使用中值定理计算问题会比较复杂,需要构造辅助函数来简化计算。
辅助函数的选择需要考虑计算的便利性和准确性。
2.利用函数的性质和对称性:中值定理的应用过程中可以利用函数的性质和对称性来简化计算。
例如,如果已知$f(-x)=f(x)$,可以利用这一对称性将问题转化为求解正数情况下的解析表达式。
3.通过作图来理解问题:在使用中值定理计算问题时,可以通过绘制函数的图像来帮助理解问题,辅助解题。
通过图像可以直观地看到函数的变化趋势和函数的性质,更容易理解和判断。
中值定理及其应用
中值定理及其应用中值定理是微积分中的一项重要定理,它在数学和物理学等领域有着广泛的应用。
本文将对中值定理的概念、原理以及其在实际问题中的应用进行探讨。
一、中值定理的概念和原理中值定理是微积分中的一个基本定理,它涉及到函数的导数和函数的连续性。
中值定理包括拉格朗日中值定理和柯西中值定理两个重要的定理。
1. 拉格朗日中值定理拉格朗日中值定理是微积分中的一个基本定理,它是由法国数学家拉格朗日提出的。
该定理表明,如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则在(a, b)内至少存在一点c,使得函数在c处的导数等于函数在区间[a, b]上的平均变化率。
数学表达式为:f'(c) = (f(b) - f(a))/(b - a),其中a < c < b其中f'(c)表示函数f(x)在点c处的导数。
2. 柯西中值定理柯西中值定理是中值定理的另一种表达形式,由法国数学家柯西提出。
柯西中值定理表明,如果两个函数在闭区间[a, b]上连续且可导,并且其中一个函数在开区间(a, b)上不为零,则存在一点c在(a, b)内,使得函数的导数之比等于函数值之比:(f(b) - f(a))/(g(b) - g(a)) = f'(c)/g'(c),其中a < c < b其中f'(c)和g'(c)分别表示两个函数在点c处的导数。
二、中值定理的应用中值定理在实际问题中具有广泛的应用,下面将以一些具体的例子来说明其应用。
1. 函数图像的研究通过中值定理,我们可以研究函数在区间内的性质,例如函数的单调性、极值点的位置以及图像的凹凸性等。
通过计算函数的导数和应用中值定理,可以得到函数在不同区间的性质,并进一步绘制函数的图像。
2. 物理学中的应用在物理学中,很多物理量都可以通过导数和中值定理来描述。
例如,在描述物体的运动过程中,我们可以通过速度函数的导数来计算物体的加速度,而中值定理则可以用来描述物体在某一时间段内的平均速度和瞬时速度之间的关系。
(完整版)中值定理的应用方法与技巧
中值定理的应用方法与技巧中值定理包括微分中值定理和积分中值定理两部分。
微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述。
积分中值定理有积分第一中值定理和积分第二中值定理。
积分第一中值定理为大家熟知,即若)(x f 在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得))(()(a b f dx x f ba -=⎰ξ。
积分第二中值定理为前者的推广,即若)(),(x g x f 在[a,b]上连续,且)(x g 在[a,b]上不变号,则在[a,b]上至少存在一点ξ,使得⎰⎰=ba ba dx x g f dx x g x f )()()()(ξ。
一、 微分中值定理的应用方法与技巧三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。
由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。
这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。
例一.设)(x ϕ在[0,1]上连续可导,且1)1(,0)0(==ϕϕ。
证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a b a +='+')()(ηϕξϕ成立。
证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ϕ==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(ϕϕξϕ。
任意给定正整数b ,再令)()(,)(21x x g bx x g ϕ==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=')0()1(0)(ϕϕηϕ。
微分中的中值定理及其应用
微分中的中值定理及其应用微分中的中值定理是微积分中的基本定理之一,它在数学和物理学中具有重要的应用。
本文将介绍微分中的中值定理及其应用,并展示其在实际问题中的解决方法。
一、中值定理的概念与原理中值定理是微分学中的重要理论,它涉及到函数在某个区间上的平均变化率与瞬时变化率之间的联系。
其中最常见的三种形式为:罗尔定理、拉格朗日中值定理和柯西中值定理。
1. 罗尔定理罗尔定理是中值定理的基础,它的表述为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且满足f(a) = f(b),则在开区间(a, b)上至少存在一点c,使得f'(c) = 0。
罗尔定理可通过对函数在该区间的最大值和最小值进行讨论得出,它主要用于证明函数在某一区间上恒为常数的情况。
2. 拉格朗日中值定理拉格朗日中值定理是中值定理的一种推广,它的表述为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则至少存在一点c,使得f'(c) = (f(b) - f(a))/(b - a)。
拉格朗日中值定理的证明可以通过构造辅助函数g(x) = f(x) - [(f(b) - f(a))/(b - a)]x来完成,它可以将任意两点间的斜率与函数在某一点的导数联系起来。
3. 柯西中值定理柯西中值定理是拉格朗日中值定理的进一步推广,它的表述为:如果函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且g'(x)≠0,则至少存在一点c,使得[f(b) - f(a)]/g(b) - g(a) = f'(c)/g'(c)。
柯西中值定理可以用来研究函数间的关系,它提供了一种描述两个函数在某一区间上的变化率相等的条件。
二、中值定理的应用中值定理不仅仅是一种理论工具,还具有广泛的应用。
下面将介绍中值定理在实际问题中的应用案例。
1. 最速下降线问题最速下降线问题是求解两个给定点之间的最短路径问题。
中值定理的内容及应用
中值定理的内容及应用中值定理是微分学中的重要定理之一,它是基于连续函数的连续性与导数的连续性之间的关系而得出的。
中值定理包括鲁尔中值定理、拉格朗日中值定理和柯西中值定理。
这三个定理都是基于函数连续性与导数连续性的条件,从而得到函数在某一区间上的性质。
1. 鲁尔中值定理:设函数f(x)在[a,b]上连续,且在(a,b)内可导,则在(a,b)内至少存在一点c,使得f'(c) = (f(b) - f(a))/(b - a)。
鲁尔中值定理的几何意义是:存在一点c,使得函数在左右两个点的切线斜率等于函数在这两个点间的平均变化率。
2. 拉格朗日中值定理:设函数f(x)在[a,b]上连续,且在(a,b)内可导,则在(a,b)内至少存在一点c,使得f'(c) = (f(b) - f(a))/(b - a)。
拉格朗日中值定理的几何意义是:存在一点c,使得函数在左右两个点的切线斜率等于函数在这两个点间的平均变化率。
3.柯西中值定理:设函数f(x)和g(x)在[a,b]上连续,且在(a,b)内可导,并且g'(x)≠0,则在(a,b)内至少存在一点c,使得[f(b) - f(a)]/[g(b) - g(a)] = f'(c)/g'(c)。
柯西中值定理的几何意义是:存在一点c,使得函数f(x)和g(x)在左右两个点的切线斜率之比等于函数在这两个点间的平均变化率之比。
中值定理的应用非常广泛,其中最为常见的应用是求函数在某个区间内的极值和方程的根。
首先,中值定理可以用来证明函数在某个区间内的极值存在性。
根据鲁尔中值定理,如果函数在某个区间上连续,并在这个区间内可导,且函数的导数在这个区间内的某个点等于零,那么这个点就是函数在这个区间上的一个极值点。
其次,中值定理也可以用来求函数在某个区间内的极值。
首先可以根据拉格朗日中值定理找到函数在该区间内的一个极值点,然后再通过导数的正负性和二阶导数的存在性来确定这个点是极大值还是极小值。
中值定理的证明word版
第四讲中值定理的证明技巧一、考试要求1、理解闭区间上连续函数的性质(最大值、最小值定理,有界性定理,介值定理),并会应用这些性质。
2、理解并会用罗尔定理、拉格朗日中值定理、泰勒定理,了解并会用柯西中值定理。
掌握这四个定理的简单应用(经济)。
3、了解定积分中值定理。
二、内容提要1、介值定理(根的存在性定理)(1)介值定理在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值.(2)零点定理设f (x)在[a、b]连续,且f (a) f (b) <0,则至少存在一点,ce (a、b),使得f (c)=02、罗尔定理若函数/(兀)满足:(1)加在嗣上连续(2)几力)在@上)内可导(3)f(a)= f(b)则一定存在弘(。
劝使得m=o3、拉格朗日中值定理若函数于(力满足:(1)/⑴在[。
,切上连续(2)/(X)在仗上)内可导则一定存在§ E ,使得f(b) - f(a) = a)4、柯西中值定理若函数/(x),g(x)满足:(1)在[“]上连续(2)在(°上)内可导(3)g©)H°则至少有一点歹w(Q,b)使得g(b)-gS) g'(§)5、泰勒公式如果函数/(X)在含有兀的某个开区间内具有直到n + 1阶导数,则当兀在(G上)内时,/⑴可以表示为兀-九的一个〃次多项式与一个余项Kg之利即f 3) = /(兀)+广(兀)3-兀)+討Go)(X-Xo),+ …+十严(兀0)0-兀)” + 恥)(1)辅助函数的构造微分中值定理通常用來证明一些等式、不等式及方程根的存在性°在证明方程根的存在性和不等式时,经常要构造出一个辅助函数,辅助函数的构造方法通常有三种:找原函数法;指数因子法;常数k值法。
①、方程根的存在性方程根的存在性,常用介值定理和罗尔定理来证明。
这里着重讲解罗尔定理。
下面通过例题来给出三种构造辅助函数的方法。
②、存在多个中间值的证明有一类问题,要证明存在两个或两个以上的中间值,满足一定的等式,由于用一次中值定理只能找到一个中间值,故这类问题通常至少要用两次中值定理才能解决。
中值定理的应用方法与技巧
中值定理的应用方法与技巧中值定理的基本形式有三种:拉格朗日中值定理、柯西中值定理和罗尔中值定理。
它们分别适用于不同的函数类型和问题背景。
首先说一下拉格朗日中值定理。
对于一个在闭区间[a,b]上连续并可微的函数f(x),拉格朗日中值定理给出了这个函数在[a,b]上存在一个点c,使得f(b)-f(a)=f'(c)(b-a)。
也就是说,存在一个点c,这个点的导数等于函数在整个闭区间上的平均斜率。
这个定理的应用方法和技巧如下:1.利用导数等于0来找出函数在闭区间上的极值点。
因为根据导数中值定理,如果函数在闭区间[a,b]上连续并可微,且导数f'(x)在[a,b]的一些内点c处等于0,那么在[a,b]上存在至少一个点c,使得f(x)在c点取得极值。
2.利用中值定理来证明函数在一些区间上的性质。
例如,如果能够证明函数f(x)在闭区间[a,b]上的导数f'(x)始终大于0,则可以得出结论:在该区间上函数是单调递增的。
接下来讨论柯西中值定理。
柯西中值定理是拉格朗日中值定理的推广,适用于两个函数同时存在的情况。
设有两个在闭区间[a,b]上连续并可微的函数f(x)和g(x),且g(x)≠0。
柯西中值定理给出了存在一个点c,使得[f(b)-f(a)]g'(c)=[g(b)-g(a)]f'(c)。
这个定理的应用方法和技巧如下:1.利用柯西中值定理证明函数的零点存在性。
例如,如果能够证明函数f(x)和g(x)在闭区间[a,b]上连续并可微,且f(a)≠f(b),f(x)和g(x)在闭区间上无共同的导数零点,则可以得出结论:在[a,b]上存在一个点c,使得f(c)=g(c)。
2.利用柯西中值定理证明函数在一些区间上的性质。
例如,如果能够证明函数f(x)和g(x)在闭区间[a,b]上连续并可微,且f(x)和g(x)的导数始终满足[f'(x)/g'(x)]>0,则可以得出结论:在该区间上函数f(x)和g(x)的增减情况相同。
5.5 关于积分中值定理应用及注意事项
关于积分中值定理应用及注意事项积分中值定理是我们学过的众多定理之一,理论上非常重要, 例1. 1()()d x aF x f t t x a =-⎰证明: 它有诸多应用,如:证明函数的单调性,不等式,求极限等. 现举例加以说明:若 f (x )在 [a , )上连续且严格单调递增,证明+∞在(a , )内也是严格单增的.+∞显然F (x )是[a , )上的可导函数.+∞考虑 211()()d (),()xa F x f t t f x x a x a'=-+--⎰因为 f (x )在 [a , )内连续, +∞由积分中值定理可知()d ()(),,xa f t t x a f a x ξξ=-<<⎰所以 1()(()()).F x f x f x aξ'=--又 f (x ) 单调递增, 当ξ < x 时, f (ξ) < f (x ),从而 ()0,F x '>故F (x )在(a , )内是严格单增的.+∞例2. 1lim d ().n k x n n x e x k +-→∞∈⎰求极限 解: 由积分中值定理可知 1d ,1n k x k n xe x e n n ξξξ+--=<<+⎰当 时,n →∞,ξ→+∞原极限 lim k e ξξξ-→+∞=0.=注意事项: 积分中值定理点 ξ 依赖于积分区间和被积函数,不能把它看成 常数,否则,在计算或证明中就会犯错误.比如: 10lim d 0.1nn x x x →∞=+⎰证明 若由积分中值定理,得 10d ,01,11n n x x x ξξξ=<<++⎰故原极限 lim 0.1nn ξξ→∞==+这种解法是错误的.原因是定理中的ξ 依赖于积分区间和被积函数. 本题中,随着n 的 不同,被积函数是变化的,从而ξ 在(0,1)内的位置也不同,记作 ξn .当 时, 01n ξ<<lim()n n n ξ→∞未必为0, 从而原极限 ()lim 1nn n n ξξ→∞=+未必为0.解法一: 当 时, 01x <<0,1n n x x x <<+有 故 100d 1n x x x <+⎰10d n x x <⎰1,1n =+由夹逼定理, 10lim d 0.1n n x x x →∞=+⎰解法二: 由推广的积分中值定理, 11001d d 11nnx x x x x ξ=++⎰⎰1,(1)(1)n ξ=++存在 01,ξ<<原极限 1lim (1)(1)n n ξ→∞=++0.=例3. 1000d 100xe x x -+⎰ 估计 的值 解: 由推广的积分中值定理,有 100100001d =d 100100+x x e x e x x ξ--+⎰⎰1001=(1)(0100)100+e ξξ--<<111200100+100ξ<<由于所以 100100100011(1)d (1)200100100xe e x e x ----<<-+⎰注:若本题直接应用积分中值定理来估计,由于积分区间长度为100,而被积函数的最值相差也不小,则估计的范围会比较大。
中值定理_精品文档
中值定理1. 简介中值定理是微积分中的一个重要定理,它与函数的导数和函数在一个闭区间上的平均值有关。
中值定理包括了拉格朗日中值定理和柯西中值定理。
2. 拉格朗日中值定理拉格朗日中值定理是中值定理中的一种形式,描述了函数导数的性质。
定理的表述如下:定理1(拉格朗日中值定理): 设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导。
则在(a,b)内存在一个点c,使得f(b)−f(a)=f′(c)(b−a)。
定理1的几何意义是:在闭区间[a,b]上,存在一个点c,使得函数的切线斜率等于函数在闭区间上的平均改变率。
从图像上看,这相当于函数曲线上的某一点,其切线与函数曲线与线段AB的斜率相等。
拉格朗日中值定理的一个重要推论是费马定理,其表述如下:定理2(费马定理):设函数f(x)在点x=c处取得了极值,并且在x=c处可导,那么f′(c)= 0。
也就是说,在一个连续且可导的函数f(x)的局部极值点上,函数的导数等于零。
3. 柯西中值定理柯西中值定理也是中值定理中的一种形式,它是拉格朗日中值定理的推广形式。
柯西中值定理的表述如下:定理3(柯西中值定理):设函数f(x)和g(x)在闭区间[a,b]上连续,并且在开区间(a,b)上可导,且g′(x)eq0。
那么,存在一个点c,使得$\\frac{f(b)-f(a)}{g(b)-g(a)} = \\frac{f'(c)}{g'(c)}$。
定理3的几何意义是:在闭区间[a,b]上,存在一个点c,使得函数曲线上的切线与函数曲线的斜率的比值等于两个函数之间的平均改变率的比值。
4. 应用中值定理在微积分中有广泛的应用。
下面介绍几个常见的应用场景:4.1 判断函数在某个区间上的增减性通过中值定理,可以判断函数在某个区间上的增减性。
如果函数在某个区间上的导数恒为正,则函数在该区间上单调递增;如果导数恒为负,则函数在该区间上单调递减。
4.2 寻找函数极值点利用拉格朗日中值定理的推论——费马定理,可以寻找函数的极值点。
中值定理的证明及应用
中值定理的证明及应用中值定理是微积分学中的重要定理之一,它具有广泛的应用。
本文将对中值定理进行证明,并介绍其在实际问题中的应用。
一、中值定理的证明中值定理有三种形式:拉格朗日中值定理、柯西中值定理和罗尔中值定理。
以下分别对这三种中值定理进行证明。
1. 拉格朗日中值定理证明拉格朗日中值定理是最经典的中值定理之一。
它的表述是:若函数f(x)在闭区间[a,b]上连续,并在开区间(a,b)内可导,则存在一个点c∈(a,b),使得f(b)-f(a)=(b-a)f'(c)。
证明过程:通过利用泰勒展开和魏尔斯特拉斯逼近定理,可以得到f(x)的泰勒展开式为f(x)=f(a)+f'(c)(x-a),其中c∈(a,b)。
由于f(x)在闭区间[a,b]上连续,在[a,b]上的最大值和最小值存在,设分别为M和m。
则有|f(x)-f(a)|≤M|c-a|,而|c-a|≤(b-a),即|f(x)-f(a)|≤M(b-a)。
2. 柯西中值定理证明柯西中值定理是拉格朗日中值定理的推广形式。
它的表述是:若两个函数f(x)和g(x)在闭区间[a,b]上连续,并在开区间(a,b)内可导,且g'(x)≠0,则存在一个点c∈(a,b),使得[f(b)-f(a)]g'(c)=[g(b)-g(a)]f'(c)。
证明过程:将f(x)和g(x)分别代入拉格朗日中值定理的证明过程中,得到f(x)=f(a)+f'(c)(x-a)和g(x)=g(a)+g'(c)(x-a)。
将这两个式子相乘并移项整理,可以得到[f(b)-f(a)]g'(c)=[g(b)-g(a)]f'(c)。
3. 罗尔中值定理证明罗尔中值定理是中值定理中最简单的一种形式。
它的表述是:若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,并且满足f(a)=f(b),则存在一个点c∈(a,b),使得f'(c)=0。
大学微积分(上)第四章 中值定理
2
证 设 f ( x ) arcsin x arccos x , x [1,1]
f ( x ) ( 1 1 x
2
) 0.
f ( x) C ,
x [1,1]
又 f (0) arcsin 0 arccos 0 0 , 2 2 即C . 2 arcsin x arccos x . 2
o
a
x1 x2
x4
x5 b
x
一、函数的极值
定义: 在其中当 (1) 时,
则称
称
为
的极大点 ,
为函数的极大值 ;
(2)
则称 称
为
的极小点 , 为函数的极小值 .
y 2 1
o
极大点与极小点统称为极值点 . 为极大点 , 为极小点 , 是极大值 是极小值
1 2
x
注意: 1) 函数的极值是函数的局部性质. 2) 对可导函数, 极值可能出现在导数为 零的点
第四章 中值定理及导数的应用
在本章中, 要利用导数来研究函数的性质与形态.
如: 函数增量与自变增量之间的关系;
凹凸、最大,最小、图形等.
函数的单调、
中值定理是利用导数研究函数的理论基础.
第一节 中值定理
洛尔定理 拉格朗日中值定理 柯西中值定理
y
x 1 , x4 为极大点 x 2 , x5 为极小点
解:∵ f (x)在[0, ]上连续,在(0, )上可导, 且 f(0) = f() ∴由洛尔定理知: 在(0, )内至少有一点,使 f ()=0,
即: cos =0, 故=/2。
例2
验证洛尔定理对函数 f ( x ) x 3 4 x 2 7 x 10 在 [1,2]上的正确性。 解:∵ f (x)在[-1, 2]上连续,在(-1, 2)上可导, 且 f(-1) = f(2) ∴由洛尔定理知:
(完整版)高等数学中值定理的题型与解题方法
高等数学中值定理的题型与解题方法高数中值定理包含:1.罗尔中值定理(rolle); 2.拉格朗日中值定理(lagrange); 3.柯西中值定理(cauchy); 还有经常用到的泰勒展开式(taylor), 其中(,)a b ξ∈,一定是开区间.全国考研的学生都害怕中值定理,看到题目的求解过程看得懂,但是自己不会做,这里往往是在构造函数不会处理,这里给总结一下中值定理所涵盖的题型,保证拿到题目就会做。
题型一:证明:()0nf ξ=基本思路,首先考虑的就是罗尔定理(rolle),还要考虑极值的问题。
例1. ()[,]f x C a b ∈在(,)a b 可导,()()0f a f b >>,()()02a bf a f +<, 证明:存在(,)a b ξ∈,使得'()0f ξ=.分析:由()()0f a f b >>,()()02a bf a f +<,容易想到零点定理。
证明:()()02a b f a f +<,∴存在1(,)2a bx a +∈,使得1()0f x =,又()()0f a f b >>,∴(),()f a f b 同号,∴()()02a bf b f +<,∴存在2(,)2a bx b +∈,使得2()0f x =,∴12()()0f x f x ==,所以根据罗尔中值定理:存在(,)a b ξ∈,使得'()0f ξ=.例2. ()[0,3]f x C ∈在(0,3)内可导,(0)(1)(2)3f f f ++=,(3)1f =, 证明:存在(0,3)ξ∈,使得'()0f ξ= 证明:(1)()[0,3]f x C ∈,∴()f x 在[0,3]使得上有最大值和最小值,M m ,∴根据介值性定理(0)(1)(2)3f f f m M ++≤≤,即1m M ≤≤∴存在[0,3]c ∈,使得()1f c =,(2)()(3)1f c f ==,所以根据罗尔中值定理:存在(,3)(0,3)c ξ∈⊂,使得'()0f ξ=.例3. ()f x 在(0,3)三阶可导,[0,1]x ∈,(1)0f =,3()()F x x f x = 证明:存在(0,1)ξ∈,使得'''()0F ξ= 证明:(1)(0)(1)0F F ==,∴存在1(0,1)ξ∈,使得1'()0F ξ=,(2)23'()3()'()F x x f x x f x =+,所以1'(0)'()0F F ξ==,∴存在21(0,)ξξ∈,使得2''()0F ξ=,(3)223''()6()3'()3'()''()F x xf x x f x x f x x f x =+++,所以2''(0)''()0F F ξ==,∴存在2(0,)(0,1)ξξ∈⊂,使得'''()0F ξ=,例3. ()[0,1]f x C ∈在(0,1)内可导,[0,1]x ∈,(0)1f =,11()22f =,(1)2f = 证明:存在(0,1)ξ∈,使得'()0f ξ= 证明:(0)1f =,11()22f =,(1)2f =∴存在(0,1)ξ∈,使得()f m ξ=,又()f x 在(0,1)内可导,∴存在(0,1)ξ∈,使得'()0f ξ=题型二:证明:含ξ,无其它字母 基本思路,有三种方法: (1)还原法。
中值定理的应用方法与技巧
中值定理的应用方法与技巧中值定理是微积分中的重要定理,它是罗尔定理和拉格朗日中值定理的推广与拓展。
中值定理具有广泛的应用,能够帮助我们解决各种问题。
下面将介绍中值定理的应用方法与技巧。
1.判断函数在一些区间上的单调性中值定理可以帮助我们判断函数在一些区间上的单调性。
如果函数在一些区间上满足函数值递增(或递减)的条件,则可以利用中值定理来证明函数在该区间上单调递增(或递减)。
具体步骤如下:-首先,我们需要证明函数在该区间上是连续的。
如果函数在该区间上是不连续的,我们不能使用中值定理来判断函数的单调性。
-接下来,我们需要证明函数在该区间上是可导的。
如果函数在该区间上不可导,我们也不能使用中值定理来判断函数的单调性。
-然后,我们通过计算函数在该区间的导数。
如果导数在该区间的值恒大于0(或小于0),则函数在该区间上单调递增(或递减)。
2.判断函数在一些点上的凹凸性中值定理也可以帮助我们判断函数在一些点上的凹凸性。
如果函数在一些点的导数大于0(或小于0),则函数在该点上是凹向上(或凹向下)的。
具体步骤如下:-首先,我们需要证明函数在该点的导数存在。
如果函数在该点的导数不存在,我们不能使用中值定理来判断函数的凹凸性。
-接下来,我们计算函数在该点的二阶导数。
如果二阶导数大于0(或小于0),则函数在该点上是凹向上(或凹向下)的。
3.判断函数的极值点中值定理可以帮助我们判断函数的极值点。
如果函数在一些区间上的导数由正变负(或由负变正),则函数在该区间上存在极值。
具体步骤如下:-首先,我们需要证明函数在该区间上是连续的。
如果函数在该区间上是不连续的,我们不能使用中值定理来判断函数的极值点。
-接下来,我们需要证明函数在该区间上是可导的。
如果函数在该区间上不可导,我们也不能使用中值定理来判断函数的极值点。
-然后,我们通过计算函数在该区间的导数。
如果导数在该区间内由正变负(或由负变正),则函数在该区间上存在极值。
4.证明不等式中值定理是证明不等式的有力工具,特别是对于带有变量的不等式。
中值定理(三步教学)
中值定理应用一.相关定理中值定理的本质其实是一组定理的总和,主要是围绕函数,零点,导函数之间的一些关系来展开,下面介绍最常用的7个定理[][]()μεεμ=∈≤≤≤≤f b a M m M x f m b a x f 使得必存在一点时当上连续在介值定理:设,,)(,,)( ()0)(,,0)()(=∈<•εεf b a b f a f 使得存在零点定理:当 0)(')(00=x f x x f 则有处满足可导且取极值,在费马定理:设[]()0)('),()()(,,)(=∈=εεf b a b f a f b a b a x f 使得则存在一点内可导且有上连续,开区间满足在闭区间罗尔定理:设[]())(')()()(),(,,)(εεf a b a f b f b a b a b a x f −=−∈使得则存在一点内可导上连续,开区间满足在闭区间拉格朗日中值定理:设[]())(')(')()()()(),(0)(',,)(),(εεεg f a g b g a f b f b a x g b a b a x g x f =−−∈≠使得则存在一点内可导且上连续,开区间满足在闭区间柯西中值定理:设之间介于均有域内的任一点阶导数存在,则对该邻的某个邻域内在点泰勒公式:010)1(00)(0000,,)()!1()())((!1))((')()(,1)(x x x x n f x x x f n x x x f x f x f x n x x f n n nn εε++−++−+−+=+ 二.具体使用步骤(定区间,定函数,定数值)第一步:确定做题的区间 第二步:确定辅助函数及定理第三步:确定特殊点或条件隐含点处的函数值三.题目分析技巧用于找0)(=c f :常用零点定理用于找0)('=c f :常用费马定理,罗尔定理,导函数的零点定理 用于找的关系和'f f ,或者题目出现)()(a f b f −:常用拉格朗日中值定理 涉及到函数二阶导:常用泰勒公式涉及到之间的关系两个函数之间和',',g f g f :柯西中值定理学四.具体例题分析[]⎰=−<xdt t f x x f x f 0)1,0(1)(21)(,1,0)(1.内有且仅有一个实根在证明:且上连续在设解:分析题目可以看到,要证明有实根,可以运用零点定理,而证明仅有一个实根,则需要判断函数的单调性。
中值定理的应用方法与技巧
中值定理的应用方法与技巧中值定理包括微分中值定理和积分中值定理两部分。
微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述。
积分中值定理有积分第一中值定理和积分第二中值定理。
积分第一中值定理为大家熟知,即若f(x)在[a,b]上连续,则在[a,b]上至少存在一点,b使得f(x)dx f( )(b a)。
积分第二中值定理为前者的推广,即若f(x),g(x)在a[a,b]上连续,且g(x)在[a,b]上不变号,则在[a,b]上至少存在一点,使得b ba f (x)g(x)dx f( ) a g(x)dx。
a a一、微分中值定理的应用方法与技巧三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。
由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。
这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。
例一.设(X)在[0,1]上连续可导,且(0) 0, (1) 1。
证明:任意给定正整数a,b,必存在(0,1)内的两个数,,使得」b a b成立。
() ()证法1 :任意给定正整数a,令t(x) ax, f2(x) (x),则在[0,1]上对fdx), f2(x)应用柯西中值定理得:存在(0,1),使得一◎红卫a。
() (1) (0)任意给定正整数b,再令g,x) bx,g2(x) (x),则在[0,1]上对5(x),g2(x)应用柯西中值定理得:存在(0,1),使得一^ 匚°b。
()(1) (0)两式相加得:任意给定正整数a,b,必存在(0,1)内的两个数,,使得a ba b() ()成立。
证法2:任意给定正整数a,b,令£3 ax, f2(x) (x),则在[0,1]上对分析:鉴于所要证明的等式中含有两个中值, 中,因此可考虑用两次柯西中值定理,即证法 2分式中函数值差的部分改用拉格朗日中值定理进行进一步f i (x), f 2(x)应用柯西中值定理得:存在 (0,1),使得g i (x) (a b) (x) bx,g 2(x)(x),则在[0,1]上对 g i (x), g 2(x)应用柯西中值定理得:存在 (0,1),使得(a b) () b (a b) b a 0因此有() (1) (0)亠(a b) ()ba b 上,移项得:」 Lab 。
中值定理的应用
5. 证明有关中值问题的结论:
题型一:证明存在 使 f ( ) 0或A(常数).
例1. 设f (x) 在[0,1]上可导,0 f (x) 1,且 f (x) 1,
(0 x 1),证明在(0,1)内必有唯一的 , 使 f ( ) .
[这里关键,需找a,b使f (a) f (b)( 0) ]
2. 使f ( ) 0 :
(1)对f (x)用费马定理或罗尔定理; (2)需找三个点a,b,c,使f (a) f (b) f (c),(a b c) 则1 (a,b)使f (1) 0; 2 (b, c)使f (2 ) 0;
f (x)g(x) f (x)g(x)
g 2 ( x)
x
0.
构造辅助函数 F(x) f (x) g(x)
(3) 要证 f () f ()g() 0.
即证 F(x) eg(x) [ f (x) f (x)g(x)] 0.
x
(3) g(a) g(b) 0. 由Rolle定理 (a, b), 使g( ) 0.
即 ek f ( ) ek kf ( ) 0
由于ek 0, f ( ) kf ( ) 0
即 f ( ) k. f ( )
总结:通过恒等变形
7). 有关中值问题的解题方法 利用逆向思维,设辅助函数. 一般解题方法: (1)证明含一个中值的等式或根的存在,多用罗尔定理,
可用原函数法找辅助函数. (2) 若结论中涉及含中值的两个不同函数,可考虑用柯
西中值定理 . (3) 若结论中含两个或两个以上的中值,必须多次应用
中值定理的证明与应用
中值定理的证明与应用中值定理是微积分中的重要概念,它揭示了函数在某一区间内存在特殊点的性质。
本文将对中值定理进行详细的证明及其应用进行探讨。
一、中值定理的证明中值定理是由法国数学家拉格朗日于18世纪提出的,它包含了三个不同的形式:拉格朗日中值定理、柯西中值定理和罗尔中值定理。
下面将对这三个形式进行证明。
1. 拉格朗日中值定理的证明拉格朗日中值定理是中值定理中最基本的形式,它表述为:若函数f(x)在闭区间[a, b]上连续,在开区间(a, b)内可导,则在(a, b)内至少存在一点c,使得f'(c) = (f(b) - f(a))/(b - a)。
证明的思路如下:首先将函数f(x)进行泰勒展开,得到f(x) = f(a) +f'(c)(x - a)。
根据泰勒展开,我们可以看到在点c处,f(c)恰好等于f(a)加上一个与f'(c)成正比的量,而这个比例恰好等于(f(b) - f(a))/(b - a)。
因此,可以得出结论:在(a, b)内至少存在一点c,使得f'(c) = (f(b) -f(a))/(b - a)。
这就完成了拉格朗日中值定理的证明。
2. 柯西中值定理的证明柯西中值定理是中值定理的一种推广形式,它表述为:若函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)内可导,并且g'(x)≠0,则在(a, b)内至少存在一点c,使得[f'(c)/g'(c)] = [f(b) - f(a)]/[g(b) - g(a)]。
证明的思路如下:首先定义一个函数h(x) = f(x) - [f(b) - f(a)]/[g(b) -g(a)] * g(x),则h(a) = f(a)- (f(b) - f(a))/(g(b) - g(a))*g(a) = 0,h(b) = f(b)- (f(b) - f(a))/(g(b) - g(a))*g(b) = 0。
(完整版)浅谈中值定理在解题中的应用
解:因为 和 可以看成指数函数 在 和 两点处的函数值.
又因为 ,故由微分中值定理得
其中
于是
故得 .
例10 .
解:令
显然 在[x,x+1](x 0)上满足Lagrange中值定理
得
其中
所以 .
.当不定式中的“ ”以同一函数在不同的两点之差的形式出现时,利用微分中值定理求极限,有统一、简便和易于掌握的优点.
其次,认真分析,精确而巧妙的构造出辅助函数.
做到这两点,便可顺利地完成命题的证明.
2.3关于根的存在性
根的存在定理:若函数 在闭区间 上连续,且 与 异号(即 ),则至少存在一点 ,使得
即方程 在 内至少有一个根.
罗尔定理告诉我们,若 在 上连续,在 内可导, ,则存在 ,使得 .换句话说,在函数的等值点之间,有导函数的根.因此,证明导函数有根,只要证明函数本身有等值点即可.
定理:若函数 在点 存在直至n阶导数,则有
即
(*)
定理中(*)式称为函数 在点 处的泰勒(Taylor)公式.
对于一些较复杂的函数,为了便于研究,往往希望用一些简单的函数来近似表达.多项式就是非常简单的函数,只要对自变量进行有限次加、减、乘三种算术运算就能计算出函数值.因此我们希望用多项式来近似表达函数.泰勒公式就是将满足某些条件的函数 转化为多项式函数.证明某些与高阶导数有关的命题时常用到泰勒公式.
微分中值定理证明不等式内容十分丰富,在此仅举两例.
例1证明:当 时, .
分析:构造函数 ,对任意 ,可将 利用泰勒公式展开.再逐步构造不等式 的中间部分 ,根据已知条件 ,即可证明.
证明:令 ,由Taylor公式知
对 ,存在 ,使
(完整版)中值定理及其应用
A ●
O
a
低了
到 B
●
了
bx
•典型情形的证明思想
y
f (x) f ( )
f (x) f ( )
x
x
fmax
f (x) f ( ) 0 x
●
f (x) f ( ) 0
x
f () 0
A
f ( ) 0
f ( ) 0
结这论说: 明Ro:lle在定极理 假大设函值数或f (极x)满小足值条件: 1.点f (处x)在,函[a,数b]上的连导续; 2.数f (为x)在0.(a,b)内可微; 3.几f (何b) 意f 义(a).是: 那在么至极少值存点在一处点的
证 设 f ( x) ln(1 x),
f ( x)在[0, x]上满足拉氏定理的条件 ,
f ( x) f (0) f ()(x 0), (0 x)
f (0) 0, f ( x) 1 , 由上式得 1 x
ln(1 x) x , 1
又0 x 1 1 1 x
1 1 1,
则在 (a,b)内至少存在一点 使 f ( ) M .
f ( x) f (), f ( x) f () 0,
若 x 0, 则有 f ( x) f () 0; x
若 x 0, 则有 f ( x) f () 0; x
f()
lim
x 0
f (
x) x
f ()
0;
f ( x) 在 x0, x1 之间满足罗尔定理的条件,
至少存在一个 (在 x0, x1 之间),使得 f () 0.
但 f ( x) 5( x4 1) 0, ( x (0,1)) 矛盾, 为唯一实根.
二、拉格朗日(Lagrange)中值定理
中值定理及其应用
中值定理及其应用中值定理是微积分中的重要定理之一,它是高阶微积分的基础,被广泛应用于物理、经济、工程等领域。
在本文中,我们将介绍中值定理的概念、证明以及其在实际问题中的应用。
一、中值定理的概念中值定理是微积分中的一个基本定理,用来分析函数在某个区间上的平均变化率与瞬时变化率的关系。
它由罗尔定理、拉格朗日中值定理和柯西中值定理组成。
1. 罗尔定理罗尔定理是中值定理的基础,它主要用于研究函数在闭区间上连续且在开区间上可导的情况。
罗尔定理的表述为:设函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且满足f(a) = f(b),则存在c∈(a,b),使得f'(c) = 0。
2. 拉格朗日中值定理拉格朗日中值定理是中值定理的一种形式,它由罗尔定理推导而来。
拉格朗日中值定理的表述为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则存在c∈(a, b),使得f'(c) = (f(b) - f(a))/(b - a)。
3. 柯西中值定理柯西中值定理是中值定理的另一种形式,它由拉格朗日中值定理推导而来。
柯西中值定理的表述为:如果两个函数f(x)和g(x)在闭区间[a,b]上连续,在开区间(a, b)上可导,并且g'(x)≠0,则存在c∈(a, b),使得[f(b) - f(a)]/g(b) - g(a) = f'(c)/g'(c)。
二、中值定理的证明中值定理的证明相对复杂,需要运用到微积分中的一些基本概念和定理。
在这里,我们将省略中值定理的详细证明过程。
三、中值定理的应用中值定理在实际问题中具有广泛的应用。
以下是几个常见的应用实例:1. 平均速度与瞬时速度根据拉格朗日中值定理,对于一段时间内的平均速度与某一时刻的瞬时速度,它们之间存在一个相等的关系。
这在物理学中有着重要的意义,可以通过计算平均速度来得到瞬时速度的近似值。
2. 函数求导与图像切线中值定理可以用于求解函数的导数以及函数图像的切线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中,因此可考虑用两次柯西中值定理,即证法2。也可用一次柯西中值定理后,
2
分式中函数值差的部分改用拉格朗日中值定理进行进一步化简,即为证法1的基
本思想方法。
例三.设f ( x), g( x)在[a,b]上二阶可导,并且g ( x)0,f (a)f (b)0,
导出g (3) 0,从而推出矛盾,证得结论。而(2)的证明关键在于首先要将欲证的等式变形成某一函数在中值处的导数为零。 从中选定一函数对其应用罗尔定理导出结论。
例四.设f (x)在[-a,a]
上连续,在x 0处可导,且f
(0) 0
。
(1)求证:x (0, a),
(0,1),
x
x
x[ f (
x)
f ( x)]
3!
因此可考虑反复用罗尔定理。 证明的难点化解是通过将展开式移项、 寻求函数零点,引进辅助函数等手段实现。
例七.设f ( x)在[a,b]
上 连续 ,在(a,b)
内 可导 且f ( x)
0。试证存在
,
(a,b),使得f ( )
eb
ea
e。
f ( )
b a
证明: 由于f ( x), ex在[a,b]
上满足柯西中值定理,故必有
(a, b),使
f (b)
f ( a)
f ( )。因为f (x)在[a,b]
上满足拉格朗日中值定理,所以存在
eb
ea
e
(a,b),使得f (b)
f ( a)
f
( )。于是有
b a
f (
)
f (b)
f (a)
eb
ea
f ( )
eb
ea
。
eb
ea
b
a
e
b
a
5
所以存在
,
(a,b),使得f (
)
eb
ea
e
。
3
x
f (t )dt
x
x[ f ( x) f (
x)]
即
0
f (t )dt
0
x
x
f (t) dt
(2)由于
f (t )dt
0
f ( x) f (
x)
lim
0
lim
2x
2
2x
f (0) lim
x 0
x
0
x 0
x
f (t)dt
x
f (t )dt
而运用洛必达法则,lim
0
0
f (x) f ( x)
1
。
2x
a。
(
)
(1)
(0)
任意给定正整数b,再令g1( x)
bx, g2(x)
( x),则在[0,1]
上对g1( x), g2( x)应用
柯西中值定理得:存在
(0,1)
,使得
b
b
0
b。
(
)
(1)
(0)
两式相加得:任意给定正整数
a,b,必存在(0,1)
内的两个数
,
,使得
a
b
a
b
(
)
(
)
成立。
证法2:任意给定正整数a, b,令f1(x)
例八.设抛物线y
x2
Bx
C与x轴有两个交点x
a, x b, a b。另有一
函数f ( x)在[a,b]上有二阶导数,且f ( a)
f (b) 0
,如果曲线y
f ( x)与
y
x2
Bx
C在(a,b)内有一个交点,求证:在
(a,b)内存在一点
,使得
f (
)
2。
证明: 设曲线y
f ( x)与y
x2
Bx
C在(a,b)内的交点为c。作辅助函
0,从而当x
1时,
exex。
分析:本例是运用拉格朗日中值定理证明不等式的典型实例。 利用拉格朗日中值定理证明不等式的一般步骤为: (1)从所欲证的不等式中找到含函数值差的
表达式,从中选定f (x)及一闭区间(2)运用拉格朗日中值定理得到一等式(3)
利用此等式及ab导出欲证的不等式。
例六.设f (x)在[0,1]上三阶可导, 且f (0)1, f (1)0, f (0)0,试证:至
f (b)
f (a)
f ( )(b a)
令g ( x) x2,在[a,b]
上对f ( x), g ( x)应用柯西中值定理,得存在
(a,b),
使得
f ( )
f (b)
f (a)
f ( )。
2
b2
a2
b a
证法2:令g( x)
x2
,在[a,b]
上对f
(x), g( x)应用柯西中值定理,得存在
(a,b),使得
b,故arctana
arctanb a
b
1
2(b
(2)设f ( x) ex
ex,由于f ( x)在[1, x]上连续,在(1, x)内可导,因此根据
拉格朗日中值定理,有
f (x) f (1)
f ( )( x
1),
(1, x)。即
ex
ex (e e)( x
1)
。由于
(1, x),所以(e
e)( x 1)
f (t )dt
f (t )dt
0
0
(2)求lim
x 0
证明:(1)令ห้องสมุดไป่ตู้ ( x)
x
x
f (t)dt,则F ( x)
f ( x)
f (
x)。
0
f (t)dt
0
根据拉格朗日中值定理,
x ( 0, a),
(0,1),使得
F ( x) F ( x) F (0)
F ( x)( x 0)
x[ f ( x) f ( x)]
f
( )
f (b)
f ( a)。
2
b2
a2
再令g (x)
(b a) x,在[a,b]
上对f ( x), g( x)应用柯西中值定理,得存在
(a,b),使得
f ( )
f (b)
f ( a)
f (b)
f (a)
。
b
a
(b
a)b
(b
a) a
b2
a2
综合两式得到存在
,
(a,b),使得f
( )
f (
)。
2
b
a
中值定理的应用方法与技巧
中值定理包括微分中值定理和积分中值定理两部分。微分中值定理即罗尔
定理、拉格朗日中值定理和柯西中值定理,
一般高等数学教科书上均有介绍, 这
里不再累述。积分中值定理有积分第一中值定理和积分第二中值定理。
积分第一
中值定理为大家熟知,即若f ( x)在[a,b]
上连续,则在[a,b]上至少存在一点 ,
ax, f2( x)
(x),则在[0,1]
上对
1
f1(x), f2(x)应 用 柯 西 中 值定 理 得: 存在
(0,1)
,使 得
a
a。再 令
(
)
g1( x)
(a
b)
(x)
bx, g2( x)
( x),则在[0,1]
上对g1( x), g2(x)应用柯西中值定
理 得 : 存 在
(0,1), 使 得(a b) ( )
(1)arctanaarctanbab
(2)当x 1时,
ex
ex
证明:(1)令f ( x)
arctan x, x
[a,b],f ( x)在[ a,b]上连续,在(a, b)内可导,
因此根据拉格朗日中值定理,有
f (b) f ( a)
f ( )(b a),a
b。即
arctan b arctan a
1
a),a
例一.设( x)在[0,1]
上连续可导,且
(0)
0,
(1)
1。证明:任意给定正
整数a,b,必存在(0,1)内的两个数
,
,使得
a
b
a
b成立。
(
)
(
)
证法1:任意给定正整数
a,令f1(x)
ax, f2(x)
( x),则在[0,1]
上对
f1(x), f2(x)应用柯西中值定理得:存在
(0,1)
,使得
a
a
0
0,故H (a)
H (b)
0。在[a,b]
上对H ( x)应用
罗尔定理得:在(a,b)内至少存在一点
,使H
( )
f ( ) g ( )
g(
) f ( )
0,
从而有f (
)
f
( )。
g(
)
g
( )
分析:该题的证明主要运用了罗尔定理。 由于题设中出现了f ( a)
f (b)
0,
g(a)g (b)0,因此在(1)的证明中可考虑用反证法,通过反复运用罗尔定理
2
lim
2 2x
f (0)
x
0
x 0
2
因此lim
1。
x 0
2
分析:此题运用的知识点和方法较为综合。既用到了积分上限的函数特性,又用到了拉格朗日中值定理另一种表达方式, 以及洛必达法则、 函数极限运算法则、导数概念等等。 因此要求解题者需具备较扎实的微积分知识基础和一定的函数构造技巧。
例五.证明下列不等式: