(完整版)《运筹学》习题集

合集下载

运筹学习题集(第五章)

运筹学习题集(第五章)

判断题判断正误,如果错误请更正第五章运输与指派问题1.运输问题中用位势法求得的检验数不唯一。

2.产地数为3,销地数围的平衡运输中,变量组{X11,X13,X22,X33,X34}可作为一组基变量。

3.不平衡运输问题不一定有最优解。

4.m+n-1个变量构成基变量组的充要条件是它们不包含闭合回路。

5.运输问题中的位势就是其对偶变量。

6.含有孤立点的变量组不包含有闭回路。

7.不包含任何闭回路的变量组必有孤立点。

8.产地个数为m销地个数为 n的平衡运输问题的对偶问题有m+n个约束。

9.运输问题的检验数就是对偶问题的松弛变量的值。

10.产地个数为m销地个数为 n的平衡运输问题的系数矩阵为A,则有r(A)〈=m+n-1。

11.用一个常数k加到运价C的某列的所有元素上,则最优解不变。

12.令虚设的产地或销地对应的运价为一任意大于0的常数C(C>0),则最优解不变。

13.若运输问题中的产量或销量为整数则其最优解也一定为整数。

14.运输问题中的单位运价表的每一行都分别乘以一个非0常数,则最优解不变。

15.按最小元素法求得运输问题的初始方案,从任一非基格出发都存在唯一一个闭回路。

16.在指派问题的效率表的某行乘以一个大于零的数最优解不变。

选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。

第五章运输与指派问题1.下列变量组是一个闭回路的有A{x21,x11,x12,x32,x33,x23} B{x11,x12,x23,x34,x41,x13} C {x21,x13,x34,x41,x12} D{x12,x32,x33,x23,x21,x11} D{x12,x22,x32,x33,x23,x21}2.具有M个产地N个销地的平衡运输问题模型具有特征A有MN个变量M+N个约束B有M+N个变量MN个约束C 有MN个变量M+N-1个约束D 有M+N-1个基变量MN-M-N+1个非基变量E 系数矩阵的秩等于M+N-13.下列说法正确的有A 运输问题的运价表第r行的每个cij 同时加上一个非0常数k,其最优调运方案不变。

(完整版)运筹学》习题答案运筹学答案

(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。

CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。

DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。

CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。

DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。

CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。

CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。

运筹学习题集(第一章)

运筹学习题集(第一章)

判断题判断正误,如果错误请更正第1章线性规划1.任何线形规划一定有最优解。

2.若线形规划有最优解,则一定有基本最优解。

3.线形规划可行域无界,则具有无界解。

4.在基本可行解中非基变量一定为0。

5.检验数λj表示非基变量Xj增加一个单位时目标函数值的改变量。

6.minZ=6X1+4X2|X1-2X|︳<=10 是一个线形规划模型X1+X2=100X1>=0,X2>=07.可行解集非空时,则在极点上至少有一点达到最优解.8.任何线形规划都可以化为下列标准型Min Z=∑C j X j∑a ij x j=b1, i=1,2,3……,mX j>=0,j=1,2,3,……,n:b i>=0,i=1,2,3,……m9.基本解对应的基是可行基.10.任何线形规划总可用大M 单纯形法求解.11.任何线形规划总可用两阶段单纯形法求解。

12.若线形规划存在两个不同的最优解,则必有无穷多个最优解。

13.两阶段中第一阶段问题必有最优解。

14.两阶段法中第一阶段问题最优解中基变量全部非人工变量,则原问题有最优解。

15.人工变量一旦出基就不会再进基。

16.普通单纯形法比值规则失效说明问题无界。

17.最小比值规则是保证从一个可行基得到另一个可行基。

18.将检验数表示为λ=C B B-1A-的形式,则求极大值问题时基本可行解是最优解的充要条件为λ》=0。

19.若矩阵B为一可行基,则|B|≠0。

20.当最优解中存在为0的基变量时,则线形规划具有多重最优解。

选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。

第1章线性规划1.线形规划具有无界解是指:A可行解集合无界B有相同的最小比值C存在某个检验数λk>0且a ik<=0(i=1,2,3,……,m) D 最优表中所有非基变量的检验数非0。

2.线形规划具有多重最优解是指:A 目标函数系数与某约束系数对应成比例B最优表中存在非基变量的检验数为0 C可行解集合无界D存在基变量等于03.使函数Z=-X1+X2-4X3增加的最快的方向是:A (-1,1,-4)B(-1,-1,-4)C(1,1,4)D(1,-1,-4-)4.当线形规划的可行解集合非空时一定A包含原点X=(0,0,0……)B有界C 无界D 是凸集5.线形规划的退化基本可行解是指A基本可行解中存在为0的基变量B非基变量为C非基变量的检验数为0 D最小比值为06.线形规划无可行解是指A进基列系数非正B有两个相同的最小比值C第一阶段目标函数值大于0 D用大M法求解时最优解中含有非0的人工变量E可行域无界7.若线性规划存在可行基,则A一定有最优解B一定有可行解C可能无可行解D可能具有无界解E全部约束是〈=的形式8.线性规划可行域的顶点是A可行解B非基本解C基本可行解D最优解E基本解9.minZ=X1-2X2,-X1+2X2〈=5,2X1+X2〈=8,X1,X2〉=0,则A有惟一最优解B有多重最优解C有无界解D无可行解E存在最优解10.线性规划的约束条件为X1+X2+X3=32X1+2X2+X4=4X1,X2,X3,X4〉=0 则基本可行解是A(0,0,4,3)B(0,0,3,4)C(3,4,0,0)D(3,0,0,-2)计算题1.1 对于如下的线性规划问题MinZ= X1+2X2s.t. X1+ X2≤4-X1+ X2≥1X2≤3X1, X2≥0的图解如图所示。

《运筹学》习题集

《运筹学》习题集

第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥ 2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。

1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。

1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。

1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)m ax 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。

(完整word版)运筹学与最优化方法习题集(word文档良心出品)

(完整word版)运筹学与最优化方法习题集(word文档良心出品)

一. 单纯性法1•用单纯形法求解下列线性规划问题(共15分) max z =+ x 25X 2 <156x. + 2 凡 < 24 sJ.l ・x 1 + < 5 x^x 2 >02. 用单纯形法求解下列线性规划问题(共15分) max z = 2Xj + 3兀£ _ 2X 2 > -2sJ.< 2x t + 2X 2 <10x P x : >03. 用单纯形法求解下列线性规划问题(共15分) max z = 2%j - 4x 2 + 5x 3 - 6x 4%! + 4.v,-2X 3 + 8X 4 <2-x 1 + 2X 2 + 3X 3 + 4X 4 < 1x p x 2,x 3,x 4 >4•用单纯形法求解下列线性规划问题(共15分) max z = 2兀-x : + 屯3兀 + x 2 + x 3 < 60 -x. + 2X 3 <10 sJ.i ・x l ^x 2-x i <20 x r x 2,x z >05.用单纯形法求解下列线性规划问题(共15分) max z =+ 2X 2 + x 312x l + x 2 + x 3 < 4 Xj + 2X 2 < 6 x p x 2,x 3 >0max z = 10X] + 5兀 ‘3兀+ 4心<9 5J. < 5兀 + 2X 2 < 8u >0{6•用单纯形法求解下列线性规划问题(共 15分)7•用单纯形法求解下列线性规划问题(共16分)max z = + 5x2Xj <4 2x. <12sJ.< "3Xj + 2X2 <18 J2 >0二. 对偶单纯性法1.灵活运用单纯形法和对偶单纯形法解下列问题(共15分)max z =+ 6X 2f x L + x 2 > 2 sJ. < + 3.V 2 < 3[兀,兀>02. 灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共15分) max z = X] + 3x :5q + 10.q <50 X + > 1 x 2 <4 x^x 2 >03. 用对偶单纯形法求解卜列线性规划问题(共15分) min Z = 2X A + 3X 22兀 + 3X 2 < 30+ 2X 2 > 10sJ.< - x : > 04•灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共15分) nun z = x 1 + 2X 2 - x 4x 1 + x 2 + x 3 + x 4 < 6 2旺-x 2+ 3屯-3x 4 > 5 x 1,x 2,x J ,x 4 >05.运用对偶单纯形法解下列问题(共16分) max z =+ x 2f 2x t + x 2 > 4 sJ. < X] 4- 7x : > 7X^x 2 >0 6•灵活运用单纯形法和对偶单纯形法解下列问题(共15分) max z = x l + 6X 2x t + x 2> 2 X] + 3X 2 < 3 x iy x 2 >01max z = 3xj + 2x2— 5x3— 2x4 + 3x5 召 + 亠 + X3 + 2X4 + x5 <4 7x x + 3X3—A X A+3X5 < 8 sJ.1 lx, —6X2+3X4—3x s > 3x l,x2,x3,x4.x5 =0或1x l + 2x2-x i W2兀 + 4X2 + x3 < 4 S.t.< Aj + x2 <3三.0-1幣数规划1•用隐枚举法解下列0・1型整数规划问题(共10分)max 2 = 5齐 + 6・丫2 + 7“ + 8兀 + 9耳3兀-x2 + %, + x4-2X5 > 2x + 3俎一x.一2x. + 2x. > 0sJ.\ 1-35-x2 + 3x5+ X4+X5>2x l,x2.x i.x i.x4,x5 = Oorl2.用隐枚举法解下列0-1型整数规划问题(共10分)nun z = 4召 + 3x: + 2x32齐一5X2+3X5 <44兀 + 上+ 3“ 2 3sJ.<+ x3 > 1x p x2,Xj = Oorl3.用隐枚举法解下列0-1型整数规划问题(共10分)max z = 20.x; + 40x2 + 20x3 +15.v4 + 30x55兀 + 4X2+3X5+7X4+Sx5 < 25兀 + 7X2+9X3+4X4+6X5 < 258壬 + 10x2 + 2x3+ x4 + 10x5 < 25 x p x2,x J5x4,x5 = 0 或14.用隐枚举法解下列0・1型整数规划问题(共10分)max z = 2兀-x y + 5® - 3x4 + 4x53召一2x y + 7X3-5X4+4,V5 < 6sJ.i x A-x2 + 2X3-4X4+2X5< 0 x p x:,x r x4,x5 =0或15.用隐枚举法解下列0-1型整数规划问题(共10分)min z = 2X] + 5x:+3“3+ 4兀♦-4兀 + x2 + x3 + x4 > 0一2召 + 4r + 2X3+4X4 > 4 sJ.\ ・X, + x2 - .v3 + x4 1“宀舟“ =0或16.7•用隐枚举法解下列0・1型整数规划问题(共10分)max z = 3Xj - 2x2 + 5x3四・K ・T 条件1. 利用库恩■塔克(K-T)条件求解以下问题(共15分) max f(X ) = 10x 1 + 4x : - xf + 4x t x 2 - 4x^+ x 2 < 65./.<4X 1 + X 2 <18兀宀no2. 利用库恩■塔克(K-T )条件求解以下非线性规划问题。

(完整版)运筹学》习题答案运筹学答案

(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。

CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。

DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。

CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。

DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。

CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。

CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。

运筹学习题集(第二章)

运筹学习题集(第二章)

判断题判断正误,如果错误请更正第二章线形规划的对偶理论1.原问题第i个约束是<=约束,则对偶变量yi>=0.2.互为对偶问题,或则同时都有最优解,或则同时都无最优解.3.原问题有多重解,对偶问题也有多重解.4.对偶问题有可行解,原问题无可行解,则对偶问题具有无界解.5.原问题无最优解,则对偶问题无可行解.6.设X,Y分别为{minZ=CX|AX>=b,X>=0}和{maxw=Yb|YA<=C,Y>=0}的可行解,则有(1)CX<=Yb;(2)CX是w的上界;(3)当X,Y为最优解,CX=Yb;(4)当CX=Yb 时,有YXs+YsX=0;(5)X为最优解且B是最优基时,则Y=C B B-1是最优解;(6)松弛变量Ys的检验数是λs,则X=-λs是基本解,若Ys是最优解, 则X=-λs是最优解.7.原问题与对偶问题都可行,则都有最优解.8.原问题具有无界解,则对偶问题可行.9.若X,Y是原问题与对偶问题的最优解.则X=Y.10.若某种资源影子价格为0,则该资源一定有剩余.11影子价格就是资源的价格.12.原问题可行对偶问题不可行,可用对偶单纯形法计算.13.对偶单纯形法比值失效说明原问题具有无界解.14.对偶单纯形法是直接解对偶问题的一种解法.15.减少一个约束,目标值不会比原来变差.16.增加一个约束,目标值不会比原来变好.17增加一个变量, 目标值不会比原来变差.18.减少一个非基变量, 目标值不变.19.当Cj(j=1,2,3,……,n)在允许的最大范围内同时变化时,最优解不变。

选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。

第二章线性规划的对偶理论1.如果决策变量数列相等的两个线规划的最优解相同,则两个线性规划 A约束条件相同 B目标函数相同 C最优目标函数值相同 D以上结论都不对2.对偶单纯形法的最小比值规则是为了保证 A使原问题保持可行 B使对偶问题保持可行 C逐步消除原问题不可行性 D逐步消除对偶问题不可行性3.互为对偶的两个线性规划问题的解存在关系 A若最优解存在,则最优解相同B原问题无可行解,则对偶问题也无可行解 C对偶问题无可行解,原问题可能无可行解D一个问题无界,则另一个问题无可行解 E一个问题无可行解,则另一个问题具有无界解4.已知规范形式原问题(max)的最优表中的检验数为(λ1,λ2,……λn),松弛变量的检验数为(λn+1,λn+2,……λn+m),则对偶问题的最优解为 A—(λ1,λ2,……λn) B (λ1,λ2,……λn) C —(λn+1,λn+2,……λn+m)D(λn+1,λn+2,……λn+m)5.原问题与对偶问题都有可行解,则 A原问题有最优解,对偶问题可能没有最优解B原问题与对偶问题可能都没有最优解 C可能一个问题有最优解,另一个问题具有无界解D原问题与对偶问题都有最优解计算题线性规划问题和对偶问题对于如下的线性规划问题min z = 3x1 + 2x2+x3. x1 + x2+ x3 ≤ 15 (1)2x1 - x2+ x3≥ 9 (2)-x1 + 2x2+2x3≤ 8 (3)x1 x2x3 ≥ 01、写出题目中线性规划问题的对偶问题;2、分别求出原始问题和对偶问题的最优解(求解的次序和方法不限);解答:1、写出题目中线性规划问题的对偶问题;解:max w = 15y1 + 9y2 + 8y3. y1 + 2y2- y3 ≤ 3 (1)y1 - y2+ 2y3≤ 2 (2)y1 + y2+ 2y3≤ 1 (3)y1≤0、 y2 ≥0、y3 ≤02、分别求出原始问题和对偶问题的最优解(求解的次序和方法不限);解:先将原问题化成以下形式,则有mi n z = 3x1 + 2x2 + x3. x1 + x2+ x3+ x4= 15 (1)-2x1 + x2- x3+ x5= -9 (2)-x1 + 2x2+2x3+x6= 8 (3)原始问题的最优解为(X1 X2 X3 X4 X5 X6)=(2,0,5,8,0,0),minz=11 对偶问题的最优解为(y1y2y3y4y5y6)=(0,7/5,-1/5,0,19/5,0),maxw=11 对于以下线性规划问题max z = -x1 - 2x2. -2x1 + 3x2≤ 12 (1)-3x1 + x2≤ 6 (2)x1 + 3x2≥ 3 (3)x1≤ 0, x2≥ 01、写出标准化的线性规划问题;2、用单纯形表求出这个线性规划问题的最优解和最优的目标函数值;3、写出这个(极大化)线性规划问题的对偶问题;4、求出对偶问题的最优解和最优解的目标函数值;5、第(2)个约束右端常数b2=6在什么范围内变化,最优解保持不变。

《运筹学》_习题_线性规划部分练习题及_答案

《运筹学》_习题_线性规划部分练习题及_答案

一、思考题1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征?3. 建立一个实际问题的数学模型一般要几步?4. 两个变量的线性规划问题的图解法的一般步骤是什么?5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误?6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。

7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。

8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。

9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法?10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。

1. 线性规划问题的最优解一定在可行域的顶点达到。

2. 线性规划的可行解集是凸集。

3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。

4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。

5. 线性规划问题的每一个基本解对应可行域的一个顶点。

6. 如果一个线性规划问题有可行解,那么它必有最优解。

7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。

8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。

9. 单纯形法计算中,选取最大正检验数k σ对应的变量k x作为换入变量,可使目 标函数值得到最快的减少。

10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。

(完整版)运筹学习题集

(完整版)运筹学习题集
表3-3
销地
产地
1
2
3
产量
1
5
1
8
12
2
2
4
1
14
3
3
6
7
4
销量
9
10
11
表3-4
销地
产地
1
2
3
4
5
产量
1
10
2
3
15
9
25
2
5
20
15
2
4
30
3
15
5
14
7
15
20
4
20
15
13
M
8
30
销量
20
20
30
10
25
解:
(1)在表3-3中分别计算出各行和各列的次最小运费和最小运费的差额,填入该表的最右列和最下列。得到:
+ = + +
+ =
建立数学模型:
Max z=(1.25-0.25)*( + )+(2-0.35)*( + )+(2.8-0.5) -(5 +10 )300/6000-(7 +9 +12 )321/10000-(6 +8 )250/4000-(4 +11 )783/7000-7 *200/4000
s.t
2.确定 的范围,使最优解不变;取 ,求最优解;
3.确定 的范围,使最优基不变,取 求最优解;
4.引入 求最优解;
解1.由单纯形方法得
即,原问题的最优解为
例求下面运输问题的最小值解:
1

最全运筹学习题及答案

最全运筹学习题及答案

最全运筹学习题及答案共1 页运筹学习题答案)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。

(1)max z?x1?x25x1+10x2?50x1+x2?1x2?4x1,x2?0(2)min z=x1+1.5x2x1+3x2?3x1+x2?2x1,x2?0(3)+2x2x1-x2?-0.5x1+x2x1,x2?0(4)max z=x1x2x1-x2?03x1-x2?-3x1,x2?0(1)(图略)有唯一可行解,max z=14(2)(图略)有唯一可行解,min z=9/4(3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。

共2 页(1)min z=-3x1+4x2-2x3+5x4 4x1-x2+2x3-x4=-2x1+x2+3x3-x4?14 -2x1+3x2-x3+2x4?2x1,x2,x3?0,x4无约束(2zk?i??xk?1mxik?(1Max s. t .-4x1xx1,x2共3 页(2)解:加入人工变量x1,x2,x3,…xn,得:Max s=(1/pk)? i?1n?k?1m?ikxik-Mx1-Mx2-…..-Mxnm(1)max z=2x1+3x2+4x3+7x4 2x1+3x2-x3-4x4=8x1-2x2+6x3-7x4=-3x1,x2,x3,x4?0(2)max z=5x1-2x2+3x3-6x4共4 页x1+2x2+3x3+4x4=72x1+x2+x3+2x4=3x1x2x3x4?0(1)解:系数矩阵A是:?23?1?4??1?26?7? ??令A=(P1,P2,P3,P4)P1与P2线形无关,以(P1,P2有2x1+3x2=8+x3+4x4x1-2x2=-3-6x3+7x4令非基变量x3,x4解得:x1=1;x2=2基解0,0)T为可行解z1=8(2)同理,以(P=(45/13,0,-14/13,0)T是非可行解;3以(P1,P4X(3)=,,7/5)T是可行解,z3=117/5;(4)以(P2,P=(,45/16,7/16,0)T是可行解,z4=163/16;3以(P2,P4)为基,基解X(5)0,68/29,0,-7/29)T是非可行解;(6)TX以(P4,P)为基,基解=(0,0,-68/31,-45/31是非可行解;)3最大值为z3=117/5;最优解X(3)=(34/5,0,0,7/5)T。

《运筹学》题库完整

《运筹学》题库完整

运筹学习题库数学建模题(5)1、某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:试建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。

解:设甲、乙产品的生产数量应为x1、x2,则x1、x2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x , 2建立使利润最大的生产计划的数学模型,不求解。

解:设甲、乙两种产品的生产数量为x 1、x 2, 设z 为产品售后总利润,则max z = 4x 1+3x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+,50040005.253000222112121x x x x x x x 3、一家工厂制造甲、乙、丙三种产品,需要三种资源——技术服务、劳动力和行政管理。

每种产品的资源消耗量、单位产品销售后所能获得的利润值以及这三种资源的储备量如下表所示:建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。

解:建立线性规划数学模型:设甲、乙、丙三种产品的生产数量应为x 1、x 2、x 3,则x 1、x 2、x 3≥0,设z 是产品售后的总利润,则max z =10x 1+6x 2+4x 3s.t.⎪⎪⎩⎪⎪⎨⎧≥≤++≤++≤++03006226005410100321321321321x x x x x x x x x x x x ,, 4、一个登山队员,他需要携带的物品有:食品、氧气、冰镐、绳索、帐篷、照相器材、通信器材等。

每种物品的重量合重要性系数如表所示。

设登山队员可携带的最大重量为25kg,试建立队员所能携带物品最大量的线性规划模型,不求解。

解:引入0—1变量x i , x i =1表示应携带物品i ,,x i =0表示不应携带物品I⎩⎨⎧==≤++++++++++++=7,...,2,1,10254212625510481418152076543217654321i x x x x x x x x x x x x x x x naxz i 或5、工厂每月生产A 、B 、C 三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源根据市场需求,预测三种产品最低月需求量分别是150、260、120,最高需求量是250、310、130,试建立该问题数学模型,使每月利润最大,为求解。

(完整版)《运筹学》习题集

(完整版)《运筹学》习题集

第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。

1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。

1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。

1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。

运筹学习题集第五章

运筹学习题集第五章

判断题判断正误,如果错误请更正第五章运输与指派问题1.运输问题中用位势法求得的检验数不唯一。

2.产地数为3,销地数围的平衡运输中,变量组{X11,X13,X22,X33,X34}可作为一组基变量。

3.不平衡运输问题不一定有最优解。

4.m+n-1个变量构成基变量组的充要条件就是它们不包含闭合回路。

5.运输问题中的位势就就是其对偶变量。

6.含有孤立点的变量组不包含有闭回路。

7.不包含任何闭回路的变量组必有孤立点。

8.产地个数为m销地个数为 n的平衡运输问题的对偶问题有m+n个约束。

9.运输问题的检验数就就是对偶问题的松弛变量的值。

10.产地个数为m销地个数为 n的平衡运输问题的系数矩阵为A,则有r(A)〈=m+n-1。

11.用一个常数k加到运价C的某列的所有元素上,则最优解不变。

12.令虚设的产地或销地对应的运价为一任意大于0的常数C(C>0),则最优解不变。

13.若运输问题中的产量或销量为整数则其最优解也一定为整数。

14.运输问题中的单位运价表的每一行都分别乘以一个非0常数,则最优解不变。

15.按最小元素法求得运输问题的初始方案,从任一非基格出发都存在唯一一个闭回路。

16.在指派问题的效率表的某行乘以一个大于零的数最优解不变。

选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。

第五章运输与指派问题1.下列变量组就是一个闭回路的有A{x21,x11,x12,x32,x33,x23} B{x11,x12,x23,x34,x41,x13} C {x21,x13,x34,x41,x12} D{x12,x32,x33,x23,x21,x11} D{x12,x22,x32,x33,x23,x21}2.具有M个产地N个销地的平衡运输问题模型具有特征A有MN个变量M+N个约束B有M+N个变量MN个约束C 有MN个变量M+N-1个约束D 有M+N-1个基变量MN-M-N+1个非基变量E 系数矩阵的秩等于M+N-13.下列说法正确的有A 运输问题的运价表第r行的每个cij 同时加上一个非0常数k,其最优调运方案不变。

(完整版)运筹学选择题习题

(完整版)运筹学选择题习题

单项选择题在每小题列出的4个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内,错选、多选或不选均不得分。

1.用单纯形法求解线性规划时最优表格的检验数应满足(D)A.大于0;B.小于0;C.非负D.非正2.当线性规划的一个基本解符合下列哪项要求时称之为基本可行解(C)。

A.大于0;B.小于0;C.非负D.非正3.某人要从上海搭乘汽车去重庆,他希望选择一条线路,经过转乘,使得车费最少。

此问题可以转化为(B)A.最大流量问题求解B.最短路问题求解C.最小树问题求解D.最小费用最大流问题求解4.求解销大于产的运输问题时,不需要做的工作是(D)A.虚设一个产地B.令虚设的产地的产量等于恰当值C.令虚设的产地到所有销地的单位运费为MD.删除一个销地5.求解产大于销的运输问题时,不需要做的工作是(B)A.虚设一个销地B.删除一个产地C.令虚设的销地到所有产地的单位运费为0D.令虚设的销地的产量等于恰当值6.关于互为对偶的两个模型的解的存在情况,下列说法不正确的是(C)A.都有最优解B.都无可行解C.都为无界解D.一个为无界解,另一个为无可行解7.对于总运输费用最小的运输问题,若已经得到最优方案,则其所有空格的检验数都(C)A.大于0;B.小于0;C.非负;D.非正8.线性规划的可行域的形状主要决定于(D)A.目标函数B.约束条件的个数C.约束条件的系数D.约束条件的个数和约束条件的系数9.对同一运输问题,用位势法和用闭回路法计算检验数,两种结果是(A)A.一定相同B.一定不同C.未必完全相同D.没有联系10.在寻找某一空格的闭回路时,若遇到基格,则可以选择,但下列说法中不正确的是(D)A.左拐90度B.右拐90度C.穿越D.后退11.关于线性规划的标准形,下列说法不正确的是(B)A.目标函数是最大化的B.所有变量大于零C.约束条件个数小于变量个数D.约束条件必须是等式约束12.用对偶单纯形法求解线性规划时的最优性条件是(C)A.所有检验数非正B.所有人工变量取值为零C.b列的数字非负D.以上条件都应满足13.求解运输问题时,每一空格的闭回路上“顶点”的个数一定是(B)A.4个B.偶数个C.奇数个D.不确定14.存贮论研究的目的是(A)A.确定最佳进货量和最佳进货周期B.保证不缺货C.求最小费用D.求最小存贮量t循环策略时,下列哪个参数的单独变化不会使进货周期15.采用不允许缺货的缩短(D)A.单位存贮费C增加 B.需求速度R增加1C减少 D.货物单价K增加C.单位订购费3t循环策略时,下列哪个参数的单独变化不会使每次进货16.采用不允许缺货的量减少(D)C增加 B.需求速度R增加A.单位存贮费1C减少 D.货物单价K增加C.单位订购费3t循环策略时,下列哪个参数的单独变化不会17.采用允许缺货但缺货需补充的使进货周期缩短(D)C增加 B.需求速度R增加A.单位缺货费2C减少 D.货物单价K增加C.单位订购费3t循环策略时,下列哪个参数的单独变化不会18.采用允许缺货但缺货需补充的使每次进货量减少(D)C增加 B.需求速度R增加A.单位缺货费2C减少 D.货物单价K增加C.单位订购费3t循环策略时,下列哪个参数的单独变化不会使进19.在制品采用不允许缺货的货周期缩短(D)A.单位存贮费C增加 B.生产速度P增加1C减少 D.货物单价K增加C.单位订购费3t循环策略时,下列哪个参数的单独变化不会使进20.在制品采用不允许缺货的货周期缩短(D)A.单位存贮费C增加 B.生产速度P增加1C减少 D.货物单价K增加C.单位订购费321.报童问题的最佳订货量与下列哪个因素无关(A)A.上一周期的实际需求量B.单位利润kC.单位滞销损失hD.需求量的分布律22.m个产地、n个销地的产销平衡的运输问题,在用表上作业法求解时,基格的个数一定是(B)A.(m+n)个B.(m+n-1)个C.(m+n+1)个D.不一定23.对指派问题的价值系数矩阵作下列何种变换,不影响指派问题的解(A)A.某行同加上一个非零常数B.某行同乘以一个不等于1常数C.某行同除以一个不等于1常数D.某行加到另一行上去24.以下各项中不属于运输问题的求解程序的是(A)A.根据实际问题绘制运输图B.确定初始运输方案C.计算每个空格的检验数D.根据检验数判断所得方案是否最优25.以下叙述中不正确的是(D)A.树的点数等于边数加1B.树的任意两点间只有一条链C.任何不连通图都不是树D.树是边数最少的图26.用单纯形法求解线性规划问题时引入的松弛变量在目标函数中的系数为(C)A.充分大的负数B.充分大的负数C.0D.127.为建立运输问题的改进方案,在调整路线中调整量应为(A)A.偶数号顶点处运输量的最小值B.奇数号顶点处运输量的最小值C.偶数号顶点处运输量的最大值D.奇数号顶点处运输量的最大值28.要用最少费用建设一条公路网,将五个城市连接起来,使它们可以相互到达,已知建设费用与公路长度成正比,那么该问题可以看成是(A)A.最小部分树问题求解B.最小费用最大流问题求解C.最短路线问题求解D.最大流量问题求解29.求运输问题表上作业法中求初始基本可行解的方法中没有(D)A.西北角法B.最小元素法C.伏格尔法D.闭回路法30.若Q为f的可增广链,则Q中所有前向弧都为f的(D)A.对边B.饱和弧C.邻边D.不饱和弧31.线性规划一般模型中,自由变量可以用两个非负变量的什么来代换(B)A.和B.差C.积D.商32.对偶问题的对偶是(D)A.基本问题B.解的问题C.其它问题D.原问题33.线性规划问题若有最优解,则一定可以在可行域的什么点达到(C)A.内点B.外点C.顶点D.几何点34.在线性规划模型中,没有非负约束的变量称为(C)A.多余变量B.松弛变量C.自由变量D.人工变量35.下面命题不正确的是(C)A.线性规划的最优解是基本可行解B.基本可行解一定是基本解C.线性规划一定有可行解D.线性规划的最优值至多有一个36.设一个线性规划问题(P)的对偶问题为(D),则关于它们之间的关系的陈述不正确的是(A )A.若(P)无可行解,则(D)也无可行解B.(P)、(D)均有可行解则都有最优解C.(P)的约束均为等式,则(D)的所有变量均无非负限制D.(D)也是(P)的对偶问题37.以下关系中,不是线性规划与其对偶问题的对应关系的是(D)A.约束条件组的系数矩阵互为转置矩阵B.一个约束条件组的常数列为另一个目标函数的系数行向量C.一个目标函数的系数行向量为另一个约束条件组的常数列D.约束条件组的不等式反向38.以下关于最小部分树的陈述不正确的是(B)A.点数等于边数加1的图B.任意两点之间的距离为最短的图C.无圈的图D.连通的图39.四个棋手单循环比赛,采用三局两胜制必须决出胜负,如果以棋手为节点,用图来表示比赛结果,则是个(C)A.树B.任意两点之间有线相连的图C.任意两点之间用带箭头的线相连的图D.连通图。

运筹学习题集(第五章)电子版本

运筹学习题集(第五章)电子版本

运筹学习题集(第五章)判断题判断正误,如果错误请更正第五章运输与指派问题1.运输问题中用位势法求得的检验数不唯一。

2.产地数为3,销地数围的平衡运输中,变量组{X11,X13,X22,X33,X34}可作为一组基变量。

3.不平衡运输问题不一定有最优解。

4.m+n-1个变量构成基变量组的充要条件是它们不包含闭合回路。

5.运输问题中的位势就是其对偶变量。

6.含有孤立点的变量组不包含有闭回路。

7.不包含任何闭回路的变量组必有孤立点。

8.产地个数为m销地个数为 n的平衡运输问题的对偶问题有m+n个约束。

9.运输问题的检验数就是对偶问题的松弛变量的值。

10.产地个数为m销地个数为 n的平衡运输问题的系数矩阵为A,则有r(A)〈=m+n-1。

11.用一个常数k加到运价C的某列的所有元素上,则最优解不变。

12.令虚设的产地或销地对应的运价为一任意大于0的常数C(C>0),则最优解不变。

13.若运输问题中的产量或销量为整数则其最优解也一定为整数。

14.运输问题中的单位运价表的每一行都分别乘以一个非0常数,则最优解不变。

15.按最小元素法求得运输问题的初始方案,从任一非基格出发都存在唯一一个闭回路。

16.在指派问题的效率表的某行乘以一个大于零的数最优解不变。

选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。

第五章运输与指派问题1.下列变量组是一个闭回路的有 A{x21,x11,x12,x32,x33,x23} B{x11,x12,x23,x34,x41,x13} C {x21,x13,x34,x41,x12}D{x12,x32,x33,x23,x21,x11} D{x12,x22,x32,x33,x23,x21}2.具有M个产地N个销地的平衡运输问题模型具有特征 A有MN个变量M+N个约束 B 有M+N个变量MN个约束 C 有MN个变量M+N-1个约束D 有M+N-1个基变量MN-M-N+1个非基变量E 系数矩阵的秩等于M+N-13.下列说法正确的有 A 运输问题的运价表第r行的每个cij 同时加上一个非0常数k,其最优调运方案不变。

(完整word版)运筹学习题及答案

(完整word版)运筹学习题及答案
A.无可行解 B。有唯一最优解 C。有多重最优解 D。有无界解
34。某个常数bi波动时,最优表中引起变化的有(A)
A.B-1bB。 C.B-1D.B-1N
35.某个常数bi波动时,最优表中引起变化的有(C)
A. 检验数 B。CBB-1C。CBB-1b D。系数矩阵
36.任意一个容量的网络中,从起点到终点的最大流的流量等于分离起点和终点的任一割集的容量.(B)A.正确B。错误C.不一定D。无法判断
9.对偶单纯形法迭代中的主元素一定是负元素( )A
A。正确B.错误C。不一定D。无法判断
10。对偶单纯形法求解极大化线性规划时,如果不按照最小化比值的方法选取什么变量则在下一个解中至少有一个变量为正( )B
A。换出变量B.换入变量C.非基变量D。基变量
11.对 问题的标准型: ,利用单纯形表求解时,每做一次换基迭代,都能保证它相应的目标函数值 必为()B
A.换出变量B.换入变量C。非基变量D。基变量
29。可行解是满足约束条件和非负条件的决策变量的一组取值.( )A
A。正确B。错误C。不一定D。无法判断
30。 连通图G有n个点,其部分树是T,则有(C)
A。T有n个点n条边 B.T的长度等于G的每条边的长度之和
C.T有n个点n-1条边 D。T有n-1个点n条边
47.通过什么方法或者技巧可以把产销不平衡运输问题转化为产销平衡运输问题(C)
A。非线性问题的线性化技巧B.静态问题的动态处理
C.引入虚拟产地或者销地D。引入人工变量
48.为什么单纯形法迭代的每一个解都是可行解?因为遵循了下列规则 (A)
A。按最小比值规则选择出基变量 B。先进基后出基规则
C。标准型要求变量非负规则 D。按检验数最大的变量进基规则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。

1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。

1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。

1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。

根据经验,一天男生平均每人挖坑20个,或栽树30棵,或给25棵树浇水;女生平均每人挖坑10个,或栽树20棵,或给15棵树浇水。

问应怎样安排,才能使植树(包括挖坑、栽树、浇水)最多?请建立此问题的线性规划模型,不必求解。

1.8某糖果厂用原料A、B、C加工成三种不同牌号的糖果甲、乙、丙。

已知各种牌号糖果中A、B、C含量,原料成本,各种原料的每月限制用量,三种牌号糖果的单位加工费及售价如下表所示。

问该厂每月应生产这三种牌号糖果各多少千克,使该厂获利最大?试建立此问题的线性规划的数学模型。

甲乙丙原料成本(元/千克) 每月限量(千克)A ≥60%≥15% 2.00 2000B 1.50 2500C ≤20%≤60%≤50% 1.00 1200加工费(元/千克)0.50 0.40 0.30售价 3.40 2.85 2.251.9某商店制定7-12月进货售货计划,已知商店仓库容量不得超过500件,6月底已存货200件,以后每月初进货一次,假设各月份此商品买进售出单价如下表所示,问各月进货售货各多少,才能使总收入最多?请建立此问题的线性规划模型。

月份7 8 9 10 11 12买进单价28 24 25 27 23 23售出单价29 24 26 28 22 251.10某厂接到生产A、B两种产品的合同,产品A需200件,产品B需300件。

这两种产品的生产都经过毛坯制造与机械加工两个工艺阶段。

在毛坯制造阶段,产品A每件需要2小时,产品B每件需要4小时。

机械加工阶段又分粗加工和精加工两道工序,每件产品A 需粗加工4小时,精加工10小时;每件产品B需粗加工7小时,精加工12小时。

若毛坯生产阶段能力为1700小时,粗加工设备拥有能力为1000小时,精加工设备拥有能力为3000小时。

又加工费用在毛坯、粗加工、精加工时分别为每小时3元、3元、2元。

此外在粗加工阶段允许设备可进行500小时的加班生产,但加班生产时间内每小时增加额外成本 4.,5元。

试根据以上资料,为该厂制订一个成本最低的生产计划。

1.11某公司有三项工作需分别招收技工和力工来完成。

第一项工作可由一个技工单独完成,或由一个技工和两个力工组成的小组来完成。

第二项工作可由一个技工或一个力工单独去完成。

第三项工作可由五个力工组成的小组完成,或由一个技工领着三个力工来完成。

已知技工和力工每周工资分别为100元和80元,他们每周都工作48小时,但他们每人实际的有效工作小时数分别为42和36。

为完成这三项工作任务,该公司需要每周总有效工作小时数为:第一项工作10000小时。

第二项工作20000小时,第三项工作30000小时。

又能招收到的工人数为技工不超过400人,力工不超过800人。

试建立数学模型,确定招收技工和力工各多少人。

使总的工资支出为最少(第二章对偶与灵敏度分析2.1写出以下线性规划问题的DLP1)minz=2x1+2x2+4x3x1+3x2+4x3≥2st 2x1+x2+3x3≤3x1+4x2+3x3=5x1,x2≥0,x3无约束2)max z=5x1+6x2+3x3x1+2x2+2x3=5st-x1+5x2-x3≥34x1+7x2+3x3≤8x1无约束,x2≥0,x3≤03)max z=c1x1+c2x2+c3x3a11x1+a12x2+a13x3≤b1st a21x1+a22x2+a23x3=b2a31x1+a32x2+a33x3≥b3x1≥0,x2≤0,x3无约束2.2对于给出的LP:minz=2x1+3x2+5x3+6x4x1+2x2+3x3+x4≥2st-2x1+x2-x3+3x4≤-3x j≥0 (j=1,2,3,4)1)写出DLP;2)用图解法求解DLP;3)利用2)的结果及根据对偶性质写出原问题的最优解。

2.3对于给出LP:maxz=x1+2x2+x3x1+x2-x3≤2st x1-x2+x3=12x1+x2+x3≥2x1≥0,x2≤0,x3无约束1)写出DLP;2)利用对偶问题性质证明原问题目标函数值Z≤12.4已知LP:max z=x1+x2-x1+x2+x3≤2st-2x1+x2-x3≤1x j≥0试根据对偶问题性质证明上述线性问题目标函数值无界。

2.5 给出LP : maxz =2x 1+4x 2+x 3+x 4 x 1+ 3x 2 +x 4 ≤8 2x 1+ x 2 ≤6 st. x 2 + x 3+ x 4≤6x 1+ x 2 + x 3 ≤9 x j ≥01) 写出DLP ;2) 已知原问题最优解X =(2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解。

2.6 用对偶单纯形法求解下列线性规划问题1) minz =4x 1+12x 2+18x 3 x 1 +3x 3 ≥3st 2 x 2+2x 3 ≥5 x j ≥0 (j=1,2,3)1231231231232)min 524324.63510,,0z x x x x x x st x x x x x x =++++≥⎧⎪++≥⎨⎪≥⎩2.7考虑如下线性规划问题 minz =60x 1+40x 2+80x 3 3x 1+2x 2+ x 3 ≥2 st 4x 1+ x 2+3x 3 ≥4 2x 1+2x 2+2x 3 ≥3x j ≥0 1) 写出DLP ;2) 用对偶单纯形法求解原问题; 3) 用单纯形法求解其对偶问题; 4) 对比以上两题计算结果。

2.8 已知LP :maxz =2x 1-x 2+x 3 x 1+ x 2+ x 3≤6 st -x 1+2x 2 ≤4x 1,x 2,x 3≥0 1) 用单纯形法求最优解2) 分析当目标函数变为maxz =2x 1+3x 2+x 3时最优解的变化; 3) 分析第一个约束条件右端系数变为3时最优解的变化。

2.9给出线性规划问题maxz=2x1+3x2+x31/3x1+1/3x2+1/3x3≤1st 1/3x1+4/3x2+7/3x3≤3x j≥0试分析下列各种条件下,最优解(基)的变化:1)目标函数中变量x3的系数变为6;2)分别确定目标函数中变量x1和x2的系数C1、C2在什么范围内变动时最优解不变;3)约束条件的右端由 1 变为 2 ;3 32.10 某厂生产甲、乙两种产品,需要A、B两种原料,生产消耗等参数如下表(表中的消(1)请构造数学模型使该厂利润最大,并求解。

(2)原料A、B的影子价格各为多少。

(3)现有新产品丙,每件消耗3千克原料A和4千克原料B,问该产品的销售价格至少为多少时才值得投产。

(4)工厂可在市场上买到原料A。

工厂是否应该购买该原料以扩大生产?在保持原问题最优基的不变的情况下,最多应购入多少?可增加多少利润?3.5 某玩具公司分别生产三种新型玩具,每月可供量分别为1000、2000、2000件,它们分别被送到甲、乙、丙三个百货商店销售。

已知每月百货商店各类玩具预期销售量均为1500件,由于经营方面原因,各商店销售不同玩具的盈利额不同,见下表。

又知丙百货商店要求至少供应C玩具1000件,而拒绝进A玩具。

求满足上述条件下使总盈利额最大的供销分配方案。

甲乙丙可供量A 5 4 -1000B 16 8 9 2000C 12 10 11 2000第三章 运输问题3.13.23.33.4 某市有三个面粉厂,他们供给三个面食加工厂所需的面粉,各面粉厂的产量、各面食加工厂加工面粉的能力、各面食加工厂和各面粉厂之间的单位运价,均式于下表。

假定在第1,2和3面食加工厂制作单位面粉食品的利润分别为12元、16元和11元,试确定使总效益最3.5 光明仪器厂生产电脑绣花机是以产定销的。

已知1至6月份各月的生产能力、合同销量和单台电脑绣花机平均生产费用见下表:已知上年末库存103台绣花机,如果当月生产出来的机器当月不交货,则需要运到分厂库房,每台增加运输成本0.1万元,每台机器每月的平均仓储费、维护费为0.2万元。

在7--8月份销售淡季,全厂停产1个月,因此在6月份完成销售合同后还要留出库存80台。

加班生产机器每台增加成本1万元。

问应如何安排1--6月份的生产,可使总的生产费用(包括运输、仓储、维护)最少?3.6 设有A 、B 、C 三个化肥厂供应1、2、3、4四个地区的农用化肥。

相关文档
最新文档