高中物理实验的十种思想方法(一)

合集下载

高考物理常见的思想方法

高考物理常见的思想方法
【例1】如图所示, 两物体在水平恒力 、 作用下运动。已知 ,则:
(1)若水平面光滑, 施于 的作用力的大小就是多少?(2)若水平面不光滑呢?
【解析】(1)地面光滑时,以A、B系统为研究对象,由牛顿第二定律,有F1-F2=(m1+m2)a1①
以B为研究对象,B受到A水平向右推力FN1,由牛顿第二定律,有FN1-F2=m2a1②
(1)极限思维法就是指将题目所述物理现象或物理过程形成、变化的一般条件推向极端,在极端条件下进行讨论、推理或判断的一种方法。这里的“极端”条件就是指极大、极小或临界状况。
极端思维法只能用于在选定的区间内所研究的物理量连续、单调变化(单调增大或单调减小)的情况。
(2)描述某一过程或某一状态的物理量在其变化中由于受到物理规律与条件的制约,其取值往往只就是在一定范围内才能符合物理问题的实际,而在这一范围内,该物理量可能有其最大值、最小值或就是确定其范围的边界值等一些特殊值。物理问题中涉及这些物理量的特殊值问题,我们统称为极值问题。
高考物理常见的思想方法
有人定义,物理思想方法就就是人们对自然物质及其运动规律的认识方法,就是源于物理世界又指导人们对物理世界进行再认识、再改造与实践应用的思维体系,就是辨证唯物主义的方法论与认识论在物理学中的具体体现。由此瞧出,物理思想方法就是一种认识方法,就是一种思维体系,就是学生获得知识的手段,就是联系各项知识的纽带,它比知识具有更强的稳定性,更强的概括性与普遍适应性,能使学生透彻理解知识,形成独立探索问题与解决问题的能力。
整体法与隔离法就是解决动力学关系、能量关系等一系列问题的重要思想方法,尤其就是在求连接体问题中的加速度、相互作用力以及分析做功等问题时作用巨大。
隔离法与整体法的选择原则:(1)在动力学问题中,求各部分运动状态相同的连接体的加速度或合外力时,优先考虑整体法;如果还要求物体之间的相互作用力,再用隔离法,且一定要从要求的作用力的那个作用面将物体进行隔离;如果连接体中各部分的加速度不相同,一般选用隔离法。(2)在研究单个质点的能量变化时,首选隔离法;研究系统的能量关系时,一般综合运用整体法与隔离法。运用整体法时,一般情况下,只需考虑外力不必考虑内力;运用隔离法时,隔离的目的就是将内力转化为外力。

高中物理实验的十种思想方法论文

高中物理实验的十种思想方法论文

高中物理实验的十种思想方法 物理教学考试大纲》中在“实验能力” 中要求会“运用学过的实验方法”。

以下对高中物理涉及的几种重要实验方法加以论述:一、直接比较法高中物理的某些实验,只需定性地确定物理量间的关系,或将实验结果与标准值相比较,就可得出实验结论的,这即是直接比较法。

如在“研究电磁感应现象”的实验中,可在观察记录的基础上,经过比较和推理,得出产生感应电流的条件和判定感应电流的方向的方法。

二、等效替代法等效替代法是科学研究中常用的一种思维方法。

对一些复杂问题采用等效方法,将其变换成理想的、简单的、已知规律的过程来处理,常可使问题的解决得以简化。

因此,等效法也是物理实验中常用的方法。

如在“验证力的平行四边形定则”的实验中,要求用一个弹簧秤单独拉橡皮条时,要与用两个弹簧秤互成角度同时拉橡皮条产生的效果相同——使结点到达同一位置O,即要在合力与分力等效的条件下,才能找出它们之间合成与分解时所遵守的关系——平行四边形定则;在“碰撞中的动量守恒”实验中,用小球的水平位移代替小球的水平速度;画电场中等势线分布时用电流场模拟静电场;验证牛顿第二定律时调节木板倾角,用重力的分力抵消摩擦力的影响,等效于小车不受阻力等等。

三、控制变量法控制变量法即在多因素的实验中,可以先控制一些物理量不变,依次研究某一个因素的影响。

如牛顿第二定律实验中可以先保持质量一定,研究加速度和力的关系;再保持力一定,研究加速度和质量的关系。

在研究欧姆定律的实验中,先控制电阻一定,研究电流与电压的关系,再控制电压一定,研究电流和电阻的关系。

四、累积法把某些用常规仪器难以直接准确测量的微小量累积将小量变大量测量,以提高测量的准确度减小误差。

如在缺乏高精密度的测量仪器的情况下测细金属丝的直径,常把细金属丝绕在圆柱体上测若干匝的总长度,然后除以匝数可求细金属丝的直径;测一张薄纸的厚度时,常先测量若干页纸的总厚度,再除以被测页数而求每页纸的厚度;在“用单摆测重力加速度” 的实验中,单摆周期的测定就是通过测单摆完成多次全振动的总时间除以全振动的次数,以减少个人反应时间造成的误差影响。

高中物理思想方法总结

高中物理思想方法总结

高中物理思想方法总结1.微元法与极限法它本是高等数学中的知识领域问题,但在高中物理中只是思想方法领域的问题。

在高中也根本不可能把具体知识体系教给学生,但作为思想方法,它的地位反而更高。

虽然对问题的分析都是定性的,却反应了思维的质量和深度。

在处理匀变速直线运动的位移、瞬时速度,曲线运动速度方向、万有引力由“质点”向“大的物体”过渡、变力做功,等等,要大力向学生渲染这种思想方法。

2.隔离法除前面提到的对物体系统进行隔离的例子,还有对问题的过程或问题性质进行隔离的思想方法问题。

例如我们把电源隔离成无阻理想电源和电阻串联的两部分;把碰撞问题分隔成纯粹碰撞阶段和纯粹运动阶段──很多教师说“碰撞瞬间完成,还没来得及运动,忽略其位移”,其实这话不严密:不是没位移,而是把位移成分(哪怕很微小的位移)在运动阶段中体现了。

再如,在讨论卫星运行中的变轨问题时,往往分隔成变速、变轨,再变速、稳定在另一轨道等等几个理想段,实际中这些过程并不是界限分明分阶段进行的,而是交融在一起、伴随在一起的。

隔离法的运用,不是忽略了什么,也不是允许了什么误差,而是思维的一种方法与技巧。

运用这种方法,研究的结果是精确的。

3.忽略次要因素思想很多学生在讨论问题时,有两个误区:一是看问题不全面,类似的如电路中的功率等于电压与电流二者的积,电压增大为原来二倍时,有的学生就说功率就变为原来二倍;二是不知道多个因素影响中,需要忽略无穷小的和次要的因素。

例如随温度的增加导体的电阻究竟增加还是减小?再如在研究光学的成像时不用考虑色散、在研究干涉问题时不考虑衍射影响、在研究声速时不考虑温度影响等。

对此,应该让学生归纳出理性化的思绪:第一,精确度方面。

例如,研究铁球的自由落体运动,不做精确测量时,不考虑空气阻力。

但要进行精确研究,即便下落的是铁球,也要考虑空气阻力。

第二,在关注点方面。

例如还是铁球下落,看你关注的是什么。

如果你关注的是空气阻力影响,就不能忽略空气阻力。

高中物理中常用的一些科学的思维方法

高中物理中常用的一些科学的思维方法

高中物理中常用的一些科学的思维方法一、观察法观察法是物理实验中最基本的科学思维方法之一。

通过仔细观察物体或现象,收集相关信息,揭示事物的规律性。

例如,在学习光的折射现象时,我们可以通过观察折射光线的方向变化来推断光在不同介质中传播的规律。

二、实验法实验法是物理研究中常用的科学思维方法之一。

通过设计和进行实验,收集数据并进行分析,验证或推翻假设,得出科学结论。

例如,在学习牛顿第二定律时,我们可以设计实验,测量不同质量物体的加速度,验证F=ma的关系。

三、假设法假设法是物理研究中常用的科学思维方法之一。

根据已有的知识和观察结果,提出一个合理的假设,然后通过实验证实或推翻这个假设。

例如,在学习电阻的研究时,我们可以假设电阻与导线的材料、长度和截面积有关系,然后通过实验来验证这个假设。

四、归纳法归纳法是物理研究中常用的科学思维方法之一。

通过观察和实验,总结出一般规律或者推理出普遍性的结论。

例如,在学习万有引力定律时,我们可以通过观察多个物体间的引力作用,归纳出引力与物体质量和距离的关系。

五、演绎法演绎法是物理研究中常用的科学思维方法之一。

根据已有的理论知识和规律,通过逻辑推理,推导出具体的结论。

例如,在学习光的干涉现象时,我们可以通过波动理论和光的干涉条件,演绎出干涉条纹的形成原理。

六、数学方法数学方法是物理研究中不可或缺的科学思维方法之一。

通过运用数学工具,进行定量分析和计算,解决物理问题。

例如,在学习力学中的运动学问题时,我们可以通过运用速度、加速度、位移等数学概念和公式,解决运动物体的相关问题。

七、模型建立模型建立是物理研究中常用的科学思维方法之一。

通过建立适当的物理模型,简化复杂的现象,便于理解和分析。

例如,在学习电路中的电阻、电容和电感的组合时,我们可以通过建立等效电路模型,简化电路分析的复杂性。

八、对比分析对比分析是物理研究中常用的科学思维方法之一。

通过对不同现象或不同理论的比较和分析,找出相同点和差异,深入理解物理问题的本质。

高中物理思想方法总结

高中物理思想方法总结

高中物理思想方法总结引导语:物理是一门很多学生都掌握不好的学科,其实学好物理是非常需要方法的,接下来是为你带来收集的高中物理思想方法总结,欢迎阅读!1.微元法与极限法它本是高等数学中的知识领域问题,但在高中物理中只是思想方法领域的问题。

在高中也根本不可能把具体知识体系教给学生,但作为思想方法,它的地位反而更高。

虽然对问题的分析都是定性的,却反应了思维的质量和深度。

在处理匀变速直线运动的位移、瞬时速度,曲线运动速度方向、万有引力由“质点”向“大的物体”过渡、变力做功,等等,要大力向学生渲染这种思想方法。

2.隔离法除前面提到的对物体系统进行隔离的例子,还有对问题的过程或问题性质进行隔离的思想方法问题。

例如我们把电源隔离成无阻理想电源和电阻串联的两部分;把碰撞问题分隔成纯粹碰撞阶段和纯粹运动阶段──很多教师说“碰撞瞬间完成,还没来得及运动,忽略其位移”,其实这话不严密:不是没位移,而是把位移成分(哪怕很微小的位移)在运动阶段中体现了。

再如,在讨论卫星运行中的变轨问题时,往往分隔成变速、变轨,再变速、稳定在另一轨道等等几个理想段,实际中这些过程并不是界限分明分阶段进行的,而是交融在一起、伴随在一起的。

隔离法的运用,不是忽略了什么,也不是允许了什么误差,而是思维的一种方法与技巧。

运用这种方法,研究的结果是精确的。

3.忽略次要因素思想很多学生在讨论问题时,有两个误区:一是看问题不全面,类似的如电路中的功率等于电压与电流二者的积,电压增大为原来二倍时,有的学生就说功率就变为原来二倍;二是不知道多个因素影响中,需要忽略无穷小的和次要的因素。

例如随温度的增加导体的电阻究竟增加还是减小?再如在研究光学的成像时不用考虑色散、在研究干涉问题时不考虑衍射影响、在研究声速时不考虑温度影响等。

对此,应该让学生归纳出理性化的思绪:第一,精确度方面。

例如,研究铁球的自由落体运动,不做精确测量时,不考虑空气阻力。

但要进行精确研究,即便下落的是铁球,也要考虑空气阻力。

物理学研究中十种常用的思维方法

物理学研究中十种常用的思维方法

物理学研究中十种常用的思维方法物理学研究中十种常用的思维方法物理学研究中十种常用的思维方法高中物理所学的内容属于经典物理范畴涉及不到模糊物理,所以有一定的规律性和技巧性可循,只要在学习的过程中找我一定的方法,再加一勤奋作为基石,一定能够在应试中取得好成绩。

至于方法,可以归纳为以下的几个部分。

观察的几种方法1、顺序观察法:按一定的顺序进行观察。

2、特征观察法:根据现象的特征进行观察。

3、对比观察法:对前后几次实验现象或实验数据的观察进行比较。

4、全面观察法:对现象进行全面的观察,了解观察对象的全貌。

过程的分析方法1、化解过程层次:一般说来,复杂的物理过程都是由若干个简单的“子过程”构成的。

因此,分析物理过程的最基本方法,就是把复杂的问题层次化,把它化解为多个相互关联的“子过程”来研究。

2、探明中间状态:有时阶段的划分并非易事,还必需探明决定物理现象从量变到质变的中间状态(或过程)正确分析物理过程的关键环节。

3、理顺制约关系:有些综合题所述物理现象的发生、发展和变化过程,是诸多因素互相依存,互相制约的“综合效应”。

要正确分析,就要全方位、多角度的进行观察和分析,从内在联系上把握规律、理顺关系,寻求解决方法。

4、区分变化条件:物理现象都是在一定条件下发生发展的。

条件变化了,物理过程也会随之而发生变化。

在分析问题时,要特别注意区分由于条件变化而引起的物理过程的变化,避免把形同质异的问题混为一谈。

因果分析法1、分清因果地位:物理学中有许多物理量是通过比值来定义的。

如R = U/R 、E = F/q 等。

在这种定义方法中,物理量之间并非都互为比例关系的。

但学生在运用物理公式处理物理习题和问题时,常常不理解公式中物理量本身意义,分不清哪些量之间有因果联系,哪些量之间没有因果联系。

2、注意因果对应:任何结果由一定的原因引起,一定的原因产生一定的结果。

因果常是一一对应的,不能混淆。

3、循因导果,执果索因:在物理习题的训练中,从不同的方向用不同的思维方式去进行因果分析,有利于发展多向性思维。

高中物理复习:解答物理问题的10种思想方法

高中物理复习:解答物理问题的10种思想方法

高中物理复习:解答物理问题的10种思想方法专题概述现如今,高考物理愈来愈注重考查考生的能力和科学素养,其命题愈加明显地渗透着对物理思想、物理方法的考查.在平时的复习备考过程中,物理习题浩如烟海,千变万化,我们若能掌握一些基本的解题思想,就如同在开启各式各样的“锁”时,找到了一把“多功能的钥匙”.思想方法1:整体法、隔离法1.整体法和隔离法的选用原则(1)如果动力学系统各部分运动状态相同,求解整体的物理量优先考虑整体法;如果要求解系统各部分的相互作用力,再用隔离法.(2)如果系统内部各部分运动状态不同,一般选用隔离法.2.在比较综合的问题中往往两种方法交叉运用,相辅相成,两种方法的取舍,并无绝对的界限,必须具体问题具体分析,灵活运用.如图所示,质量均为m 的斜面体A 、B 叠放在水平地面上,A 、B 间接触面光滑,用一与斜面平行的推力F 作用在B 上,B 沿斜面匀速上升,A 始终静止.若A 的斜面倾角为θ,下列说法正确的是( )A .F =mg tan θB .A 、B 间的作用力为mg cos θC .地面对A 的支持力大小为2mgD .地面对A 的摩擦力大小为F解析:B 以B 为研究对象,在沿斜面方向、垂直于斜面方向根据平衡条件求得F =mg sin θ,支持力N =mg cos θ,故A 错误,B 正确;以整体为研究对象,根据平衡条件可得地面对A 的支持力大小为F N =2mg -F sin θ,地面对A 的摩擦力大小为f =F cos θ,故C 、D 错误.思想方法2:估算与近似计算1.物理估算题,一般是指依据一定的物理概念和规律,运用物理方法和近似计算方法,对所求物理量的数量级或物理量的取值范围,进行大致的、合理的推算.物理估算是一种重要的方法,有的物理问题,在符合精确度的前提下可以用近似的方法便捷处理;有的物理问题,由于本身条件的特殊性,不需要也不可能进行精确计算.在这些情况下,估算就很实用.2.估算时经常用到的近似数学关系(1)角度θ很小时,弦长近似等于弧长.(2)θ很小时,sin θ≈θ,tan θ≈θ,cos θ≈1.(3)a ≫b 时,a +b ≈a ,1a +1b ≈1b. 3.估算时经常用到的一些物理常识数据解题所需数据,通常可从日常生活、生产实际、熟知的基本常数、常用关系等方面获取,如成人体重约600 N ,汽车速度约10~20 m/s ,重力加速度约为10 m/s 2……引体向上是中学生体育测试的项目之一,引体向上运动的吉尼斯世界纪录是53次/分钟.若一个普通中学生在30秒内完成12次引体向上,该学生此过程中克服重力做功的平均功率最接近于( )A .5 WB .20 WC .100 WD .400 W解析:C 学生体重约为50 kg ,每次引体向上上升的高度约为0.5 m ,引体向上一次克服重力做功为W =mgh =50×10×0.5 J =250 J ,全过程克服重力做功的平均功率为P =nW t=12×250 J 30 s=100 W ,故C 正确,A 、B 、D 错误. 思想方法3:控制变量法在比较复杂的物理问题中,某一物理量的变化可能与多个变量均有关,定性分析或定量确定因变量与自变量的关系时,常常需要用到控制变量法,即先保持其中一个量不变,研究因变量与另外一个变量的关系,如研究加速度与质量和合外力的关系时,先保持物体的质量不变,研究加速度与合外力的关系,再保持合外力不变,研究加速度与物体质量的关系,最终通过数学分析,得到加速度与质量和合外力的关系.如果有三个或三个以上的自变量,需要控制不变的量,做到变量每次只能有一个.在研究球形固体颗粒在水中竖直匀速下沉的速度与哪些因素有关的实验中,得到的实验数据记录在下面的表格中(水的密度为ρ0=1.0×103 kg/m 3). 次序固体颗粒的半径 r /(×10-3 m) 固体颗粒的密度 ρ/(×103 kg ·m -3) 匀速下沉的速度 v /(m ·s -1) 10.50 2.0 0.55 21.002.0 2.20 31.502.0 4.95 40.50 3.0 1.10 51.00 3.0 4.40 60.50 4.0 1.65 7 1.00 4.0 6.60 颗粒的半径r 的关系:v 与________(填“r ”或“r 2”)成正比.(2)根据以上1、4、6组实验数据,可知球形固体颗粒在水中匀速下沉的速度v 与水的密度ρ0、固体的密度ρ的关系:v 与________(填“ρ”或“ρ-ρ0”)成正比.(3)综合以上实验数据,推导球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式v =________,比例系数可用k 表示.解析:(1)由控制变量法容易得出,当ρ一定时,从表格中1、2、3组数据可以得出结论:v ∝r 2.(2)观察表格中的1、4、6组数据,当r 一定时,v 和ρ的关系难以立即判断,因此需要换个角度考虑.当r 一定时,在每个ρ值后都减去1.0×103 kg/m 3(即水的密度),得到的数值与v 成正比,即v ∝(ρ-ρ0).(3)综合以上实验数据,可推导出球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式:v =kr 2(ρ-ρ0),k 为比例系数.答案:(1)r 2 (2)ρ-ρ0 (3)k (ρ-ρ0)r 2思想方法4:对称思想对称是一种美,只要对称,必有相等的某些量存在.对称法是从对称的角度研究、处理物理问题的一种思维方法,时间和空间上的对称,表明物理规律在某种变换下具有不变的性质.用这种思维方法来处理问题可以开拓思路,使复杂问题的求解变得简捷.高中物理中的对称主要有受力对称和运动对称.电场中等量电荷产生的电场具有对称性,带电粒子在匀强有界磁场中的运动轨迹具有对称性,简谐运动和波在时间和空间上具有对称性,光路具有对称性……解题时,要充分利用这些特点.如图所示,挂钩连接三根长度均为L 的轻绳,三根轻绳的另一端与一质量为m 、直径为1.2L 的水平圆环相连,连接点将圆环三等分,在轻绳拉力作用下圆环以加速度a =12g 匀加速上升,已知重力加速度为g ,则每根轻绳上的拉力大小为( )A.512mg B .59mg C.58mg D .56mg 解析:C 设每根轻绳与竖直方向的夹角为θ,由几何关系可知sin θ=0.6,则cos θ=0.8;对圆环进行受力分析,由牛顿第二定律有3T cos θ-mg =ma ,解得T =58mg ,故选C. 思想方法5:分解思想有些物理问题的运动过程、情景较为复杂,在运用一些物理规律或公式不奏效的情况下,将物理过程按照事物发展的顺序分成几段熟悉的子过程来分析,或者将复杂的运动分解成几个简单或特殊的分运动(如匀速直线运动、匀变速直线运动、圆周运动等)来考虑,往往能事半功倍.某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的( )A .时刻相同,地点相同B .时刻相同,地点不同C .时刻不同,地点相同D .时刻不同,地点不同解析:B 弹射管沿光滑竖直轨道自由下落,向下的加速度大小为g ,且下落时保持水平,故先后弹出的两只小球在竖直方向的分速度与弹射管的分速度相同,即两只小球同时落地;又两只小球先后弹出且水平分速度相等,故两只小球在空中运动的时间不同,则运动的水平位移不同,落地点不同,选项B 正确.思想方法6:数形结合的思想数形结合的思想,就是把物体的空间形式和数量关系结合起来进行考查,通过“数”与“形”之间的对应和转化来解决问题的思想,其实质是把抽象的数学语言、数量关系与直观的图形结合起来,把抽象思维和形象思维结合起来.数形结合的思想,一方面可以以“形”助“数”,实现抽象概念与具体形象的联系与转化,化抽象为直观,化难为易;另一方面可以以“数”解“形”,可以由数入手,将有些涉及图形的问题转化为数量关系来研究,对图形做精细的分析,从而使人们对直观图形有更精确、理性的理解.一弹簧秤的秤盘质量为m 1,盘内放一质量为m 2的物体,弹簧质量不计,其劲度系数为k ,系统处于静止状态,如图所示.t 0时刻给物体施加一个竖直向上的力F ,使物体从静止开始向上做加速度为a 的匀加速直线运动,经2 s 物体与秤盘脱离,用F N 表示物体与秤盘间的相互作用力的大小,已知重力加速度大小为g ,则下列F 和F N 随时间变化的关系图像正确的是( )解析:C 对秤盘和物体整体分析,系统处于静止状态时,弹簧形变量为x 0,利用牛顿第二定律得,kx 0=(m 1+m 2)g ,F +kx -(m 1+m 2)g =(m 1+m 2)a ,又x =x 0-12a (t -t 0)2,解上述两式得F =(m 1+m 2)a +12ka (t -t 0)2,所以选项A 、B 错误;以物体为研究对象,物体静止时,F N =m 2g ,运动后对秤盘受力分析,利用牛顿第二定律得kx -m 1g -F N =m 1a ,F N =m 2g -m 1a -12ka (t -t 0)2,所以选项C 正确,D 错误. 思想方法7:特殊值法与极限法在中学物理问题中,有一类问题具有这样的特点,如果从题中给出的条件出发,需经过较复杂的计算才能得到结果的一般形式,并且条件似乎不足,使得结果难以确定,这时我们可以尝试采用极限思维的方法,将其变化过程引向极端的情况,就能把比较隐蔽的条件或临界现象暴露出来,从而有助于结论的迅速取得.对于某些具有复杂运算的题目,还可以通过特殊值验证的方法排除错误选项,提高效率.图示为一个内、外半径分别为R 1和R 2的圆环状均匀带电平面,其单位面积带电量为σ.取环面中心O 为原点,以垂直于环面的轴线为x 轴.设轴上任意点P 到O 点的距离为x ,P 点电场强度的大小为E .下面给出E 的四个表达式(式中k 为静电力常量),其中只有一个是合理的.你可能不会求解此处的场强E ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断.根据你的判断,E 的合理表达式应为( )A .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21-R 2x 2+R 22x B .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21-1x 2+R 22x C .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21+R 2x 2+R 22x D .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21+1x 2+R 22x 解析:B 当R 1=0时,带电圆环演变为带电圆面,则中心轴线上任意一点的电场强度的大小E 不可能小于0,而A 项中,E <0,故A 错误;当x →∞时E →0,而C 项中E =2πk σ·⎝ ⎛⎭⎪⎫ R 21x 2x 2+R 21+ R 22x 2x 2+R 22=2πk σ·⎝ ⎛⎭⎪⎪⎫ 11x 2+1R 21+ 11x 2+1R 22,x →∞时,E →2πk σ(R 1+R 2),同理可知D 项中x →∞时,E →4πk σ,故C 、D 错误;所以正确选项只能为B.思想方法8:等效思想1.等效法是科学研究中重要的思维方法之一,所谓等效法就是在保证某方面效果相同的前提下,用熟悉和简单的物理对象、过程、现象替代实际上陌生和复杂的物理对象、过程、现象的方法.例如:合力与分力、合运动与分运动、总电阻与分电阻等.利用等效法不但能将问题、过程由繁变简、由难变易,由具体到抽象,而且能启迪思维,增长智慧,从而提高能力.2.运用等效法解决实际问题时,常见的有:过程等效、概念等效、条件等效、电器元件等效、电路等效、长度等效、场等效等.在运用等效法时,一定要注意必须是在效果相同的前提下,讨论两个不同的物理过程或物理现象的等效及物理意义.若在运用等效法解决问题时,不抓住效果相同这个条件,就会得出错误的结论.近年来,含有等效法思维方式的试题在高考中频频出现,主要考查物理模型等效、过程等效、条件等效、电路等效等.如图所示,在方向水平向左、范围足够大的匀强电场中,固定一由内表面绝缘光滑且内径很小的圆管弯制而成的圆弧BD ,圆弧的圆心为O ,竖直半径OD =R ,B 点和地面上A 点的连线与地面成θ=37°角,AB =R .一质量为m 、电荷量为q 的小球(可视为质点)从地面上A 点以某一初速度沿AB 方向做直线运动,恰好无碰撞地从管口B 进入管道BD 中,到达管中某处C (图中未标出)时恰好与管道间无作用力.已知sin 37°=0.6,cos 37°=0.8,重力加速度大小为g .求:(1)匀强电场的场强大小E 和小球到达C 处时的速度大小v ;(2)小球的初速度大小v 0以及到达D 处时的速度大小v D .解析:(1)小球做直线运动时的受力情况如图甲所示,小球带正电,则qE =mg tan θ,得E =4mg 3q, 小球到达C 处时电场力与重力的合力恰好提供小球做圆周运动的向心力,如图乙所示,OC ∥AB ,则mg sin θ=m v 2R得v = 53gR . (2)小球“恰好无碰撞地从管口B 进入管道BD ”,说明AB ⊥OB小球从A 点运动到C 点的过程,根据动能定理有-mg sin θ·2R =12m v 2-12m v 20得v 0=253gR , 小球从C 处运动到D 处的过程,根据动能定理有mg sin θ(R -R sin θ)=12m v 2D -12m v 2, 得v D =3gR .答案:(1)4mg 3q 53gR (2) 253gR 3gR思想方法9:微元累积法高中物理中有很多复杂模型不能直接用已有知识和方法解决,可以在对问题做整体的考察后,选取该问题过程中的某一微小单元进行分析,通过对微元的物理分析和描述,找出该微元所具有的物理性质和运动变化规律,从而获得解决该物理问题整体的方法.比如,物体做变加速运动时,若从整体着手研究,则难以在高中物理层面展开,不过当我们用过程微元法,把物体的运动过程按其经历的位移或时间等分为多个小量,将每个微元过程近似为高中物理知识所能处理的过程,在得出每个微元过程的相关结果后,再进行数学求和,这样就能得到物体复杂运动过程的规律.再比如研究对象难以选择的情形,可以把实体模型等分为很多很多的等份,变成一个理想化模型,如刚体可以等分成无数个质点、带电体可以等分成很多点电荷来研究,先研究其中一份,再研究个体与整体的关系,运用物理规律,辅以数学方法求解,由此求出整体受力或运动情况,在中学阶段比较常见的有流体或类似流体问题、链条类的连续体模型等.如图所示,空间存在竖直向下的匀强磁场,磁感应强度B =0.5 T .在匀强磁场区域内,同一水平面内有一对足够长的光滑平行金属导轨,导轨间距L =1 m ,电阻可忽略不计.质量均为m =1 kg 、电阻均为R =2.5 Ω的金属导体棒MN 和PQ 垂直放置于导轨上,且与导轨接触良好.先将PQ 暂时锁定,金属棒MN 在垂直于棒的拉力F 作用下,由静止开始以加速度a =0.4 m/s 2向右做匀加速直线运动,5 s 后保持拉力F 的功率不变,直到棒以最大速度v m 做匀速直线运动.(1)求棒MN 的最大速度v m ;(2)当棒MN 达到最大速度v m 时,解除PQ 锁定,同时撤去拉力F ,两棒最终均匀速运动.求解除棒PQ 锁定后,到两棒最终匀速运动的过程中,电路中产生的总焦耳热;(3)若PQ 始终不解除锁定,当棒MN 达到最大速度v m 时,撤去拉力F ,棒MN 继续运动多远后停下来?(运算结果可用根式表示)解析:(1)棒MN 做匀加速直线运动,5 s 时的速度为:v =at 1=2 m/s此时对棒MN 由牛顿第二定律得:F -BIL =ma棒MN 做切割磁感线运动,产生的感应电动势为:E =BL v在两棒组成的回路中,由闭合电路欧姆定律得:I =E 2R联立并代入数据解得:F =0.5 N5 s 时拉力F 的功率为:P =F v联立并代入数据解得:P =1 W棒MN 最终做匀速直线运动,则有:P v m-BI m L =0, 其中I m =BL v m 2R联立并代入数据解得:v m =2 5 m/s.(2)解除棒PQ 锁定后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v ′,以水平向右为正方向,则有:m v m =2m v ′设从解除棒PQ 锁定到两棒达到相同速度的过程中,两棒共产生的焦耳热为Q ,由能量守恒定律可得:Q =12m v 2m -12×2m v ′2 联立并代入数据解得:Q =5 J.(3)以棒MN 为研究对象,设某时刻棒中电流为i ,在极短时间Δt 内,由动量定理得:-BiL Δt =m Δv对式子两边求和有:∑(-BiL Δt )=∑(m Δv )而Δq =i Δt联立解得:BLq =m v m又对于电路有:q =It =E 2Rt 设棒MN 继续运动距离为x 后停下来,由法拉第电磁感应定律得:E =BLx t联立得q =BLx 2R代入数据解得:x =2Rq BL =2Rm v m B 2L 2=40 5 m. 答案:(1)2 5 m/s (2)5 J (3)40 5 m思想方法10:守恒思想物理学中最常用的一种思维方法——守恒.高中物理涉及的守恒定律有能量守恒定律、动量守恒定律、机械能守恒定律、质量守恒定律、电荷守恒定律等,它们是我们处理高中物理问题的主要工具.如图所示,长R =0.6 m 的不可伸长的细绳一端固定在O 点,另一端系着质量m 2=0.1 kg 的小球B ,小球B 刚好与水平面相接触.现使质量m 1=0.3 kg 的物块A 沿光滑水平面以v 0=4 m/s 的速度向B 运动并与B 发生弹性正碰,A 、B 碰撞后,小球B 能在竖直平面内做圆周运动.已知重力加速度g =10 m/s 2,A 、B 均可视为质点,试求:(1)在A 与B 碰撞后瞬间,小球B 的速度v 2的大小;(2)小球B 运动到最高点时对细绳的拉力.解析:(1)物块A 与小球B 碰撞时,由动量守恒定律和机械能守恒定律有: m 1v 0=m 1v 1+m 2v 212m 1v 20=12m 1v 21+12m 2v 22 解得碰撞后瞬间物块A 的速度v 1=m 1-m 2m 1+m 2v 0=2 m/s 小球B 的速度v 2=2m 1m 1+m 2v 0=6 m/s (2)碰撞后,设小球B 运动到最高点时的速度为v ,则由机械能守恒定律有: 12m 2v 22=12m 2v 2+2m 2gR 又由向心力公式有:F +m 2g =m 2v 2R联立解得F =1 N ,由牛顿第三定律知小球B 对细绳的拉力F ′=F =1 N.答案:(1)6 m/s (2)1 N。

高中物理常用思想方法归纳与分析-2019年精选文档

高中物理常用思想方法归纳与分析-2019年精选文档

高中物理常用思想方法归纳与分析高中物理中有许多的思想方法,了解这些思想方法,对教师的教学与学生的学习都有事半功倍之效。

对于一些微观的或看不见摸不着的现象、概念和规律,仅凭教师的讲解、描述和学生的想象是很难达到理想效果的。

若教师在指导学生研究这些抽象的物理现象、概念或规律时注意引导他们,有意识地尝试运用相应的科学方法去认识和理解,不但会在很大程度提高学生对这些物理现象、规律或概念的认识和理解能力,而且对培养学生的行为习惯和思维方法,提高科学素养会大有裨益,从而达到促进学生学习能力进步和提高学生科学素养的目的。

一、比值法高中物理中有很多的物理量用比值法进行定义的,例如:速度、加速度、电阻、电容、电场强度等。

这些物理量有一个共同的特点:物理量本身与定义中的物理量无正反比关系。

以速度为例,高中物理中定义为:匀速直线运动的物体,所通过的位移与所用时间的比值。

这里位移与时间的比值,仅反应速度的大小。

速度本身是不变的,与位移大小和时间长短无关。

再比如:电场强度的定义,电荷在电场中某点受到的电场力F与它的电量q的比值,叫做这一点的电场强度。

电场强度同样与电场力和电荷电量q无关。

在复习中,将这些物理量找出,并整理,有助于学生对概念的掌握和理解。

二、建模法建模法,就是在学生对新的知识理解吃力,或根本无法理解的情况下,帮助学生建立一种新的模型,利用新的模型来理解新知识的方法。

例如:高中物理中质点、点电荷这两个概念,就是一种模型,只考虑物体的质量或电量,而不考虑物体的形状和大小。

这种模型的建立有助于将物体简化,将运动简化,便于学生对运动的理解。

在电流的微观解释中,建立的柱体模型,如图柱体的截面积是s,长是l,单位体积中n个电荷,每个电荷电量为q,则根据电流的定义,就可以得到电流I=nslq/t=nsqv。

利用这个模型就很容易处理风力发电问题。

三、控制变量法自然界中时刻都在产生着各种现象,而且每种现象都是错综复杂的。

决定一个现象的产生和变化的因素太多,为了弄清现象变化的原因和规律,必须设法把其中的一个或几个因素用人为的方法控制起来,使它保持不变,然后再来比较、研究剩下两个变量之间的关系,这种研究问题的方法就是控制变量法。

高中物理实验的十种思想方法(一)

高中物理实验的十种思想方法(一)

高中物理实验的十种思想方法(一)一、直接比较法高中物理的某些实验,只需定性地确定物理量间的关系,或将实验结果与标准值相比较,就可得出实验结论的,这即是直接比较法。

如在“研究电磁感应现象”的实验中,可在观察记录的基础上,经过比较和推理,得出产生感应电流的条件和判定感应电流的方向的方法。

二、等效替代法等效替代法是科学研究中常用的一种思维方法。

对一些复杂问题采用等效方法,将其变换成理想的、简单的、已知规律的过程来处理,常可使问题的解决得以简化。

因此,等效法也是物理实验中常用的方法。

如在“验证力的平行四边形定则”的实验中,要求用一个弹簧秤单独拉橡皮条时,要与用两个弹簧秤互成角度同时拉橡皮条产生的效果相同——使结点到达同一位置O,即要在合力与分力等效的条件下,才能找出它们之间合成与分解时所遵守的关系——平行四边形定则;在“碰撞中的动量守恒”实验中,用小球的水平位移代替小球的水平速度;画电场中等势线分布时用电流场模拟静电场;验证牛顿第二定律时调节木板倾角,用重力的分力抵消摩擦力的影响,等效于小车不受阻力等等。

三、控制变量法控制变量法即在多因素的实验中,可以先控制一些物理量不变,依次研究某一个因素的影响。

如牛顿第二定律实验中可以先保持质量一定,研究加速度和力的关系;再保持力一定,研究加速度和质量的关系。

在研究欧姆定律的实验中,先控制电阻一定,研究电流与电压的关系,再控制电压一定,研究电流和电阻的关系。

四、累积法把某些用常规仪器难以直接准确测量的微小量累积将小量变大量测量,以提高测量的准确度减小误差。

如在缺乏高精密度的测量仪器的情况下测细金属丝的直径,常把细金属丝绕在圆柱体上测若干匝的总长度,然后除以匝数可求细金属丝的直径;测一张薄纸的厚度时,常先测量若干页纸的总厚度,再除以被测页数而求每页纸的厚度;在“用单摆测重力加速度” 的实验中,单摆周期的测定就是通过测单摆完成多次全振动的总时间除以全振动的次数,以减少个人反应时间造成的误差影响。

高考物理实验方法思想十一个

高考物理实验方法思想十一个

高考物理实验方法思想十一个高考物理实验方法思想十一个物理实验是物理学教育中不可或缺的一项重要内容,也是考察学生掌握物理知识和实验方法能力的重要手段。

在高考物理考试中,实验部分占据了相当重要的比例,因此掌握物理实验方法思想是考生必须具备的基本素质。

本文梳理出高考物理实验方法方面的十一个思想,旨在为考生提供更加全面的实验方法指导,让考生在实验中取得更好的成绩。

一、“量之精确,误差可控”物理实验中精度和误差是十分重要的,科学实验必须严谨、精确,只有这样才能得出正确的结论。

实验中要注意测量仪器的准确性,避免偏差,同时要注意控制误差,严谨出科学的实验结果。

二、“多角度、多方面”为了更加深入地了解物理实验,考生需要采用多角度、多方面的方法来进行实验分析。

例如,可以从角度、透镜、棱镜等多个方面入手,分析物体的性质和物理规律。

三、“独立思考、创新发现”在物理实验中,考生要独立思考,大胆创新,不断发现新的物理现象,这些创新发现将会为考生带来更好的成绩,同时也会获得更深刻的物理知识。

四、“多方面探究、全面评价”实验中要多方面探究,对实验结果进行全面评价。

例如在测量数值的时候可以从不同方面出发,对其进行反复检测和比较,确保数据的真实准确,从不同角度对实验结果进行评价和探究,找到可能的误差和不足之处,加以改正和完善。

五、“细心观察、耐心分析”物理实验不是简单的测量,探究出物质的性质、结构和规律,需要细心观察和耐心分析。

实验中需要充分发掘物质的特性,进行实物观察以及深入分析,才能达到科学精神和实验目标。

六、“运用模型、加深认识”在物理实验中,可以采用多种模型来进行实验,对物理规律进行更好的描述和深入认识。

同时运用模型还能够在实验中加深对物理知识的理解和掌握,为下一步实验研究打下基础。

七、“客观分析、理性判断”物理实验中对实验结果的客观分析和理性判断是非常关键的。

人的主观因素在实验分析中是不可避免的,因此考生必须从客观角度出发,对实验结果进行合理的分析和判断,以实验数据为基础,进行科学的实验分析。

【高中物理】高中物理实验的七种主要思想

【高中物理】高中物理实验的七种主要思想

【高中物理】高中物理实验的七种主要思想高中物理实验的七个主要思想,希望同学们能牢牢把握,不断进步!1、控制变量法在实验中或实际问题中,常有多个因素在变化,造成规律不易表现出来,这时可以先控制一些物理量不变,依次研究某一个因素的影响和利用。

如气体的性质,压强、体积和温度通常是同时变化的,我们可以分别控制一个状态参量不变,寻找另外两个参量的关系,最后再进行统一。

欧姆定律、牛顿第二定律等都是用这种方法研究的。

2.等效替代法的一些物理量不直观,也不容易测量。

它们可以被直观、易于测量且具有等效效果的量所取代,从而简化问题。

例如,在验证动量守恒的实验中,两个碰撞球的速度不容易直接测量,因此可以用水平位移代替水平速度;在描述电场中的等势线时,采用等效思想模拟电场和电流场。

3、累积法把某些难以用常规仪器直接准确测量的物理量用累积的方法,将小量变大量,不仅可以便于测量,而且还可以提高测量的准确程度,减小误差。

如测量均匀细金属丝直径时,可以采用密绕多匝的方法;测量单摆的周期时,可测30-50个全振动的时间;分析打点计时器打出的纸带时,可隔几个点找出计数点分析等。

4.示踪法的某些物理过程是短暂的。

我们需要记录和研究它们,像照相机一样拍摄和分析它们。

例如,沙摆用于描述单摆的振动曲线;用点定时器记录物体的位置;用频闪相机拍摄水平投掷小球的位置;用示波器观察交流信号的波形。

5、外推法有些物理量可以局部观察或测量,作为它的极端情况,不易直观观测,如果把这局部观察测量得到的规律外推到极端,可以达到目的。

例如在测电源电动势和内电阻的实验中,无法直接测量i=0(断路)时的路端电压(电动势)和短路(u=0)时的电流强度,通过一系列u、i对应值点画出直线并向两方延伸,交u轴点为电动势,交i轴点为短路电流。

6.在复杂的物理现象和物体运动中,影响物理量的因素很多。

有时,为了突出主要矛盾,我们可以有意识地设计实验条件,忽略次要因素的影响,用近似量作为实际量进行测量。

高中物理思想方法归纳

高中物理思想方法归纳

高中物理思想方法归纳§1比值法高中物理中有很多的物理量用比值法进行定义的;例如:速度、加速度、电阻、电容、电场强度等..这些物理量有一个共同的特点:物理量本身与定义的两物理量无正反比关系..以速度为例;高中物理中定义为:匀速直线运动的物体;所通过的位移与所用时间的比值..这里位移与时间的比值;仅反应速度的大小..速度本身是不变的;与位移大小和时间长短无关..再类如电场强度的定义;电荷在电场中某点受到的电场力F与它的电量q的比值;叫做这一点的电场强度..电场强度同样与电场力和电荷电量q无关..在复习中;将这些物理量找出;并整理;有助于对概念的掌握和理解..§2 构建物理模型法物理学很大程度上;可以说是一门模型课.无论是所研究的实际物体;还是物理过程或是物理情境;大都是理想化模型.如:实体模型有:质点、点电荷、点光源、轻绳轻杆、弹簧振子、……物理过程有:匀速运动、匀变速、简谐运动、共振、弹性碰撞、圆周运动……物理情境有:人船模型、子弹打木块、平抛、临界问题……求解物理问题;很重要的一点就是迅速把所研究的问题归宿到学过的物理模型上来;即所谓的建模..尤其是对新情境问题;这一点就显得更突出..再如;电流的微观解释中;建立的柱体模型;如图柱体的截面积是s;长是l;单位体积中n个电荷;每个电荷电量为q;则根据电流的定义;就可以得到电流I=nslq/t=nsqv..利用这个模型就很容易处理风力发电问题..§3控制变量法自然界中时刻都在发生着各种现象;而且每种现象都是错综复杂的..决定一个现象的产生和变化的因素太多;为了弄清现象变化的原因和规律;必须设法把其中的一个或几个因素用人为的方法控制起来;使它保持不变;然后再来比较、研究剩下两个变量之间的关系;这种研究问题的方法就是控制变量法..很多物理实验都用到了这种方法;如探究力、加速度和质量三者关系的实验中分别控制力不变;探究加速度与质量的关系和控制质量不变探究加速度与力的关系..再如;玻意耳定律的研究;是控制气体质量和温度不变;研究体积与压强的关系..其他两个气体实验定律也都是用这种控制变量法来研究..这种方法的掌握和理解;便于对其它实验的探究与分析..§4等效替代转换法等效法;就是在保证效果相同的前提下;将一个复杂的物理问题转换成较简单问题的思维方法..其基本特征为等效替代..物理学中等效法的应用较多..合力与分力;合运动与分运动;总电阻与分电阻;交流电的有效值等..除这些等效等效概念之外;还有等效电路、等效电源、等效模型、等效过程等..在物理学中;我们研究一些物理现象的作用效果时;有时为了使问题简化;常用一个物理量来代替其他所有物理量;但不会改变物理效果..这种研究问题的方法给问题的阐释或解答带来极大方便;我们称这种研究问题的方法为等效替代法.如用几个力来代替一个力或用一个力替代几个分力;用总电阻替代串联、并联的部分电阻..有时候为了问题的简化;用几个物理现象代替一个物理现象;而使问题简化..例如:平抛运动的研究就是将一个平抛运动看作一个匀速直线运动和一个自由落体运动的合运动..对于一些看不见、摸不着的物质或物理问题我们往往要抛开事物本身;通过观察和研究它们在自然界中表现出来的特性、现象或产生的效应等去认识事物;在物理学上称作转换法..它是帮助我们认识抽象物理现象和认识物理规律的一种常用的科学方法.有些物理问题;由于物理过程的复杂的难以直接分析;这时候我们就要转换思维;它是帮助我们认识抽象物理现象的一种常用的科学方法.如:我们在认识和研究“分子在永不停息地做无规则运动”理论时;由于分子是微观的;不能直接用肉眼看到;因此;我们可以通过能直接观察或感觉到的扩散现象去认识和理解它;电流看不见、摸不着;我们可以通过电流的各种效应来判断它在存在;同理;在研究物体是否带电;我们也不能直接看到物体是否带电;但我们可以通过观察验电器上锡箔片的开合来判断物体是否带电;如将看不见、摸不着的温度转换成液柱的升降制成了温度计..§5类比法类比法是指由一类事物所具有的特点;可以推出与其类似事物也具有这种特点的思考和处理问题的方法.认识和研究物理现象、概念和规律时;将它与生活中常见的;熟悉的且有共同特点的现象和规律进行灵活、合理的类比;从而有助于学生的理解..如在认识电场时;电势能与重力势能类比;电势与高度类比;电势与高度差类比;利用对重力势能、高度、高度差的理解;而使学生理解和掌握电势能、电势和电势差的概念..学习磁场时;再把磁场与电场进行类比;便于学生更好的掌握磁场..§6猜想与假设法猜想与假设法;是在研究对象的物理过程不明了或物理状态不清楚的情况下;根据猜想;假设出一种过程或一种状态;再据题设所给条件通过分析计算结果与实际情况比较作出判断的一种方法;或是人为地改变原题所给条件;产生出与原题相悖的结论;从而使原题得以更清晰方便地求解的一种方法..§7 整体法和隔离法整体法是在确定研究对象或研究过程时;把多个物体看作为一个整体或多个过程看作整个过程的方法;隔离法是把单个物体作为研究对象或只研究一个孤立过程的方法.整体法与隔离法;二者认识问题的触角截然不同.整体法;是大的方面或者是从整的方面来认识问题;宏观上来揭示事物的本质和规律.而隔离法则是从小的方面来认识问题;然后再通过各个问题的关系来联系;从而揭示出事物的本质和规律..因而在解题方面;整体法不需事无巨细地去分析研究;显的简捷巧妙;但在初涉者来说在理解上有一定难度;隔离法逐个过程、逐个物体来研究;虽在求解上繁点;但对初涉者来说;在理解上较容易..熟知隔离法者应提升到整体法上..最佳状态是能对二者应用自如..§8临界问题分析法临界问题;是指一种物理过程转变为另一种物理过程;或一种物理状态转变为另一种物理状态时;处于两种过程或两种状态的分界处的问题;叫临界问题..处于临界状的物理量的值叫临界值..物理量处于临界值时:①物理现象的变化面临突变性..②对于连续变化问题;物理量的变化出现拐点;呈现出两性;即能同时反映出两种过程和两种现象的特点..解决临界问题;关键是找出临界条件..一般有两种基本方法:①以定理、定律为依据;首先求出所研究问题的一般规律和一般解;然后分析、讨论其特殊规律和特殊解②直接分析、讨论临界状态和相应的临界值;求解出研究问题的规律和解..§9 对称法物理问题中有一些物理过程或是物理图形是具有对称性的..利用物理问题的这一特点求解;可使问题简单化..要认识到一个物理过程;一旦对称;则相当一部分物理量如时间、速度、位移、加速度等是对称的..如:竖直上抛和自由落体的对称性;简谐振动的对称性等..§10 寻找守恒量法守恒;说穿意思是研究数量时总量不变的一种现象..物理学中的守恒;是指在物理变化过程或物质的转化迁移过程中一些物理量的总量不变的现象或事实..守恒;已是物理学中最基本的规律有动量守恒、能量守恒、电荷守恒、质量守恒;也是一种解决物理问题的基本思想方法..并且应用起来简练、快捷..从运算角度来说;守恒是加减法运算;总和不变..从物理角度来讲;那就与所述量表征的意义有关;重在理解了..理解所述量及所述量守恒事实的内在实质和外在表现..如动量;描述的是物体的运动量;大小为mV;方向为速度的方向..动量守恒;就是物体作用前总的运动量是动的时;且方向是向某一方向的;那作用后;总的运动量还是动的;方向还是向着这一方向..§11 逆向思维法逆向思维是解答物理问题的一种科学思维方法;对于某些问题;运用常规的思维方法会十分繁琐甚至解答不出;而采用逆向思维;即把运动过程的“末态”当成“初态”;反向研究问题;可使物理情景更简单;物理公式也得以简化;从而使问题易于解决;能收到事半功倍的效果.§12.图形/图象图解法图形/图象图解法就是将物理现象或过程用图形/图象表征出后;再据图形表征的特点或图象斜率、截距、面积所表述的物理意义来求解的方法..尤其是图象法对于一些定性问题的求解独到好处..§13 极限思维方法极限思维方法是将问题推向极端状态的过程中;着眼一些物理量在连续变化过程中的变化趋势及一般规律在极限值下的表现或者说极限值下一般规律的表现;从而对问题进行分析和推理的一种思维办法..§14 平均思想方法物理学中;有些物理量是某个物理量对另一物理量的积累;若某个物理量是变化的;则在求解积累量时;可把变化的这个物理量在整个积累过程看作是恒定的一个值---------平均值;从而通过求积的方法来求积累量..这种方法叫平均思想方法..物理学中典型的平均值有:平均速度、平均加速度、平均功率、平均力、平均电流等..对于线性变化情况;平均值=初值+终值/2..由于平均值只与初值和终值有关;不涉及中间过程;所以在求解问题时有很大的妙用.§15程序法所谓程序法;是按时间的先后顺序对题目给出的物理过程进行分析;正确划分出不同的过程;对每一过程;具体分析出其速度、位移、时间的关系;然后利用各过程的具体特点列方程解题.利用程序法解题;关键是正确选择研究对象和物理过程;还要注意两点:一是注意速度关系;即第1个过程的末速度是第二个过程的初速度;二是位移关系;即各段位移之和等于总位移.§16极值法常见的极值问题有两类:一类是直接指明某物理量有极值而要求其极值;另一类则是通过求出某物理量的极值;进而以此作为依据解出与之相关的问题.物理极值问题的两种典型解法.1解法一是根据问题所给的物理现象涉及的物理概念和规律进行分析;明确题中的物理量是在什么条件下取极值;或在出现极值时有何物理特征;然后根据这些条件或特征去寻找极值;这种方法更为突出了问题的物理本质;这种解法称之为解极值问题的物理方法.2解法二是由物理问题所遵循的物理规律建立方程;然后根据这些方程进行数学推演;在推演中利用数学中已有的有关极值求法的结论而得到所求的极值;这种方法较侧重于数学的推演;这种方法称之为解极值问题的物理—数学方法.此类极值问题可用多种方法求解:①算术—几何平均数法;即a.如果两变数之和为一定值;则当这两个数相等时;它们的乘积取极大值.b.如果两变数的积为一定值;则当这两个数相等时;它们的和取极小值.②利用二次函数判别式求极值一元二次方程ax2+bx+c =0a≠0的根的判别式;具有以下性质:Δ=b2- 4ac>0——方程有两实数解;Δ=b2-4ac=0——方程有一实数解;Δ=b2-4ac<0——方程无实数解..。

高中物理常用的思想方法

高中物理常用的思想方法

高中物理常用的思想方法一、逆向思维法逆向思维是解答物理问题的一种科学思维方法,对于某些问题,运用常规的思维方法会十分繁琐甚至解答不出,而采用逆向思维,即把运动过程的“末态”当成“初态”,反向研究问题,可使物理情景更简单,物理公式也得以简化,从而使问题易于解决,能收到事半功倍的效果.二、对称法对称性就是事物在变化时存在的某种不变性.自然界和自然科学中,普遍存在着优美和谐的对称现象.利用对称性解题时有时可能一眼就看出答案,大大简化解题步骤.从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力.用对称法解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径.三、图象法图象能直观地描述物理过程,能形象地表达物理规律,能鲜明地表示物理量之间的关系,一直是物理学中常用的工具,图象问题也是每年高考必考的一个知识点.运用物理图象处理物理问题是识图能力和作图能力的综合体现.它通常以定性作图为基础(有时也需要定量作出图线),当某些物理问题分析难度太大时,用图象法处理常有化繁为简、化难为易的功效.四、假设法假设法是先假定某些条件,再进行推理,若结果与题设现象一致,则假设成立,反之,则假设不成立.求解物理试题常用的假设有假设物理情景,假设物理过程,假设物理量等,利用假设法处理某些物理问题,往往能突破思维障碍,找出新的解题途径.在分析弹力或摩擦力的有无及方向时,常利用该法.五、整体、隔离法物理习题中,所涉及的往往不只是一个单独的物体、一个孤立的过程或一个单一的题给条件.这时,可以把所涉及到的多个物体、多个过程、多个未知量作为一个整体来考虑,这种以整体为研究对象的解题方法称为整体法;而把整体的某一部分(如其中的一个物体或者是一个过程)单独从整体中抽取出来进行分析研究的方法,则称为隔离法.六、图解法图解法是依据题意作出图形来确定正确答案的方法.它既简单明了、又形象直观,用于定性分析某些物理问题时,可得到事半功倍的效果.特别是在解决物体受三个力(其中一个力大小、方向不变,另一个力方向不变)的平衡问题时,常应用此法.七、转换法有些物理问题,由于运动过程复杂或难以进行受力分析,造成解答困难.此种情况应根据运动的相对性或牛顿第三定律转换参考系或研究对象,即所谓的转换法.应用此法,可使问题化难为易、化繁为简,使解答过程一目了然.八、程序法所谓程序法,是按时间的先后顺序对题目给出的物理过程进行分析,正确划分出不同的过程,对每一过程,具体分析出其速度、位移、时间的关系,然后利用各过程的具体特点列方程解题.利用程序法解题,关键是正确选择研究对象和物理过程,还要注意两点:一是注意速度关系,即第1个过程的末速度是第二个过程的初速度;二是位移关系,即各段位移之和等于总位移.九、极端法有些物理问题,由于物理现象涉及的因素较多,过程变化复杂,同学们往往难以洞察其变化规律并做出迅速判断.但如果把问题推到极端状态下或特殊状态下进行分析,问题会立刻变得明朗直观,这种解题方法我们称之为极限思维法,也称为极端法.运用极限思维思想解决物理问题,关键是考虑将问题推向什么极端,即应选择好变量,所选择的变量要在变化过程中存在极值或临界值,然后从极端状态出发分析问题的变化规律,从而解决问题.有些问题直接计算时可能非常繁琐,若取一个符合物理规律的特殊值代入,会快速准确而灵活地做出判断,这种方法尤其适用于选择题.如果选择题各选项具有可参考性或相互排斥性,运用极端法更容易选出正确答案,这更加突出了极端法的优势.加强这方面的训练,有利于同学们发散性思维和创造性思维的培养.十、极值法常见的极值问题有两类:一类是直接指明某物理量有极值而要求其极值;另一类则是通过求出某物理量的极值,进而以此作为依据解出与之相关的问题.物理极值问题的两种典型解法.(1) 解法一是根据问题所给的物理现象涉及的物理概念和规律进行分析,明确题中的物理量是在什么条件下取极值,或在出现极值时有何物理特征,然后根据这些条件或特征去寻找极值,这种方法更为突出了问题的物理本质,这种解法称之为解极值问题的物理方法.(2)解法二是由物理问题所遵循的物理规律建立方程,然后根据这些方程进行数学推演,在推演中利用数学中已有的有关极值求法的结论而得到所求的极值,这种方法较侧重于数学的推演,这种方法称之为解极值问题的物理—数学方法.此类极值问题可用多种方法求解:①算术—几何平均数法,即a.如果两变数之和为一定值,则当这两个数相等时,它们的乘积取极大值.b.如果两变数的积为一定值,则当这两个数相等时,它们的和取极小值.②利用二次函数判别式求极值一元二次方程ax2+bx+c=0(a≠0)的根的判别式,具有以下性质:Δ=b2- 4ac>0——方程有两实数解;Δ=b2-4ac=0——方程有一实数解;Δ=b2-4ac<0——方程无实数解.利用上述性质,就可以求出能化为ax2+bx+c=0形式的函数的极值.十一、估算法物理估算,一般是指依据一定的物理概念和规律,运用物理方法和近似计算方法,对物理量的数量级或物理量的取值范围,进行大致的推算.物理估算是一种重要的方法.有的物理问题,在符合精确度的前提下可以用近似的方法简捷处理;有的物理问题,由于本身条件的特殊性,不需要也不可能进行精确的计算.在这些情况下,估算就成为一种科学而又有实用价值的特殊方法.十二、守恒思想能量守恒、机械能守恒、质量守恒、电荷守恒等守恒定律都集中地反映了自然界所存在的一种本质性的规律——“恒”.学习物理知识是为了探索自然界的物理规律,那么什么是自然界的物理规律?在千变万化的物理现象中,那个保持不变的“东西”才是决定事物变化发展的本质因素.从另一个角度看,正是由于物质世界存在着大量的守恒现象和守恒规律,才为我们处理物理问题提供了守恒的思想和方法.能量守恒、机械能守恒等守恒定律就是我们处理高中物理问题的主要工具,分析物理现象中能量、机械能的转移和转换是解决物理问题的主要思路.在变化复杂的物理过程中,把握住不变的因素,才是解决问题的关键所在.当然,我罗列的也许不是很全面,但是这些思想方法的确是我们解决物理问题非常重要,希望同学们能够结合具体题目来分析理解,这对自己整个高中的物理学习甚至是数学、化学等学科的学习也有很大的推动作用!。

高中物理思想方式总结

高中物理思想方式总结

高中物理思想方式总结高中物理思想方式总结高中物理是一门研究自然界物质、能量和它们之间相互关系的学科,它是自然科学领域的基础学科之一,对于培养学生的科学思维和解决问题的能力具有重要作用。

高中物理思想方式总结如下:一、实证主义思想方式物理学作为一门实证科学,强调通过实验和观测来验证和探究自然界的规律。

在高中物理学习中,学生需要通过实验来观察和测量现象,使用仪器和设备进行数据采集和处理,以验证理论和规律。

实证主义思想方式要求学生注重实践操作,培养观察和实验技能,培养实验结果分析和推理推断的能力。

二、理性思维方式高中物理学习注重培养学生的理性思维,要求学生深入理解物理规律和原理,并运用逻辑推理、数学分析等方法进行思考和解题。

理性思维方式要求学生深入分析问题,从原理上进行思考,寻找规律和关系,培养学生的逻辑思维和数学思维能力,提高其解决问题的能力。

三、模型思维方式高中物理学习中,学生需要建立和应用各种物理模型来描述和解释自然界中的物理现象。

模型思维方式要求学生从实际问题中抽象出数学模型,并利用模型进行问题分析和解决。

同时,学生还要理解和评价模型的合理性和适用性,使得模型能够准确地描述现象并得出有用的结论。

四、系统思维方式高中物理学习强调将物理知识和概念整合为一个有机的系统,学生需要对物理规律和原理进行整合和协调。

系统思维方式要求学生深入理解物理知识的内在联系,建立概念和模型之间的关联,形成对物理世界的整体认知。

同时,学生还需要将物理知识与其它学科进行关联,从而形成全面的科学思维。

五、探究思维方式高中物理学习注重培养学生的探究精神和科学探究能力,要求学生主动思考和提出问题,通过实验证明或推理解答这些问题。

探究思维方式要求学生关注现象背后的原理和机制,培养学生的科学探索和实验设计能力,提高其发现和解决问题的能力。

六、创新思维方式高中物理学习需要培养学生的创新思维和创造能力,鼓励学生提出新观点、新方法和新理论。

【高中物理】高中物理常常用到的思想方法

【高中物理】高中物理常常用到的思想方法

【高中物理】高中物理常常用到的思想方法一、逆向法逆向思维是一种解决问题的科学思维。

对于某些问题,使用传统思维会非常麻烦,甚至不可能解决。

然而,使用逆向思维,即运动过程的“最终状态”被视为“初始状态”。

通过对问题的逆向研究,可以简化情况,简化公共公式,使问题容易解决,事半功倍。

二、对称法对称是事物变化时存在的一种不变性。

在自然和自然科学中,有一种美丽而和谐的对称现象。

当使用对称来解决问题时,有时你可以一目了然地看到答案,这大大简化了解决问题的步骤。

从科学思维方法来看,对称最突出的功能是启发和培养直觉思维。

用对称方法解决问题的关键是敏锐地看到和把握事物在某一方面的对称性,这往往是找到答案的捷径。

三、图象法图像能直观地描述物理过程,形象地表达物理规律,形象地表达物理量之间的关系。

它一直是物理学中常用的工具,图像问题也是每年必须检查的问题。

使用物理图像处理物理问题是识别和绘制能力的综合体现。

它通常基于定性绘图(有时还需要定量绘图线)。

当一些物理问题的分析过于困难时,图像处理通常具有将复杂性降低为简单性和难度降低为容易性的效果。

四、假设法假设方法是在推理之前先假设一定的条件。

如果结果与问题设置现象一致,则该假设为真,否则,该假设为假。

物理解题中常用的假设包括假设的物理情境、假设的物理过程、假设的物理量等。

用假设的方法来处理一些物理问题往往可以突破思维障碍,找到解决问题的新方法。

在分析弹性或摩擦的存在和方向时,通常使用这种方法。

五、整体、隔离法物理练习通常涉及不止一个物体、一个孤立的过程或一个问题条件。

此时,可以将涉及的多个对象、过程和未知数视为一个整体。

这种以整体为研究对象的问题解决方法称为整体方法;从整体中提取整体的一部分(如对象或过程)进行分析和研究的方法称为隔离法。

六、图解法图解法是一种根据问题的含义制作图表来确定正确答案的方法。

它简单直观。

当它用于定性分析一些物理问题时,它可以得到事半功倍的结果。

高考物理中的物理研究方法、思想方法、思维方法归纳总结

高考物理中的物理研究方法、思想方法、思维方法归纳总结

高考物理中的物理研究方法、思想方法、思维方法归纳总结摘要:高考物理时常有对高中物理中蕴含的物理思维方法或研究方法或思想方法的考查。

本文对高考物理常考的方法进行的归纳总结并列举了常见的例子。

关键词:高考物理;物理研究方法;物理思想方法;物理思维方法1、理想模型法对于实际的物理对象或物理现象,抓住其主要矛盾或主要特征,忽略次要矛盾和特征,从而抽象出能够体现主要特征的一种简化模型的方法,也叫建模法。

理想模型包括实体模型、过程模型、条件模型。

每种模型都有限定的运用条件和适用范围。

实体模型是用来代替研究对象实体的理想化模型。

如:质点、弹簧振子、轻弹簧、单摆、点电荷、理想变压器、理想气体、点光源、平行玻璃砖、玻尔原子结构模型等。

过程模型是只考虑主要因素引起的变化过程,是对干扰因素的一种简化。

如:匀速直线运动、匀变速直线运动、匀变速曲线运动、自由落体运动、匀速圆周运动、简谐运动、弹性碰撞、等温过程、绝热过程、稳恒电流等。

条件模型是把研究对象所处的外部条件理想化建立的模型,是对相关环境的一种理想简化。

如:光滑平面、轻绳、轻杆、均匀介质、匀强电场、匀强磁场等。

2、理想实验法理想实验法也叫思想实验法,是在一定的实验基础上经过概括、抽象、科学地合理外推至理想情境时,得出物理规律的一种研究问题的方法。

如:伽利略的理想斜面实验推导出牛顿第一定律、伽利略对自由落体运动的研究推导出自由落体是初速度为0的匀加速直线运动。

3、控制变量法由于决定一个现象的产生和变化的因素太多,为了弄清现象变化的原因和规律,设法把其中的一个或几个因素控制不变,然后再来研究剩下的变量之间的关系,从而转化为多个单一因素影响某一物理量的问题的研究方法称为控制变量法。

如:探究加速度、力和质量三者关系的实验;滑动摩擦力的大小与哪些因素有关;波意耳定律;查理定律;盖吕萨克定律;电流的热效应与哪些因素有关;研究安培力大小与哪些因素有关;欧姆定律的探究、平行板电容器的决定因素与哪些因素有关、感应电流的方向与哪些因素有关等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理实验的十种思想方法(一)
一、直接比较法
高中物理的某些实验,只需定性地确定物理量间的关系,或将实验结果与标准值相比较,就可得出实验结论的,这即是直接比较法。

如在“研究电磁感应现象”的实验中,可在观察记录的基础上,经过比较和推理,得出产生感应电流的条件和判定感应电流的方向的方法。

二、等效替代法
等效替代法是科学研究中常用的一种思维方法。

对一些复杂问题采用等效方法,将其变换成理想的、简单的、已知规律的过程来处理,常可使问题的解决得以简化。

因此,等效法也是物理实验中常用的方法。

如在“验证力的平行四边形定则”的实验中,要求用一个弹簧秤单独拉橡皮条时,要与用两个弹簧秤互成角度同时拉橡皮条产生的效果相同——使结点到达同一位置O,即要在合力与分力等效的条件下,才能找出它们之间合成与分解时所遵守的关系——平行四边形定则;在“碰撞中的动量守恒”实验中,用小球的水平位移代替小球的水平速度;画电场中等势线分布时用电流场模拟静电场;验证牛顿第二定律时调节木板倾角,用重力的分力抵消摩擦力的影响,等效于小车不受阻力等等。

三、控制变量法
控制变量法即在多因素的实验中,可以先控制一些物理量不
变,依次研究某一个因素的影响。

如牛顿第二定律实验中可以先保持质量一定,研究加速度和力的关系;再保持力一定,研究加速度和质量的关系。

在研究欧姆定律的实验中,先控制电阻一定,研究电流与电压的关系,再控制电压一定,研究电流和电阻的关系。

四、累积法
把某些用常规仪器难以直接准确测量的微小量累积将小量
变大量测量,以提高测量的准确度减小误差。

如在缺乏高精密度的测量仪器的情况下测细金属丝的直径,常把细金属丝绕在圆柱体上测若干匝的总长度,然后除以匝数可求细金属丝的直径;测一张薄纸的厚度时,常先测量若干页纸的总厚度,再除以被测页数而求每页纸的厚度;在“用单摆测重力加速度” 的实验中,单摆周期的测定就是通过测单摆完成多次全振动的总时间除以全振动的次数,以减少个人反应时间造成的误差影响。

五、模拟法
有时受客观条件的限制,不能对某些物理现象进行直接实验和测量,于是就人为地创造一定的模拟条件,在这样模拟的条件下进行实验。

模拟法是一种间接实验的方法,它是通过与原型相似的模型,来说明原型的规律性。

模拟法在中学物理实验中的典型应用是“电场中等势线的描绘”这一实验。

由于直接描绘静电场的等势线很困难,而恒定电流的电场与静
电场相似,所以用恒定电流的电场模拟静电。

相关文档
最新文档