LTE的载波聚合技术CA
LTE的载波聚合技术
LTE的载波聚合技术人们对数据速率的要求越来越高,载波聚合(Carrier Aggregation ,CA) 成为运营商面向未来的必然选择。
什么是载波聚合?简单一点说,就是把零碎的LTE频段合并成一个“虚拟”的更宽的频段,以提高数据速率。
我们先来看看全球CA发展历程。
1)2013年,韩国SK电信首次商用CA,其将800MHZ频段和1.8GHZ频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps。
LGU+一个月后跟进。
2)2013年11月,英国运营商EE宣布完成inter-band 40 MHz载波聚合,理论速率可达300Mpbs。
3)2013年12月,澳大利亚运营商Optus首次完成在TD-LTE上载波聚合。
紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相继部署或商用载波聚合。
刚开始,载波聚合部署仅限于2载波。
2014年,韩国SK电信、LGU+成功演示了3载波聚合。
随着技术的不断演进,相信未来还有更多CC的载波聚合。
当然还包括TDD和FDD、LTE和WiFi之间的载波聚合。
中国电信在2014年9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑。
为了说清楚载波聚合,我们首先来了解一下LTE的频段分配。
载波聚合的分类载波聚合主要分为intra-band 和inter-band载波聚合,其中intra-band载波聚合又分为连续(contiguous)和非连续(non-contiguous)。
对于intra-band CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHz。
对于intra-band 非连续载波聚合,该间隔为一个或多个GAP(s)。
3GPP关于载波聚合的定义下图是3GPP关于载波聚合从Re-10到Re-12的定义历程。
3GPP Rel-10定义了bands 1 (FDD) 和band 40 (TDD)的intra-band 连续载波,分别命名为CA_1C 和CA_40C。
LTE-CA载波聚合(CarrierAggregation)测试技术
LTE-CA载波聚合(CarrierAggregation)测试技术载波聚合是什么为了满足单用户峰值速率和系统容量提升的要求,一种最直接的办法就是增加系统传输带宽。
于是富有远见的工程师们将目光放在了载波聚合技术上,LTE-Advanced系统引入一项增加传输带宽的技术,也就是载波聚合(Carrier Aggregation,也简称CA),载波聚合技术将2~5个LTE成员载波(ComponentCarrier,CC)聚合在一起,实现最大100MHz的传输带宽,有效提高了上下行传输速率,终端根据自己的能力大小决定最多可以同时利用几个载波进行上下行传输,如图1为有无载波聚合下的传输方式对比。
当前市面上很多手机已经支持载波聚合CA技术如华为大部分手机等。
图1 有无载波聚合对比载波聚合测试方案及原理经过大量的优化、改进,不断吸收客户需求,目前新益技术有限公司LTE-CA载波聚合(Carrier Aggregation)测试方案已可以轻松应对手机终端载波聚合测试。
作为国内唯一成熟的载波聚合测试方案,新益系统在华为等客户处进行了严格论证,获得多位客户充分认可与好评,印证新益技术领先的技术实力和服务能力。
新益技术载波聚合CA系统设计师李美秀指出:“传统测试系统主要是采用SISO技术来测试手机2G、3G、4G的发射功率和接收灵敏度,无法模拟出真实环境中存在的多径和干扰同时对支持CA技术的手机不能进行吞吐量测试,无法对支持CA技术手机的性能进行评估,因此迫切需要一个切实可用的载波聚合CA测试方案。
”图2 CA载波聚合测试原理图3 3GPP规范CA测试图2015年8月新益技术基于《3GPP TS 36.508 version 12.9.0 Release 12》、《CTIA Test Plan for 2x2 Downlink》等法规、参照《MIMO and Transmit Diversity Over-the-Air Performance》规范对2*2测试模式的说明和《MIMO OTA Handset Performance and testing》规范对2*2测试规范推出自主知识产权的载波聚合CA测试系统(如图2所示)。
联通LTECA载波聚合技术介绍精修订
联通L T E C A载波聚合技术介绍SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#1.特性概述1.1基本定义CA:CarrierAggregation,载波聚合。
CC:ComponentCarrier,分支载波。
PCC:PrimaryCell,主小区SCC:SecondaryCell,辅小区小区集:CA载波集合主要包括PCC、SCC,小区集为PCC、SCC共同组成的集合。
1.2应用场景3GPPRelease10(TS36.300AnnexJ)定义了CA的5种典型场景。
华为eNodeB对这5种场景的支持情况如下表所示。
场景1:共站同覆盖目前协议明确规定CA典型场景中,两个不同频率的载波是在同一个eNodeB 内,即intraeNodeB。
F1:载波频率1F2:载波频率2场景2:共站不同覆盖场景3:共站补盲场景4:共站不同覆盖+RRH场景5:共站不同覆盖+直放站1.3载波聚合类型标准上支持的CA载波聚合类型有:Intra-Band和Inter-Band,详细如下:类型1:Intra-bandcontiguouscomponentcarriersaggregated类型2:Intra-bandnon-contiguouscomponentcarriersaggregated类型3:Inter-bandnon-contiguouscomponentcarriersaggregated注:协议规定,连续两个CC的载波间隔必须为300kHz的整数倍,以保证子载波的正交性;若非连续载波,没有要求。
1.4网元要求根据3GPP36.1046.5.3要求:intra-bandCA(contiguous)两频点采用不同RRU/RFU,同步时延需在130ns以下;intra-bandCA(non-contiguous)两频点采用不用RRU/RFU,同步时延需在260ns以下;inter-bandCA两频点采用不同RRU/RFU,同步时延需在1.3us以下。
lte、nr载波聚合(ca)-- 等级划分
lte、nr载波聚合(ca)-等级划分下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!:LTE与NR载波聚合(CA):等级划分详解一、引言1.1 背景介绍。
载波聚合标准
载波聚合标准
载波聚合(Carrier Aggregation,CA)是一种LTE和5G技术,允许在不同的频段上同时传输数据,以提高数据传输速率和网络性能。
目前,LTE和5G的载波聚合标准主要由3GPP(第三代合作伙伴计划)制定和管理。
在LTE中,载波聚合标准定义了多个载波之间的组合方式、带宽配置和传输规则,以实现更高的数据传输速率。
LTE的载波聚合标准由3GPP Release 10引入,并在后续的Release中进行了不断完善和扩展。
对于5G,载波聚合也是一项重要的技术特性,允许在不同频段上聚合多个NR(New Radio)载波以提供更高的数据传输速率和网络容量。
5G的载波聚合标准由3GPP的Release 15和后续版本定义,包括了更高频段的毫米波频段和Sub-6 GHz频段的聚合。
3GPP的标准化工作是由各个运营商和设备厂商共同参与的,以确保在全球范围内的互操作性和兼容性。
因此,LTE和5G的载波聚合标准是一个动态发展的过程,不断随着技术的进步和市场需求进行更新和完善。
1/ 1。
LTE的载波聚合技术CA
LTE的载波聚合技术人们对数据速率的要求越来越高,载波聚合(Carrier Aggregation ,CA) 成为运营商面向未来的必然选择。
什么是载波聚合?简单一点说,就是把零碎的LTE频段合并成一个“虚拟”的更宽的频段,以提高数据速率。
我们先来看看全球CA发展历程。
1)2013年,韩国SK电信首次商用CA,其将800MHZ频段和1.8GHZ频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps。
LGU+一个月后跟进。
2)2013年11月,英国运营商EE宣布完成inter-band 40 MHz载波聚合,理论速率可达300Mpbs。
3)2013年12月,澳大利亚运营商Optus首次完成在TD-LTE上载波聚合。
紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相继部署或商用载波聚合。
刚开始,载波聚合部署仅限于2载波。
2014年,韩国SK电信、LGU+成功演示了3载波聚合。
随着技术的不断演进,相信未来还有更多CC的载波聚合。
当然还包括TDD和FDD、LTE和WiFi之间的载波聚合。
中国电信在2014年9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑。
为了说清楚载波聚合,我们首先来了解一下LTE的频段分配。
载波聚合的分类载波聚合主要分为intra-band 和inter-band载波聚合,其中intra-band载波聚合又分为连续(contiguous)和非连续(non-contiguous)。
对于intra-band CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHz。
对于intra-band 非连续载波聚合,该间隔为一个或多个GAP(s)。
3GPP关于载波聚合的定义下图是3GPP关于载波聚合从Re-10到Re-12的定义历程。
3GPP Rel-10定义了bands 1 (FDD) 和band 40 (TDD)的intra-band 连续载波,分别命名为CA_1C 和CA_40C。
LTE载波聚合CA的优化
CA(Carrier Aggregation,载波聚合)为3GPP在Release 10(TR 36.913)阶段引入,是将多个连续或非连续的载波聚合成更大的带宽,以便当整网资源未全部占用时,可大幅提升整网资源利用率,改善用户峰值速率体验;同时载波聚合可以提高离散频谱的利用率。
近期,通过对T市CA实验片区133160宏站(D1+D2)和酒店室分143348(E1+E2)进行实地勘察、测试,对CA信令流程以及涉及参数、门限在室分宏站方面的差异进行了总结分析,具体如下:1.CA软硬件结构变化硬件变化通过对133160宏站(D1+D2)机房内勘察,CA后硬件以及覆盖变化如下:可见,D1+D2进行CA情况下,在单D1情况下机框内2号槽位新增了一块LBBPd4单板,共用原UMPT主控板、RRU以及天馈系统,为共站同覆盖模式,硬件变动较小。
软件变化目前,华为eRAN7.0支持CA,下行最多支持两个载波聚合(最大40MHZ),仍为2×2 MIMO,上行不支持CA,因此,eNodeB软件版本需升级至eRAN7.0及以上。
通过LST ENODEBALGOSWITCH指令可以看出,T市CA算法对宏站打开PDCCH交叠搜索空间开关、切换时配置辅载波开关、CA业务触发开关;对室分除上述三个开关外,还打开基于A2删除辅载波开关和GbrAmbr判断开关,当辅载波电平低于A2门限时,可删除辅载波。
1.CA信令流程分析目前,cat6终端支持CA,市面上已知终端为华为Mate7手机,本次测试采用Mate7+probe3.14进行。
CA业务流程如下(包括切换):1.eNodeB配置CA小区集,并配置CA特性相关的参数。
CA 小区集是指在eNodeB上将若干小区配置到一个逻辑集合内,只有该集合内的小区才允许聚合;133160宏站(D1+D2)CA小区集配置如下:可见,CA小区0、1、2分别对应本地小区(0、3)、(1、4)、(2、5),均为TDD相同子帧配比。
LTE的载波聚合技术CA之欧阳术创编
LTE的载波聚合技术创作:欧阳术人们对数据速率的要求越来越高,教波聚合(Carrier Aggregation , CA)成为运营商面向未来的必然选择。
什么是载波聚合?简单一点说,就是把零砕的LTE i段合并成一个“虛拥,啲更宽的顺段,以提高数据速率。
我们先来看看全球CA发展历程。
1 ),韩国SK电信首次商用CA,其将800MHZ频段和1.8GHZ 频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps oLGU+—个月后跟进。
2)11月,英国运营商EE宣布完成interband 40 MHz载玻聚合,理论速率可达300Mpbs o3 ) 12月,澳大利亚运苜商Optus首次完成在TDLTE上载波聚n o紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相娠部詈或商用载波聚合。
刚开始,载波聚合部署仅限于2载波。
,韩国SK电信、LGU+ 成功演示了3裁波聚合。
葩着技术的不断演进,相信未来述有更多CC的教波聚合。
肖然还包括TDD和FDD、LTE和WiFi 之间的教波聚合。
中国电信在9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑。
为了说淸楚教波聚合,我们首先来了解一下LTE的频段分配。
载波聚合的分类载波聚合壬要分为intraband和interband载波聚合,其中intraband教波聚合艮分为连续(contiguous)和非连续(noncontiguous)o对于intraband CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHz o对于intraband非连续载波聚合,该间隔为一个或多个GAP(s) o3GPP关于敎波聚合的定义下图是3GPP关于载波聚合从RelO到Rel2的定义历程。
3GPP RellO 定义了bands 1 (FDD)和band 40 (TDD)的intraband 连续载波,分别命名为CA_1C和CA_40C o同时还定义bandl 和5的interband载波聚合,侖名为CA_1A5A O3GPP Relll定义了更多CA配置,如下图:3GPP Rell2包含了TDD和FDD的载波聚合,同时还定义了支持上行2CC和下行3CC载波聚合等等。
LTE的载波聚合技术CA
LTE的载波聚合技术CALTE的载波聚合技术人们对数据速率的要求越来越高,载波聚合2013年,韩国SK电信首次商用CA,其将800MHZ频段和频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps。
LGU+一个月后跟进。
2)2013年11月,英国运营商EE宣布完成inter-band 40 MHz载波聚合,理论速率可达300Mpbs。
3)2013年12月,澳大利亚运营商Optus首次完成在TD-LTE上载波聚合。
紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相继部署或商用载波聚合。
刚开始,载波聚合部署仅限于2载波。
2014年,韩国SK电信、LGU+成功演示了3载波聚合。
随着技术的不断演进,相信未来还有更多CC的载波聚合。
当然还包括TDD和FDD、LTE和WiFi之间的载波聚合。
中国电信在2014年9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑。
为了说清楚载波聚合,我们首先来了解一下LTE的频段分配。
载波聚合的分类载波聚合主要分为intra-band 和inter-band载波聚合,其中intra-band 载波聚合又分为连续(contiguous)和非连续(non-contiguous)。
对于intra-band CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHz。
对于intra-band 非连续载波聚合,该间隔为一个或多个GAP。
3GPP 关于载波聚合的定义下图是3GPP 关于载波聚合从Re-10到Re-12的定义历程。
3GPP Rel-10定义了bands 1 (FDD) 和band 40 (TDD)的intra-band 连续载波,分别命名为CA_1C 和CA_40C。
同时还定义band1和5的inter-band载波聚合,命名为CA_1A-5A。
3GPP Rel-11定义了更多CA配置,如下图:3GPP Rel-12包含了TDD和FDD的载波聚合,同时还定义了支持上行2CC和下行3CC载波聚合等等。
LTE的载波聚合技术CA讲解学习
带内连续intra-band(contiguous)载波聚合
有两种方案:
● 一种可能的方案是F1 和F2 小区位置相同并且重叠,提供几乎完全相同的覆盖范围。两层都提供重复的覆盖,并在两层都支持移动性。相似的方案是F1 和F2 位于拥有相似路径损失配置文件的同一频段上。
为了说清楚载波聚合,我们首先来了解一下LTE的频段分配。
载波聚合的分类
载波聚合主要分为intra-band 和 inter-band载波聚合,其中intra-band载波聚合又分为连续(contiguous)和非连续(non-contiguous)。
对于intra-band CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHz。
每个CC都有一个对应的索引,primary CC索引固定为0,而每个UE的secondary CC索引是通过UE特定的RRC信令发给UE的。
某个UE聚合的CC通常来自同一个eNodeB且这些CC是同步的。
当配置了CA的UE在所有的Serving Cell内使用相同的C-RNTI。
CA是UE级的特性,不同的UE可能有不同的PCell以及Serving Cell集合。
对于intra-band 非连续载波聚合,该间隔为一个或多个GAP(s)。
3GPP波聚合从Re-10到Re-12的定义历程。
3GPP Rel-10定义了bands 1 (FDD) 和 band 40 (TDD)的intra-band 连续载波,分别命名为CA_1C 和CA_40C。同时还定义band1和5的inter-band载波聚合,命名为CA_1A-5A。
lte single carrier ca mino 区分
lte single carrier ca mino 区分
LTE Single Carrier CA Mimo是LTE(Long Term Evolution)中的一种技术,其中CA 指载波聚合,MIMO指多输入多输出。
LTE Single Carrier CA MIMO可以区分为带内连续和带内不连续两种情况。
带内连续CA是指两个或多个子载波在同一个频带内,它们的带宽相结合以获得更高的数据吞吐率。
带内不连续CA则是指两个或多个子载波不在同一个频带内,它们的带宽也可以相结合以获得更高的数据吞吐率。
LTE Single Carrier CA MIMO技术可以提高无线通信系统的数据传输速率和系统容量,同时提高通信质量和可靠性。
在实际应用中,可以根据具体的需求和场景选择合适的LTE Single Carrier CA MIMO方案。
LTE地载波聚合技术CA
LTE的载波聚合技术人们对数据速率的要求越来越高,载波聚合(Carrier Aggregation ,CA) 成为运营商面向未来的必然选择。
什么是载波聚合?简单一点说,就是把零碎的LTE频段合并成一个“虚拟”的更宽的频段,以提高数据速率。
我们先来看看全球CA发展历程。
1)2013年,韩国SK电信首次商用CA,其将800MHZ频段和1.8GHZ频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps。
LGU+一个月后跟进。
2)2013年11月,英国运营商EE宣布完成inter-band 40 MHz载波聚合,理论速率可达300Mpbs。
3)2013年12月,澳大利亚运营商Optus首次完成在TD-LTE上载波聚合。
紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相继部署或商用载波聚合。
刚开始,载波聚合部署仅限于2载波。
2014年,韩国SK电信、LGU+成功演示了3载波聚合。
随着技术的不断演进,相信未来还有更多CC的载波聚合。
当然还包括TDD和FDD、LTE和WiFi之间的载波聚合。
中国电信在2014年9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑。
为了说清楚载波聚合,我们首先来了解一下LTE的频段分配。
载波聚合的分类载波聚合主要分为intra-band 和inter-band载波聚合,其中intra-band载波聚合又分为连续(contiguous)和非连续(non-contiguous)。
对于intra-band CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHz。
对于intra-band 非连续载波聚合,该间隔为一个或多个GAP(s)。
3GPP关于载波聚合的定义下图是3GPP关于载波聚合从Re-10到Re-12的定义历程。
3GPP Rel-10定义了bands 1 (FDD) 和band 40 (TDD)的intra-band 连续载波,分别命名为CA_1C 和CA_40C。
LTE的载波聚合技术CA之欧阳地创编
LTE的载波聚合技术人们对数据速率的要求越来越高,载波聚合(Carrier Aggregation ,CA) 成为运营商面向未来的必然选择。
什么是载波聚合?简单一点说,就是把零碎的LTE频段合并成一个“虚拟”的更宽的频段,以提高数据速率。
我们先来看看全球CA发展历程。
1),韩国SK电信首次商用CA,其将800MHZ频段和1.8GHZ频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps。
LGU+一个月后跟进。
2)11月,英国运营商EE宣布完成interband 40 MHz载波聚合,理论速率可达300Mpbs。
3)12月,澳大利亚运营商Optus首次完成在TDLTE上载波聚合。
紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相继部署或商用载波聚合。
刚开始,载波聚合部署仅限于2载波。
,韩国SK电信、LGU+成功演示了3载波聚合。
随着技术的不断演进,相信未来还有更多CC的载波聚合。
当然还包括TDD和FDD、LTE和WiFi之间的载波聚合。
中国电信在9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑。
为了说清楚载波聚合,我们首先来了解一下LTE的频段分配。
载波聚合的分类载波聚合主要分为intraband 和 interband载波聚合,其中intraband载波聚合又分为连续(contiguous)和非连续(noncontiguous)。
对于intraband CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHz。
对于intraband 非连续载波聚合,该间隔为一个或多个GAP(s)。
3GPP关于载波聚合的定义下图是3GPP关于载波聚合从Re10到Re12的定义历程。
3GPP Rel10定义了bands 1 (FDD) 和 band 40 (TDD)的intraband 连续载波,分别命名为CA_1C 和CA_40C。
同时还定义band1和5的interband载波聚合,命名为CA_1A5A。
LTE载波聚合(CA)配置指导
载波聚合(CA)配置指导1、确认载波聚合的两个小区属于同一台RRU载波聚合,是将同一台RRU下的两个小区进行聚合。
所以在操作前,要先确认CA的两个小区属于同一台RRU。
确认方法:在无线小区中,确认小区引用的基带资源配置,再在基带资源中,确认基带资源和RRU之间的关联关系。
如下图,小区1~6引用的基带资源分别是1~6,在基带资源中,1和4对应51号RRU,2和5对应52号RRU,3和6对应53号RRU。
所以配置CA时,小区1和小区4进行CA,小区2和小区5进行CA,小区3和小区6进行CA。
2、修改FS5C单板制式和功能模式RRU跨板连接时,配置CA时需要增加FS5C单板,RRU不跨板时不需要配置FS5C。
FS5C单板制式:TD-LTE单板功能模式:LTE-TDD CloudRadio3、增加X2+IP配置RRU跨板连接时,需要增加X2+IP配置,RRU不跨板时不需要配置。
IP地址、掩码、网关IP可随意配置,三者之间只要合法就可以。
4、修改小区中心频点D频段载波聚合时,D1频点为2585,D2频点修改为2604.8E频段载波聚合时,E1频点为2330,E2频点需要设置为2349.85、修改CA的两个小区邻区关系为同覆盖先确认CA的两个小区有没有添加为邻区关系,如果没有,可以通过邻区调整工具配置站内邻区。
添加完邻区关系后,将配置CA 的两个小区之间的邻区关系修改为同覆盖。
服务小区与E-UTRAN 系统内邻区关系:同覆盖注意CA的两个小区的相互邻区关系都要修改。
6、小区CA协同配置进入小区协同管理界面,按照下面步骤配置CA:1.在左侧网元树上勾选需要配置CA的站点;2.点击【查询】按钮,会查询到站点下的所有小区列表;3.勾选其中一个小区(一次只能勾选一个小区);4.点击【组合】按钮,会弹出该小区的所有邻区关系,注意勾选要配置CA的邻区;5.点击【确定】,完成CA配置。
联通LTE-CA载波聚合技术介绍
1.特性概述1.1基本定义CA:Carrier Aggregation,载波聚合。
CC:Component Carrier ,分支载波。
PCC:Primary Cell,主小区SCC:Secondary Cell,辅小区小区集:CA载波集合主要包括PCC、SCC,小区集为PCC、SCC共同组成的集合。
1.2应用场景3GPP Release 10(TS 36.300 AnnexJ)定义了CA的5种典型场景。
华为eNodeB对这5种场景的支持情况如下表所示。
场景1:共站同覆盖目前协议明确规定CA典型场景中,两个不同频率的载波是在同一个eNodeB内,即intra eNodeB。
F1:载波频率1F2:载波频率2场景2:共站不同覆盖场景3:共站补盲场景4:共站不同覆盖+RRH场景5:共站不同覆盖+直放站1.3载波聚合类型标准上支持的CA载波聚合类型有:Intra-Band和Inter-Band,详细如下:类型1:Intra-band contiguous component carriers aggregated类型2:Intra-band non-contiguous component carriers aggregated类型3:Inter-band non-contiguous component carriers aggregated注:协议规定,连续两个CC的载波间隔必须为300kHz的整数倍,以保证子载波的正交性;若非连续载波,没有要求。
1.4网元要求CA特性对于网元的要求,如下表所示:根据3GPP 36.104 6.5.3要求:●intra-band CA (contiguous)两频点采用不同RRU/RFU,同步时延需在130ns以下;●intra-band CA (non-contiguous)两频点采用不用RRU/RFU,同步时延需在260ns以下;●inter-band CA两频点采用不同RRU/RFU,同步时延需在1.3us以下。
LTE的载波聚合技术CA之欧阳学创编
LTE的载波聚合技术人们对数据速率的要求越来越高,载波聚合(Carrier Aggregation ,CA) 成为运营商面向未来的必然选择。
什么是载波聚合?简单一点说,就是把零碎的LTE频段合并成一个“虚拟”的更宽的频段,以提高数据速率。
我们先来看看全球CA发展历程。
1),韩国SK电信首次商用CA,其将800MHZ频段和1.8GHZ频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps。
LGU+一个月后跟进。
2)11月,英国运营商EE宣布完成interband 40 MHz载波聚合,理论速率可达300Mpbs。
3)12月,澳大利亚运营商Optus首次完成在TDLTE上载波聚合。
紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相继部署或商用载波聚合。
刚开始,载波聚合部署仅限于2载波。
,韩国SK电信、LGU+成功演示了3载波聚合。
随着技术的不断演进,相信未来还有更多CC的载波聚合。
当然还包括TDD和FDD、LTE和WiFi之间的载波聚合。
中国电信在9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑。
为了说清楚载波聚合,我们首先来了解一下LTE的频段分配。
载波聚合的分类载波聚合主要分为intraband 和 interband载波聚合,其中intraband载波聚合又分为连续(contiguous)和非连续(noncontiguous)。
对于intraband CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHz。
对于intraband 非连续载波聚合,该间隔为一个或多个GAP(s)。
3GPP关于载波聚合的定义下图是3GPP关于载波聚合从Re10到Re12的定义历程。
3GPP Rel10定义了bands 1 (FDD) 和 band 40 (TDD)的intraband 连续载波,分别命名为CA_1C 和CA_40C。
同时还定义band1和5的interband载波聚合,命名为CA_1A5A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LTE的载波聚合技术人们对数据速率的要求越来越高,载波聚合(Carrier Aggregation ,CA) 成为运营商面向未来的必然选择。
什么是载波聚合?简单一点说,就是把零碎的LTE频段合并成一个“虚拟”的更宽的频段,以提高数据速率。
我们先来看看全球CA发展历程。
1)2013年,韩国SK电信首次商用CA,其将800MHZ频段和1.8GHZ频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps。
LGU+一个月后跟进。
2)2013年11月,英国运营商EE宣布完成inter-band 40 MHz载波聚合,理论速率可达300Mpbs。
3)2013年12月,澳大利亚运营商Optus首次完成在TD-LTE上载波聚合。
紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相继部署或商用载波聚合。
刚开始,载波聚合部署仅限于2载波。
2014年,韩国SK电信、LGU+成功演示了3载波聚合。
随着技术的不断演进,相信未来还有更多CC的载波聚合。
当然还包括TDD和FDD、LTE和WiFi之间的载波聚合。
中国电信在2014年9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑。
为了说清楚载波聚合,我们首先来了解一下LTE的频段分配。
载波聚合的分类载波聚合主要分为intra-band 和 inter-band载波聚合,其中intra-band 载波聚合又分为连续(contiguous)和非连续(non-contiguous)。
对于intra-band CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHz。
对于intra-band 非连续载波聚合,该间隔为一个或多个GAP(s)。
3GPP关于载波聚合的定义下图是3GPP关于载波聚合从Re-10到Re-12的定义历程。
3GPP Rel-10定义了bands 1 (FDD) 和 band 40 (TDD)的intra-band 连续载波,分别命名为CA_1C 和CA_40C。
同时还定义band1和5的inter-band载波聚合,命名为CA_1A-5A。
3GPP Rel-11定义了更多CA配置,如下图:3GPP Rel-12包含了TDD和FDD的载波聚合,同时还定义了支持上行2CC和下行3CC载波聚合等等。
连续CA带宽等级和保护带宽对于频段内连续载波聚合,CA 带宽等级根据其支持的CC 数量和物理资源块(Physical Resource Blocks ,PRBs)) 的数量来定义。
CA 带宽等级表示最大ATBC和最大CC 数量。
ATBC,即Aggregated Transmission Bandwidth Configuration,指聚合的PRB的总数量。
保护带宽(Guard bands)专门定义于连续CA,指连续CC之间需有一定的保护带宽。
下表列出了CA带宽等级和相应保护带宽。
另外,对于带内连续CA,PCell和SCell频段相同,频点间隔为300kHz整数倍,且满足如下公式:明白了上面关于带宽等级的定义,我们就很容易理解载波聚合的命名规则了。
比如,以CA_1C 为例,它表示在band1上的intra-band连续载波聚合,2个CC,带宽等级为C,即最大200 RBs。
对应于带宽等级为C,每CC的RB分配也可以是不同的组合,不过范围在100-200 RBs之间。
带内连续intra-band(contiguous)载波聚合有两种方案:●一种可能的方案是F1 和F2 小区位置相同并且重叠,提供几乎完全相同的覆盖范围。
两层都提供重复的覆盖,并在两层都支持移动性。
相似的方案是F1 和F2 位于拥有相似路径损失配置文件的同一频段上。
●另一方案是F1 和F2 位置相同而实现不同覆盖范围:F2 天线导向至F1 的小区边界或者F1 覆盖空洞中,以便改善覆盖范围和/或提高小区边缘吞吐量。
频段间非连续●当F1(较低频率)提供广覆盖并且F2 上的RRH F2(较高频率)用于改善热点上的吞吐量时,可以考虑射频拉远(RRH) 方案。
移动性根据F1 覆盖来执行。
F1 和F2 处于不同频段时考虑类似的方案。
●在HetNet 方案中,有望看到许多小型小区和中继在各种频段上工作。
PCell / SCell / Serving Cell 概念每个CC对应一个独立的Cell。
配置了CA的UE与1个PCell和至多4个SCell 相连。
某UE的PCell和所有SCell组成了该UE的Serving Cell集合。
Serving Cell可指代PCell也可以指代SCell。
PCell是UE初始接入时的cell,负责与UE之间的RRC通信。
SCell是在RRC 重配置时添加的,用于提供额外的无线资源。
PCell是在连接建立(connection establishment)时确定的;SCell是在初始安全激活流程(initial security activation procedure)之后,通过RRC 连接重配置消息RRCConnectionReconfiguration添加/修改/释放的。
每个CC都有一个对应的索引,primary CC索引固定为0,而每个UE的secondary CC索引是通过UE特定的RRC信令发给UE的。
某个UE聚合的CC通常来自同一个eNodeB且这些CC是同步的。
当配置了CA的UE在所有的Serving Cell内使用相同的C-RNTI。
CA是UE级的特性,不同的UE可能有不同的PCell以及Serving Cell集合。
Pcell是UE与之通信的主要小区,被定义为用来传输RRC信令的小区,或者相当于存在物理上行控制信道(PUCCH)的小区,这个信道在一个指定的UE中只能有一个。
一个PCell 始终在RRC_CONNECTED 模式中处于活动状态,同时可能有一个或多个SCell 处于活动状态。
其他的SCells 仅可在连接建立后配置为CONNECTED 模式,以提供额外的无线资源。
所有PCell 和SCell 统称为服务小区。
PCell 和SCell 以此为基础的分量载波分别为主分量载波(PCC) 和辅助分量载波(SCC)。
●一个PCell 配有一个物理下行控制信道(PDCCH) 和一个物理上行控制信道(PUCCH)。
- 测量和移动性过程基于PCell- 随机接入过程在PCell 上进行- PCell 不可被去激活。
●一个SCell 可能配有一个物理下行控制信道(PDCCH),也可能不,具体取决于UE 功能。
SCell 绝没有PUCCH。
- SCell 支持以MAC 层为基础的激活/去激活过程,以便UE节省电池电量。
简单地做个比较:还以上面的运输做类比,PCell相当于主干道,主干道只有一条,不仅运输货物,还负责与接收端进行交流,根据接收端的能力(UE Capability)以及有多少货物要发(负载)等告诉接收端要在哪几条干道上收货以及这些干道的基本情况等(PCell负责RRC连接)。
SCell相当于辅干道,只负责运输货物。
接收端需要告诉发货端自己的能力,比如能不能同时从多条干道接收货物,在每条干道上一次能接收多少货物等(UE Capability)。
发货端(eNodeB)才好按照对端(UE)的能力调度发货,否则接收端处理不过来也是白费!(这里只是以下行为例,UE也可能为发货端)。
因为不同的干道还可能运输另一批货物(其它UE的数据),不同的货物需要区分开,所以在不同的干道上传输的同一批货物(属于同一个UE)有一个相同的标记(C-RNTI)。
跨载波调度跨载波调度是Release 10 中为UE 引入的可选功能,它可以在UE 能力传输过程中通过RRC 激活。
此功能的目的是减少使用了大型小区、小型小区和中继的异构网络(HetNet) 方案中对载波聚合的干扰。
跨载波调度仅用于在没有PDCCH 的SCell 上调度资源。
负责在跨载波调度上下文中提供调度信息的载波通过下行控制信息(DCI) 中的载波指示符字段(CIF) 指明。
此调度也支持HetNet 和不对称配置。
激活与去激活为了更好地管理配置了CA的UE的电池消耗,LTE提供了SCell的激活/去激活机制(不支持PCell的激活/去激活)。
当SCell激活时,UE在该CC内1)发送SRS;2)上报CQI/PMI/RI/PTI;3)检测用于该SCell和在该SCell上传输的PDCCH。
当SCell去激活时,UE在该CC内 1)不发送SRS;2)不上报CQI/PMI/RI/PTI;3)不传输上行数据(包含pending的重传数据);4)不检测用于该SCell和在该SCell上传输的PDCCH;5)可以用于path-loss reference for measurements for uplink power control,但是测量的频率降低,以便降低功率消耗。
重配消息中不带mobility控制信息时,新添加到serving cell的SCell初始为“deactivated”;而原本就在serving cell集合中SCell(未变化或重配置),不改变他们原有的激活状态。
重配消息中带mobility控制信息时(例如handover),所有的SCell均为“deactivated”态。
UE的激活/去激活机制基于MAC control element和deactivation timers 的结合。
基于MAC CE的SCell激活/去激活操作是由eNodeB控制的,基于deactivation timer的SCell激活/去激活操作是由UE控制。
AC CE的格式:LCID为11011,见下图:Bit设置为1,表示对应的SCell被激活;设置为0,表示对应的SCell被去激活。
每个SCell有一个deactivation timer,但是对应某个UE的所有SCell,deactivation timer是相同的,并通过sCellDeactivationTimer字段配置(由eNodeB配置)。
该值可以配置成“infinity”,即去使能基于timer的deactivation。
当在deactivation timer指定的时间内,UE没有在某个CC上收到数据或PDCCH消息,则对应的SCell将去激活。
这也是UE可以自动将某SCell去激活的唯一情况。
当UE在子帧n收到激活命令时,对应的操作将在n+8子帧启动。
当UE在子帧n收到去激活命令或某个SCell的deactivation timer超时,除了CSI报告对应的操作(停止上报)在n+8子帧完成外,其它操作必须在n+8子帧内完成。
SCell 添加与删除载波聚合新增SCell 无法在RRC 建立时立即激活。